xref: /openbmc/u-boot/drivers/ddr/altera/sequencer.c (revision 287cdf6be748ca2600ba09c3363732fd66981e9a)
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6 
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include "sequencer.h"
11 #include "sequencer_auto.h"
12 #include "sequencer_auto_ac_init.h"
13 #include "sequencer_auto_inst_init.h"
14 #include "sequencer_defines.h"
15 
16 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
17 	(struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
18 
19 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
20 	(struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
21 
22 static struct socfpga_sdr_reg_file *sdr_reg_file =
23 	(struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
24 
25 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
26 	(struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
27 
28 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
29 	(struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
30 
31 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
32 	(struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
33 
34 static struct socfpga_data_mgr *data_mgr =
35 	(struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
36 
37 static struct socfpga_sdr_ctrl *sdr_ctrl =
38 	(struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
39 
40 #define DELTA_D		1
41 
42 /*
43  * In order to reduce ROM size, most of the selectable calibration steps are
44  * decided at compile time based on the user's calibration mode selection,
45  * as captured by the STATIC_CALIB_STEPS selection below.
46  *
47  * However, to support simulation-time selection of fast simulation mode, where
48  * we skip everything except the bare minimum, we need a few of the steps to
49  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
50  * check, which is based on the rtl-supplied value, or we dynamically compute
51  * the value to use based on the dynamically-chosen calibration mode
52  */
53 
54 #define DLEVEL 0
55 #define STATIC_IN_RTL_SIM 0
56 #define STATIC_SKIP_DELAY_LOOPS 0
57 
58 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
59 	STATIC_SKIP_DELAY_LOOPS)
60 
61 /* calibration steps requested by the rtl */
62 uint16_t dyn_calib_steps;
63 
64 /*
65  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
66  * instead of static, we use boolean logic to select between
67  * non-skip and skip values
68  *
69  * The mask is set to include all bits when not-skipping, but is
70  * zero when skipping
71  */
72 
73 uint16_t skip_delay_mask;	/* mask off bits when skipping/not-skipping */
74 
75 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
76 	((non_skip_value) & skip_delay_mask)
77 
78 struct gbl_type *gbl;
79 struct param_type *param;
80 uint32_t curr_shadow_reg;
81 
82 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
83 	uint32_t write_group, uint32_t use_dm,
84 	uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
85 
86 static void set_failing_group_stage(uint32_t group, uint32_t stage,
87 	uint32_t substage)
88 {
89 	/*
90 	 * Only set the global stage if there was not been any other
91 	 * failing group
92 	 */
93 	if (gbl->error_stage == CAL_STAGE_NIL)	{
94 		gbl->error_substage = substage;
95 		gbl->error_stage = stage;
96 		gbl->error_group = group;
97 	}
98 }
99 
100 static void reg_file_set_group(u16 set_group)
101 {
102 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
103 }
104 
105 static void reg_file_set_stage(u8 set_stage)
106 {
107 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
108 }
109 
110 static void reg_file_set_sub_stage(u8 set_sub_stage)
111 {
112 	set_sub_stage &= 0xff;
113 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
114 }
115 
116 /**
117  * phy_mgr_initialize() - Initialize PHY Manager
118  *
119  * Initialize PHY Manager.
120  */
121 static void phy_mgr_initialize(void)
122 {
123 	u32 ratio;
124 
125 	debug("%s:%d\n", __func__, __LINE__);
126 	/* Calibration has control over path to memory */
127 	/*
128 	 * In Hard PHY this is a 2-bit control:
129 	 * 0: AFI Mux Select
130 	 * 1: DDIO Mux Select
131 	 */
132 	writel(0x3, &phy_mgr_cfg->mux_sel);
133 
134 	/* USER memory clock is not stable we begin initialization  */
135 	writel(0, &phy_mgr_cfg->reset_mem_stbl);
136 
137 	/* USER calibration status all set to zero */
138 	writel(0, &phy_mgr_cfg->cal_status);
139 
140 	writel(0, &phy_mgr_cfg->cal_debug_info);
141 
142 	/* Init params only if we do NOT skip calibration. */
143 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
144 		return;
145 
146 	ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
147 		RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
148 	param->read_correct_mask_vg = (1 << ratio) - 1;
149 	param->write_correct_mask_vg = (1 << ratio) - 1;
150 	param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
151 	param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
152 	ratio = RW_MGR_MEM_DATA_WIDTH /
153 		RW_MGR_MEM_DATA_MASK_WIDTH;
154 	param->dm_correct_mask = (1 << ratio) - 1;
155 }
156 
157 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
158 {
159 	u32 odt_mask_0 = 0;
160 	u32 odt_mask_1 = 0;
161 	u32 cs_and_odt_mask;
162 
163 	if (odt_mode == RW_MGR_ODT_MODE_OFF) {
164 		odt_mask_0 = 0x0;
165 		odt_mask_1 = 0x0;
166 	} else {	/* RW_MGR_ODT_MODE_READ_WRITE */
167 		switch (RW_MGR_MEM_NUMBER_OF_RANKS) {
168 		case 1:	/* 1 Rank */
169 			/* Read: ODT = 0 ; Write: ODT = 1 */
170 			odt_mask_0 = 0x0;
171 			odt_mask_1 = 0x1;
172 			break;
173 		case 2:	/* 2 Ranks */
174 			if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
175 				/* - Dual-Slot , Single-Rank
176 				 * (1 chip-select per DIMM)
177 				 * OR
178 				 * - RDIMM, 4 total CS (2 CS per DIMM)
179 				 * means 2 DIMM
180 				 * Since MEM_NUMBER_OF_RANKS is 2 they are
181 				 * both single rank
182 				 * with 2 CS each (special for RDIMM)
183 				 * Read: Turn on ODT on the opposite rank
184 				 * Write: Turn on ODT on all ranks
185 				 */
186 				odt_mask_0 = 0x3 & ~(1 << rank);
187 				odt_mask_1 = 0x3;
188 			} else {
189 				/*
190 				 * USER - Single-Slot , Dual-rank DIMMs
191 				 * (2 chip-selects per DIMM)
192 				 * USER Read: Turn on ODT off on all ranks
193 				 * USER Write: Turn on ODT on active rank
194 				 */
195 				odt_mask_0 = 0x0;
196 				odt_mask_1 = 0x3 & (1 << rank);
197 			}
198 			break;
199 		case 4:	/* 4 Ranks */
200 			/* Read:
201 			 * ----------+-----------------------+
202 			 *           |                       |
203 			 *           |         ODT           |
204 			 * Read From +-----------------------+
205 			 *   Rank    |  3  |  2  |  1  |  0  |
206 			 * ----------+-----+-----+-----+-----+
207 			 *     0     |  0  |  1  |  0  |  0  |
208 			 *     1     |  1  |  0  |  0  |  0  |
209 			 *     2     |  0  |  0  |  0  |  1  |
210 			 *     3     |  0  |  0  |  1  |  0  |
211 			 * ----------+-----+-----+-----+-----+
212 			 *
213 			 * Write:
214 			 * ----------+-----------------------+
215 			 *           |                       |
216 			 *           |         ODT           |
217 			 * Write To  +-----------------------+
218 			 *   Rank    |  3  |  2  |  1  |  0  |
219 			 * ----------+-----+-----+-----+-----+
220 			 *     0     |  0  |  1  |  0  |  1  |
221 			 *     1     |  1  |  0  |  1  |  0  |
222 			 *     2     |  0  |  1  |  0  |  1  |
223 			 *     3     |  1  |  0  |  1  |  0  |
224 			 * ----------+-----+-----+-----+-----+
225 			 */
226 			switch (rank) {
227 			case 0:
228 				odt_mask_0 = 0x4;
229 				odt_mask_1 = 0x5;
230 				break;
231 			case 1:
232 				odt_mask_0 = 0x8;
233 				odt_mask_1 = 0xA;
234 				break;
235 			case 2:
236 				odt_mask_0 = 0x1;
237 				odt_mask_1 = 0x5;
238 				break;
239 			case 3:
240 				odt_mask_0 = 0x2;
241 				odt_mask_1 = 0xA;
242 				break;
243 			}
244 			break;
245 		}
246 	}
247 
248 	cs_and_odt_mask = (0xFF & ~(1 << rank)) |
249 			  ((0xFF & odt_mask_0) << 8) |
250 			  ((0xFF & odt_mask_1) << 16);
251 	writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
252 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
253 }
254 
255 /**
256  * scc_mgr_set() - Set SCC Manager register
257  * @off:	Base offset in SCC Manager space
258  * @grp:	Read/Write group
259  * @val:	Value to be set
260  *
261  * This function sets the SCC Manager (Scan Chain Control Manager) register.
262  */
263 static void scc_mgr_set(u32 off, u32 grp, u32 val)
264 {
265 	writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
266 }
267 
268 /**
269  * scc_mgr_initialize() - Initialize SCC Manager registers
270  *
271  * Initialize SCC Manager registers.
272  */
273 static void scc_mgr_initialize(void)
274 {
275 	/*
276 	 * Clear register file for HPS. 16 (2^4) is the size of the
277 	 * full register file in the scc mgr:
278 	 *	RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
279 	 *                             MEM_IF_READ_DQS_WIDTH - 1);
280 	 */
281 	int i;
282 
283 	for (i = 0; i < 16; i++) {
284 		debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
285 			   __func__, __LINE__, i);
286 		scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
287 	}
288 }
289 
290 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
291 {
292 	scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
293 }
294 
295 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
296 {
297 	scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
298 }
299 
300 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
301 {
302 	scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
303 }
304 
305 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
306 {
307 	scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
308 }
309 
310 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
311 {
312 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
313 		    delay);
314 }
315 
316 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
317 {
318 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
319 }
320 
321 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
322 {
323 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
324 }
325 
326 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
327 {
328 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
329 		    delay);
330 }
331 
332 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
333 {
334 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
335 		    RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
336 		    delay);
337 }
338 
339 /* load up dqs config settings */
340 static void scc_mgr_load_dqs(uint32_t dqs)
341 {
342 	writel(dqs, &sdr_scc_mgr->dqs_ena);
343 }
344 
345 /* load up dqs io config settings */
346 static void scc_mgr_load_dqs_io(void)
347 {
348 	writel(0, &sdr_scc_mgr->dqs_io_ena);
349 }
350 
351 /* load up dq config settings */
352 static void scc_mgr_load_dq(uint32_t dq_in_group)
353 {
354 	writel(dq_in_group, &sdr_scc_mgr->dq_ena);
355 }
356 
357 /* load up dm config settings */
358 static void scc_mgr_load_dm(uint32_t dm)
359 {
360 	writel(dm, &sdr_scc_mgr->dm_ena);
361 }
362 
363 /**
364  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
365  * @off:	Base offset in SCC Manager space
366  * @grp:	Read/Write group
367  * @val:	Value to be set
368  * @update:	If non-zero, trigger SCC Manager update for all ranks
369  *
370  * This function sets the SCC Manager (Scan Chain Control Manager) register
371  * and optionally triggers the SCC update for all ranks.
