1 /* 2 * Copyright Altera Corporation (C) 2012-2015 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <common.h> 8 #include <asm/io.h> 9 #include <asm/arch/sdram.h> 10 #include "sequencer.h" 11 #include "sequencer_auto.h" 12 #include "sequencer_auto_ac_init.h" 13 #include "sequencer_auto_inst_init.h" 14 #include "sequencer_defines.h" 15 16 static void scc_mgr_load_dqs_for_write_group(uint32_t write_group); 17 18 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs = 19 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800); 20 21 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs = 22 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00); 23 24 static struct socfpga_sdr_reg_file *sdr_reg_file = 25 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS; 26 27 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr = 28 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00); 29 30 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd = 31 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS; 32 33 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg = 34 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40); 35 36 static struct socfpga_data_mgr *data_mgr = 37 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS; 38 39 static struct socfpga_sdr_ctrl *sdr_ctrl = 40 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS; 41 42 #define DELTA_D 1 43 44 /* 45 * In order to reduce ROM size, most of the selectable calibration steps are 46 * decided at compile time based on the user's calibration mode selection, 47 * as captured by the STATIC_CALIB_STEPS selection below. 48 * 49 * However, to support simulation-time selection of fast simulation mode, where 50 * we skip everything except the bare minimum, we need a few of the steps to 51 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the 52 * check, which is based on the rtl-supplied value, or we dynamically compute 53 * the value to use based on the dynamically-chosen calibration mode 54 */ 55 56 #define DLEVEL 0 57 #define STATIC_IN_RTL_SIM 0 58 #define STATIC_SKIP_DELAY_LOOPS 0 59 60 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \ 61 STATIC_SKIP_DELAY_LOOPS) 62 63 /* calibration steps requested by the rtl */ 64 uint16_t dyn_calib_steps; 65 66 /* 67 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option 68 * instead of static, we use boolean logic to select between 69 * non-skip and skip values 70 * 71 * The mask is set to include all bits when not-skipping, but is 72 * zero when skipping 73 */ 74 75 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */ 76 77 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \ 78 ((non_skip_value) & skip_delay_mask) 79 80 struct gbl_type *gbl; 81 struct param_type *param; 82 uint32_t curr_shadow_reg; 83 84 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 85 uint32_t write_group, uint32_t use_dm, 86 uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks); 87 88 static void set_failing_group_stage(uint32_t group, uint32_t stage, 89 uint32_t substage) 90 { 91 /* 92 * Only set the global stage if there was not been any other 93 * failing group 94 */ 95 if (gbl->error_stage == CAL_STAGE_NIL) { 96 gbl->error_substage = substage; 97 gbl->error_stage = stage; 98 gbl->error_group = group; 99 } 100 } 101 102 static void reg_file_set_group(u16 set_group) 103 { 104 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16); 105 } 106 107 static void reg_file_set_stage(u8 set_stage) 108 { 109 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff); 110 } 111 112 static void reg_file_set_sub_stage(u8 set_sub_stage) 113 { 114 set_sub_stage &= 0xff; 115 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8); 116 } 117 118 static void initialize(void) 119 { 120 debug("%s:%d\n", __func__, __LINE__); 121 /* USER calibration has control over path to memory */ 122 /* 123 * In Hard PHY this is a 2-bit control: 124 * 0: AFI Mux Select 125 * 1: DDIO Mux Select 126 */ 127 writel(0x3, &phy_mgr_cfg->mux_sel); 128 129 /* USER memory clock is not stable we begin initialization */ 130 writel(0, &phy_mgr_cfg->reset_mem_stbl); 131 132 /* USER calibration status all set to zero */ 133 writel(0, &phy_mgr_cfg->cal_status); 134 135 writel(0, &phy_mgr_cfg->cal_debug_info); 136 137 if ((dyn_calib_steps & CALIB_SKIP_ALL) != CALIB_SKIP_ALL) { 138 param->read_correct_mask_vg = ((uint32_t)1 << 139 (RW_MGR_MEM_DQ_PER_READ_DQS / 140 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1; 141 param->write_correct_mask_vg = ((uint32_t)1 << 142 (RW_MGR_MEM_DQ_PER_READ_DQS / 143 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1; 144 param->read_correct_mask = ((uint32_t)1 << 145 RW_MGR_MEM_DQ_PER_READ_DQS) - 1; 146 param->write_correct_mask = ((uint32_t)1 << 147 RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1; 148 param->dm_correct_mask = ((uint32_t)1 << 149 (RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH)) 150 - 1; 151 } 152 } 153 154 static void set_rank_and_odt_mask(uint32_t rank, uint32_t odt_mode) 155 { 156 uint32_t odt_mask_0 = 0; 157 uint32_t odt_mask_1 = 0; 158 uint32_t cs_and_odt_mask; 159 160 if (odt_mode == RW_MGR_ODT_MODE_READ_WRITE) { 161 if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) { 162 /* 163 * 1 Rank 164 * Read: ODT = 0 165 * Write: ODT = 1 166 */ 167 odt_mask_0 = 0x0; 168 odt_mask_1 = 0x1; 169 } else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) { 170 /* 2 Ranks */ 171 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) { 172 /* - Dual-Slot , Single-Rank 173 * (1 chip-select per DIMM) 174 * OR 175 * - RDIMM, 4 total CS (2 CS per DIMM) 176 * means 2 DIMM 177 * Since MEM_NUMBER_OF_RANKS is 2 they are 178 * both single rank 179 * with 2 CS each (special for RDIMM) 180 * Read: Turn on ODT on the opposite rank 181 * Write: Turn on ODT on all ranks 182 */ 183 odt_mask_0 = 0x3 & ~(1 << rank); 184 odt_mask_1 = 0x3; 185 } else { 186 /* 187 * USER - Single-Slot , Dual-rank DIMMs 188 * (2 chip-selects per DIMM) 189 * USER Read: Turn on ODT off on all ranks 190 * USER Write: Turn on ODT on active rank 191 */ 192 odt_mask_0 = 0x0; 193 odt_mask_1 = 0x3 & (1 << rank); 194 } 195 } else { 196 /* 4 Ranks 197 * Read: 198 * ----------+-----------------------+ 199 * | | 200 * | ODT | 201 * Read From +-----------------------+ 202 * Rank | 3 | 2 | 1 | 0 | 203 * ----------+-----+-----+-----+-----+ 204 * 0 | 0 | 1 | 0 | 0 | 205 * 1 | 1 | 0 | 0 | 0 | 206 * 2 | 0 | 0 | 0 | 1 | 207 * 3 | 0 | 0 | 1 | 0 | 208 * ----------+-----+-----+-----+-----+ 209 * 210 * Write: 211 * ----------+-----------------------+ 212 * | | 213 * | ODT | 214 * Write To +-----------------------+ 215 * Rank | 3 | 2 | 1 | 0 | 216 * ----------+-----+-----+-----+-----+ 217 * 0 | 0 | 1 | 0 | 1 | 218 * 1 | 1 | 0 | 1 | 0 | 219 * 2 | 0 | 1 | 0 | 1 | 220 * 3 | 1 | 0 | 1 | 0 | 221 * ----------+-----+-----+-----+-----+ 222 */ 223 switch (rank) { 224 case 0: 225 odt_mask_0 = 0x4; 226 odt_mask_1 = 0x5; 227 break; 228 case 1: 229 odt_mask_0 = 0x8; 230 odt_mask_1 = 0xA; 231 break; 232 case 2: 233 odt_mask_0 = 0x1; 234 odt_mask_1 = 0x5; 235 break; 236 case 3: 237 odt_mask_0 = 0x2; 238 odt_mask_1 = 0xA; 239 break; 240 } 241 } 242 } else { 243 odt_mask_0 = 0x0; 244 odt_mask_1 = 0x0; 245 } 246 247 cs_and_odt_mask = 248 (0xFF & ~(1 << rank)) | 249 ((0xFF & odt_mask_0) << 8) | 250 ((0xFF & odt_mask_1) << 16); 251 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS | 252 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 253 } 254 255 static void scc_mgr_initialize(void) 256 { 257 u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_HHP_RFILE_OFFSET; 258 259 /* 260 * Clear register file for HPS 261 * 16 (2^4) is the size of the full register file in the scc mgr: 262 * RFILE_DEPTH = log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + 263 * MEM_IF_READ_DQS_WIDTH - 1) + 1; 264 */ 265 uint32_t i; 266 for (i = 0; i < 16; i++) { 267 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n", 268 __func__, __LINE__, i); 269 writel(0, addr + (i << 2)); 270 } 271 } 272 273 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, 274 uint32_t delay) 275 { 276 u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET; 277 278 /* Load the setting in the SCC manager */ 279 writel(delay, addr + (read_group << 2)); 280 } 281 282 static void scc_mgr_set_dqs_io_in_delay(uint32_t write_group, 283 uint32_t delay) 284 { 285 u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET; 286 287 writel(delay, addr + (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 288 } 289 290 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase) 291 { 292 u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_EN_PHASE_OFFSET; 293 294 /* Load the setting in the SCC manager */ 295 writel(phase, addr + (read_group << 2)); 296 } 297 298 static void scc_mgr_set_dqs_en_phase_all_ranks(uint32_t read_group, 299 uint32_t phase) 300 { 301 uint32_t r; 302 uint32_t update_scan_chains; 303 304 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 305 r += NUM_RANKS_PER_SHADOW_REG) { 306 /* 307 * USER although the h/w doesn't support different phases per 308 * shadow register, for simplicity our scc manager modeling 309 * keeps different phase settings per shadow reg, and it's 310 * important for us to keep them in sync to match h/w. 311 * for efficiency, the scan chain update should occur only 312 * once to sr0. 313 */ 314 update_scan_chains = (r == 0) ? 1 : 0; 315 316 scc_mgr_set_dqs_en_phase(read_group, phase); 317 318 if (update_scan_chains) { 319 writel(read_group, &sdr_scc_mgr->dqs_ena); 320 writel(0, &sdr_scc_mgr->update); 321 } 322 } 323 } 324 325 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, 326 uint32_t phase) 327 { 328 u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQDQS_OUT_PHASE_OFFSET; 329 330 /* Load the setting in the SCC manager */ 331 writel(phase, addr + (write_group << 2)); 332 } 333 334 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group, 335 uint32_t phase) 336 { 337 uint32_t r; 338 uint32_t update_scan_chains; 339 340 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 341 r += NUM_RANKS_PER_SHADOW_REG) { 342 /* 343 * USER although the h/w doesn't support different phases per 344 * shadow register, for simplicity our scc manager modeling 345 * keeps different phase settings per shadow reg, and it's 346 * important for us to keep them in sync to match h/w. 347 * for efficiency, the scan chain update should occur only 348 * once to sr0. 349 */ 350 update_scan_chains = (r == 0) ? 1 : 0; 351 352 scc_mgr_set_dqdqs_output_phase(write_group, phase); 353 354 if (update_scan_chains) { 355 writel(write_group, &sdr_scc_mgr->dqs_ena); 356 writel(0, &sdr_scc_mgr->update); 357 } 358 } 359 } 360 361 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay) 362 { 363 uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_EN_DELAY_OFFSET; 364 365 /* Load the setting in the SCC manager */ 366 writel(delay + IO_DQS_EN_DELAY_OFFSET, addr + 367 (read_group << 2)); 368 } 369 370 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group, 371 uint32_t delay) 372 { 373 uint32_t r; 374 375 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 376 r += NUM_RANKS_PER_SHADOW_REG) { 377 scc_mgr_set_dqs_en_delay(read_group, delay); 378 379 writel(read_group, &sdr_scc_mgr->dqs_ena); 380 /* 381 * In shadow register mode, the T11 settings are stored in 382 * registers in the core, which are updated by the DQS_ENA 383 * signals. Not issuing the SCC_MGR_UPD command allows us to 384 * save lots of rank switching overhead, by calling 385 * select_shadow_regs_for_update with update_scan_chains 386 * set to 0. 387 */ 388 writel(0, &sdr_scc_mgr->update); 389 } 390 /* 391 * In shadow register mode, the T11 settings are stored in 392 * registers in the core, which are updated by the DQS_ENA 393 * signals. Not issuing the SCC_MGR_UPD command allows us to 394 * save lots of rank switching overhead, by calling 395 * select_shadow_regs_for_update with update_scan_chains 396 * set to 0. 397 */ 398 writel(0, &sdr_scc_mgr->update); 399 } 400 401 static void scc_mgr_set_oct_out1_delay(uint32_t write_group, uint32_t delay) 402 { 403 uint32_t read_group; 404 uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_OCT_OUT1_DELAY_OFFSET; 405 406 /* 407 * Load the setting in the SCC manager 408 * Although OCT affects only write data, the OCT delay is controlled 409 * by the DQS logic block which is instantiated once per read group. 410 * For protocols where a write group consists of multiple read groups, 411 * the setting must be set multiple times. 412 */ 413 for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH / 414 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 415 read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH / 416 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; ++read_group) 417 writel(delay, addr + (read_group << 2)); 418 } 419 420 static void scc_mgr_set_dq_out1_delay(uint32_t write_group, 421 uint32_t dq_in_group, uint32_t delay) 422 { 423 uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 424 425 /* Load the setting in the SCC manager */ 426 writel(delay, addr + (dq_in_group << 2)); 427 } 428 429 static void scc_mgr_set_dq_in_delay(uint32_t write_group, 430 uint32_t dq_in_group, uint32_t delay) 431 { 432 uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET; 433 434 /* Load the setting in the SCC manager */ 435 writel(delay, addr + (dq_in_group << 2)); 436 } 437 438 static void scc_mgr_set_hhp_extras(void) 439 { 440 /* 441 * Load the fixed setting in the SCC manager 442 * bits: 0:0 = 1'b1 - dqs bypass 443 * bits: 1:1 = 1'b1 - dq bypass 444 * bits: 4:2 = 3'b001 - rfifo_mode 445 * bits: 6:5 = 2'b01 - rfifo clock_select 446 * bits: 7:7 = 1'b0 - separate gating from ungating setting 447 * bits: 8:8 = 1'b0 - separate OE from Output delay setting 448 */ 449 uint32_t value = (0<<8) | (0<<7) | (1<<5) | (1<<2) | (1<<1) | (1<<0); 450 uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_HHP_GLOBALS_OFFSET; 451 452 writel(value, addr + SCC_MGR_HHP_EXTRAS_OFFSET); 453 } 454 455 static void scc_mgr_set_dqs_out1_delay(uint32_t write_group, 456 uint32_t delay) 457 { 458 uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 459 460 /* Load the setting in the SCC manager */ 461 writel(delay, addr + (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 462 } 463 464 static void scc_mgr_set_dm_out1_delay(uint32_t write_group, 465 uint32_t dm, uint32_t delay) 466 { 467 uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 468 469 /* Load the setting in the SCC manager */ 470 writel(delay, addr + 471 ((RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm) << 2)); 472 } 473 474 /* 475 * USER Zero all DQS config 476 * TODO: maybe rename to scc_mgr_zero_dqs_config (or something) 477 */ 478 static void scc_mgr_zero_all(void) 479 { 480 uint32_t i, r; 481 482 /* 483 * USER Zero all DQS config settings, across all groups and all 484 * shadow registers 485 */ 486 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += 487 NUM_RANKS_PER_SHADOW_REG) { 488 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 489 /* 490 * The phases actually don't exist on a per-rank basis, 491 * but there's no harm updating them several times, so 492 * let's keep the code simple. 