372  */
373 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
374 				  const int update)
375 {
376 	u32 r;
377 
378 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
379 	     r += NUM_RANKS_PER_SHADOW_REG) {
380 		scc_mgr_set(off, grp, val);
381 
382 		if (update || (r == 0)) {
383 			writel(grp, &sdr_scc_mgr->dqs_ena);
384 			writel(0, &sdr_scc_mgr->update);
385 		}
386 	}
387 }
388 
389 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
390 {
391 	/*
392 	 * USER although the h/w doesn't support different phases per
393 	 * shadow register, for simplicity our scc manager modeling
394 	 * keeps different phase settings per shadow reg, and it's
395 	 * important for us to keep them in sync to match h/w.
396 	 * for efficiency, the scan chain update should occur only
397 	 * once to sr0.
398 	 */
399 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
400 			      read_group, phase, 0);
401 }
402 
403 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
404 						     uint32_t phase)
405 {
406 	/*
407 	 * USER although the h/w doesn't support different phases per
408 	 * shadow register, for simplicity our scc manager modeling
409 	 * keeps different phase settings per shadow reg, and it's
410 	 * important for us to keep them in sync to match h/w.
411 	 * for efficiency, the scan chain update should occur only
412 	 * once to sr0.
413 	 */
414 	scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
415 			      write_group, phase, 0);
416 }
417 
418 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
419 					       uint32_t delay)
420 {
421 	/*
422 	 * In shadow register mode, the T11 settings are stored in
423 	 * registers in the core, which are updated by the DQS_ENA
424 	 * signals. Not issuing the SCC_MGR_UPD command allows us to
425 	 * save lots of rank switching overhead, by calling
426 	 * select_shadow_regs_for_update with update_scan_chains
427 	 * set to 0.
428 	 */
429 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
430 			      read_group, delay, 1);
431 	writel(0, &sdr_scc_mgr->update);
432 }
433 
434 /**
435  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
436  * @write_group:	Write group
437  * @delay:		Delay value
438  *
439  * This function sets the OCT output delay in SCC manager.
440  */
441 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
442 {
443 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
444 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
445 	const int base = write_group * ratio;
446 	int i;
447 	/*
448 	 * Load the setting in the SCC manager
449 	 * Although OCT affects only write data, the OCT delay is controlled
450 	 * by the DQS logic block which is instantiated once per read group.
451 	 * For protocols where a write group consists of multiple read groups,
452 	 * the setting must be set multiple times.
453 	 */
454 	for (i = 0; i < ratio; i++)
455 		scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
456 }
457 
458 /**
459  * scc_mgr_set_hhp_extras() - Set HHP extras.
460  *
461  * Load the fixed setting in the SCC manager HHP extras.
462  */
463 static void scc_mgr_set_hhp_extras(void)
464 {
465 	/*
466 	 * Load the fixed setting in the SCC manager
467 	 * bits: 0:0 = 1'b1	- DQS bypass
468 	 * bits: 1:1 = 1'b1	- DQ bypass
469 	 * bits: 4:2 = 3'b001	- rfifo_mode
470 	 * bits: 6:5 = 2'b01	- rfifo clock_select
471 	 * bits: 7:7 = 1'b0	- separate gating from ungating setting
472 	 * bits: 8:8 = 1'b0	- separate OE from Output delay setting
473 	 */
474 	const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
475 			  (1 << 2) | (1 << 1) | (1 << 0);
476 	const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
477 			 SCC_MGR_HHP_GLOBALS_OFFSET |
478 			 SCC_MGR_HHP_EXTRAS_OFFSET;
479 
480 	debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
481 		   __func__, __LINE__);
482 	writel(value, addr);
483 	debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
484 		   __func__, __LINE__);
485 }
486 
487 /**
488  * scc_mgr_zero_all() - Zero all DQS config
489  *
490  * Zero all DQS config.
491  */
492 static void scc_mgr_zero_all(void)
493 {
494 	int i, r;
495 
496 	/*
497 	 * USER Zero all DQS config settings, across all groups and all
498 	 * shadow registers
499 	 */
500 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
501 	     r += NUM_RANKS_PER_SHADOW_REG) {
502 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
503 			/*
504 			 * The phases actually don't exist on a per-rank basis,
505 			 * but there's no harm updating them several times, so
506 			 * let's keep the code simple.
507 			 */
508 			scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
509 			scc_mgr_set_dqs_en_phase(i, 0);
510 			scc_mgr_set_dqs_en_delay(i, 0);
511 		}
512 
513 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
514 			scc_mgr_set_dqdqs_output_phase(i, 0);
515 			/* Arria V/Cyclone V don't have out2. */
516 			scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
517 		}
518 	}
519 
520 	/* Multicast to all DQS group enables. */
521 	writel(0xff, &sdr_scc_mgr->dqs_ena);
522 	writel(0, &sdr_scc_mgr->update);
523 }
524 
525 /**
526  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
527  * @write_group:	Write group
528  *
529  * Set bypass mode and trigger SCC update.
530  */
531 static void scc_set_bypass_mode(const u32 write_group)
532 {
533 	/* Multicast to all DQ enables. */
534 	writel(0xff, &sdr_scc_mgr->dq_ena);
535 	writel(0xff, &sdr_scc_mgr->dm_ena);
536 
537 	/* Update current DQS IO enable. */
538 	writel(0, &sdr_scc_mgr->dqs_io_ena);
539 
540 	/* Update the DQS logic. */
541 	writel(write_group, &sdr_scc_mgr->dqs_ena);
542 
543 	/* Hit update. */
544 	writel(0, &sdr_scc_mgr->update);
545 }
546 
547 /**
548  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
549  * @write_group:	Write group
550  *
551  * Load DQS settings for Write Group, do not trigger SCC update.
552  */
553 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
554 {
555 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
556 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
557 	const int base = write_group * ratio;
558 	int i;
559 	/*
560 	 * Load the setting in the SCC manager
561 	 * Although OCT affects only write data, the OCT delay is controlled
562 	 * by the DQS logic block which is instantiated once per read group.
563 	 * For protocols where a write group consists of multiple read groups,
564 	 * the setting must be set multiple times.
565 	 */
566 	for (i = 0; i < ratio; i++)
567 		writel(base + i, &sdr_scc_mgr->dqs_ena);
568 }
569 
570 /**
571  * scc_mgr_zero_group() - Zero all configs for a group
572  *
573  * Zero DQ, DM, DQS and OCT configs for a group.
574  */
575 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
576 {
577 	int i, r;
578 
579 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
580 	     r += NUM_RANKS_PER_SHADOW_REG) {
581 		/* Zero all DQ config settings. */
582 		for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
583 			scc_mgr_set_dq_out1_delay(i, 0);
584 			if (!out_only)
585 				scc_mgr_set_dq_in_delay(i, 0);
586 		}
587 
588 		/* Multicast to all DQ enables. */
589 		writel(0xff, &sdr_scc_mgr->dq_ena);
590 
591 		/* Zero all DM config settings. */
592 		for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
593 			scc_mgr_set_dm_out1_delay(i, 0);
594 
595 		/* Multicast to all DM enables. */
596 		writel(0xff, &sdr_scc_mgr->dm_ena);
597 
598 		/* Zero all DQS IO settings. */
599 		if (!out_only)
600 			scc_mgr_set_dqs_io_in_delay(0);
601 
602 		/* Arria V/Cyclone V don't have out2. */
603 		scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
604 		scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
605 		scc_mgr_load_dqs_for_write_group(write_group);
606 
607 		/* Multicast to all DQS IO enables (only 1 in total). */
608 		writel(0, &sdr_scc_mgr->dqs_io_ena);
609 
610 		/* Hit update to zero everything. */
611 		writel(0, &sdr_scc_mgr->update);
612 	}
613 }
614 
615 /*
616  * apply and load a particular input delay for the DQ pins in a group
617  * group_bgn is the index of the first dq pin (in the write group)
618  */
619 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
620 {
621 	uint32_t i, p;
622 
623 	for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
624 		scc_mgr_set_dq_in_delay(p, delay);
625 		scc_mgr_load_dq(p);
626 	}
627 }
628 
629 /**
630  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
631  * @delay:		Delay value
632  *
633  * Apply and load a particular output delay for the DQ pins in a group.
634  */
635 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
636 {
637 	int i;
638 
639 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
640 		scc_mgr_set_dq_out1_delay(i, delay);
641 		scc_mgr_load_dq(i);
642 	}
643 }
644 
645 /* apply and load a particular output delay for the DM pins in a group */
646 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
647 {
648 	uint32_t i;
649 
650 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
651 		scc_mgr_set_dm_out1_delay(i, delay1);
652 		scc_mgr_load_dm(i);
653 	}
654 }
655 
656 
657 /* apply and load delay on both DQS and OCT out1 */
658 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
659 						    uint32_t delay)
660 {
661 	scc_mgr_set_dqs_out1_delay(delay);
662 	scc_mgr_load_dqs_io();
663 
664 	scc_mgr_set_oct_out1_delay(write_group, delay);
665 	scc_mgr_load_dqs_for_write_group(write_group);
666 }
667 
668 /**
669  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
670  * @write_group:	Write group
671  * @delay:		Delay value
672  *
673  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
674  */
675 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
676 						  const u32 delay)
677 {
678 	u32 i, new_delay;
679 
680 	/* DQ shift */
681 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
682 		scc_mgr_load_dq(i);
683 
684 	/* DM shift */
685 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
686 		scc_mgr_load_dm(i);
687 
688 	/* DQS shift */
689 	new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
690 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
691 		debug_cond(DLEVEL == 1,
692 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
693 			   __func__, __LINE__, write_group, delay, new_delay,
694 			   IO_IO_OUT2_DELAY_MAX,
695 			   new_delay - IO_IO_OUT2_DELAY_MAX);
696 		new_delay -= IO_IO_OUT2_DELAY_MAX;
697 		scc_mgr_set_dqs_out1_delay(new_delay);
698 	}
699 
700 	scc_mgr_load_dqs_io();
701 
702 	/* OCT shift */
703 	new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
704 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
705 		debug_cond(DLEVEL == 1,
706 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
707 			   __func__, __LINE__, write_group, delay,
708 			   new_delay, IO_IO_OUT2_DELAY_MAX,
709 			   new_delay - IO_IO_OUT2_DELAY_MAX);
710 		new_delay -= IO_IO_OUT2_DELAY_MAX;
711 		scc_mgr_set_oct_out1_delay(write_group, new_delay);
712 	}
713 
714 	scc_mgr_load_dqs_for_write_group(write_group);
715 }
716 
717 /**
718  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
719  * @write_group:	Write group
720  * @delay:		Delay value
721  *
722  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
723  */
724 static void
725 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
726 						const u32 delay)
727 {
728 	int r;
729 
730 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
731 	     r += NUM_RANKS_PER_SHADOW_REG) {
732 		scc_mgr_apply_group_all_out_delay_add(write_group, delay);
733 		writel(0, &sdr_scc_mgr->update);
734 	}
735 }
736 
737 /**
738  * set_jump_as_return() - Return instruction optimization
739  *
740  * Optimization used to recover some slots in ddr3 inst_rom could be
741  * applied to other protocols if we wanted to
742  */
743 static void set_jump_as_return(void)
744 {
745 	/*
746 	 * To save space, we replace return with jump to special shared
747 	 * RETURN instruction so we set the counter to large value so that
748 	 * we always jump.
749 	 */
750 	writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
751 	writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
752 }
753 
754 /*
755  * should always use constants as argument to ensure all computations are
756  * performed at compile time
757  */
758 static void delay_for_n_mem_clocks(const uint32_t clocks)
759 {
760 	uint32_t afi_clocks;
761 	uint8_t inner = 0;
762 	uint8_t outer = 0;
763 	uint16_t c_loop = 0;
764 
765 	debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
766 
767 
768 	afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
769 	/* scale (rounding up) to get afi clocks */
770 
771 	/*
772 	 * Note, we don't bother accounting for being off a little bit
773 	 * because of a few extra instructions in outer loops
774 	 * Note, the loops have a test at the end, and do the test before
775 	 * the decrement, and so always perform the loop
776 	 * 1 time more than the counter value
777 	 */
778 	if (afi_clocks == 0) {
779 		;
780 	} else if (afi_clocks <= 0x100) {
781 		inner = afi_clocks-1;
782 		outer = 0;
783 		c_loop = 0;
784 	} else if (afi_clocks <= 0x10000) {
785 		inner = 0xff;
786 		outer = (afi_clocks-1) >> 8;
787 		c_loop = 0;
788 	} else {
789 		inner = 0xff;
790 		outer = 0xff;
791 		c_loop = (afi_clocks-1) >> 16;
792 	}
793 
794 	/*
795 	 * rom instructions are structured as follows:
796 	 *
797 	 *    IDLE_LOOP2: jnz cntr0, TARGET_A
798 	 *    IDLE_LOOP1: jnz cntr1, TARGET_B
799 	 *                return
800 	 *
801 	 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
802 	 * TARGET_B is set to IDLE_LOOP2 as well
803 	 *
804 	 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
805 	 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
806 	 *
807 	 * a little confusing, but it helps save precious space in the inst_rom
808 	 * and sequencer rom and keeps the delays more accurate and reduces
809 	 * overhead
810 	 */
811 	if (afi_clocks <= 0x100) {
812 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
813 			&sdr_rw_load_mgr_regs->load_cntr1);
814 
815 		writel(RW_MGR_IDLE_LOOP1,
816 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
817 
818 		writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
819 					  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
820 	} else {
821 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
822 			&sdr_rw_load_mgr_regs->load_cntr0);
823 
824 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
825 			&sdr_rw_load_mgr_regs->load_cntr1);
826 
827 		writel(RW_MGR_IDLE_LOOP2,
828 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
829 
830 		writel(RW_MGR_IDLE_LOOP2,
831 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
832 
833 		/* hack to get around compiler not being smart enough */
834 		if (afi_clocks <= 0x10000) {
835 			/* only need to run once */
836 			writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
837 						  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
838 		} else {
839 			do {
840 				writel(RW_MGR_IDLE_LOOP2,
841 					SDR_PHYGRP_RWMGRGRP_ADDRESS |
842 					RW_MGR_RUN_SINGLE_GROUP_OFFSET);
843 			} while (c_loop-- != 0);
844 		}
845 	}
846 	debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
847 }
848 
849 /**
850  * rw_mgr_mem_init_load_regs() - Load instruction registers
851  * @cntr0:	Counter 0 value
852  * @cntr1:	Counter 1 value
853  * @cntr2:	Counter 2 value
854  * @jump:	Jump instruction value
855  *
856  * Load instruction registers.
857  */
858 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
859 {
860 	uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
861 			   RW_MGR_RUN_SINGLE_GROUP_OFFSET;
862 
863 	/* Load counters */
864 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
865 	       &sdr_rw_load_mgr_regs->load_cntr0);
866 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
867 	       &sdr_rw_load_mgr_regs->load_cntr1);
868 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
869 	       &sdr_rw_load_mgr_regs->load_cntr2);
870 
871 	/* Load jump address */
872 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
873 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
874 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
875 
876 	/* Execute count instruction */
877 	writel(jump, grpaddr);
878 }
879 
880 /**
881  * rw_mgr_mem_load_user() - Load user calibration values
882  * @fin1:	Final instruction 1
883  * @fin2:	Final instruction 2
884  * @precharge:	If 1, precharge the banks at the end
885  *
886  * Load user calibration values and optionally precharge the banks.
887  */
888 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
889 				 const int precharge)
890 {
891 	u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
892 		      RW_MGR_RUN_SINGLE_GROUP_OFFSET;
893 	u32 r;
894 
895 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
896 		if (param->skip_ranks[r]) {
897 			/* request to skip the rank */
898 			continue;
899 		}
900 
901 		/* set rank */
902 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
903 
904 		/* precharge all banks ... */
905 		if (precharge)
906 			writel(RW_MGR_PRECHARGE_ALL, grpaddr);
907 
908 		/*
909 		 * USER Use Mirror-ed commands for odd ranks if address
910 		 * mirrorring is on
911 		 */
912 		if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
913 			set_jump_as_return();
914 			writel(RW_MGR_MRS2_MIRR, grpaddr);
915 			delay_for_n_mem_clocks(4);
916 			set_jump_as_return();
917 			writel(RW_MGR_MRS3_MIRR, grpaddr);
918 			delay_for_n_mem_clocks(4);
919 			set_jump_as_return();
920 			writel(RW_MGR_MRS1_MIRR, grpaddr);
921 			delay_for_n_mem_clocks(4);
922 			set_jump_as_return();
923 			writel(fin1, grpaddr);
924 		} else {
925 			set_jump_as_return();
926 			writel(RW_MGR_MRS2, grpaddr);
927 			delay_for_n_mem_clocks(4);
928 			set_jump_as_return();
929 			writel(RW_MGR_MRS3, grpaddr);
930 			delay_for_n_mem_clocks(4);
931 			set_jump_as_return();
932 			writel(RW_MGR_MRS1, grpaddr);
933 			set_jump_as_return();
934 			writel(fin2, grpaddr);
935 		}
936 
937 		if (precharge)
938 			continue;
939 
940 		set_jump_as_return();
941 		writel(RW_MGR_ZQCL, grpaddr);
942 
943 		/* tZQinit = tDLLK = 512 ck cycles */
944 		delay_for_n_mem_clocks(512);
945 	}
946 }
947 
948 static void rw_mgr_mem_initialize(void)
949 {
950 	debug("%s:%d\n", __func__, __LINE__);
951 
952 	/* The reset / cke part of initialization is broadcasted to all ranks */
953 	writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
954 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
955 
956 	/*
957 	 * Here's how you load register for a loop
958 	 * Counters are located @ 0x800
959 	 * Jump address are located @ 0xC00
960 	 * For both, registers 0 to 3 are selected using bits 3 and 2, like
961 	 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
962 	 * I know this ain't pretty, but Avalon bus throws away the 2 least
963 	 * significant bits
964 	 */
965 
966 	/* start with memory RESET activated */
967 
968 	/* tINIT = 200us */
969 
970 	/*
971 	 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
972 	 * If a and b are the number of iteration in 2 nested loops
973 	 * it takes the following number of cycles to complete the operation:
974 	 * number_of_cycles = ((2 + n) * a + 2) * b
975 	 * where n is the number of instruction in the inner loop
976 	 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
977 	 * b = 6A
978 	 */
979 	rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
980 				  SEQ_TINIT_CNTR2_VAL,
981 				  RW_MGR_INIT_RESET_0_CKE_0);
982 
983 	/* indicate that memory is stable */
984 	writel(1, &phy_mgr_cfg->reset_mem_stbl);
985 
986 	/*
987 	 * transition the RESET to high
988 	 * Wait for 500us
989 	 */
990 
991 	/*
992 	 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
993 	 * If a and b are the number of iteration in 2 nested loops
994 	 * it takes the following number of cycles to complete the operation
995 	 * number_of_cycles = ((2 + n) * a + 2) * b
996 	 * where n is the number of instruction in the inner loop
997 	 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
998 	 * b = FF
999 	 */
1000 	rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
1001 				  SEQ_TRESET_CNTR2_VAL,
1002 				  RW_MGR_INIT_RESET_1_CKE_0);
1003 
1004 	/* bring up clock enable */
1005 
1006 	/* tXRP < 250 ck cycles */
1007 	delay_for_n_mem_clocks(250);
1008 
1009 	rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
1010 			     0);
1011 }
1012 
1013 /*
1014  * At the end of calibration we have to program the user settings in, and
1015  * USER  hand off the memory to the user.
1016  */
1017 static void rw_mgr_mem_handoff(void)
1018 {
1019 	rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
1020 	/*
1021 	 * USER  need to wait tMOD (12CK or 15ns) time before issuing
1022 	 * other commands, but we will have plenty of NIOS cycles before
1023 	 * actual handoff so its okay.
1024 	 */
1025 }
1026 
1027 /*
1028  * performs a guaranteed read on the patterns we are going to use during a
1029  * read test to ensure memory works
1030  */
1031 static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn,
1032 	uint32_t group, uint32_t num_tries, uint32_t *bit_chk,
1033 	uint32_t all_ranks)
1034 {
1035 	uint32_t r, vg;
1036 	uint32_t correct_mask_vg;
1037 	uint32_t tmp_bit_chk;
1038 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1039 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1040 	uint32_t addr;
1041 	uint32_t base_rw_mgr;
1042 
1043 	*bit_chk = param->read_correct_mask;
1044 	correct_mask_vg = param->read_correct_mask_vg;
1045 
1046 	for (r = rank_bgn; r < rank_end; r++) {
1047 		if (param->skip_ranks[r])
1048 			/* request to skip the rank */
1049 			continue;
1050 
1051 		/* set rank */
1052 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1053 
1054 		/* Load up a constant bursts of read commands */
1055 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1056 		writel(RW_MGR_GUARANTEED_READ,
1057 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1058 
1059 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1060 		writel(RW_MGR_GUARANTEED_READ_CONT,
1061 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1062 
1063 		tmp_bit_chk = 0;
1064 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1065 			/* reset the fifos to get pointers to known state */
1066 
1067 			writel(0, &phy_mgr_cmd->fifo_reset);
1068 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1069 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1070 
1071 			tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1072 				/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1073 
1074 			addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1075 			writel(RW_MGR_GUARANTEED_READ, addr +
1076 			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1077 				vg) << 2));
1078 
1079 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1080 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr));
1081 
1082 			if (vg == 0)
1083 				break;
1084 		}
1085 		*bit_chk &= tmp_bit_chk;
1086 	}
1087 
1088 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1089 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1090 
1091 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1092 	debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\
1093 		   %lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask,
1094 		   (long unsigned int)(*bit_chk == param->read_correct_mask));
1095 	return *bit_chk == param->read_correct_mask;
1096 }
1097 
1098 static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks
1099 	(uint32_t group, uint32_t num_tries, uint32_t *bit_chk)
1100 {
1101 	return rw_mgr_mem_calibrate_read_test_patterns(0, group,
1102 		num_tries, bit_chk, 1);
1103 }
1104 
1105 /* load up the patterns we are going to use during a read test */
1106 static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn,
1107 	uint32_t all_ranks)
1108 {
1109 	uint32_t r;
1110 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1111 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1112 
1113 	debug("%s:%d\n", __func__, __LINE__);
1114 	for (r = rank_bgn; r < rank_end; r++) {
1115 		if (param->skip_ranks[r])
1116 			/* request to skip the rank */
1117 			continue;
1118 
1119 		/* set rank */
1120 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1121 
1122 		/* Load up a constant bursts */
1123 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1124 
1125 		writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1126 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1127 
1128 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1129 
1130 		writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1131 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1132 
1133 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1134 
1135 		writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1136 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1137 
1138 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1139 
1140 		writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1141 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1142 
1143 		writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1144 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1145 	}
1146 
1147 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1148 }
1149 
1150 /*
1151  * try a read and see if it returns correct data back. has dummy reads
1152  * inserted into the mix used to align dqs enable. has more thorough checks
1153  * than the regular read test.