493 */ 494 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE); 495 scc_mgr_set_dqs_en_phase(i, 0); 496 scc_mgr_set_dqs_en_delay(i, 0); 497 } 498 499 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 500 scc_mgr_set_dqdqs_output_phase(i, 0); 501 /* av/cv don't have out2 */ 502 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE); 503 } 504 } 505 506 /* multicast to all DQS group enables */ 507 writel(0xff, &sdr_scc_mgr->dqs_ena); 508 writel(0, &sdr_scc_mgr->update); 509 } 510 511 static void scc_set_bypass_mode(uint32_t write_group, uint32_t mode) 512 { 513 /* mode = 0 : Do NOT bypass - Half Rate Mode */ 514 /* mode = 1 : Bypass - Full Rate Mode */ 515 516 /* only need to set once for all groups, pins, dq, dqs, dm */ 517 if (write_group == 0) { 518 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", __func__, 519 __LINE__); 520 scc_mgr_set_hhp_extras(); 521 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n", 522 __func__, __LINE__); 523 } 524 /* multicast to all DQ enables */ 525 writel(0xff, &sdr_scc_mgr->dq_ena); 526 writel(0xff, &sdr_scc_mgr->dm_ena); 527 528 /* update current DQS IO enable */ 529 writel(0, &sdr_scc_mgr->dqs_io_ena); 530 531 /* update the DQS logic */ 532 writel(write_group, &sdr_scc_mgr->dqs_ena); 533 534 /* hit update */ 535 writel(0, &sdr_scc_mgr->update); 536 } 537 538 static void scc_mgr_zero_group(uint32_t write_group, uint32_t test_begin, 539 int32_t out_only) 540 { 541 uint32_t i, r; 542 543 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += 544 NUM_RANKS_PER_SHADOW_REG) { 545 /* Zero all DQ config settings */ 546 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 547 scc_mgr_set_dq_out1_delay(write_group, i, 0); 548 if (!out_only) 549 scc_mgr_set_dq_in_delay(write_group, i, 0); 550 } 551 552 /* multicast to all DQ enables */ 553 writel(0xff, &sdr_scc_mgr->dq_ena); 554 555 /* Zero all DM config settings */ 556 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 557 scc_mgr_set_dm_out1_delay(write_group, i, 0); 558 } 559 560 /* multicast to all DM enables */ 561 writel(0xff, &sdr_scc_mgr->dm_ena); 562 563 /* zero all DQS io settings */ 564 if (!out_only) 565 scc_mgr_set_dqs_io_in_delay(write_group, 0); 566 /* av/cv don't have out2 */ 567 scc_mgr_set_dqs_out1_delay(write_group, IO_DQS_OUT_RESERVE); 568 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE); 569 scc_mgr_load_dqs_for_write_group(write_group); 570 571 /* multicast to all DQS IO enables (only 1) */ 572 writel(0, &sdr_scc_mgr->dqs_io_ena); 573 574 /* hit update to zero everything */ 575 writel(0, &sdr_scc_mgr->update); 576 } 577 } 578 579 /* load up dqs config settings */ 580 static void scc_mgr_load_dqs(uint32_t dqs) 581 { 582 writel(dqs, &sdr_scc_mgr->dqs_ena); 583 } 584 585 static void scc_mgr_load_dqs_for_write_group(uint32_t write_group) 586 { 587 uint32_t read_group; 588 uint32_t addr = (u32)&sdr_scc_mgr->dqs_ena; 589 /* 590 * Although OCT affects only write data, the OCT delay is controlled 591 * by the DQS logic block which is instantiated once per read group. 592 * For protocols where a write group consists of multiple read groups, 593 * the setting must be scanned multiple times. 594 */ 595 for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH / 596 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 597 read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH / 598 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; ++read_group) 599 writel(read_group, addr); 600 } 601 602 /* load up dqs io config settings */ 603 static void scc_mgr_load_dqs_io(void) 604 { 605 writel(0, &sdr_scc_mgr->dqs_io_ena); 606 } 607 608 /* load up dq config settings */ 609 static void scc_mgr_load_dq(uint32_t dq_in_group) 610 { 611 writel(dq_in_group, &sdr_scc_mgr->dq_ena); 612 } 613 614 /* load up dm config settings */ 615 static void scc_mgr_load_dm(uint32_t dm) 616 { 617 writel(dm, &sdr_scc_mgr->dm_ena); 618 } 619 620 /* 621 * apply and load a particular input delay for the DQ pins in a group 622 * group_bgn is the index of the first dq pin (in the write group) 623 */ 624 static void scc_mgr_apply_group_dq_in_delay(uint32_t write_group, 625 uint32_t group_bgn, uint32_t delay) 626 { 627 uint32_t i, p; 628 629 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 630 scc_mgr_set_dq_in_delay(write_group, p, delay); 631 scc_mgr_load_dq(p); 632 } 633 } 634 635 /* apply and load a particular output delay for the DQ pins in a group */ 636 static void scc_mgr_apply_group_dq_out1_delay(uint32_t write_group, 637 uint32_t group_bgn, 638 uint32_t delay1) 639 { 640 uint32_t i, p; 641 642 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 643 scc_mgr_set_dq_out1_delay(write_group, i, delay1); 644 scc_mgr_load_dq(i); 645 } 646 } 647 648 /* apply and load a particular output delay for the DM pins in a group */ 649 static void scc_mgr_apply_group_dm_out1_delay(uint32_t write_group, 650 uint32_t delay1) 651 { 652 uint32_t i; 653 654 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 655 scc_mgr_set_dm_out1_delay(write_group, i, delay1); 656 scc_mgr_load_dm(i); 657 } 658 } 659 660 661 /* apply and load delay on both DQS and OCT out1 */ 662 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group, 663 uint32_t delay) 664 { 665 scc_mgr_set_dqs_out1_delay(write_group, delay); 666 scc_mgr_load_dqs_io(); 667 668 scc_mgr_set_oct_out1_delay(write_group, delay); 669 scc_mgr_load_dqs_for_write_group(write_group); 670 } 671 672 /* apply a delay to the entire output side: DQ, DM, DQS, OCT */ 673 static void scc_mgr_apply_group_all_out_delay_add(uint32_t write_group, 674 uint32_t group_bgn, 675 uint32_t delay) 676 { 677 uint32_t i, p, new_delay; 678 679 /* dq shift */ 680 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 681 new_delay = READ_SCC_DQ_OUT2_DELAY; 682 new_delay += delay; 683 684 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 685 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQ[%u,%u]:\ 686 %u > %lu => %lu", __func__, __LINE__, 687 write_group, group_bgn, delay, i, p, new_delay, 688 (long unsigned int)IO_IO_OUT2_DELAY_MAX, 689 (long unsigned int)IO_IO_OUT2_DELAY_MAX); 690 new_delay = IO_IO_OUT2_DELAY_MAX; 691 } 692 693 scc_mgr_load_dq(i); 694 } 695 696 /* dm shift */ 697 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 698 new_delay = READ_SCC_DM_IO_OUT2_DELAY; 699 new_delay += delay; 700 701 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 702 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DM[%u]:\ 703 %u > %lu => %lu\n", __func__, __LINE__, 704 write_group, group_bgn, delay, i, new_delay, 705 (long unsigned int)IO_IO_OUT2_DELAY_MAX, 706 (long unsigned int)IO_IO_OUT2_DELAY_MAX); 707 new_delay = IO_IO_OUT2_DELAY_MAX; 708 } 709 710 scc_mgr_load_dm(i); 711 } 712 713 /* dqs shift */ 714 new_delay = READ_SCC_DQS_IO_OUT2_DELAY; 715 new_delay += delay; 716 717 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 718 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;" 719 " adding %u to OUT1\n", __func__, __LINE__, 720 write_group, group_bgn, delay, new_delay, 721 IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX, 722 new_delay - IO_IO_OUT2_DELAY_MAX); 723 scc_mgr_set_dqs_out1_delay(write_group, new_delay - 724 IO_IO_OUT2_DELAY_MAX); 725 new_delay = IO_IO_OUT2_DELAY_MAX; 726 } 727 728 scc_mgr_load_dqs_io(); 729 730 /* oct shift */ 731 new_delay = READ_SCC_OCT_OUT2_DELAY; 732 new_delay += delay; 733 734 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 735 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;" 736 " adding %u to OUT1\n", __func__, __LINE__, 737 write_group, group_bgn, delay, new_delay, 738 IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX, 739 new_delay - IO_IO_OUT2_DELAY_MAX); 740 scc_mgr_set_oct_out1_delay(write_group, new_delay - 741 IO_IO_OUT2_DELAY_MAX); 742 new_delay = IO_IO_OUT2_DELAY_MAX; 743 } 744 745 scc_mgr_load_dqs_for_write_group(write_group); 746 } 747 748 /* 749 * USER apply a delay to the entire output side (DQ, DM, DQS, OCT) 750 * and to all ranks 751 */ 752 static void scc_mgr_apply_group_all_out_delay_add_all_ranks( 753 uint32_t write_group, uint32_t group_bgn, uint32_t delay) 754 { 755 uint32_t r; 756 757 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 758 r += NUM_RANKS_PER_SHADOW_REG) { 759 scc_mgr_apply_group_all_out_delay_add(write_group, 760 group_bgn, delay); 761 writel(0, &sdr_scc_mgr->update); 762 } 763 } 764 765 /* optimization used to recover some slots in ddr3 inst_rom */ 766 /* could be applied to other protocols if we wanted to */ 767 static void set_jump_as_return(void) 768 { 769 /* 770 * to save space, we replace return with jump to special shared 771 * RETURN instruction so we set the counter to large value so that 772 * we always jump 773 */ 774 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0); 775 writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 776 } 777 778 /* 779 * should always use constants as argument to ensure all computations are 780 * performed at compile time 781 */ 782 static void delay_for_n_mem_clocks(const uint32_t clocks) 783 { 784 uint32_t afi_clocks; 785 uint8_t inner = 0; 786 uint8_t outer = 0; 787 uint16_t c_loop = 0; 788 789 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks); 790 791 792 afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO; 793 /* scale (rounding up) to get afi clocks */ 794 795 /* 796 * Note, we don't bother accounting for being off a little bit 797 * because of a few extra instructions in outer loops 798 * Note, the loops have a test at the end, and do the test before 799 * the decrement, and so always perform the loop 800 * 1 time more than the counter value 801 */ 802 if (afi_clocks == 0) { 803 ; 804 } else if (afi_clocks <= 0x100) { 805 inner = afi_clocks-1; 806 outer = 0; 807 c_loop = 0; 808 } else if (afi_clocks <= 0x10000) { 809 inner = 0xff; 810 outer = (afi_clocks-1) >> 8; 811 c_loop = 0; 812 } else { 813 inner = 0xff; 814 outer = 0xff; 815 c_loop = (afi_clocks-1) >> 16; 816 } 817 818 /* 819 * rom instructions are structured as follows: 820 * 821 * IDLE_LOOP2: jnz cntr0, TARGET_A 822 * IDLE_LOOP1: jnz cntr1, TARGET_B 823 * return 824 * 825 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and 826 * TARGET_B is set to IDLE_LOOP2 as well 827 * 828 * if we have no outer loop, though, then we can use IDLE_LOOP1 only, 829 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely 830 * 831 * a little confusing, but it helps save precious space in the inst_rom 832 * and sequencer rom and keeps the delays more accurate and reduces 833 * overhead 834 */ 835 if (afi_clocks <= 0x100) { 836 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 837 &sdr_rw_load_mgr_regs->load_cntr1); 838 839 writel(RW_MGR_IDLE_LOOP1, 840 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 841 842 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 843 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 844 } else { 845 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 846 &sdr_rw_load_mgr_regs->load_cntr0); 847 848 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), 849 &sdr_rw_load_mgr_regs->load_cntr1); 850 851 writel(RW_MGR_IDLE_LOOP2, 852 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 853 854 writel(RW_MGR_IDLE_LOOP2, 855 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 856 857 /* hack to get around compiler not being smart enough */ 858 if (afi_clocks <= 0x10000) { 859 /* only need to run once */ 860 writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS | 861 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 862 } else { 863 do { 864 writel(RW_MGR_IDLE_LOOP2, 865 SDR_PHYGRP_RWMGRGRP_ADDRESS | 866 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 867 } while (c_loop-- != 0); 868 } 869 } 870 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks); 871 } 872 873 static void rw_mgr_mem_initialize(void) 874 { 875 uint32_t r; 876 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 877 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 878 879 debug("%s:%d\n", __func__, __LINE__); 880 881 /* The reset / cke part of initialization is broadcasted to all ranks */ 882 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 883 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 884 885 /* 886 * Here's how you load register for a loop 887 * Counters are located @ 0x800 888 * Jump address are located @ 0xC00 889 * For both, registers 0 to 3 are selected using bits 3 and 2, like 890 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C 891 * I know this ain't pretty, but Avalon bus throws away the 2 least 892 * significant bits 893 */ 894 895 /* start with memory RESET activated */ 896 897 /* tINIT = 200us */ 898 899 /* 900 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles 901 * If a and b are the number of iteration in 2 nested loops 902 * it takes the following number of cycles to complete the operation: 903 * number_of_cycles = ((2 + n) * a + 2) * b 904 * where n is the number of instruction in the inner loop 905 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF, 906 * b = 6A 907 */ 908 909 /* Load counters */ 910 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR0_VAL), 911 &sdr_rw_load_mgr_regs->load_cntr0); 912 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR1_VAL), 913 &sdr_rw_load_mgr_regs->load_cntr1); 914 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR2_VAL), 915 &sdr_rw_load_mgr_regs->load_cntr2); 916 917 /* Load jump address */ 918 writel(RW_MGR_INIT_RESET_0_CKE_0, 919 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 920 writel(RW_MGR_INIT_RESET_0_CKE_0, 921 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 922 writel(RW_MGR_INIT_RESET_0_CKE_0, 923 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 924 925 /* Execute count instruction */ 926 writel(RW_MGR_INIT_RESET_0_CKE_0, grpaddr); 927 928 /* indicate that memory is stable */ 929 writel(1, &phy_mgr_cfg->reset_mem_stbl); 930 931 /* 932 * transition the RESET to high 933 * Wait for 500us 934 */ 935 936 /* 937 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles 938 * If a and b are the number of iteration in 2 nested loops 939 * it takes the following number of cycles to complete the operation 940 * number_of_cycles = ((2 + n) * a + 2) * b 941 * where n is the number of instruction in the inner loop 942 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83, 943 * b = FF 944 */ 945 946 /* Load counters */ 947 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR0_VAL), 948 &sdr_rw_load_mgr_regs->load_cntr0); 949 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR1_VAL), 950 &sdr_rw_load_mgr_regs->load_cntr1); 951 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR2_VAL), 952 &sdr_rw_load_mgr_regs->load_cntr2); 953 954 /* Load jump address */ 955 writel(RW_MGR_INIT_RESET_1_CKE_0, 956 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 957 writel(RW_MGR_INIT_RESET_1_CKE_0, 958 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 959 writel(RW_MGR_INIT_RESET_1_CKE_0, 960 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 961 962 writel(RW_MGR_INIT_RESET_1_CKE_0, grpaddr); 963 964 /* bring up clock enable */ 965 966 /* tXRP < 250 ck cycles */ 967 delay_for_n_mem_clocks(250); 968 969 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 970 if (param->skip_ranks[r]) { 971 /* request to skip the rank */ 972 continue; 973 } 974 975 /* set rank */ 976 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 977 978 /* 979 * USER Use Mirror-ed commands for odd ranks if address 980 * mirrorring is on 981 */ 982 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 983 set_jump_as_return(); 984 writel(RW_MGR_MRS2_MIRR, grpaddr); 985 delay_for_n_mem_clocks(4); 986 set_jump_as_return(); 987 writel(RW_MGR_MRS3_MIRR, grpaddr); 988 delay_for_n_mem_clocks(4); 989 set_jump_as_return(); 990 writel(RW_MGR_MRS1_MIRR, grpaddr); 991 delay_for_n_mem_clocks(4); 992 set_jump_as_return(); 993 writel(RW_MGR_MRS0_DLL_RESET_MIRR, grpaddr); 994 } else { 995 set_jump_as_return(); 996 writel(RW_MGR_MRS2, grpaddr); 997 delay_for_n_mem_clocks(4); 998 set_jump_as_return(); 999 writel(RW_MGR_MRS3, grpaddr); 1000 delay_for_n_mem_clocks(4); 1001 set_jump_as_return(); 1002 writel(RW_MGR_MRS1, grpaddr); 1003 set_jump_as_return(); 1004 writel(RW_MGR_MRS0_DLL_RESET, grpaddr); 1005 } 1006 set_jump_as_return(); 1007 writel(RW_MGR_ZQCL, grpaddr); 1008 1009 /* tZQinit = tDLLK = 512 ck cycles */ 1010 delay_for_n_mem_clocks(512); 1011 } 1012 } 1013 1014 /* 1015 * At the end of calibration we have to program the user settings in, and 1016 * USER hand off the memory to the user. 1017 */ 1018 static void rw_mgr_mem_handoff(void) 1019 { 1020 uint32_t r; 1021 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1022 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1023 1024 debug("%s:%d\n", __func__, __LINE__); 1025 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 1026 if (param->skip_ranks[r]) 1027 /* request to skip the rank */ 1028 continue; 1029 /* set rank */ 1030 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 1031 1032 /* precharge all banks ... */ 1033 writel(RW_MGR_PRECHARGE_ALL, grpaddr); 1034 1035 /* load up MR settings specified by user */ 1036 1037 /* 1038 * Use Mirror-ed commands for odd ranks if address 1039 * mirrorring is on 1040 */ 1041 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 1042 set_jump_as_return(); 1043 writel(RW_MGR_MRS2_MIRR, grpaddr); 1044 delay_for_n_mem_clocks(4); 1045 set_jump_as_return(); 1046 writel(RW_MGR_MRS3_MIRR, grpaddr); 1047 delay_for_n_mem_clocks(4); 1048 set_jump_as_return(); 1049 writel(RW_MGR_MRS1_MIRR, grpaddr); 1050 delay_for_n_mem_clocks(4); 1051 set_jump_as_return(); 1052 writel(RW_MGR_MRS0_USER_MIRR, grpaddr); 1053 } else { 1054 set_jump_as_return(); 1055 writel(RW_MGR_MRS2, grpaddr); 1056 delay_for_n_mem_clocks(4); 1057 set_jump_as_return(); 1058 writel(RW_MGR_MRS3, grpaddr); 1059 delay_for_n_mem_clocks(4); 1060 set_jump_as_return(); 1061 writel(RW_MGR_MRS1, grpaddr); 1062 delay_for_n_mem_clocks(4); 1063 set_jump_as_return(); 1064 writel(RW_MGR_MRS0_USER, grpaddr); 1065 } 1066 /* 1067 * USER need to wait tMOD (12CK or 15ns) time before issuing 1068 * other commands, but we will have plenty of NIOS cycles before 1069 * actual handoff so its okay. 1070 */ 1071 } 1072 } 1073 1074 /* 1075 * performs a guaranteed read on the patterns we are going to use during a 1076 * read test to ensure memory works 1077 */ 1078 static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn, 1079 uint32_t group, uint32_t num_tries, uint32_t *bit_chk, 1080 uint32_t all_ranks) 1081 { 1082 uint32_t r, vg; 1083 uint32_t correct_mask_vg; 1084 uint32_t tmp_bit_chk; 1085 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1086 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1087 uint32_t addr; 1088 uint32_t base_rw_mgr; 1089 1090 *bit_chk = param->read_correct_mask; 1091 correct_mask_vg = param->read_correct_mask_vg; 1092 1093 for (r = rank_bgn; r < rank_end; r++) { 1094 if (param->skip_ranks[r]) 1095 /* request to skip the rank */ 1096 continue; 1097 1098 /* set rank */ 1099 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1100 1101 /* Load up a constant bursts of read commands */ 1102 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1103 writel(RW_MGR_GUARANTEED_READ, 1104 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1105 1106 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1107 writel(RW_MGR_GUARANTEED_READ_CONT, 1108 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1109 1110 tmp_bit_chk = 0; 1111 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1112 /* reset the fifos to get pointers to known state */ 1113 1114 writel(0, &phy_mgr_cmd->fifo_reset); 1115 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1116 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1117 1118 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1119 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1120 1121 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1122 writel(RW_MGR_GUARANTEED_READ, addr + 1123 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1124 vg) << 2)); 1125 1126 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1127 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr)); 1128 1129 if (vg == 0) 1130 break; 1131 } 1132 *bit_chk &= tmp_bit_chk; 1133 } 1134 1135 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1136 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1137 1138 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1139 debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\ 1140 %lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask, 1141 (long unsigned int)(*bit_chk == param->read_correct_mask)); 1142 return *bit_chk == param->read_correct_mask; 1143 } 1144 1145 static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks 1146 (uint32_t group, uint32_t num_tries, uint32_t *bit_chk) 1147 { 1148 return rw_mgr_mem_calibrate_read_test_patterns(0, group, 1149 num_tries, bit_chk, 1); 1150 } 1151 1152 /* load up the patterns we are going to use during a read test */ 1153 static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn, 1154 uint32_t all_ranks) 1155 { 1156 uint32_t r; 1157 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1158 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1159 1160 debug("%s:%d\n", __func__, __LINE__); 1161 for (r = rank_bgn; r < rank_end; r++) { 1162 if (param->skip_ranks[r]) 1163 /* request to skip the rank */ 1164 continue; 1165 1166 /* set rank */ 1167 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1168 1169 /* Load up a constant bursts */ 1170 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1171 1172 writel(RW_MGR_GUARANTEED_WRITE_WAIT0, 1173 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1174 1175 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1176 1177 writel(RW_MGR_GUARANTEED_WRITE_WAIT1, 1178 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1179 1180 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2); 1181 1182 writel(RW_MGR_GUARANTEED_WRITE_WAIT2, 1183 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1184 1185 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3); 1186 1187 writel(RW_MGR_GUARANTEED_WRITE_WAIT3, 1188 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1189 1190 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1191 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 1192 } 1193 1194 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1195 } 1196 1197 /* 1198 * try a read and see if it returns correct data back. has dummy reads 1199 * inserted into the mix used to align dqs enable. has more thorough checks 1200 * than the regular read test. 1201 */ 1202 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group, 1203 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1204 uint32_t all_groups, uint32_t all_ranks) 1205 { 1206 uint32_t r, vg; 1207 uint32_t correct_mask_vg; 1208 uint32_t tmp_bit_chk; 1209 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1210 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1211 uint32_t addr; 1212 uint32_t base_rw_mgr; 1213 1214 *bit_chk = param->read_correct_mask; 1215 correct_mask_vg = param->read_correct_mask_vg; 1216 1217 uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) & 1218 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION); 1219 1220 for (r = rank_bgn; r < rank_end; r++) { 1221 if (param->skip_ranks[r]) 1222 /* request to skip the rank */ 1223 continue; 1224 1225 /* set rank */ 1226 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1227 1228 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1); 1229 1230 writel(RW_MGR_READ_B2B_WAIT1, 1231 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1232 1233 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2); 1234 writel(RW_MGR_READ_B2B_WAIT2, 1235 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1236 1237 if (quick_read_mode) 1238 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0); 1239 /* need at least two (1+1) reads to capture failures */ 1240 else if (all_groups) 1241 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0); 1242 else 1243 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0); 1244 1245 writel(RW_MGR_READ_B2B, 1246 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1247 if (all_groups) 1248 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH * 1249 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1, 1250 &sdr_rw_load_mgr_regs->load_cntr3); 1251 else 1252 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3); 1253 1254 writel(RW_MGR_READ_B2B, 1255 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1256 1257 tmp_bit_chk = 0; 1258 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1259 /* reset the fifos to get pointers to known state */ 1260 writel(0, &phy_mgr_cmd->fifo_reset); 1261 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1262 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1263 1264 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1265 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1266 1267 if (all_groups) 1268 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET; 1269 else 1270 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1271 1272 writel(RW_MGR_READ_B2B, addr + 1273 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1274 vg) << 2)); 1275 1276 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1277 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 1278 1279 if (vg == 0) 1280 break; 1281 } 1282 *bit_chk &= tmp_bit_chk; 1283 } 1284 1285 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1286 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1287 1288 if (all_correct) { 1289 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1290 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\ 1291 (%u == %u) => %lu", __func__, __LINE__, group, 1292 all_groups, *bit_chk, param->read_correct_mask, 1293 (long unsigned int)(*bit_chk == 1294 param->read_correct_mask)); 1295 return *bit_chk == param->read_correct_mask; 1296 } else { 1297 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1298 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\ 1299 (%u != %lu) => %lu\n", __func__, __LINE__, 1300 group, all_groups, *bit_chk, (long unsigned int)0, 1301 (long unsigned int)(*bit_chk != 0x00)); 1302 return *bit_chk != 0x00; 1303 } 1304 } 1305 1306 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group, 1307 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1308 uint32_t all_groups) 1309 { 1310 return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct, 1311 bit_chk, all_groups, 1); 1312 } 1313 1314 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v) 1315 { 1316 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy); 1317 (*v)++; 1318 } 1319 1320 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v) 1321 { 1322 uint32_t i; 1323 1324 for (i = 0; i < VFIFO_SIZE-1; i++) 1325 rw_mgr_incr_vfifo(grp, v); 1326 } 1327 1328 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk) 1329 { 1330 uint32_t v; 1331 uint32_t fail_cnt = 0; 1332 uint32_t test_status; 1333 1334 for (v = 0; v < VFIFO_SIZE; ) { 1335 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n", 1336 __func__, __LINE__, v); 1337 test_status = rw_mgr_mem_calibrate_read_test_all_ranks 1338 (grp, 1, PASS_ONE_BIT, bit_chk, 0); 1339 if (!test_status) { 1340 fail_cnt++; 1341 1342 if (fail_cnt == 2) 1343 break; 1344 } 1345 1346 /* fiddle with FIFO */ 1347 rw_mgr_incr_vfifo(grp, &v); 1348 } 1349 1350 if (v >= VFIFO_SIZE) { 1351 /* no failing read found!! Something must have gone wrong */ 1352 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n", 1353 __func__, __LINE__); 1354 return 0; 1355 } else { 1356 return v; 1357 } 1358 } 1359 1360 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk, 1361 uint32_t dtaps_per_ptap, uint32_t *work_bgn, 1362 uint32_t *v, uint32_t *d, uint32_t *p, 1363 uint32_t *i, uint32_t *max_working_cnt) 1364 { 1365 uint32_t found_begin = 0; 1366 uint32_t tmp_delay = 0; 1367 uint32_t test_status; 1368 1369 for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay += 1370 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1371 *work_bgn = tmp_delay; 1372 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1373 1374 for (*i = 0; *i < VFIFO_SIZE; (*i)++) { 1375 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn += 1376 IO_DELAY_PER_OPA_TAP) { 1377 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1378 1379 test_status = 1380 rw_mgr_mem_calibrate_read_test_all_ranks 1381 (*grp, 1, PASS_ONE_BIT, bit_chk, 0); 1382 1383 if (test_status) { 1384 *max_working_cnt = 1; 1385 found_begin = 1; 1386 break; 1387 } 1388 } 1389 1390 if (found_begin) 1391 break; 1392 1393 if (*p > IO_DQS_EN_PHASE_MAX) 1394 /* fiddle with FIFO */ 1395 rw_mgr_incr_vfifo(*grp, v); 1396 } 1397 1398 if (found_begin) 1399 break; 1400 } 1401 1402 if (*i >= VFIFO_SIZE) { 1403 /* cannot find working solution */ 1404 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\ 1405 ptap/dtap\n", __func__, __LINE__); 1406 return 0; 1407 } else { 1408 return 1; 1409 } 1410 } 1411 1412 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk, 1413 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1414 uint32_t *p, uint32_t *max_working_cnt) 1415 { 1416 uint32_t found_begin = 0; 1417 uint32_t tmp_delay; 1418 1419 /* Special case code for backing up a phase */ 1420 if (*p == 0) { 1421 *p = IO_DQS_EN_PHASE_MAX; 1422 rw_mgr_decr_vfifo(*grp, v); 1423 } else { 1424 (*p)--; 1425 } 1426 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP; 1427 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1428 1429 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; 1430 (*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1431 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1432 1433 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1, 1434 PASS_ONE_BIT, 1435 bit_chk, 0)) { 1436 found_begin = 1; 1437 *work_bgn = tmp_delay; 1438 break; 1439 } 1440 } 1441 1442 /* We have found a working dtap before the ptap found above */ 1443 if (found_begin == 1) 1444 (*max_working_cnt)++; 1445 1446 /* 1447 * Restore VFIFO to old state before we decremented it 1448 * (if needed). 