1154  */
1155 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
1156 	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1157 	uint32_t all_groups, uint32_t all_ranks)
1158 {
1159 	uint32_t r, vg;
1160 	uint32_t correct_mask_vg;
1161 	uint32_t tmp_bit_chk;
1162 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1163 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1164 	uint32_t addr;
1165 	uint32_t base_rw_mgr;
1166 
1167 	*bit_chk = param->read_correct_mask;
1168 	correct_mask_vg = param->read_correct_mask_vg;
1169 
1170 	uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
1171 		CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
1172 
1173 	for (r = rank_bgn; r < rank_end; r++) {
1174 		if (param->skip_ranks[r])
1175 			/* request to skip the rank */
1176 			continue;
1177 
1178 		/* set rank */
1179 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1180 
1181 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1182 
1183 		writel(RW_MGR_READ_B2B_WAIT1,
1184 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1185 
1186 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1187 		writel(RW_MGR_READ_B2B_WAIT2,
1188 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1189 
1190 		if (quick_read_mode)
1191 			writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1192 			/* need at least two (1+1) reads to capture failures */
1193 		else if (all_groups)
1194 			writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1195 		else
1196 			writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1197 
1198 		writel(RW_MGR_READ_B2B,
1199 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1200 		if (all_groups)
1201 			writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1202 			       RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1203 			       &sdr_rw_load_mgr_regs->load_cntr3);
1204 		else
1205 			writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1206 
1207 		writel(RW_MGR_READ_B2B,
1208 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1209 
1210 		tmp_bit_chk = 0;
1211 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1212 			/* reset the fifos to get pointers to known state */
1213 			writel(0, &phy_mgr_cmd->fifo_reset);
1214 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1215 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1216 
1217 			tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1218 				/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1219 
1220 			if (all_groups)
1221 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
1222 			else
1223 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1224 
1225 			writel(RW_MGR_READ_B2B, addr +
1226 			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1227 			       vg) << 2));
1228 
1229 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1230 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
1231 
1232 			if (vg == 0)
1233 				break;
1234 		}
1235 		*bit_chk &= tmp_bit_chk;
1236 	}
1237 
1238 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1239 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1240 
1241 	if (all_correct) {
1242 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1243 		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
1244 			   (%u == %u) => %lu", __func__, __LINE__, group,
1245 			   all_groups, *bit_chk, param->read_correct_mask,
1246 			   (long unsigned int)(*bit_chk ==
1247 			   param->read_correct_mask));
1248 		return *bit_chk == param->read_correct_mask;
1249 	} else	{
1250 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1251 		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
1252 			   (%u != %lu) => %lu\n", __func__, __LINE__,
1253 			   group, all_groups, *bit_chk, (long unsigned int)0,
1254 			   (long unsigned int)(*bit_chk != 0x00));
1255 		return *bit_chk != 0x00;
1256 	}
1257 }
1258 
1259 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
1260 	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1261 	uint32_t all_groups)
1262 {
1263 	return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
1264 					      bit_chk, all_groups, 1);
1265 }
1266 
1267 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
1268 {
1269 	writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1270 	(*v)++;
1271 }
1272 
1273 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v)
1274 {
1275 	uint32_t i;
1276 
1277 	for (i = 0; i < VFIFO_SIZE-1; i++)
1278 		rw_mgr_incr_vfifo(grp, v);
1279 }
1280 
1281 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk)
1282 {
1283 	uint32_t  v;
1284 	uint32_t fail_cnt = 0;
1285 	uint32_t test_status;
1286 
1287 	for (v = 0; v < VFIFO_SIZE; ) {
1288 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n",
1289 			   __func__, __LINE__, v);
1290 		test_status = rw_mgr_mem_calibrate_read_test_all_ranks
1291 			(grp, 1, PASS_ONE_BIT, bit_chk, 0);
1292 		if (!test_status) {
1293 			fail_cnt++;
1294 
1295 			if (fail_cnt == 2)
1296 				break;
1297 		}
1298 
1299 		/* fiddle with FIFO */
1300 		rw_mgr_incr_vfifo(grp, &v);
1301 	}
1302 
1303 	if (v >= VFIFO_SIZE) {
1304 		/* no failing read found!! Something must have gone wrong */
1305 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n",
1306 			   __func__, __LINE__);
1307 		return 0;
1308 	} else {
1309 		return v;
1310 	}
1311 }
1312 
1313 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk,
1314 			      uint32_t dtaps_per_ptap, uint32_t *work_bgn,
1315 			      uint32_t *v, uint32_t *d, uint32_t *p,
1316 			      uint32_t *i, uint32_t *max_working_cnt)
1317 {
1318 	uint32_t found_begin = 0;
1319 	uint32_t tmp_delay = 0;
1320 	uint32_t test_status;
1321 
1322 	for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay +=
1323 		IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1324 		*work_bgn = tmp_delay;
1325 		scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1326 
1327 		for (*i = 0; *i < VFIFO_SIZE; (*i)++) {
1328 			for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn +=
1329 				IO_DELAY_PER_OPA_TAP) {
1330 				scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1331 
1332 				test_status =
1333 				rw_mgr_mem_calibrate_read_test_all_ranks
1334 				(*grp, 1, PASS_ONE_BIT, bit_chk, 0);
1335 
1336 				if (test_status) {
1337 					*max_working_cnt = 1;
1338 					found_begin = 1;
1339 					break;
1340 				}
1341 			}
1342 
1343 			if (found_begin)
1344 				break;
1345 
1346 			if (*p > IO_DQS_EN_PHASE_MAX)
1347 				/* fiddle with FIFO */
1348 				rw_mgr_incr_vfifo(*grp, v);
1349 		}
1350 
1351 		if (found_begin)
1352 			break;
1353 	}
1354 
1355 	if (*i >= VFIFO_SIZE) {
1356 		/* cannot find working solution */
1357 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\
1358 			   ptap/dtap\n", __func__, __LINE__);
1359 		return 0;
1360 	} else {
1361 		return 1;
1362 	}
1363 }
1364 
1365 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk,
1366 			     uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1367 			     uint32_t *p, uint32_t *max_working_cnt)
1368 {
1369 	uint32_t found_begin = 0;
1370 	uint32_t tmp_delay;
1371 
1372 	/* Special case code for backing up a phase */
1373 	if (*p == 0) {
1374 		*p = IO_DQS_EN_PHASE_MAX;
1375 		rw_mgr_decr_vfifo(*grp, v);
1376 	} else {
1377 		(*p)--;
1378 	}
1379 	tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1380 	scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1381 
1382 	for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn;
1383 		(*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1384 		scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1385 
1386 		if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1387 							     PASS_ONE_BIT,
1388 							     bit_chk, 0)) {
1389 			found_begin = 1;
1390 			*work_bgn = tmp_delay;
1391 			break;
1392 		}
1393 	}
1394 
1395 	/* We have found a working dtap before the ptap found above */
1396 	if (found_begin == 1)
1397 		(*max_working_cnt)++;
1398 
1399 	/*
1400 	 * Restore VFIFO to old state before we decremented it
1401 	 * (if needed).
1402 	 */
1403 	(*p)++;
1404 	if (*p > IO_DQS_EN_PHASE_MAX) {
1405 		*p = 0;
1406 		rw_mgr_incr_vfifo(*grp, v);
1407 	}
1408 
1409 	scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0);
1410 }
1411 
1412 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk,
1413 			     uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1414 			     uint32_t *p, uint32_t *i, uint32_t *max_working_cnt,
1415 			     uint32_t *work_end)
1416 {
1417 	uint32_t found_end = 0;
1418 
1419 	(*p)++;
1420 	*work_end += IO_DELAY_PER_OPA_TAP;
1421 	if (*p > IO_DQS_EN_PHASE_MAX) {
1422 		/* fiddle with FIFO */
1423 		*p = 0;
1424 		rw_mgr_incr_vfifo(*grp, v);
1425 	}
1426 
1427 	for (; *i < VFIFO_SIZE + 1; (*i)++) {
1428 		for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end
1429 			+= IO_DELAY_PER_OPA_TAP) {
1430 			scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1431 
1432 			if (!rw_mgr_mem_calibrate_read_test_all_ranks
1433 				(*grp, 1, PASS_ONE_BIT, bit_chk, 0)) {
1434 				found_end = 1;
1435 				break;
1436 			} else {
1437 				(*max_working_cnt)++;
1438 			}
1439 		}
1440 
1441 		if (found_end)
1442 			break;
1443 
1444 		if (*p > IO_DQS_EN_PHASE_MAX) {
1445 			/* fiddle with FIFO */
1446 			rw_mgr_incr_vfifo(*grp, v);
1447 			*p = 0;
1448 		}
1449 	}
1450 
1451 	if (*i >= VFIFO_SIZE + 1) {
1452 		/* cannot see edge of failing read */
1453 		debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\
1454 			   failed\n", __func__, __LINE__);
1455 		return 0;
1456 	} else {
1457 		return 1;
1458 	}
1459 }
1460 
1461 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk,
1462 				  uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1463 				  uint32_t *p, uint32_t *work_mid,
1464 				  uint32_t *work_end)
1465 {
1466 	int i;
1467 	int tmp_delay = 0;
1468 
1469 	*work_mid = (*work_bgn + *work_end) / 2;
1470 
1471 	debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1472 		   *work_bgn, *work_end, *work_mid);
1473 	/* Get the middle delay to be less than a VFIFO delay */
1474 	for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX;
1475 		(*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1476 		;
1477 	debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1478 	while (*work_mid > tmp_delay)
1479 		*work_mid -= tmp_delay;
1480 	debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid);
1481 
1482 	tmp_delay = 0;
1483 	for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid;
1484 		(*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1485 		;
1486 	tmp_delay -= IO_DELAY_PER_OPA_TAP;
1487 	debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay);
1488 	for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++,
1489 		tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP)
1490 		;
1491 	debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay);
1492 
1493 	scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1);
1494 	scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1495 
1496 	/*
1497 	 * push vfifo until we can successfully calibrate. We can do this
1498 	 * because the largest possible margin in 1 VFIFO cycle.