1449 */ 1450 (*p)++; 1451 if (*p > IO_DQS_EN_PHASE_MAX) { 1452 *p = 0; 1453 rw_mgr_incr_vfifo(*grp, v); 1454 } 1455 1456 scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0); 1457 } 1458 1459 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk, 1460 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1461 uint32_t *p, uint32_t *i, uint32_t *max_working_cnt, 1462 uint32_t *work_end) 1463 { 1464 uint32_t found_end = 0; 1465 1466 (*p)++; 1467 *work_end += IO_DELAY_PER_OPA_TAP; 1468 if (*p > IO_DQS_EN_PHASE_MAX) { 1469 /* fiddle with FIFO */ 1470 *p = 0; 1471 rw_mgr_incr_vfifo(*grp, v); 1472 } 1473 1474 for (; *i < VFIFO_SIZE + 1; (*i)++) { 1475 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end 1476 += IO_DELAY_PER_OPA_TAP) { 1477 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1478 1479 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1480 (*grp, 1, PASS_ONE_BIT, bit_chk, 0)) { 1481 found_end = 1; 1482 break; 1483 } else { 1484 (*max_working_cnt)++; 1485 } 1486 } 1487 1488 if (found_end) 1489 break; 1490 1491 if (*p > IO_DQS_EN_PHASE_MAX) { 1492 /* fiddle with FIFO */ 1493 rw_mgr_incr_vfifo(*grp, v); 1494 *p = 0; 1495 } 1496 } 1497 1498 if (*i >= VFIFO_SIZE + 1) { 1499 /* cannot see edge of failing read */ 1500 debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\ 1501 failed\n", __func__, __LINE__); 1502 return 0; 1503 } else { 1504 return 1; 1505 } 1506 } 1507 1508 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk, 1509 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1510 uint32_t *p, uint32_t *work_mid, 1511 uint32_t *work_end) 1512 { 1513 int i; 1514 int tmp_delay = 0; 1515 1516 *work_mid = (*work_bgn + *work_end) / 2; 1517 1518 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n", 1519 *work_bgn, *work_end, *work_mid); 1520 /* Get the middle delay to be less than a VFIFO delay */ 1521 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; 1522 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP) 1523 ; 1524 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay); 1525 while (*work_mid > tmp_delay) 1526 *work_mid -= tmp_delay; 1527 debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid); 1528 1529 tmp_delay = 0; 1530 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid; 1531 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP) 1532 ; 1533 tmp_delay -= IO_DELAY_PER_OPA_TAP; 1534 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay); 1535 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++, 1536 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) 1537 ; 1538 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay); 1539 1540 scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1); 1541 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1542 1543 /* 1544 * push vfifo until we can successfully calibrate. We can do this 1545 * because the largest possible margin in 1 VFIFO cycle. 1546 */ 1547 for (i = 0; i < VFIFO_SIZE; i++) { 1548 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n", 1549 *v); 1550 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1, 1551 PASS_ONE_BIT, 1552 bit_chk, 0)) { 1553 break; 1554 } 1555 1556 /* fiddle with FIFO */ 1557 rw_mgr_incr_vfifo(*grp, v); 1558 } 1559 1560 if (i >= VFIFO_SIZE) { 1561 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \ 1562 failed\n", __func__, __LINE__); 1563 return 0; 1564 } else { 1565 return 1; 1566 } 1567 } 1568 1569 /* find a good dqs enable to use */ 1570 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp) 1571 { 1572 uint32_t v, d, p, i; 1573 uint32_t max_working_cnt; 1574 uint32_t bit_chk; 1575 uint32_t dtaps_per_ptap; 1576 uint32_t work_bgn, work_mid, work_end; 1577 uint32_t found_passing_read, found_failing_read, initial_failing_dtap; 1578 1579 debug("%s:%d %u\n", __func__, __LINE__, grp); 1580 1581 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 1582 1583 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1584 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); 1585 1586 /* ************************************************************** */ 1587 /* * Step 0 : Determine number of delay taps for each phase tap * */ 1588 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1589 1590 /* ********************************************************* */ 1591 /* * Step 1 : First push vfifo until we get a failing read * */ 1592 v = find_vfifo_read(grp, &bit_chk); 1593 1594 max_working_cnt = 0; 1595 1596 /* ******************************************************** */ 1597 /* * step 2: find first working phase, increment in ptaps * */ 1598 work_bgn = 0; 1599 if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d, 1600 &p, &i, &max_working_cnt) == 0) 1601 return 0; 1602 1603 work_end = work_bgn; 1604 1605 /* 1606 * If d is 0 then the working window covers a phase tap and 1607 * we can follow the old procedure otherwise, we've found the beginning, 1608 * and we need to increment the dtaps until we find the end. 1609 */ 1610 if (d == 0) { 1611 /* ********************************************************* */ 1612 /* * step 3a: if we have room, back off by one and 1613 increment in dtaps * */ 1614 1615 sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1616 &max_working_cnt); 1617 1618 /* ********************************************************* */ 1619 /* * step 4a: go forward from working phase to non working 1620 phase, increment in ptaps * */ 1621 if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1622 &i, &max_working_cnt, &work_end) == 0) 1623 return 0; 1624 1625 /* ********************************************************* */ 1626 /* * step 5a: back off one from last, increment in dtaps * */ 1627 1628 /* Special case code for backing up a phase */ 1629 if (p == 0) { 1630 p = IO_DQS_EN_PHASE_MAX; 1631 rw_mgr_decr_vfifo(grp, &v); 1632 } else { 1633 p = p - 1; 1634 } 1635 1636 work_end -= IO_DELAY_PER_OPA_TAP; 1637 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1638 1639 /* * The actual increment of dtaps is done outside of 1640 the if/else loop to share code */ 1641 d = 0; 1642 1643 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \ 1644 vfifo=%u ptap=%u\n", __func__, __LINE__, 1645 v, p); 1646 } else { 1647 /* ******************************************************* */ 1648 /* * step 3-5b: Find the right edge of the window using 1649 delay taps * */ 1650 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \ 1651 ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__, 1652 v, p, d, work_bgn); 1653 1654 work_end = work_bgn; 1655 1656 /* * The actual increment of dtaps is done outside of the 1657 if/else loop to share code */ 1658 1659 /* Only here to counterbalance a subtract later on which is 1660 not needed if this branch of the algorithm is taken */ 1661 max_working_cnt++; 1662 } 1663 1664 /* The dtap increment to find the failing edge is done here */ 1665 for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end += 1666 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1667 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1668 end-2: dtap=%u\n", __func__, __LINE__, d); 1669 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1670 1671 if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1672 PASS_ONE_BIT, 1673 &bit_chk, 0)) { 1674 break; 1675 } 1676 } 1677 1678 /* Go back to working dtap */ 1679 if (d != 0) 1680 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1681 1682 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \ 1683 ptap=%u dtap=%u end=%u\n", __func__, __LINE__, 1684 v, p, d-1, work_end); 1685 1686 if (work_end < work_bgn) { 1687 /* nil range */ 1688 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \ 1689 failed\n", __func__, __LINE__); 1690 return 0; 1691 } 1692 1693 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n", 1694 __func__, __LINE__, work_bgn, work_end); 1695 1696 /* *************************************************************** */ 1697 /* 1698 * * We need to calculate the number of dtaps that equal a ptap 1699 * * To do that we'll back up a ptap and re-find the edge of the 1700 * * window using dtaps 1701 */ 1702 1703 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \ 1704 for tracking\n", __func__, __LINE__); 1705 1706 /* Special case code for backing up a phase */ 1707 if (p == 0) { 1708 p = IO_DQS_EN_PHASE_MAX; 1709 rw_mgr_decr_vfifo(grp, &v); 1710 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1711 cycle/phase: v=%u p=%u\n", __func__, __LINE__, 1712 v, p); 1713 } else { 1714 p = p - 1; 1715 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1716 phase only: v=%u p=%u", __func__, __LINE__, 1717 v, p); 1718 } 1719 1720 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1721 1722 /* 1723 * Increase dtap until we first see a passing read (in case the 1724 * window is smaller than a ptap), 1725 * and then a failing read to mark the edge of the window again 1726 */ 1727 1728 /* Find a passing read */ 1729 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n", 1730 __func__, __LINE__); 1731 found_passing_read = 0; 1732 found_failing_read = 0; 1733 initial_failing_dtap = d; 1734 for (; d <= IO_DQS_EN_DELAY_MAX; d++) { 1735 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \ 1736 read d=%u\n", __func__, __LINE__, d); 1737 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1738 1739 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1740 PASS_ONE_BIT, 1741 &bit_chk, 0)) { 1742 found_passing_read = 1; 1743 break; 1744 } 1745 } 1746 1747 if (found_passing_read) { 1748 /* Find a failing read */ 1749 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \ 1750 read\n", __func__, __LINE__); 1751 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) { 1752 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1753 testing read d=%u\n", __func__, __LINE__, d); 1754 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1755 1756 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1757 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { 1758 found_failing_read = 1; 1759 break; 1760 } 1761 } 1762 } else { 1763 debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \ 1764 calculate dtaps", __func__, __LINE__); 1765 debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n"); 1766 } 1767 1768 /* 1769 * The dynamically calculated dtaps_per_ptap is only valid if we 1770 * found a passing/failing read. If we didn't, it means d hit the max 1771 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its 1772 * statically calculated value. 1773 */ 1774 if (found_passing_read && found_failing_read) 1775 dtaps_per_ptap = d - initial_failing_dtap; 1776 1777 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 1778 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \ 1779 - %u = %u", __func__, __LINE__, d, 1780 initial_failing_dtap, dtaps_per_ptap); 1781 1782 /* ******************************************** */ 1783 /* * step 6: Find the centre of the window * */ 1784 if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1785 &work_mid, &work_end) == 0) 1786 return 0; 1787 1788 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \ 1789 vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__, 1790 v, p-1, d); 1791 return 1; 1792 } 1793 1794 /* 1795 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different 1796 * dq_in_delay values 1797 */ 1798 static uint32_t 1799 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay 1800 (uint32_t write_group, uint32_t read_group, uint32_t test_bgn) 1801 { 1802 uint32_t found; 1803 uint32_t i; 1804 uint32_t p; 1805 uint32_t d; 1806 uint32_t r; 1807 1808 const uint32_t delay_step = IO_IO_IN_DELAY_MAX / 1809 (RW_MGR_MEM_DQ_PER_READ_DQS-1); 1810 /* we start at zero, so have one less dq to devide among */ 1811 1812 debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group, 1813 test_bgn); 1814 1815 /* try different dq_in_delays since the dq path is shorter than dqs */ 1816 1817 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 1818 r += NUM_RANKS_PER_SHADOW_REG) { 1819 for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; 1820 i++, p++, d += delay_step) { 1821 debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\ 1822 vfifo_find_dqs_", __func__, __LINE__); 1823 debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ", 1824 write_group, read_group); 1825 debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d); 1826 scc_mgr_set_dq_in_delay(write_group, p, d); 1827 scc_mgr_load_dq(p); 1828 } 1829 writel(0, &sdr_scc_mgr->update); 1830 } 1831 1832 found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group); 1833 1834 debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\ 1835 en_phase_sweep_dq", __func__, __LINE__); 1836 debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \ 1837 chain to zero\n", write_group, read_group, found); 1838 1839 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 1840 r += NUM_RANKS_PER_SHADOW_REG) { 1841 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; 1842 i++, p++) { 1843 scc_mgr_set_dq_in_delay(write_group, p, 0); 1844 scc_mgr_load_dq(p); 1845 } 1846 writel(0, &sdr_scc_mgr->update); 1847 } 1848 1849 return found; 1850 } 1851 1852 /* per-bit deskew DQ and center */ 1853 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn, 1854 uint32_t write_group, uint32_t read_group, uint32_t test_bgn, 1855 uint32_t use_read_test, uint32_t update_fom) 1856 { 1857 uint32_t i, p, d, min_index; 1858 /* 1859 * Store these as signed since there are comparisons with 1860 * signed numbers. 1861 */ 1862 uint32_t bit_chk; 1863 uint32_t sticky_bit_chk; 1864 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1865 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1866 int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS]; 1867 int32_t mid; 1868 int32_t orig_mid_min, mid_min; 1869 int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs, 1870 final_dqs_en; 1871 int32_t dq_margin, dqs_margin; 1872 uint32_t stop; 1873 uint32_t temp_dq_in_delay1, temp_dq_in_delay2; 1874 uint32_t addr; 1875 1876 debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn); 1877 1878 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET; 1879 start_dqs = readl(addr + (read_group << 2)); 1880 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 1881 start_dqs_en = readl(addr + ((read_group << 2) 1882 - IO_DQS_EN_DELAY_OFFSET)); 1883 1884 /* set the left and right edge of each bit to an illegal value */ 1885 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */ 1886 sticky_bit_chk = 0; 1887 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1888 left_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1889 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1890 } 1891 1892 /* Search for the left edge of the window for each bit */ 1893 for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) { 1894 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d); 1895 1896 writel(0, &sdr_scc_mgr->update); 1897 1898 /* 1899 * Stop searching when the read test doesn't pass AND when 1900 * we've seen a passing read on every bit. 1901 */ 1902 if (use_read_test) { 1903 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1904 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1905 &bit_chk, 0, 0); 1906 } else { 1907 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1908 0, PASS_ONE_BIT, 1909 &bit_chk, 0); 1910 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1911 (read_group - (write_group * 1912 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1913 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1914 stop = (bit_chk == 0); 1915 } 1916 sticky_bit_chk = sticky_bit_chk | bit_chk; 1917 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1918 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \ 1919 && %u", __func__, __LINE__, d, 1920 sticky_bit_chk, 1921 param->read_correct_mask, stop); 1922 1923 if (stop == 1) { 1924 break; 1925 } else { 1926 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1927 if (bit_chk & 1) { 1928 /* Remember a passing test as the 1929 left_edge */ 1930 left_edge[i] = d; 1931 } else { 1932 /* If a left edge has not been seen yet, 1933 then a future passing test will mark 1934 this edge as the right edge */ 1935 if (left_edge[i] == 1936 IO_IO_IN_DELAY_MAX + 1) { 1937 right_edge[i] = -(d + 1); 1938 } 1939 } 1940 bit_chk = bit_chk >> 1; 1941 } 1942 } 1943 } 1944 1945 /* Reset DQ delay chains to 0 */ 1946 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, 0); 1947 sticky_bit_chk = 0; 1948 for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) { 1949 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 1950 %d right_edge[%u]: %d\n", __func__, __LINE__, 1951 i, left_edge[i], i, right_edge[i]); 1952 1953 /* 1954 * Check for cases where we haven't found the left edge, 1955 * which makes our assignment of the the right edge invalid. 1956 * Reset it to the illegal value. 1957 */ 1958 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && ( 1959 right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1960 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1961 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \ 1962 right_edge[%u]: %d\n", __func__, __LINE__, 1963 i, right_edge[i]); 1964 } 1965 1966 /* 1967 * Reset sticky bit (except for bits where we have seen 1968 * both the left and right edge). 1969 */ 1970 sticky_bit_chk = sticky_bit_chk << 1; 1971 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) && 1972 (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1973 sticky_bit_chk = sticky_bit_chk | 1; 1974 } 1975 1976 if (i == 0) 1977 break; 1978 } 1979 1980 /* Search for the right edge of the window for each bit */ 1981 for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) { 1982 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs); 1983 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 1984 uint32_t delay = d + start_dqs_en; 1985 if (delay > IO_DQS_EN_DELAY_MAX) 1986 delay = IO_DQS_EN_DELAY_MAX; 1987 scc_mgr_set_dqs_en_delay(read_group, delay); 1988 } 1989 scc_mgr_load_dqs(read_group); 1990 1991 writel(0, &sdr_scc_mgr->update); 1992 1993 /* 1994 * Stop searching when the read test doesn't pass AND when 1995 * we've seen a passing read on every bit. 1996 */ 1997 if (use_read_test) { 1998 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1999 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 2000 &bit_chk, 0, 0); 2001 } else { 2002 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2003 0, PASS_ONE_BIT, 2004 &bit_chk, 0); 2005 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 2006 (read_group - (write_group * 2007 RW_MGR_MEM_IF_READ_DQS_WIDTH / 2008 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 2009 stop = (bit_chk == 0); 2010 } 2011 sticky_bit_chk = sticky_bit_chk | bit_chk; 2012 stop = stop && (sticky_bit_chk == param->read_correct_mask); 2013 2014 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \ 2015 %u && %u", __func__, __LINE__, d, 2016 sticky_bit_chk, param->read_correct_mask, stop); 2017 2018 if (stop == 1) { 2019 break; 2020 } else { 2021 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2022 if (bit_chk & 1) { 2023 /* Remember a passing test as 2024 the right_edge */ 2025 right_edge[i] = d; 2026 } else { 2027 if (d != 0) { 2028 /* If a right edge has not been 2029 seen yet, then a future passing 2030 test will mark this edge as the 2031 left edge */ 2032 if (right_edge[i] == 2033 IO_IO_IN_DELAY_MAX + 1) { 2034 left_edge[i] = -(d + 1); 2035 } 2036 } else { 2037 /* d = 0 failed, but it passed 2038 when testing the left edge, 2039 so it must be marginal, 2040 set it to -1 */ 2041 if (right_edge[i] == 2042 IO_IO_IN_DELAY_MAX + 1 && 2043 left_edge[i] != 2044 IO_IO_IN_DELAY_MAX 2045 + 1) { 2046 right_edge[i] = -1; 2047 } 2048 /* If a right edge has not been 2049 seen yet, then a future passing 2050 test will mark this edge as the 2051 left edge */ 2052 else if (right_edge[i] == 2053 IO_IO_IN_DELAY_MAX + 2054 1) { 2055 left_edge[i] = -(d + 1); 2056 } 2057 } 2058 } 2059 2060 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\ 2061 d=%u]: ", __func__, __LINE__, d); 2062 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ", 2063 (int)(bit_chk & 1), i, left_edge[i]); 2064 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2065 right_edge[i]); 2066 bit_chk = bit_chk >> 1; 2067 } 2068 } 2069 } 2070 2071 /* Check that all bits have a window */ 2072 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2073 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 2074 %d right_edge[%u]: %d", __func__, __LINE__, 2075 i, left_edge[i], i, right_edge[i]); 2076 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i] 2077 == IO_IO_IN_DELAY_MAX + 1)) { 2078 /* 2079 * Restore delay chain settings before letting the loop 2080 * in rw_mgr_mem_calibrate_vfifo to retry different 2081 * dqs/ck relationships. 2082 */ 2083 scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs); 2084 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2085 scc_mgr_set_dqs_en_delay(read_group, 2086 start_dqs_en); 2087 } 2088 scc_mgr_load_dqs(read_group); 2089 writel(0, &sdr_scc_mgr->update); 2090 2091 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \ 2092 find edge [%u]: %d %d", __func__, __LINE__, 2093 i, left_edge[i], right_edge[i]); 2094 if (use_read_test) { 2095 set_failing_group_stage(read_group * 2096 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2097 CAL_STAGE_VFIFO, 2098 CAL_SUBSTAGE_VFIFO_CENTER); 2099 } else { 2100 set_failing_group_stage(read_group * 2101 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2102 CAL_STAGE_VFIFO_AFTER_WRITES, 2103 CAL_SUBSTAGE_VFIFO_CENTER); 2104 } 2105 return 0; 2106 } 2107 } 2108 2109 /* Find middle of window for each DQ bit */ 2110 mid_min = left_edge[0] - right_edge[0]; 2111 min_index = 0; 2112 for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2113 mid = left_edge[i] - right_edge[i]; 2114 if (mid < mid_min) { 2115 mid_min = mid; 2116 min_index = i; 2117 } 2118 } 2119 2120 /* 2121 * -mid_min/2 represents the amount that we need to move DQS. 2122 * If mid_min is odd and positive we'll need to add one to 2123 * make sure the rounding in further calculations is correct 2124 * (always bias to the right), so just add 1 for all positive values. 2125 */ 2126 if (mid_min > 0) 2127 mid_min++; 2128 2129 mid_min = mid_min / 2; 2130 2131 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n", 2132 __func__, __LINE__, mid_min, min_index); 2133 2134 /* Determine the amount we can change DQS (which is -mid_min) */ 2135 orig_mid_min = mid_min; 2136 new_dqs = start_dqs - mid_min; 2137 if (new_dqs > IO_DQS_IN_DELAY_MAX) 2138 new_dqs = IO_DQS_IN_DELAY_MAX; 2139 else if (new_dqs < 0) 2140 new_dqs = 0; 2141 2142 mid_min = start_dqs - new_dqs; 2143 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n", 2144 mid_min, new_dqs); 2145 2146 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2147 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX) 2148 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX; 2149 else if (start_dqs_en - mid_min < 0) 2150 mid_min += start_dqs_en - mid_min; 2151 } 2152 new_dqs = start_dqs - mid_min; 2153 2154 debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \ 2155 new_dqs=%d mid_min=%d\n", start_dqs, 2156 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1, 2157 new_dqs, mid_min); 2158 2159 /* Initialize data for export structures */ 2160 dqs_margin = IO_IO_IN_DELAY_MAX + 1; 2161 dq_margin = IO_IO_IN_DELAY_MAX + 1; 2162 2163 /* add delay to bring centre of all DQ windows to the same "level" */ 2164 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 2165 /* Use values before divide by 2 to reduce round off error */ 2166 shift_dq = (left_edge[i] - right_edge[i] - 2167 (left_edge[min_index] - right_edge[min_index]))/2 + 2168 (orig_mid_min - mid_min); 2169 2170 debug_cond(DLEVEL == 2, "vfifo_center: before: \ 2171 shift_dq[%u]=%d\n", i, shift_dq); 2172 2173 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET; 2174 temp_dq_in_delay1 = readl(addr + (p << 2)); 2175 temp_dq_in_delay2 = readl(addr + (i << 2)); 2176 2177 if (shift_dq + (int32_t)temp_dq_in_delay1 > 2178 (int32_t)IO_IO_IN_DELAY_MAX) { 2179 shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2; 2180 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) { 2181 shift_dq = -(int32_t)temp_dq_in_delay1; 2182 } 2183 debug_cond(DLEVEL == 2, "vfifo_center: after: \ 2184 shift_dq[%u]=%d\n", i, shift_dq); 2185 final_dq[i] = temp_dq_in_delay1 + shift_dq; 2186 scc_mgr_set_dq_in_delay(write_group, p, final_dq[i]); 2187 scc_mgr_load_dq(p); 2188 2189 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i, 2190 left_edge[i] - shift_dq + (-mid_min), 2191 right_edge[i] + shift_dq - (-mid_min)); 2192 /* To determine values for export structures */ 2193 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2194 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2195 2196 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2197 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2198 } 2199 2200 final_dqs = new_dqs; 2201 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2202 final_dqs_en = start_dqs_en - mid_min; 2203 2204 /* Move DQS-en */ 2205 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2206 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en); 2207 scc_mgr_load_dqs(read_group); 2208 } 2209 2210 /* Move DQS */ 2211 scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs); 2212 scc_mgr_load_dqs(read_group); 2213 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \ 2214 dqs_margin=%d", __func__, __LINE__, 2215 dq_margin, dqs_margin); 2216 2217 /* 2218 * Do not remove this line as it makes sure all of our decisions 2219 * have been applied. Apply the update bit. 2220 */ 2221 writel(0, &sdr_scc_mgr->update); 2222 2223 return (dq_margin >= 0) && (dqs_margin >= 0); 2224 } 2225 2226 /* 2227 * calibrate the read valid prediction FIFO. 2228 * 2229 * - read valid prediction will consist of finding a good DQS enable phase, 2230 * DQS enable delay, DQS input phase, and DQS input delay. 2231 * - we also do a per-bit deskew on the DQ lines. 2232 */ 2233 static uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t read_group, 2234 uint32_t test_bgn) 2235 { 2236 uint32_t p, d, rank_bgn, sr; 2237 uint32_t dtaps_per_ptap; 2238 uint32_t tmp_delay; 2239 uint32_t bit_chk; 2240 uint32_t grp_calibrated; 2241 uint32_t write_group, write_test_bgn; 2242 uint32_t failed_substage; 2243 2244 debug("%s:%d: %u %u\n", __func__, __LINE__, read_group, test_bgn); 2245 2246 /* update info for sims */ 2247 reg_file_set_stage(CAL_STAGE_VFIFO); 2248 2249 write_group = read_group; 2250 write_test_bgn = test_bgn; 2251 2252 /* USER Determine number of delay taps for each phase tap */ 2253 dtaps_per_ptap = 0; 2254 tmp_delay = 0; 2255 while (tmp_delay < IO_DELAY_PER_OPA_TAP) { 2256 dtaps_per_ptap++; 2257 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 2258 } 2259 dtaps_per_ptap--; 2260 tmp_delay = 0; 2261 2262 /* update info for sims */ 2263 reg_file_set_group(read_group); 2264 2265 grp_calibrated = 0; 2266 2267 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ); 2268 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ; 2269 2270 for (d = 0; d <= dtaps_per_ptap && grp_calibrated == 0; d += 2) { 2271 /* 2272 * In RLDRAMX we may be messing the delay of pins in 2273 * the same write group but outside of the current read 2274 * the group, but that's ok because we haven't 2275 * calibrated output side yet. 2276 */ 2277 if (d > 0) { 2278 scc_mgr_apply_group_all_out_delay_add_all_ranks 2279 (write_group, write_test_bgn, d); 2280 } 2281 2282 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0; 2283 p++) { 2284 /* set a particular dqdqs phase */ 2285 scc_mgr_set_dqdqs_output_phase_all_ranks(read_group, p); 2286 2287 debug_cond(DLEVEL == 1, "%s:%d calibrate_vfifo: g=%u \ 2288 p=%u d=%u\n", __func__, __LINE__, 2289 read_group, p, d); 2290 2291 /* 2292 * Load up the patterns used by read calibration 2293 * using current DQDQS phase. 2294 */ 2295 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2296 if (!(gbl->phy_debug_mode_flags & 2297 PHY_DEBUG_DISABLE_GUARANTEED_READ)) { 2298 if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks 2299 (read_group, 1, &bit_chk)) { 2300 debug_cond(DLEVEL == 1, "%s:%d Guaranteed read test failed:", 2301 __func__, __LINE__); 2302 debug_cond(DLEVEL == 1, " g=%u p=%u d=%u\n", 2303 read_group, p, d); 2304 break; 2305 } 2306 } 2307 2308 /* case:56390 */ 2309 grp_calibrated = 1; 2310 if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay 2311 (write_group, read_group, test_bgn)) { 2312 /* 2313 * USER Read per-bit deskew can be done on a 2314 * per shadow register basis. 2315 */ 2316 for (rank_bgn = 0, sr = 0; 2317 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2318 rank_bgn += NUM_RANKS_PER_SHADOW_REG, 2319 ++sr) { 2320 /* 2321 * Determine if this set of ranks 2322 * should be skipped entirely. 2323 */ 2324 if (!param->skip_shadow_regs[sr]) { 2325 /* 2326 * If doing read after write 2327 * calibration, do not update 2328 * FOM, now - do it then. 2329 */ 2330 if (!rw_mgr_mem_calibrate_vfifo_center 2331 (rank_bgn, write_group, 2332 read_group, test_bgn, 1, 0)) { 2333 grp_calibrated = 0; 2334 failed_substage = 2335 CAL_SUBSTAGE_VFIFO_CENTER; 2336 } 2337 } 2338 } 2339 } else { 2340 grp_calibrated = 0; 2341 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE; 2342 } 2343 } 2344 } 2345 2346 if (grp_calibrated == 0) { 2347 set_failing_group_stage(write_group, CAL_STAGE_VFIFO, 2348 failed_substage); 2349 return 0; 2350 } 2351 2352 /* 2353 * Reset the delay chains back to zero if they have moved > 1 2354 * (check for > 1 because loop will increase d even when pass in 2355 * first case). 