1499 	 */
1500 	for (i = 0; i < VFIFO_SIZE; i++) {
1501 		debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n",
1502 			   *v);
1503 		if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1504 							     PASS_ONE_BIT,
1505 							     bit_chk, 0)) {
1506 			break;
1507 		}
1508 
1509 		/* fiddle with FIFO */
1510 		rw_mgr_incr_vfifo(*grp, v);
1511 	}
1512 
1513 	if (i >= VFIFO_SIZE) {
1514 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \
1515 			   failed\n", __func__, __LINE__);
1516 		return 0;
1517 	} else {
1518 		return 1;
1519 	}
1520 }
1521 
1522 /* find a good dqs enable to use */
1523 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
1524 {
1525 	uint32_t v, d, p, i;
1526 	uint32_t max_working_cnt;
1527 	uint32_t bit_chk;
1528 	uint32_t dtaps_per_ptap;
1529 	uint32_t work_bgn, work_mid, work_end;
1530 	uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
1531 
1532 	debug("%s:%d %u\n", __func__, __LINE__, grp);
1533 
1534 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1535 
1536 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1537 	scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1538 
1539 	/* ************************************************************** */
1540 	/* * Step 0 : Determine number of delay taps for each phase tap * */
1541 	dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1542 
1543 	/* ********************************************************* */
1544 	/* * Step 1 : First push vfifo until we get a failing read * */
1545 	v = find_vfifo_read(grp, &bit_chk);
1546 
1547 	max_working_cnt = 0;
1548 
1549 	/* ******************************************************** */
1550 	/* * step 2: find first working phase, increment in ptaps * */
1551 	work_bgn = 0;
1552 	if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d,
1553 				&p, &i, &max_working_cnt) == 0)
1554 		return 0;
1555 
1556 	work_end = work_bgn;
1557 
1558 	/*
1559 	 * If d is 0 then the working window covers a phase tap and
1560 	 * we can follow the old procedure otherwise, we've found the beginning,
1561 	 * and we need to increment the dtaps until we find the end.
1562 	 */
1563 	if (d == 0) {
1564 		/* ********************************************************* */
1565 		/* * step 3a: if we have room, back off by one and
1566 		increment in dtaps * */
1567 
1568 		sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1569 				 &max_working_cnt);
1570 
1571 		/* ********************************************************* */
1572 		/* * step 4a: go forward from working phase to non working
1573 		phase, increment in ptaps * */
1574 		if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1575 					 &i, &max_working_cnt, &work_end) == 0)
1576 			return 0;
1577 
1578 		/* ********************************************************* */
1579 		/* * step 5a:  back off one from last, increment in dtaps  * */
1580 
1581 		/* Special case code for backing up a phase */
1582 		if (p == 0) {
1583 			p = IO_DQS_EN_PHASE_MAX;
1584 			rw_mgr_decr_vfifo(grp, &v);
1585 		} else {
1586 			p = p - 1;
1587 		}
1588 
1589 		work_end -= IO_DELAY_PER_OPA_TAP;
1590 		scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1591 
1592 		/* * The actual increment of dtaps is done outside of
1593 		the if/else loop to share code */
1594 		d = 0;
1595 
1596 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \
1597 			   vfifo=%u ptap=%u\n", __func__, __LINE__,
1598 			   v, p);
1599 	} else {
1600 		/* ******************************************************* */
1601 		/* * step 3-5b:  Find the right edge of the window using
1602 		delay taps   * */
1603 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \
1604 			   ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__,
1605 			   v, p, d, work_bgn);
1606 
1607 		work_end = work_bgn;
1608 
1609 		/* * The actual increment of dtaps is done outside of the
1610 		if/else loop to share code */
1611 
1612 		/* Only here to counterbalance a subtract later on which is
1613 		not needed if this branch of the algorithm is taken */
1614 		max_working_cnt++;
1615 	}
1616 
1617 	/* The dtap increment to find the failing edge is done here */
1618 	for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
1619 		IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1620 			debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1621 				   end-2: dtap=%u\n", __func__, __LINE__, d);
1622 			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1623 
1624 			if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1625 								      PASS_ONE_BIT,
1626 								      &bit_chk, 0)) {
1627 				break;
1628 			}
1629 	}
1630 
1631 	/* Go back to working dtap */
1632 	if (d != 0)
1633 		work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1634 
1635 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \
1636 		   ptap=%u dtap=%u end=%u\n", __func__, __LINE__,
1637 		   v, p, d-1, work_end);
1638 
1639 	if (work_end < work_bgn) {
1640 		/* nil range */
1641 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \
1642 			   failed\n", __func__, __LINE__);
1643 		return 0;
1644 	}
1645 
1646 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n",
1647 		   __func__, __LINE__, work_bgn, work_end);
1648 
1649 	/* *************************************************************** */
1650 	/*
1651 	 * * We need to calculate the number of dtaps that equal a ptap
1652 	 * * To do that we'll back up a ptap and re-find the edge of the
1653 	 * * window using dtaps
1654 	 */
1655 
1656 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \
1657 		   for tracking\n", __func__, __LINE__);
1658 
1659 	/* Special case code for backing up a phase */
1660 	if (p == 0) {
1661 		p = IO_DQS_EN_PHASE_MAX;
1662 		rw_mgr_decr_vfifo(grp, &v);
1663 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1664 			   cycle/phase: v=%u p=%u\n", __func__, __LINE__,
1665 			   v, p);
1666 	} else {
1667 		p = p - 1;
1668 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1669 			   phase only: v=%u p=%u", __func__, __LINE__,
1670 			   v, p);
1671 	}
1672 
1673 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1674 
1675 	/*
1676 	 * Increase dtap until we first see a passing read (in case the
1677 	 * window is smaller than a ptap),
1678 	 * and then a failing read to mark the edge of the window again
1679 	 */
1680 
1681 	/* Find a passing read */
1682 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n",
1683 		   __func__, __LINE__);
1684 	found_passing_read = 0;
1685 	found_failing_read = 0;
1686 	initial_failing_dtap = d;
1687 	for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
1688 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \
1689 			   read d=%u\n", __func__, __LINE__, d);
1690 		scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1691 
1692 		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1693 							     PASS_ONE_BIT,
1694 							     &bit_chk, 0)) {
1695 			found_passing_read = 1;
1696 			break;
1697 		}
1698 	}
1699 
1700 	if (found_passing_read) {
1701 		/* Find a failing read */
1702 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \
1703 			   read\n", __func__, __LINE__);
1704 		for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
1705 			debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1706 				   testing read d=%u\n", __func__, __LINE__, d);
1707 			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1708 
1709 			if (!rw_mgr_mem_calibrate_read_test_all_ranks
1710 				(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
1711 				found_failing_read = 1;
1712 				break;
1713 			}
1714 		}
1715 	} else {
1716 		debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \
1717 			   calculate dtaps", __func__, __LINE__);
1718 		debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n");
1719 	}
1720 
1721 	/*
1722 	 * The dynamically calculated dtaps_per_ptap is only valid if we
1723 	 * found a passing/failing read. If we didn't, it means d hit the max
1724 	 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1725 	 * statically calculated value.
1726 	 */
1727 	if (found_passing_read && found_failing_read)
1728 		dtaps_per_ptap = d - initial_failing_dtap;
1729 
1730 	writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1731 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \
1732 		   - %u = %u",  __func__, __LINE__, d,
1733 		   initial_failing_dtap, dtaps_per_ptap);
1734 
1735 	/* ******************************************** */
1736 	/* * step 6:  Find the centre of the window   * */
1737 	if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1738 				   &work_mid, &work_end) == 0)
1739 		return 0;
1740 
1741 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \
1742 		   vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__,
1743 		   v, p-1, d);
1744 	return 1;
1745 }
1746 
1747 /*
1748  * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
1749  * dq_in_delay values
1750  */
1751 static uint32_t
1752 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
1753 (uint32_t write_group, uint32_t read_group, uint32_t test_bgn)
1754 {
1755 	uint32_t found;
1756 	uint32_t i;
1757 	uint32_t p;
1758 	uint32_t d;
1759 	uint32_t r;
1760 
1761 	const uint32_t delay_step = IO_IO_IN_DELAY_MAX /
1762 		(RW_MGR_MEM_DQ_PER_READ_DQS-1);
1763 		/* we start at zero, so have one less dq to devide among */
1764 
1765 	debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group,
1766 	      test_bgn);
1767 
1768 	/* try different dq_in_delays since the dq path is shorter than dqs */
1769 
1770 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1771 	     r += NUM_RANKS_PER_SHADOW_REG) {
1772 		for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++, d += delay_step) {
1773 			debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\
1774 				   vfifo_find_dqs_", __func__, __LINE__);
1775 			debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ",
1776 			       write_group, read_group);
1777 			debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d);
1778 			scc_mgr_set_dq_in_delay(p, d);
1779 			scc_mgr_load_dq(p);
1780 		}
1781 		writel(0, &sdr_scc_mgr->update);
1782 	}
1783 
1784 	found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group);
1785 
1786 	debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\
1787 		   en_phase_sweep_dq", __func__, __LINE__);
1788 	debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \
1789 		   chain to zero\n", write_group, read_group, found);
1790 
1791 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1792 	     r += NUM_RANKS_PER_SHADOW_REG) {
1793 		for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS;
1794 			i++, p++) {
1795 			scc_mgr_set_dq_in_delay(p, 0);
1796 			scc_mgr_load_dq(p);
1797 		}
1798 		writel(0, &sdr_scc_mgr->update);
1799 	}
1800 
1801 	return found;
1802 }
1803 
1804 /* per-bit deskew DQ and center */
1805 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
1806 	uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
1807 	uint32_t use_read_test, uint32_t update_fom)
1808 {
1809 	uint32_t i, p, d, min_index;
1810 	/*
1811 	 * Store these as signed since there are comparisons with
1812 	 * signed numbers.
1813 	 */
1814 	uint32_t bit_chk;
1815 	uint32_t sticky_bit_chk;
1816 	int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1817 	int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1818 	int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
1819 	int32_t mid;
1820 	int32_t orig_mid_min, mid_min;
1821 	int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
1822 		final_dqs_en;
1823 	int32_t dq_margin, dqs_margin;
1824 	uint32_t stop;
1825 	uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
1826 	uint32_t addr;
1827 
1828 	debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
1829 
1830 	addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
1831 	start_dqs = readl(addr + (read_group << 2));
1832 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
1833 		start_dqs_en = readl(addr + ((read_group << 2)
1834 				     - IO_DQS_EN_DELAY_OFFSET));
1835 
1836 	/* set the left and right edge of each bit to an illegal value */
1837 	/* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
1838 	sticky_bit_chk = 0;
1839 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1840 		left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
1841 		right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1842 	}
1843 
1844 	/* Search for the left edge of the window for each bit */
1845 	for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
1846 		scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
1847 
1848 		writel(0, &sdr_scc_mgr->update);
1849 
1850 		/*
1851 		 * Stop searching when the read test doesn't pass AND when
1852 		 * we've seen a passing read on every bit.