2356 */ 2357 if (d > 2) 2358 scc_mgr_zero_group(write_group, write_test_bgn, 1); 2359 2360 return 1; 2361 } 2362 2363 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */ 2364 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group, 2365 uint32_t test_bgn) 2366 { 2367 uint32_t rank_bgn, sr; 2368 uint32_t grp_calibrated; 2369 uint32_t write_group; 2370 2371 debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn); 2372 2373 /* update info for sims */ 2374 2375 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES); 2376 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 2377 2378 write_group = read_group; 2379 2380 /* update info for sims */ 2381 reg_file_set_group(read_group); 2382 2383 grp_calibrated = 1; 2384 /* Read per-bit deskew can be done on a per shadow register basis */ 2385 for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2386 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) { 2387 /* Determine if this set of ranks should be skipped entirely */ 2388 if (!param->skip_shadow_regs[sr]) { 2389 /* This is the last calibration round, update FOM here */ 2390 if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn, 2391 write_group, 2392 read_group, 2393 test_bgn, 0, 2394 1)) { 2395 grp_calibrated = 0; 2396 } 2397 } 2398 } 2399 2400 2401 if (grp_calibrated == 0) { 2402 set_failing_group_stage(write_group, 2403 CAL_STAGE_VFIFO_AFTER_WRITES, 2404 CAL_SUBSTAGE_VFIFO_CENTER); 2405 return 0; 2406 } 2407 2408 return 1; 2409 } 2410 2411 /* Calibrate LFIFO to find smallest read latency */ 2412 static uint32_t rw_mgr_mem_calibrate_lfifo(void) 2413 { 2414 uint32_t found_one; 2415 uint32_t bit_chk; 2416 2417 debug("%s:%d\n", __func__, __LINE__); 2418 2419 /* update info for sims */ 2420 reg_file_set_stage(CAL_STAGE_LFIFO); 2421 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY); 2422 2423 /* Load up the patterns used by read calibration for all ranks */ 2424 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2425 found_one = 0; 2426 2427 do { 2428 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2429 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u", 2430 __func__, __LINE__, gbl->curr_read_lat); 2431 2432 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, 2433 NUM_READ_TESTS, 2434 PASS_ALL_BITS, 2435 &bit_chk, 1)) { 2436 break; 2437 } 2438 2439 found_one = 1; 2440 /* reduce read latency and see if things are working */ 2441 /* correctly */ 2442 gbl->curr_read_lat--; 2443 } while (gbl->curr_read_lat > 0); 2444 2445 /* reset the fifos to get pointers to known state */ 2446 2447 writel(0, &phy_mgr_cmd->fifo_reset); 2448 2449 if (found_one) { 2450 /* add a fudge factor to the read latency that was determined */ 2451 gbl->curr_read_lat += 2; 2452 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2453 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \ 2454 read_lat=%u\n", __func__, __LINE__, 2455 gbl->curr_read_lat); 2456 return 1; 2457 } else { 2458 set_failing_group_stage(0xff, CAL_STAGE_LFIFO, 2459 CAL_SUBSTAGE_READ_LATENCY); 2460 2461 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \ 2462 read_lat=%u\n", __func__, __LINE__, 2463 gbl->curr_read_lat); 2464 return 0; 2465 } 2466 } 2467 2468 /* 2469 * issue write test command. 2470 * two variants are provided. one that just tests a write pattern and 2471 * another that tests datamask functionality. 2472 */ 2473 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group, 2474 uint32_t test_dm) 2475 { 2476 uint32_t mcc_instruction; 2477 uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) && 2478 ENABLE_SUPER_QUICK_CALIBRATION); 2479 uint32_t rw_wl_nop_cycles; 2480 uint32_t addr; 2481 2482 /* 2483 * Set counter and jump addresses for the right 2484 * number of NOP cycles. 2485 * The number of supported NOP cycles can range from -1 to infinity 2486 * Three different cases are handled: 2487 * 2488 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping 2489 * mechanism will be used to insert the right number of NOPs 2490 * 2491 * 2. For a number of NOP cycles equals to 0, the micro-instruction 2492 * issuing the write command will jump straight to the 2493 * micro-instruction that turns on DQS (for DDRx), or outputs write 2494 * data (for RLD), skipping 2495 * the NOP micro-instruction all together 2496 * 2497 * 3. A number of NOP cycles equal to -1 indicates that DQS must be 2498 * turned on in the same micro-instruction that issues the write 2499 * command. Then we need 2500 * to directly jump to the micro-instruction that sends out the data 2501 * 2502 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters 2503 * (2 and 3). One jump-counter (0) is used to perform multiple 2504 * write-read operations. 2505 * one counter left to issue this command in "multiple-group" mode 2506 */ 2507 2508 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles; 2509 2510 if (rw_wl_nop_cycles == -1) { 2511 /* 2512 * CNTR 2 - We want to execute the special write operation that 2513 * turns on DQS right away and then skip directly to the 2514 * instruction that sends out the data. We set the counter to a 2515 * large number so that the jump is always taken. 2516 */ 2517 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2518 2519 /* CNTR 3 - Not used */ 2520 if (test_dm) { 2521 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1; 2522 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA, 2523 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2524 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2525 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2526 } else { 2527 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1; 2528 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA, 2529 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2530 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2531 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2532 } 2533 } else if (rw_wl_nop_cycles == 0) { 2534 /* 2535 * CNTR 2 - We want to skip the NOP operation and go straight 2536 * to the DQS enable instruction. We set the counter to a large 2537 * number so that the jump is always taken. 2538 */ 2539 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2540 2541 /* CNTR 3 - Not used */ 2542 if (test_dm) { 2543 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2544 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS, 2545 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2546 } else { 2547 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2548 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS, 2549 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2550 } 2551 } else { 2552 /* 2553 * CNTR 2 - In this case we want to execute the next instruction 2554 * and NOT take the jump. So we set the counter to 0. The jump 2555 * address doesn't count. 2556 */ 2557 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2); 2558 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2559 2560 /* 2561 * CNTR 3 - Set the nop counter to the number of cycles we 2562 * need to loop for, minus 1. 2563 */ 2564 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3); 2565 if (test_dm) { 2566 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2567 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2568 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2569 } else { 2570 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2571 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2572 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2573 } 2574 } 2575 2576 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 2577 RW_MGR_RESET_READ_DATAPATH_OFFSET); 2578 2579 if (quick_write_mode) 2580 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0); 2581 else 2582 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0); 2583 2584 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 2585 2586 /* 2587 * CNTR 1 - This is used to ensure enough time elapses 2588 * for read data to come back. 2589 */ 2590 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1); 2591 2592 if (test_dm) { 2593 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT, 2594 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2595 } else { 2596 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT, 2597 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2598 } 2599 2600 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 2601 writel(mcc_instruction, addr + (group << 2)); 2602 } 2603 2604 /* Test writes, can check for a single bit pass or multiple bit pass */ 2605 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 2606 uint32_t write_group, uint32_t use_dm, uint32_t all_correct, 2607 uint32_t *bit_chk, uint32_t all_ranks) 2608 { 2609 uint32_t r; 2610 uint32_t correct_mask_vg; 2611 uint32_t tmp_bit_chk; 2612 uint32_t vg; 2613 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 2614 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 2615 uint32_t addr_rw_mgr; 2616 uint32_t base_rw_mgr; 2617 2618 *bit_chk = param->write_correct_mask; 2619 correct_mask_vg = param->write_correct_mask_vg; 2620 2621 for (r = rank_bgn; r < rank_end; r++) { 2622 if (param->skip_ranks[r]) { 2623 /* request to skip the rank */ 2624 continue; 2625 } 2626 2627 /* set rank */ 2628 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 2629 2630 tmp_bit_chk = 0; 2631 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS; 2632 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) { 2633 /* reset the fifos to get pointers to known state */ 2634 writel(0, &phy_mgr_cmd->fifo_reset); 2635 2636 tmp_bit_chk = tmp_bit_chk << 2637 (RW_MGR_MEM_DQ_PER_WRITE_DQS / 2638 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 2639 rw_mgr_mem_calibrate_write_test_issue(write_group * 2640 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg, 2641 use_dm); 2642 2643 base_rw_mgr = readl(addr_rw_mgr); 2644 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 2645 if (vg == 0) 2646 break; 2647 } 2648 *bit_chk &= tmp_bit_chk; 2649 } 2650 2651 if (all_correct) { 2652 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2653 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \ 2654 %u => %lu", write_group, use_dm, 2655 *bit_chk, param->write_correct_mask, 2656 (long unsigned int)(*bit_chk == 2657 param->write_correct_mask)); 2658 return *bit_chk == param->write_correct_mask; 2659 } else { 2660 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2661 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ", 2662 write_group, use_dm, *bit_chk); 2663 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0, 2664 (long unsigned int)(*bit_chk != 0)); 2665 return *bit_chk != 0x00; 2666 } 2667 } 2668 2669 /* 2670 * center all windows. do per-bit-deskew to possibly increase size of 2671 * certain windows. 2672 */ 2673 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn, 2674 uint32_t write_group, uint32_t test_bgn) 2675 { 2676 uint32_t i, p, min_index; 2677 int32_t d; 2678 /* 2679 * Store these as signed since there are comparisons with 2680 * signed numbers. 2681 */ 2682 uint32_t bit_chk; 2683 uint32_t sticky_bit_chk; 2684 int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2685 int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2686 int32_t mid; 2687 int32_t mid_min, orig_mid_min; 2688 int32_t new_dqs, start_dqs, shift_dq; 2689 int32_t dq_margin, dqs_margin, dm_margin; 2690 uint32_t stop; 2691 uint32_t temp_dq_out1_delay; 2692 uint32_t addr; 2693 2694 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn); 2695 2696 dm_margin = 0; 2697 2698 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2699 start_dqs = readl(addr + 2700 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 2701 2702 /* per-bit deskew */ 2703 2704 /* 2705 * set the left and right edge of each bit to an illegal value 2706 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 2707 */ 2708 sticky_bit_chk = 0; 2709 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2710 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2711 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2712 } 2713 2714 /* Search for the left edge of the window for each bit */ 2715 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) { 2716 scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, d); 2717 2718 writel(0, &sdr_scc_mgr->update); 2719 2720 /* 2721 * Stop searching when the read test doesn't pass AND when 2722 * we've seen a passing read on every bit. 2723 */ 2724 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2725 0, PASS_ONE_BIT, &bit_chk, 0); 2726 sticky_bit_chk = sticky_bit_chk | bit_chk; 2727 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2728 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \ 2729 == %u && %u [bit_chk= %u ]\n", 2730 d, sticky_bit_chk, param->write_correct_mask, 2731 stop, bit_chk); 2732 2733 if (stop == 1) { 2734 break; 2735 } else { 2736 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2737 if (bit_chk & 1) { 2738 /* 2739 * Remember a passing test as the 2740 * left_edge. 2741 */ 2742 left_edge[i] = d; 2743 } else { 2744 /* 2745 * If a left edge has not been seen 2746 * yet, then a future passing test will 2747 * mark this edge as the right edge. 2748 */ 2749 if (left_edge[i] == 2750 IO_IO_OUT1_DELAY_MAX + 1) { 2751 right_edge[i] = -(d + 1); 2752 } 2753 } 2754 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d); 2755 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2756 (int)(bit_chk & 1), i, left_edge[i]); 2757 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2758 right_edge[i]); 2759 bit_chk = bit_chk >> 1; 2760 } 2761 } 2762 } 2763 2764 /* Reset DQ delay chains to 0 */ 2765 scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, 0); 2766 sticky_bit_chk = 0; 2767 for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) { 2768 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2769 %d right_edge[%u]: %d\n", __func__, __LINE__, 2770 i, left_edge[i], i, right_edge[i]); 2771 2772 /* 2773 * Check for cases where we haven't found the left edge, 2774 * which makes our assignment of the the right edge invalid. 2775 * Reset it to the illegal value. 2776 */ 2777 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) && 2778 (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) { 2779 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2780 debug_cond(DLEVEL == 2, "%s:%d write_center: reset \ 2781 right_edge[%u]: %d\n", __func__, __LINE__, 2782 i, right_edge[i]); 2783 } 2784 2785 /* 2786 * Reset sticky bit (except for bits where we have 2787 * seen the left edge). 2788 */ 2789 sticky_bit_chk = sticky_bit_chk << 1; 2790 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) 2791 sticky_bit_chk = sticky_bit_chk | 1; 2792 2793 if (i == 0) 2794 break; 2795 } 2796 2797 /* Search for the right edge of the window for each bit */ 2798 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) { 2799 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2800 d + start_dqs); 2801 2802 writel(0, &sdr_scc_mgr->update); 2803 2804 /* 2805 * Stop searching when the read test doesn't pass AND when 2806 * we've seen a passing read on every bit. 2807 */ 2808 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2809 0, PASS_ONE_BIT, &bit_chk, 0); 2810 2811 sticky_bit_chk = sticky_bit_chk | bit_chk; 2812 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2813 2814 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \ 2815 %u && %u\n", d, sticky_bit_chk, 2816 param->write_correct_mask, stop); 2817 2818 if (stop == 1) { 2819 if (d == 0) { 2820 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; 2821 i++) { 2822 /* d = 0 failed, but it passed when 2823 testing the left edge, so it must be 2824 marginal, set it to -1 */ 2825 if (right_edge[i] == 2826 IO_IO_OUT1_DELAY_MAX + 1 && 2827 left_edge[i] != 2828 IO_IO_OUT1_DELAY_MAX + 1) { 2829 right_edge[i] = -1; 2830 } 2831 } 2832 } 2833 break; 2834 } else { 2835 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2836 if (bit_chk & 1) { 2837 /* 2838 * Remember a passing test as 2839 * the right_edge. 2840 */ 2841 right_edge[i] = d; 2842 } else { 2843 if (d != 0) { 2844 /* 2845 * If a right edge has not 2846 * been seen yet, then a future 2847 * passing test will mark this 2848 * edge as the left edge. 2849 */ 2850 if (right_edge[i] == 2851 IO_IO_OUT1_DELAY_MAX + 1) 2852 left_edge[i] = -(d + 1); 2853 } else { 2854 /* 2855 * d = 0 failed, but it passed 2856 * when testing the left edge, 2857 * so it must be marginal, set 2858 * it to -1. 2859 */ 2860 if (right_edge[i] == 2861 IO_IO_OUT1_DELAY_MAX + 1 && 2862 left_edge[i] != 2863 IO_IO_OUT1_DELAY_MAX + 1) 2864 right_edge[i] = -1; 2865 /* 2866 * If a right edge has not been 2867 * seen yet, then a future 2868 * passing test will mark this 2869 * edge as the left edge. 2870 */ 2871 else if (right_edge[i] == 2872 IO_IO_OUT1_DELAY_MAX + 2873 1) 2874 left_edge[i] = -(d + 1); 2875 } 2876 } 2877 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d); 2878 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2879 (int)(bit_chk & 1), i, left_edge[i]); 2880 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2881 right_edge[i]); 2882 bit_chk = bit_chk >> 1; 2883 } 2884 } 2885 } 2886 2887 /* Check that all bits have a window */ 2888 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2889 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2890 %d right_edge[%u]: %d", __func__, __LINE__, 2891 i, left_edge[i], i, right_edge[i]); 2892 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) || 2893 (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) { 2894 set_failing_group_stage(test_bgn + i, 2895 CAL_STAGE_WRITES, 2896 CAL_SUBSTAGE_WRITES_CENTER); 2897 return 0; 2898 } 2899 } 2900 2901 /* Find middle of window for each DQ bit */ 2902 mid_min = left_edge[0] - right_edge[0]; 2903 min_index = 0; 2904 for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2905 mid = left_edge[i] - right_edge[i]; 2906 if (mid < mid_min) { 2907 mid_min = mid; 2908 min_index = i; 2909 } 2910 } 2911 2912 /* 2913 * -mid_min/2 represents the amount that we need to move DQS. 2914 * If mid_min is odd and positive we'll need to add one to 2915 * make sure the rounding in further calculations is correct 2916 * (always bias to the right), so just add 1 for all positive values. 2917 */ 2918 if (mid_min > 0) 2919 mid_min++; 2920 mid_min = mid_min / 2; 2921 debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__, 2922 __LINE__, mid_min); 2923 2924 /* Determine the amount we can change DQS (which is -mid_min) */ 2925 orig_mid_min = mid_min; 2926 new_dqs = start_dqs; 2927 mid_min = 0; 2928 debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \ 2929 mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min); 2930 /* Initialize data for export structures */ 2931 dqs_margin = IO_IO_OUT1_DELAY_MAX + 1; 2932 dq_margin = IO_IO_OUT1_DELAY_MAX + 1; 2933 2934 /* add delay to bring centre of all DQ windows to the same "level" */ 2935 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 2936 /* Use values before divide by 2 to reduce round off error */ 2937 shift_dq = (left_edge[i] - right_edge[i] - 2938 (left_edge[min_index] - right_edge[min_index]))/2 + 2939 (orig_mid_min - mid_min); 2940 2941 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \ 2942 [%u]=%d\n", __func__, __LINE__, i, shift_dq); 2943 2944 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2945 temp_dq_out1_delay = readl(addr + (i << 2)); 2946 if (shift_dq + (int32_t)temp_dq_out1_delay > 2947 (int32_t)IO_IO_OUT1_DELAY_MAX) { 2948 shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay; 2949 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) { 2950 shift_dq = -(int32_t)temp_dq_out1_delay; 2951 } 2952 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n", 2953 i, shift_dq); 2954 scc_mgr_set_dq_out1_delay(write_group, i, temp_dq_out1_delay + 2955 shift_dq); 2956 scc_mgr_load_dq(i); 2957 2958 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i, 2959 left_edge[i] - shift_dq + (-mid_min), 2960 right_edge[i] + shift_dq - (-mid_min)); 2961 /* To determine values for export structures */ 2962 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2963 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2964 2965 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2966 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2967 } 2968 2969 /* Move DQS */ 2970 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 2971 writel(0, &sdr_scc_mgr->update); 2972 2973 /* Centre DM */ 2974 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__); 2975 2976 /* 2977 * set the left and right edge of each bit to an illegal value, 2978 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value, 2979 */ 2980 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 2981 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 2982 int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2983 int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2984 int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1; 2985 int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1; 2986 int32_t win_best = 0; 2987 2988 /* Search for the/part of the window with DM shift */ 2989 for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) { 2990 scc_mgr_apply_group_dm_out1_delay(write_group, d); 2991 writel(0, &sdr_scc_mgr->update); 2992 2993 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 2994 PASS_ALL_BITS, &bit_chk, 2995 0)) { 2996 /* USE Set current end of the window */ 2997 end_curr = -d; 2998 /* 2999 * If a starting edge of our window has not been seen 3000 * this is our current start of the DM window. 3001 */ 3002 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3003 bgn_curr = -d; 3004 3005 /* 3006 * If current window is bigger than best seen. 3007 * Set best seen to be current window. 3008 */ 3009 if ((end_curr-bgn_curr+1) > win_best) { 3010 win_best = end_curr-bgn_curr+1; 3011 bgn_best = bgn_curr; 3012 end_best = end_curr; 3013 } 3014 } else { 3015 /* We just saw a failing test. Reset temp edge */ 3016 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3017 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3018 } 3019 } 3020 3021 3022 /* Reset DM delay chains to 0 */ 3023 scc_mgr_apply_group_dm_out1_delay(write_group, 0); 3024 3025 /* 3026 * Check to see if the current window nudges up aganist 0 delay. 3027 * If so we need to continue the search by shifting DQS otherwise DQS 3028 * search begins as a new search. */ 3029 if (end_curr != 0) { 3030 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3031 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3032 } 3033 3034 /* Search for the/part of the window with DQS shifts */ 3035 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) { 3036 /* 3037 * Note: This only shifts DQS, so are we limiting ourselve to 3038 * width of DQ unnecessarily. 3039 */ 3040 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 3041 d + new_dqs); 3042 3043 writel(0, &sdr_scc_mgr->update); 3044 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3045 PASS_ALL_BITS, &bit_chk, 3046 0)) { 3047 /* USE Set current end of the window */ 3048 end_curr = d; 3049 /* 3050 * If a beginning edge of our window has not been seen 3051 * this is our current begin of the DM window. 3052 */ 3053 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3054 bgn_curr = d; 3055 3056 /* 3057 * If current window is bigger than best seen. Set best 3058 * seen to be current window. 3059 */ 3060 if ((end_curr-bgn_curr+1) > win_best) { 3061 win_best = end_curr-bgn_curr+1; 3062 bgn_best = bgn_curr; 3063 end_best = end_curr; 3064 } 3065 } else { 3066 /* We just saw a failing test. Reset temp edge */ 3067 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3068 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3069 3070 /* Early exit optimization: if ther remaining delay 3071 chain space is less than already seen largest window 3072 we can exit */ 3073 if ((win_best-1) > 3074 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) { 3075 break; 3076 } 3077 } 3078 } 3079 3080 /* assign left and right edge for cal and reporting; */ 3081 left_edge[0] = -1*bgn_best; 3082 right_edge[0] = end_best; 3083 3084 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__, 3085 __LINE__, left_edge[0], right_edge[0]); 3086 3087 /* Move DQS (back to orig) */ 3088 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3089 3090 /* Move DM */ 3091 3092 /* Find middle of window for the DM bit */ 3093 mid = (left_edge[0] - right_edge[0]) / 2; 3094 3095 /* only move right, since we are not moving DQS/DQ */ 3096 if (mid < 0) 3097 mid = 0; 3098 3099 /* dm_marign should fail if we never find a window */ 3100 if (win_best == 0) 3101 dm_margin = -1; 3102 else 3103 dm_margin = left_edge[0] - mid; 3104 3105 scc_mgr_apply_group_dm_out1_delay(write_group, mid); 3106 writel(0, &sdr_scc_mgr->update); 3107 3108 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \ 3109 dm_margin=%d\n", __func__, __LINE__, left_edge[0], 3110 right_edge[0], mid, dm_margin); 3111 /* Export values */ 3112 gbl->fom_out += dq_margin + dqs_margin; 3113 3114 debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \ 3115 dqs_margin=%d dm_margin=%d\n", __func__, __LINE__, 3116 dq_margin, dqs_margin, dm_margin); 3117 3118 /* 3119 * Do not remove this line as it makes sure all of our 3120 * decisions have been applied. 3121 */ 3122 writel(0, &sdr_scc_mgr->update); 3123 return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0); 3124 } 3125 3126 /* calibrate the write operations */ 3127 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g, 3128 uint32_t test_bgn) 3129 { 3130 /* update info for sims */ 3131 debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn); 3132 3133 reg_file_set_stage(CAL_STAGE_WRITES); 3134 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER); 3135 3136 reg_file_set_group(g); 3137 3138 if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) { 3139 set_failing_group_stage(g, CAL_STAGE_WRITES, 3140 CAL_SUBSTAGE_WRITES_CENTER); 3141 return 0; 3142 } 3143 3144 return 1; 3145 } 3146 3147 /* precharge all banks and activate row 0 in bank "000..." and bank "111..." */ 3148 static void mem_precharge_and_activate(void) 3149 { 3150 uint32_t r; 3151 3152 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 3153 if (param->skip_ranks[r]) { 3154 /* request to skip the rank */ 3155 continue; 3156 } 3157 3158 /* set rank */ 3159 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 3160 3161 /* precharge all banks ... */ 3162 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3163 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3164 3165 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0); 3166 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1, 3167 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 3168 3169 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1); 3170 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2, 3171 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 3172 3173 /* activate rows */ 3174 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3175 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3176 } 3177 } 3178 3179 /* Configure various memory related parameters. */ 3180 static void mem_config(void) 3181 { 3182 uint32_t rlat, wlat; 3183 uint32_t rw_wl_nop_cycles; 3184 uint32_t max_latency; 3185 3186 debug("%s:%d\n", __func__, __LINE__); 3187 /* read in write and read latency */ 3188 wlat = readl(&data_mgr->t_wl_add); 3189 wlat += readl(&data_mgr->mem_t_add); 3190 3191 /* WL for hard phy does not include additive latency */ 3192 3193 /* 3194 * add addtional write latency to offset the address/command extra 3195 * clock cycle. We change the AC mux setting causing AC to be delayed 3196 * by one mem clock cycle. Only do this for DDR3 3197 */ 3198 wlat = wlat + 1; 3199 3200 rlat = readl(&data_mgr->t_rl_add); 3201 3202 rw_wl_nop_cycles = wlat - 2; 3203 gbl->rw_wl_nop_cycles = rw_wl_nop_cycles; 3204 3205 /* 3206 * For AV/CV, lfifo is hardened and always runs at full rate so 3207 * max latency in AFI clocks, used here, is correspondingly smaller. 3208 */ 3209 max_latency = (1<<MAX_LATENCY_COUNT_WIDTH)/1 - 1; 3210 /* configure for a burst length of 8 */ 3211 3212 /* write latency */ 3213 /* Adjust Write Latency for Hard PHY */ 3214 wlat = wlat + 1; 3215 3216 /* set a pretty high read latency initially */ 3217 gbl->curr_read_lat = rlat + 16; 3218 3219 if (gbl->curr_read_lat > max_latency) 3220 gbl->curr_read_lat = max_latency; 3221 3222 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3223 3224 /* advertise write latency */ 3225 gbl->curr_write_lat = wlat; 3226 writel(wlat - 2, &phy_mgr_cfg->afi_wlat); 3227 3228 /* initialize bit slips */ 3229 mem_precharge_and_activate(); 3230 } 3231 3232 /* Set VFIFO and LFIFO to instant-on settings in skip calibration mode */ 3233 static void mem_skip_calibrate(void) 3234 { 3235 uint32_t vfifo_offset; 3236 uint32_t i, j, r; 3237 3238 debug("%s:%d\n", __func__, __LINE__); 3239 /* Need to update every shadow register set used by the interface */ 3240 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 3241 r += NUM_RANKS_PER_SHADOW_REG) { 3242 /* 3243 * Set output phase alignment settings appropriate for 3244 * skip calibration. 3245 */ 3246 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3247 scc_mgr_set_dqs_en_phase(i, 0); 3248 #if IO_DLL_CHAIN_LENGTH == 6 3249 scc_mgr_set_dqdqs_output_phase(i, 6); 3250 #else 3251 scc_mgr_set_dqdqs_output_phase(i, 7); 3252 #endif 3253 /* 3254 * Case:33398 3255 * 3256 * Write data arrives to the I/O two cycles before write 3257 * latency is reached (720 deg). 3258 * -> due to bit-slip in a/c bus 3259 * -> to allow board skew where dqs is longer than ck 3260 * -> how often can this happen!? 3261 * -> can claim back some ptaps for high freq 3262 * support if we can relax this, but i digress... 3263 * 3264 * The write_clk leads mem_ck by 90 deg 3265 * The minimum ptap of the OPA is 180 deg 3266 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay 3267 * The write_clk is always delayed by 2 ptaps 3268 * 3269 * Hence, to make DQS aligned to CK, we need to delay 3270 * DQS by: 3271 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH)) 3272 * 3273 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH) 3274 * gives us the number of ptaps, which simplies to: 3275 * 3276 * (1.25 * IO_DLL_CHAIN_LENGTH - 2) 3277 */ 3278 scc_mgr_set_dqdqs_output_phase(i, (1.25 * 3279 IO_DLL_CHAIN_LENGTH - 2)); 3280 } 3281 writel(0xff, &sdr_scc_mgr->dqs_ena); 3282 writel(0xff, &sdr_scc_mgr->dqs_io_ena); 3283 3284 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 3285 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3286 SCC_MGR_GROUP_COUNTER_OFFSET); 3287 } 3288 writel(0xff, &sdr_scc_mgr->dq_ena); 3289 writel(0xff, &sdr_scc_mgr->dm_ena); 3290 writel(0, &sdr_scc_mgr->update); 3291 } 3292 3293 /* Compensate for simulation model behaviour */ 3294 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3295 scc_mgr_set_dqs_bus_in_delay(i, 10); 3296 scc_mgr_load_dqs(i); 3297 } 3298 writel(0, &sdr_scc_mgr->update); 3299 3300 /* 3301 * ArriaV has hard FIFOs that can only be initialized by incrementing 3302 * in sequencer. 3303 */ 3304 vfifo_offset = CALIB_VFIFO_OFFSET; 3305 for (j = 0; j < vfifo_offset; j++) { 3306 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy); 3307 } 3308 writel(0, &phy_mgr_cmd->fifo_reset); 3309 3310 /* 3311 * For ACV with hard lfifo, we get the skip-cal setting from 3312 * generation-time constant. 