1853 		 */
1854 		if (use_read_test) {
1855 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1856 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1857 				&bit_chk, 0, 0);
1858 		} else {
1859 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1860 							0, PASS_ONE_BIT,
1861 							&bit_chk, 0);
1862 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1863 				(read_group - (write_group *
1864 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
1865 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1866 			stop = (bit_chk == 0);
1867 		}
1868 		sticky_bit_chk = sticky_bit_chk | bit_chk;
1869 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
1870 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
1871 			   && %u", __func__, __LINE__, d,
1872 			   sticky_bit_chk,
1873 			param->read_correct_mask, stop);
1874 
1875 		if (stop == 1) {
1876 			break;
1877 		} else {
1878 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1879 				if (bit_chk & 1) {
1880 					/* Remember a passing test as the
1881 					left_edge */
1882 					left_edge[i] = d;
1883 				} else {
1884 					/* If a left edge has not been seen yet,
1885 					then a future passing test will mark
1886 					this edge as the right edge */
1887 					if (left_edge[i] ==
1888 						IO_IO_IN_DELAY_MAX + 1) {
1889 						right_edge[i] = -(d + 1);
1890 					}
1891 				}
1892 				bit_chk = bit_chk >> 1;
1893 			}
1894 		}
1895 	}
1896 
1897 	/* Reset DQ delay chains to 0 */
1898 	scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
1899 	sticky_bit_chk = 0;
1900 	for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
1901 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1902 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
1903 			   i, left_edge[i], i, right_edge[i]);
1904 
1905 		/*
1906 		 * Check for cases where we haven't found the left edge,
1907 		 * which makes our assignment of the the right edge invalid.
1908 		 * Reset it to the illegal value.
1909 		 */
1910 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
1911 			right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1912 			right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1913 			debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
1914 				   right_edge[%u]: %d\n", __func__, __LINE__,
1915 				   i, right_edge[i]);
1916 		}
1917 
1918 		/*
1919 		 * Reset sticky bit (except for bits where we have seen
1920 		 * both the left and right edge).
1921 		 */
1922 		sticky_bit_chk = sticky_bit_chk << 1;
1923 		if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
1924 		    (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1925 			sticky_bit_chk = sticky_bit_chk | 1;
1926 		}
1927 
1928 		if (i == 0)
1929 			break;
1930 	}
1931 
1932 	/* Search for the right edge of the window for each bit */
1933 	for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
1934 		scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
1935 		if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1936 			uint32_t delay = d + start_dqs_en;
1937 			if (delay > IO_DQS_EN_DELAY_MAX)
1938 				delay = IO_DQS_EN_DELAY_MAX;
1939 			scc_mgr_set_dqs_en_delay(read_group, delay);
1940 		}
1941 		scc_mgr_load_dqs(read_group);
1942 
1943 		writel(0, &sdr_scc_mgr->update);
1944 
1945 		/*
1946 		 * Stop searching when the read test doesn't pass AND when
1947 		 * we've seen a passing read on every bit.
1948 		 */
1949 		if (use_read_test) {
1950 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1951 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1952 				&bit_chk, 0, 0);
1953 		} else {
1954 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1955 							0, PASS_ONE_BIT,
1956 							&bit_chk, 0);
1957 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1958 				(read_group - (write_group *
1959 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
1960 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1961 			stop = (bit_chk == 0);
1962 		}
1963 		sticky_bit_chk = sticky_bit_chk | bit_chk;
1964 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
1965 
1966 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
1967 			   %u && %u", __func__, __LINE__, d,
1968 			   sticky_bit_chk, param->read_correct_mask, stop);
1969 
1970 		if (stop == 1) {
1971 			break;
1972 		} else {
1973 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1974 				if (bit_chk & 1) {
1975 					/* Remember a passing test as
1976 					the right_edge */
1977 					right_edge[i] = d;
1978 				} else {
1979 					if (d != 0) {
1980 						/* If a right edge has not been
1981 						seen yet, then a future passing
1982 						test will mark this edge as the
1983 						left edge */
1984 						if (right_edge[i] ==
1985 						IO_IO_IN_DELAY_MAX + 1) {
1986 							left_edge[i] = -(d + 1);
1987 						}
1988 					} else {
1989 						/* d = 0 failed, but it passed
1990 						when testing the left edge,
1991 						so it must be marginal,
1992 						set it to -1 */
1993 						if (right_edge[i] ==
1994 							IO_IO_IN_DELAY_MAX + 1 &&
1995 							left_edge[i] !=
1996 							IO_IO_IN_DELAY_MAX
1997 							+ 1) {
1998 							right_edge[i] = -1;
1999 						}
2000 						/* If a right edge has not been
2001 						seen yet, then a future passing
2002 						test will mark this edge as the
2003 						left edge */
2004 						else if (right_edge[i] ==
2005 							IO_IO_IN_DELAY_MAX +
2006 							1) {
2007 							left_edge[i] = -(d + 1);
2008 						}
2009 					}
2010 				}
2011 
2012 				debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
2013 					   d=%u]: ", __func__, __LINE__, d);
2014 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
2015 					   (int)(bit_chk & 1), i, left_edge[i]);
2016 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2017 					   right_edge[i]);
2018 				bit_chk = bit_chk >> 1;
2019 			}
2020 		}
2021 	}
2022 
2023 	/* Check that all bits have a window */
2024 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2025 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
2026 			   %d right_edge[%u]: %d", __func__, __LINE__,
2027 			   i, left_edge[i], i, right_edge[i]);
2028 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
2029 			== IO_IO_IN_DELAY_MAX + 1)) {
2030 			/*
2031 			 * Restore delay chain settings before letting the loop
2032 			 * in rw_mgr_mem_calibrate_vfifo to retry different
2033 			 * dqs/ck relationships.
2034 			 */
2035 			scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
2036 			if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2037 				scc_mgr_set_dqs_en_delay(read_group,
2038 							 start_dqs_en);
2039 			}
2040 			scc_mgr_load_dqs(read_group);
2041 			writel(0, &sdr_scc_mgr->update);
2042 
2043 			debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
2044 				   find edge [%u]: %d %d", __func__, __LINE__,
2045 				   i, left_edge[i], right_edge[i]);
2046 			if (use_read_test) {
2047 				set_failing_group_stage(read_group *
2048 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
2049 					CAL_STAGE_VFIFO,
2050 					CAL_SUBSTAGE_VFIFO_CENTER);
2051 			} else {
2052 				set_failing_group_stage(read_group *
2053 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
2054 					CAL_STAGE_VFIFO_AFTER_WRITES,
2055 					CAL_SUBSTAGE_VFIFO_CENTER);
2056 			}
2057 			return 0;
2058 		}
2059 	}
2060 
2061 	/* Find middle of window for each DQ bit */
2062 	mid_min = left_edge[0] - right_edge[0];
2063 	min_index = 0;
2064 	for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2065 		mid = left_edge[i] - right_edge[i];
2066 		if (mid < mid_min) {
2067 			mid_min = mid;
2068 			min_index = i;
2069 		}
2070 	}
2071 
2072 	/*
2073 	 * -mid_min/2 represents the amount that we need to move DQS.
2074 	 * If mid_min is odd and positive we'll need to add one to
2075 	 * make sure the rounding in further calculations is correct
2076 	 * (always bias to the right), so just add 1 for all positive values.
2077 	 */
2078 	if (mid_min > 0)
2079 		mid_min++;
2080 
2081 	mid_min = mid_min / 2;
2082 
2083 	debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2084 		   __func__, __LINE__, mid_min, min_index);
2085 
2086 	/* Determine the amount we can change DQS (which is -mid_min) */
2087 	orig_mid_min = mid_min;
2088 	new_dqs = start_dqs - mid_min;
2089 	if (new_dqs > IO_DQS_IN_DELAY_MAX)
2090 		new_dqs = IO_DQS_IN_DELAY_MAX;
2091 	else if (new_dqs < 0)
2092 		new_dqs = 0;
2093 
2094 	mid_min = start_dqs - new_dqs;
2095 	debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2096 		   mid_min, new_dqs);
2097 
2098 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2099 		if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2100 			mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2101 		else if (start_dqs_en - mid_min < 0)
2102 			mid_min += start_dqs_en - mid_min;
2103 	}
2104 	new_dqs = start_dqs - mid_min;
2105 
2106 	debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2107 		   new_dqs=%d mid_min=%d\n", start_dqs,
2108 		   IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2109 		   new_dqs, mid_min);
2110 
2111 	/* Initialize data for export structures */
2112 	dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2113 	dq_margin  = IO_IO_IN_DELAY_MAX + 1;
2114 
2115 	/* add delay to bring centre of all DQ windows to the same "level" */
2116 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2117 		/* Use values before divide by 2 to reduce round off error */
2118 		shift_dq = (left_edge[i] - right_edge[i] -
2119 			(left_edge[min_index] - right_edge[min_index]))/2  +
2120 			(orig_mid_min - mid_min);
2121 
2122 		debug_cond(DLEVEL == 2, "vfifo_center: before: \
2123 			   shift_dq[%u]=%d\n", i, shift_dq);
2124 
2125 		addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
2126 		temp_dq_in_delay1 = readl(addr + (p << 2));
2127 		temp_dq_in_delay2 = readl(addr + (i << 2));
2128 
2129 		if (shift_dq + (int32_t)temp_dq_in_delay1 >
2130 			(int32_t)IO_IO_IN_DELAY_MAX) {
2131 			shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2132 		} else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2133 			shift_dq = -(int32_t)temp_dq_in_delay1;
2134 		}
2135 		debug_cond(DLEVEL == 2, "vfifo_center: after: \
2136 			   shift_dq[%u]=%d\n", i, shift_dq);
2137 		final_dq[i] = temp_dq_in_delay1 + shift_dq;
2138 		scc_mgr_set_dq_in_delay(p, final_dq[i]);
2139 		scc_mgr_load_dq(p);
2140 
2141 		debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2142 			   left_edge[i] - shift_dq + (-mid_min),
2143 			   right_edge[i] + shift_dq - (-mid_min));
2144 		/* To determine values for export structures */
2145 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2146 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
2147 
2148 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2149 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2150 	}
2151 
2152 	final_dqs = new_dqs;
2153 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2154 		final_dqs_en = start_dqs_en - mid_min;
2155 
2156 	/* Move DQS-en */
2157 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2158 		scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2159 		scc_mgr_load_dqs(read_group);
2160 	}
2161 
2162 	/* Move DQS */
2163 	scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2164 	scc_mgr_load_dqs(read_group);
2165 	debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2166 		   dqs_margin=%d", __func__, __LINE__,
2167 		   dq_margin, dqs_margin);
2168 
2169 	/*
2170 	 * Do not remove this line as it makes sure all of our decisions
2171 	 * have been applied. Apply the update bit.
2172 	 */
2173 	writel(0, &sdr_scc_mgr->update);
2174 
2175 	return (dq_margin >= 0) && (dqs_margin >= 0);
2176 }
2177 
2178 /*
2179  * calibrate the read valid prediction FIFO.
2180  *
2181  *  - read valid prediction will consist of finding a good DQS enable phase,
2182  * DQS enable delay, DQS input phase, and DQS input delay.
2183  *  - we also do a per-bit deskew on the DQ lines.
2184  */
2185 static uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t read_group,
2186 					   uint32_t test_bgn)
2187 {
2188 	uint32_t p, d, rank_bgn, sr;
2189 	uint32_t dtaps_per_ptap;
2190 	uint32_t bit_chk;
2191 	uint32_t grp_calibrated;
2192 	uint32_t write_group, write_test_bgn;
2193 	uint32_t failed_substage;
2194 
2195 	debug("%s:%d: %u %u\n", __func__, __LINE__, read_group, test_bgn);
2196 
2197 	/* update info for sims */
2198 	reg_file_set_stage(CAL_STAGE_VFIFO);
2199 
2200 	write_group = read_group;
2201 	write_test_bgn = test_bgn;
2202 
2203 	/* USER Determine number of delay taps for each phase tap */
2204 	dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2205 				      IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
2206 
2207 	/* update info for sims */
2208 	reg_file_set_group(read_group);
2209 
2210 	grp_calibrated = 0;
2211 
2212 	reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2213 	failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2214 
2215 	for (d = 0; d <= dtaps_per_ptap && grp_calibrated == 0; d += 2) {
2216 		/*
2217 		 * In RLDRAMX we may be messing the delay of pins in
2218 		 * the same write group but outside of the current read
2219 		 * the group, but that's ok because we haven't
2220 		 * calibrated output side yet.
2221 		 */
2222 		if (d > 0) {
2223 			scc_mgr_apply_group_all_out_delay_add_all_ranks(
2224 								write_group, d);
2225 		}
2226 
2227 		for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0;
2228 			p++) {
2229 			/* set a particular dqdqs phase */
2230 			scc_mgr_set_dqdqs_output_phase_all_ranks(read_group, p);
2231 
2232 			debug_cond(DLEVEL == 1, "%s:%d calibrate_vfifo: g=%u \
2233 				   p=%u d=%u\n", __func__, __LINE__,
2234 				   read_group, p, d);
2235 
2236 			/*
2237 			 * Load up the patterns used by read calibration
2238 			 * using current DQDQS phase.
2239 			 */
2240 			rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2241 			if (!(gbl->phy_debug_mode_flags &
2242 				PHY_DEBUG_DISABLE_GUARANTEED_READ)) {
2243 				if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks
2244 				    (read_group, 1, &bit_chk)) {
2245 					debug_cond(DLEVEL == 1, "%s:%d Guaranteed read test failed:",
2246 						   __func__, __LINE__);
2247 					debug_cond(DLEVEL == 1, " g=%u p=%u d=%u\n",
2248 						   read_group, p, d);
2249 					break;
2250 				}
2251 			}
2252 
2253 /* case:56390 */
2254 			grp_calibrated = 1;
2255 		if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
2256 		    (write_group, read_group, test_bgn)) {
2257 				/*
2258 				 * USER Read per-bit deskew can be done on a
2259 				 * per shadow register basis.
2260 				 */
2261 				for (rank_bgn = 0, sr = 0;
2262 					rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2263 					rank_bgn += NUM_RANKS_PER_SHADOW_REG,
2264 					++sr) {
2265 					/*
2266 					 * Determine if this set of ranks
2267 					 * should be skipped entirely.
2268 					 */
2269 					if (!param->skip_shadow_regs[sr]) {
2270 						/*
2271 						 * If doing read after write
2272 						 * calibration, do not update
2273 						 * FOM, now - do it then.
2274 						 */
2275 					if (!rw_mgr_mem_calibrate_vfifo_center
2276 						(rank_bgn, write_group,
2277 						read_group, test_bgn, 1, 0)) {
2278 							grp_calibrated = 0;
2279 							failed_substage =
2280 						CAL_SUBSTAGE_VFIFO_CENTER;
2281 						}
2282 					}
2283 				}
2284 			} else {
2285 				grp_calibrated = 0;
2286 				failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2287 			}
2288 		}
2289 	}
2290 
2291 	if (grp_calibrated == 0) {
2292 		set_failing_group_stage(write_group, CAL_STAGE_VFIFO,
2293 					failed_substage);
2294 		return 0;
2295 	}
2296 
2297 	/*
2298 	 * Reset the delay chains back to zero if they have moved > 1
2299 	 * (check for > 1 because loop will increase d even when pass in
2300 	 * first case).
2301 	 */
2302 	if (d > 2)
2303 		scc_mgr_zero_group(write_group, 1);
2304 
2305 	return 1;
2306 }
2307 
2308 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2309 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2310 					       uint32_t test_bgn)
2311 {
2312 	uint32_t rank_bgn, sr;
2313 	uint32_t grp_calibrated;
2314 	uint32_t write_group;
2315 
2316 	debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2317 
2318 	/* update info for sims */
2319 
2320 	reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2321 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2322 
2323 	write_group = read_group;
2324 
2325 	/* update info for sims */
2326 	reg_file_set_group(read_group);
2327 
2328 	grp_calibrated = 1;
2329 	/* Read per-bit deskew can be done on a per shadow register basis */
2330 	for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2331 		rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2332 		/* Determine if this set of ranks should be skipped entirely */
2333 		if (!param->skip_shadow_regs[sr]) {
2334 		/* This is the last calibration round, update FOM here */
2335 			if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2336 								write_group,
2337 								read_group,
2338 								test_bgn, 0,
2339 								1)) {
2340 				grp_calibrated = 0;
2341 			}
2342 		}
2343 	}
2344 
2345 
2346 	if (grp_calibrated == 0) {
2347 		set_failing_group_stage(write_group,
2348 					CAL_STAGE_VFIFO_AFTER_WRITES,
2349 					CAL_SUBSTAGE_VFIFO_CENTER);
2350 		return 0;
2351 	}
2352 
2353 	return 1;
2354 }
2355 
2356 /* Calibrate LFIFO to find smallest read latency */
2357 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2358 {
2359 	uint32_t found_one;
2360 	uint32_t bit_chk;
2361 
2362 	debug("%s:%d\n", __func__, __LINE__);
2363 
2364 	/* update info for sims */
2365 	reg_file_set_stage(CAL_STAGE_LFIFO);
2366 	reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2367 
2368 	/* Load up the patterns used by read calibration for all ranks */
2369 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2370 	found_one = 0;
2371 
2372 	do {
2373 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2374 		debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2375 			   __func__, __LINE__, gbl->curr_read_lat);
2376 
2377 		if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2378 							      NUM_READ_TESTS,
2379 							      PASS_ALL_BITS,
2380 							      &bit_chk, 1)) {
2381 			break;
2382 		}
2383 
2384 		found_one = 1;
2385 		/* reduce read latency and see if things are working */
2386 		/* correctly */
2387 		gbl->curr_read_lat--;
2388 	} while (gbl->curr_read_lat > 0);
2389 
2390 	/* reset the fifos to get pointers to known state */
2391 
2392 	writel(0, &phy_mgr_cmd->fifo_reset);
2393 
2394 	if (found_one) {
2395 		/* add a fudge factor to the read latency that was determined */
2396 		gbl->curr_read_lat += 2;
2397 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2398 		debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2399 			   read_lat=%u\n", __func__, __LINE__,
2400 			   gbl->curr_read_lat);
2401 		return 1;
2402 	} else {
2403 		set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2404 					CAL_SUBSTAGE_READ_LATENCY);
2405 
2406 		debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2407 			   read_lat=%u\n", __func__, __LINE__,
2408 			   gbl->curr_read_lat);
2409 		return 0;
2410 	}
2411 }
2412 
2413 /*
2414  * issue write test command.
2415  * two variants are provided. one that just tests a write pattern and
2416  * another that tests datamask functionality.
2417  */
2418 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2419 						  uint32_t test_dm)
2420 {
2421 	uint32_t mcc_instruction;
2422 	uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2423 		ENABLE_SUPER_QUICK_CALIBRATION);
2424 	uint32_t rw_wl_nop_cycles;
2425 	uint32_t addr;
2426 
2427 	/*
2428 	 * Set counter and jump addresses for the right
2429 	 * number of NOP cycles.
2430 	 * The number of supported NOP cycles can range from -1 to infinity
2431 	 * Three different cases are handled:
2432 	 *
2433 	 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2434 	 *    mechanism will be used to insert the right number of NOPs
2435 	 *
2436 	 * 2. For a number of NOP cycles equals to 0, the micro-instruction
2437 	 *    issuing the write command will jump straight to the
2438 	 *    micro-instruction that turns on DQS (for DDRx), or outputs write
2439 	 *    data (for RLD), skipping
2440 	 *    the NOP micro-instruction all together
2441 	 *
2442 	 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2443 	 *    turned on in the same micro-instruction that issues the write
2444 	 *    command. Then we need
2445 	 *    to directly jump to the micro-instruction that sends out the data
2446 	 *
2447 	 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2448 	 *       (2 and 3). One jump-counter (0) is used to perform multiple
2449 	 *       write-read operations.
2450 	 *       one counter left to issue this command in "multiple-group" mode
2451 	 */
2452 
2453 	rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2454 
2455 	if (rw_wl_nop_cycles == -1) {
2456 		/*
2457 		 * CNTR 2 - We want to execute the special write operation that
2458 		 * turns on DQS right away and then skip directly to the
2459 		 * instruction that sends out the data. We set the counter to a
2460 		 * large number so that the jump is always taken.
2461 		 */
2462 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2463 
2464 		/* CNTR 3 - Not used */
2465 		if (test_dm) {
2466 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
2467 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
2468 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2469 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2470 			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2471 		} else {
2472 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
2473 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
2474 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2475 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2476 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2477 		}
2478 	} else if (rw_wl_nop_cycles == 0) {
2479 		/*
2480 		 * CNTR 2 - We want to skip the NOP operation and go straight
2481 		 * to the DQS enable instruction. We set the counter to a large
2482 		 * number so that the jump is always taken.
2483 		 */
2484 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2485 
2486 		/* CNTR 3 - Not used */
2487 		if (test_dm) {
2488 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2489 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
2490 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2491 		} else {
2492 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2493 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
2494 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2495 		}
2496 	} else {
2497 		/*
2498 		 * CNTR 2 - In this case we want to execute the next instruction
2499 		 * and NOT take the jump. So we set the counter to 0. The jump
2500 		 * address doesn't count.
2501 		 */
2502 		writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
2503 		writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2504 
2505 		/*
2506 		 * CNTR 3 - Set the nop counter to the number of cycles we
2507 		 * need to loop for, minus 1.
2508 		 */
2509 		writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
2510 		if (test_dm) {
2511 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2512 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2513 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2514 		} else {
2515 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2516 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2517 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2518 		}
2519 	}
2520 
2521 	writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
2522 		  RW_MGR_RESET_READ_DATAPATH_OFFSET);
2523 
2524 	if (quick_write_mode)
2525 		writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
2526 	else
2527 		writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
2528 
2529 	writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
2530 
2531 	/*
2532 	 * CNTR 1 - This is used to ensure enough time elapses
2533 	 * for read data to come back.