3313 */ 3314 gbl->curr_read_lat = CALIB_LFIFO_OFFSET; 3315 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3316 } 3317 3318 /* Memory calibration entry point */ 3319 static uint32_t mem_calibrate(void) 3320 { 3321 uint32_t i; 3322 uint32_t rank_bgn, sr; 3323 uint32_t write_group, write_test_bgn; 3324 uint32_t read_group, read_test_bgn; 3325 uint32_t run_groups, current_run; 3326 uint32_t failing_groups = 0; 3327 uint32_t group_failed = 0; 3328 uint32_t sr_failed = 0; 3329 3330 debug("%s:%d\n", __func__, __LINE__); 3331 /* Initialize the data settings */ 3332 3333 gbl->error_substage = CAL_SUBSTAGE_NIL; 3334 gbl->error_stage = CAL_STAGE_NIL; 3335 gbl->error_group = 0xff; 3336 gbl->fom_in = 0; 3337 gbl->fom_out = 0; 3338 3339 mem_config(); 3340 3341 uint32_t bypass_mode = 0x1; 3342 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3343 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3344 SCC_MGR_GROUP_COUNTER_OFFSET); 3345 scc_set_bypass_mode(i, bypass_mode); 3346 } 3347 3348 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) { 3349 /* 3350 * Set VFIFO and LFIFO to instant-on settings in skip 3351 * calibration mode. 3352 */ 3353 mem_skip_calibrate(); 3354 } else { 3355 for (i = 0; i < NUM_CALIB_REPEAT; i++) { 3356 /* 3357 * Zero all delay chain/phase settings for all 3358 * groups and all shadow register sets. 3359 */ 3360 scc_mgr_zero_all(); 3361 3362 run_groups = ~param->skip_groups; 3363 3364 for (write_group = 0, write_test_bgn = 0; write_group 3365 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++, 3366 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) { 3367 /* Initialized the group failure */ 3368 group_failed = 0; 3369 3370 current_run = run_groups & ((1 << 3371 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1); 3372 run_groups = run_groups >> 3373 RW_MGR_NUM_DQS_PER_WRITE_GROUP; 3374 3375 if (current_run == 0) 3376 continue; 3377 3378 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS | 3379 SCC_MGR_GROUP_COUNTER_OFFSET); 3380 scc_mgr_zero_group(write_group, write_test_bgn, 3381 0); 3382 3383 for (read_group = write_group * 3384 RW_MGR_MEM_IF_READ_DQS_WIDTH / 3385 RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3386 read_test_bgn = 0; 3387 read_group < (write_group + 1) * 3388 RW_MGR_MEM_IF_READ_DQS_WIDTH / 3389 RW_MGR_MEM_IF_WRITE_DQS_WIDTH && 3390 group_failed == 0; 3391 read_group++, read_test_bgn += 3392 RW_MGR_MEM_DQ_PER_READ_DQS) { 3393 /* Calibrate the VFIFO */ 3394 if (!((STATIC_CALIB_STEPS) & 3395 CALIB_SKIP_VFIFO)) { 3396 if (!rw_mgr_mem_calibrate_vfifo 3397 (read_group, 3398 read_test_bgn)) { 3399 group_failed = 1; 3400 3401 if (!(gbl-> 3402 phy_debug_mode_flags & 3403 PHY_DEBUG_SWEEP_ALL_GROUPS)) { 3404 return 0; 3405 } 3406 } 3407 } 3408 } 3409 3410 /* Calibrate the output side */ 3411 if (group_failed == 0) { 3412 for (rank_bgn = 0, sr = 0; rank_bgn 3413 < RW_MGR_MEM_NUMBER_OF_RANKS; 3414 rank_bgn += 3415 NUM_RANKS_PER_SHADOW_REG, 3416 ++sr) { 3417 sr_failed = 0; 3418 if (!((STATIC_CALIB_STEPS) & 3419 CALIB_SKIP_WRITES)) { 3420 if ((STATIC_CALIB_STEPS) 3421 & CALIB_SKIP_DELAY_SWEEPS) { 3422 /* not needed in quick mode! */ 3423 } else { 3424 /* 3425 * Determine if this set of 3426 * ranks should be skipped 3427 * entirely. 3428 */ 3429 if (!param->skip_shadow_regs[sr]) { 3430 if (!rw_mgr_mem_calibrate_writes 3431 (rank_bgn, write_group, 3432 write_test_bgn)) { 3433 sr_failed = 1; 3434 if (!(gbl-> 3435 phy_debug_mode_flags & 3436 PHY_DEBUG_SWEEP_ALL_GROUPS)) { 3437 return 0; 3438 } 3439 } 3440 } 3441 } 3442 } 3443 if (sr_failed != 0) 3444 group_failed = 1; 3445 } 3446 } 3447 3448 if (group_failed == 0) { 3449 for (read_group = write_group * 3450 RW_MGR_MEM_IF_READ_DQS_WIDTH / 3451 RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3452 read_test_bgn = 0; 3453 read_group < (write_group + 1) 3454 * RW_MGR_MEM_IF_READ_DQS_WIDTH 3455 / RW_MGR_MEM_IF_WRITE_DQS_WIDTH && 3456 group_failed == 0; 3457 read_group++, read_test_bgn += 3458 RW_MGR_MEM_DQ_PER_READ_DQS) { 3459 if (!((STATIC_CALIB_STEPS) & 3460 CALIB_SKIP_WRITES)) { 3461 if (!rw_mgr_mem_calibrate_vfifo_end 3462 (read_group, read_test_bgn)) { 3463 group_failed = 1; 3464 3465 if (!(gbl->phy_debug_mode_flags 3466 & PHY_DEBUG_SWEEP_ALL_GROUPS)) { 3467 return 0; 3468 } 3469 } 3470 } 3471 } 3472 } 3473 3474 if (group_failed != 0) 3475 failing_groups++; 3476 } 3477 3478 /* 3479 * USER If there are any failing groups then report 3480 * the failure. 3481 */ 3482 if (failing_groups != 0) 3483 return 0; 3484 3485 /* Calibrate the LFIFO */ 3486 if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_LFIFO)) { 3487 /* 3488 * If we're skipping groups as part of debug, 3489 * don't calibrate LFIFO. 3490 */ 3491 if (param->skip_groups == 0) { 3492 if (!rw_mgr_mem_calibrate_lfifo()) 3493 return 0; 3494 } 3495 } 3496 } 3497 } 3498 3499 /* 3500 * Do not remove this line as it makes sure all of our decisions 3501 * have been applied. 3502 */ 3503 writel(0, &sdr_scc_mgr->update); 3504 return 1; 3505 } 3506 3507 static uint32_t run_mem_calibrate(void) 3508 { 3509 uint32_t pass; 3510 uint32_t debug_info; 3511 3512 debug("%s:%d\n", __func__, __LINE__); 3513 3514 /* Reset pass/fail status shown on afi_cal_success/fail */ 3515 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status); 3516 3517 /* stop tracking manger */ 3518 uint32_t ctrlcfg = readl(&sdr_ctrl->ctrl_cfg); 3519 3520 writel(ctrlcfg & 0xFFBFFFFF, &sdr_ctrl->ctrl_cfg); 3521 3522 initialize(); 3523 rw_mgr_mem_initialize(); 3524 3525 pass = mem_calibrate(); 3526 3527 mem_precharge_and_activate(); 3528 writel(0, &phy_mgr_cmd->fifo_reset); 3529 3530 /* 3531 * Handoff: 3532 * Don't return control of the PHY back to AFI when in debug mode. 3533 */ 3534 if ((gbl->phy_debug_mode_flags & PHY_DEBUG_IN_DEBUG_MODE) == 0) { 3535 rw_mgr_mem_handoff(); 3536 /* 3537 * In Hard PHY this is a 2-bit control: 3538 * 0: AFI Mux Select 3539 * 1: DDIO Mux Select 3540 */ 3541 writel(0x2, &phy_mgr_cfg->mux_sel); 3542 } 3543 3544 writel(ctrlcfg, &sdr_ctrl->ctrl_cfg); 3545 3546 if (pass) { 3547 printf("%s: CALIBRATION PASSED\n", __FILE__); 3548 3549 gbl->fom_in /= 2; 3550 gbl->fom_out /= 2; 3551 3552 if (gbl->fom_in > 0xff) 3553 gbl->fom_in = 0xff; 3554 3555 if (gbl->fom_out > 0xff) 3556 gbl->fom_out = 0xff; 3557 3558 /* Update the FOM in the register file */ 3559 debug_info = gbl->fom_in; 3560 debug_info |= gbl->fom_out << 8; 3561 writel(debug_info, &sdr_reg_file->fom); 3562 3563 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3564 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status); 3565 } else { 3566 printf("%s: CALIBRATION FAILED\n", __FILE__); 3567 3568 debug_info = gbl->error_stage; 3569 debug_info |= gbl->error_substage << 8; 3570 debug_info |= gbl->error_group << 16; 3571 3572 writel(debug_info, &sdr_reg_file->failing_stage); 3573 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3574 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status); 3575 3576 /* Update the failing group/stage in the register file */ 3577 debug_info = gbl->error_stage; 3578 debug_info |= gbl->error_substage << 8; 3579 debug_info |= gbl->error_group << 16; 3580 writel(debug_info, &sdr_reg_file->failing_stage); 3581 } 3582 3583 return pass; 3584 } 3585 3586 /** 3587 * hc_initialize_rom_data() - Initialize ROM data 3588 * 3589 * Initialize ROM data. 3590 */ 3591 static void hc_initialize_rom_data(void) 3592 { 3593 u32 i, addr; 3594 3595 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET; 3596 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++) 3597 writel(inst_rom_init[i], addr + (i << 2)); 3598 3599 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET; 3600 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++) 3601 writel(ac_rom_init[i], addr + (i << 2)); 3602 } 3603 3604 /** 3605 * initialize_reg_file() - Initialize SDR register file 3606 * 3607 * Initialize SDR register file. 3608 */ 3609 static void initialize_reg_file(void) 3610 { 3611 /* Initialize the register file with the correct data */ 3612 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature); 3613 writel(0, &sdr_reg_file->debug_data_addr); 3614 writel(0, &sdr_reg_file->cur_stage); 3615 writel(0, &sdr_reg_file->fom); 3616 writel(0, &sdr_reg_file->failing_stage); 3617 writel(0, &sdr_reg_file->debug1); 3618 writel(0, &sdr_reg_file->debug2); 3619 } 3620 3621 /** 3622 * initialize_hps_phy() - Initialize HPS PHY 3623 * 3624 * Initialize HPS PHY. 3625 */ 3626 static void initialize_hps_phy(void) 3627 { 3628 uint32_t reg; 3629 /* 3630 * Tracking also gets configured here because it's in the 3631 * same register. 3632 */ 3633 uint32_t trk_sample_count = 7500; 3634 uint32_t trk_long_idle_sample_count = (10 << 16) | 100; 3635 /* 3636 * Format is number of outer loops in the 16 MSB, sample 3637 * count in 16 LSB. 3638 */ 3639 3640 reg = 0; 3641 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2); 3642 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1); 3643 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1); 3644 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1); 3645 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0); 3646 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1); 3647 /* 3648 * This field selects the intrinsic latency to RDATA_EN/FULL path. 3649 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles. 3650 */ 3651 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0); 3652 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET( 3653 trk_sample_count); 3654 writel(reg, &sdr_ctrl->phy_ctrl0); 3655 3656 reg = 0; 3657 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET( 3658 trk_sample_count >> 3659 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH); 3660 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET( 3661 trk_long_idle_sample_count); 3662 writel(reg, &sdr_ctrl->phy_ctrl1); 3663 3664 reg = 0; 3665 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET( 3666 trk_long_idle_sample_count >> 3667 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH); 3668 writel(reg, &sdr_ctrl->phy_ctrl2); 3669 } 3670 3671 static void initialize_tracking(void) 3672 { 3673 uint32_t concatenated_longidle = 0x0; 3674 uint32_t concatenated_delays = 0x0; 3675 uint32_t concatenated_rw_addr = 0x0; 3676 uint32_t concatenated_refresh = 0x0; 3677 uint32_t trk_sample_count = 7500; 3678 uint32_t dtaps_per_ptap; 3679 uint32_t tmp_delay; 3680 3681 /* 3682 * compute usable version of value in case we skip full 3683 * computation later 3684 */ 3685 dtaps_per_ptap = 0; 3686 tmp_delay = 0; 3687 while (tmp_delay < IO_DELAY_PER_OPA_TAP) { 3688 dtaps_per_ptap++; 3689 tmp_delay += IO_DELAY_PER_DCHAIN_TAP; 3690 } 3691 dtaps_per_ptap--; 3692 3693 concatenated_longidle = concatenated_longidle ^ 10; 3694 /*longidle outer loop */ 3695 concatenated_longidle = concatenated_longidle << 16; 3696 concatenated_longidle = concatenated_longidle ^ 100; 3697 /*longidle sample count */ 3698 concatenated_delays = concatenated_delays ^ 243; 3699 /* trfc, worst case of 933Mhz 4Gb */ 3700 concatenated_delays = concatenated_delays << 8; 3701 concatenated_delays = concatenated_delays ^ 14; 3702 /* trcd, worst case */ 3703 concatenated_delays = concatenated_delays << 8; 3704 concatenated_delays = concatenated_delays ^ 10; 3705 /* vfifo wait */ 3706 concatenated_delays = concatenated_delays << 8; 3707 concatenated_delays = concatenated_delays ^ 4; 3708 /* mux delay */ 3709 3710 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_IDLE; 3711 concatenated_rw_addr = concatenated_rw_addr << 8; 3712 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_ACTIVATE_1; 3713 concatenated_rw_addr = concatenated_rw_addr << 8; 3714 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_SGLE_READ; 3715 concatenated_rw_addr = concatenated_rw_addr << 8; 3716 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_PRECHARGE_ALL; 3717 3718 concatenated_refresh = concatenated_refresh ^ RW_MGR_REFRESH_ALL; 3719 concatenated_refresh = concatenated_refresh << 24; 3720 concatenated_refresh = concatenated_refresh ^ 1000; /* trefi */ 3721 3722 /* Initialize the register file with the correct data */ 3723 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 3724 writel(trk_sample_count, &sdr_reg_file->trk_sample_count); 3725 writel(concatenated_longidle, &sdr_reg_file->trk_longidle); 3726 writel(concatenated_delays, &sdr_reg_file->delays); 3727 writel(concatenated_rw_addr, &sdr_reg_file->trk_rw_mgr_addr); 3728 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, &sdr_reg_file->trk_read_dqs_width); 3729 writel(concatenated_refresh, &sdr_reg_file->trk_rfsh); 3730 } 3731 3732 int sdram_calibration_full(void) 3733 { 3734 struct param_type my_param; 3735 struct gbl_type my_gbl; 3736 uint32_t pass; 3737 uint32_t i; 3738 3739 param = &my_param; 3740 gbl = &my_gbl; 3741 3742 /* Initialize the debug mode flags */ 3743 gbl->phy_debug_mode_flags = 0; 3744 /* Set the calibration enabled by default */ 3745 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT; 3746 /* 3747 * Only sweep all groups (regardless of fail state) by default 3748 * Set enabled read test by default. 3749 */ 3750 #if DISABLE_GUARANTEED_READ 3751 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ; 3752 #endif 3753 /* Initialize the register file */ 3754 initialize_reg_file(); 3755 3756 /* Initialize any PHY CSR */ 3757 initialize_hps_phy(); 3758 3759 scc_mgr_initialize(); 3760 3761 initialize_tracking(); 3762 3763 /* USER Enable all ranks, groups */ 3764 for (i = 0; i < RW_MGR_MEM_NUMBER_OF_RANKS; i++) 3765 param->skip_ranks[i] = 0; 3766 for (i = 0; i < NUM_SHADOW_REGS; ++i) 3767 param->skip_shadow_regs[i] = 0; 3768 param->skip_groups = 0; 3769 3770 printf("%s: Preparing to start memory calibration\n", __FILE__); 3771 3772 debug("%s:%d\n", __func__, __LINE__); 3773 debug_cond(DLEVEL == 1, 3774 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ", 3775 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM, 3776 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS, 3777 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS, 3778 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 3779 debug_cond(DLEVEL == 1, 3780 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ", 3781 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3782 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH, 3783 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP); 3784 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u", 3785 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH); 3786 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ", 3787 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX, 3788 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX); 3789 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ", 3790 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX, 3791 IO_IO_OUT2_DELAY_MAX); 3792 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n", 3793 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE); 3794 3795 hc_initialize_rom_data(); 3796 3797 /* update info for sims */ 3798 reg_file_set_stage(CAL_STAGE_NIL); 3799 reg_file_set_group(0); 3800 3801 /* 3802 * Load global needed for those actions that require 3803 * some dynamic calibration support. 3804 */ 3805 dyn_calib_steps = STATIC_CALIB_STEPS; 3806 /* 3807 * Load global to allow dynamic selection of delay loop settings 3808 * based on calibration mode. 3809 */ 3810 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS)) 3811 skip_delay_mask = 0xff; 3812 else 3813 skip_delay_mask = 0x0; 3814 3815 pass = run_mem_calibrate(); 3816 3817 printf("%s: Calibration complete\n", __FILE__); 3818 return pass; 3819 } 3820