2534 	 */
2535 	writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
2536 
2537 	if (test_dm) {
2538 		writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
2539 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2540 	} else {
2541 		writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
2542 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2543 	}
2544 
2545 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
2546 	writel(mcc_instruction, addr + (group << 2));
2547 }
2548 
2549 /* Test writes, can check for a single bit pass or multiple bit pass */
2550 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2551 	uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2552 	uint32_t *bit_chk, uint32_t all_ranks)
2553 {
2554 	uint32_t r;
2555 	uint32_t correct_mask_vg;
2556 	uint32_t tmp_bit_chk;
2557 	uint32_t vg;
2558 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2559 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2560 	uint32_t addr_rw_mgr;
2561 	uint32_t base_rw_mgr;
2562 
2563 	*bit_chk = param->write_correct_mask;
2564 	correct_mask_vg = param->write_correct_mask_vg;
2565 
2566 	for (r = rank_bgn; r < rank_end; r++) {
2567 		if (param->skip_ranks[r]) {
2568 			/* request to skip the rank */
2569 			continue;
2570 		}
2571 
2572 		/* set rank */
2573 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2574 
2575 		tmp_bit_chk = 0;
2576 		addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
2577 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2578 			/* reset the fifos to get pointers to known state */
2579 			writel(0, &phy_mgr_cmd->fifo_reset);
2580 
2581 			tmp_bit_chk = tmp_bit_chk <<
2582 				(RW_MGR_MEM_DQ_PER_WRITE_DQS /
2583 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2584 			rw_mgr_mem_calibrate_write_test_issue(write_group *
2585 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2586 				use_dm);
2587 
2588 			base_rw_mgr = readl(addr_rw_mgr);
2589 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2590 			if (vg == 0)
2591 				break;
2592 		}
2593 		*bit_chk &= tmp_bit_chk;
2594 	}
2595 
2596 	if (all_correct) {
2597 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2598 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2599 			   %u => %lu", write_group, use_dm,
2600 			   *bit_chk, param->write_correct_mask,
2601 			   (long unsigned int)(*bit_chk ==
2602 			   param->write_correct_mask));
2603 		return *bit_chk == param->write_correct_mask;
2604 	} else {
2605 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2606 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2607 		       write_group, use_dm, *bit_chk);
2608 		debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2609 			(long unsigned int)(*bit_chk != 0));
2610 		return *bit_chk != 0x00;
2611 	}
2612 }
2613 
2614 /*
2615  * center all windows. do per-bit-deskew to possibly increase size of
2616  * certain windows.
2617  */
2618 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2619 	uint32_t write_group, uint32_t test_bgn)
2620 {
2621 	uint32_t i, p, min_index;
2622 	int32_t d;
2623 	/*
2624 	 * Store these as signed since there are comparisons with
2625 	 * signed numbers.
2626 	 */
2627 	uint32_t bit_chk;
2628 	uint32_t sticky_bit_chk;
2629 	int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2630 	int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2631 	int32_t mid;
2632 	int32_t mid_min, orig_mid_min;
2633 	int32_t new_dqs, start_dqs, shift_dq;
2634 	int32_t dq_margin, dqs_margin, dm_margin;
2635 	uint32_t stop;
2636 	uint32_t temp_dq_out1_delay;
2637 	uint32_t addr;
2638 
2639 	debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2640 
2641 	dm_margin = 0;
2642 
2643 	addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2644 	start_dqs = readl(addr +
2645 			  (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2646 
2647 	/* per-bit deskew */
2648 
2649 	/*
2650 	 * set the left and right edge of each bit to an illegal value
2651 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2652 	 */
2653 	sticky_bit_chk = 0;
2654 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2655 		left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2656 		right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2657 	}
2658 
2659 	/* Search for the left edge of the window for each bit */
2660 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
2661 		scc_mgr_apply_group_dq_out1_delay(write_group, d);
2662 
2663 		writel(0, &sdr_scc_mgr->update);
2664 
2665 		/*
2666 		 * Stop searching when the read test doesn't pass AND when
2667 		 * we've seen a passing read on every bit.
2668 		 */
2669 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2670 			0, PASS_ONE_BIT, &bit_chk, 0);
2671 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2672 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2673 		debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
2674 			   == %u && %u [bit_chk= %u ]\n",
2675 			d, sticky_bit_chk, param->write_correct_mask,
2676 			stop, bit_chk);
2677 
2678 		if (stop == 1) {
2679 			break;
2680 		} else {
2681 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2682 				if (bit_chk & 1) {
2683 					/*
2684 					 * Remember a passing test as the
2685 					 * left_edge.
2686 					 */
2687 					left_edge[i] = d;
2688 				} else {
2689 					/*
2690 					 * If a left edge has not been seen
2691 					 * yet, then a future passing test will
2692 					 * mark this edge as the right edge.
2693 					 */
2694 					if (left_edge[i] ==
2695 						IO_IO_OUT1_DELAY_MAX + 1) {
2696 						right_edge[i] = -(d + 1);
2697 					}
2698 				}
2699 				debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
2700 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2701 					   (int)(bit_chk & 1), i, left_edge[i]);
2702 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2703 				       right_edge[i]);
2704 				bit_chk = bit_chk >> 1;
2705 			}
2706 		}
2707 	}
2708 
2709 	/* Reset DQ delay chains to 0 */
2710 	scc_mgr_apply_group_dq_out1_delay(0);
2711 	sticky_bit_chk = 0;
2712 	for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
2713 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2714 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
2715 			   i, left_edge[i], i, right_edge[i]);
2716 
2717 		/*
2718 		 * Check for cases where we haven't found the left edge,
2719 		 * which makes our assignment of the the right edge invalid.
2720 		 * Reset it to the illegal value.
2721 		 */
2722 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
2723 		    (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
2724 			right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2725 			debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
2726 				   right_edge[%u]: %d\n", __func__, __LINE__,
2727 				   i, right_edge[i]);
2728 		}
2729 
2730 		/*
2731 		 * Reset sticky bit (except for bits where we have
2732 		 * seen the left edge).
2733 		 */
2734 		sticky_bit_chk = sticky_bit_chk << 1;
2735 		if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
2736 			sticky_bit_chk = sticky_bit_chk | 1;
2737 
2738 		if (i == 0)
2739 			break;
2740 	}
2741 
2742 	/* Search for the right edge of the window for each bit */
2743 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
2744 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2745 							d + start_dqs);
2746 
2747 		writel(0, &sdr_scc_mgr->update);
2748 
2749 		/*
2750 		 * Stop searching when the read test doesn't pass AND when
2751 		 * we've seen a passing read on every bit.
2752 		 */
2753 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2754 			0, PASS_ONE_BIT, &bit_chk, 0);
2755 
2756 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2757 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2758 
2759 		debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
2760 			   %u && %u\n", d, sticky_bit_chk,
2761 			   param->write_correct_mask, stop);
2762 
2763 		if (stop == 1) {
2764 			if (d == 0) {
2765 				for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
2766 					i++) {
2767 					/* d = 0 failed, but it passed when
2768 					testing the left edge, so it must be
2769 					marginal, set it to -1 */
2770 					if (right_edge[i] ==
2771 						IO_IO_OUT1_DELAY_MAX + 1 &&
2772 						left_edge[i] !=
2773 						IO_IO_OUT1_DELAY_MAX + 1) {
2774 						right_edge[i] = -1;
2775 					}
2776 				}
2777 			}
2778 			break;
2779 		} else {
2780 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2781 				if (bit_chk & 1) {
2782 					/*
2783 					 * Remember a passing test as
2784 					 * the right_edge.
2785 					 */
2786 					right_edge[i] = d;
2787 				} else {
2788 					if (d != 0) {
2789 						/*
2790 						 * If a right edge has not
2791 						 * been seen yet, then a future
2792 						 * passing test will mark this
2793 						 * edge as the left edge.
2794 						 */
2795 						if (right_edge[i] ==
2796 						    IO_IO_OUT1_DELAY_MAX + 1)
2797 							left_edge[i] = -(d + 1);
2798 					} else {
2799 						/*
2800 						 * d = 0 failed, but it passed
2801 						 * when testing the left edge,
2802 						 * so it must be marginal, set
2803 						 * it to -1.
2804 						 */
2805 						if (right_edge[i] ==
2806 						    IO_IO_OUT1_DELAY_MAX + 1 &&
2807 						    left_edge[i] !=
2808 						    IO_IO_OUT1_DELAY_MAX + 1)
2809 							right_edge[i] = -1;
2810 						/*
2811 						 * If a right edge has not been
2812 						 * seen yet, then a future
2813 						 * passing test will mark this
2814 						 * edge as the left edge.
2815 						 */
2816 						else if (right_edge[i] ==
2817 							IO_IO_OUT1_DELAY_MAX +
2818 							1)
2819 							left_edge[i] = -(d + 1);
2820 					}
2821 				}
2822 				debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
2823 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2824 					   (int)(bit_chk & 1), i, left_edge[i]);
2825 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2826 					   right_edge[i]);
2827 				bit_chk = bit_chk >> 1;
2828 			}
2829 		}
2830 	}
2831 
2832 	/* Check that all bits have a window */
2833 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2834 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2835 			   %d right_edge[%u]: %d", __func__, __LINE__,
2836 			   i, left_edge[i], i, right_edge[i]);
2837 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
2838 		    (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
2839 			set_failing_group_stage(test_bgn + i,
2840 						CAL_STAGE_WRITES,
2841 						CAL_SUBSTAGE_WRITES_CENTER);
2842 			return 0;
2843 		}
2844 	}
2845 
2846 	/* Find middle of window for each DQ bit */
2847 	mid_min = left_edge[0] - right_edge[0];
2848 	min_index = 0;
2849 	for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2850 		mid = left_edge[i] - right_edge[i];
2851 		if (mid < mid_min) {
2852 			mid_min = mid;
2853 			min_index = i;
2854 		}
2855 	}
2856 
2857 	/*
2858 	 * -mid_min/2 represents the amount that we need to move DQS.
2859 	 * If mid_min is odd and positive we'll need to add one to
2860 	 * make sure the rounding in further calculations is correct
2861 	 * (always bias to the right), so just add 1 for all positive values.
2862 	 */
2863 	if (mid_min > 0)
2864 		mid_min++;
2865 	mid_min = mid_min / 2;
2866 	debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
2867 		   __LINE__, mid_min);
2868 
2869 	/* Determine the amount we can change DQS (which is -mid_min) */
2870 	orig_mid_min = mid_min;
2871 	new_dqs = start_dqs;
2872 	mid_min = 0;
2873 	debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
2874 		   mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
2875 	/* Initialize data for export structures */
2876 	dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
2877 	dq_margin  = IO_IO_OUT1_DELAY_MAX + 1;
2878 
2879 	/* add delay to bring centre of all DQ windows to the same "level" */
2880 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
2881 		/* Use values before divide by 2 to reduce round off error */
2882 		shift_dq = (left_edge[i] - right_edge[i] -
2883 			(left_edge[min_index] - right_edge[min_index]))/2  +
2884 		(orig_mid_min - mid_min);
2885 
2886 		debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
2887 			   [%u]=%d\n", __func__, __LINE__, i, shift_dq);
2888 
2889 		addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2890 		temp_dq_out1_delay = readl(addr + (i << 2));
2891 		if (shift_dq + (int32_t)temp_dq_out1_delay >
2892 			(int32_t)IO_IO_OUT1_DELAY_MAX) {
2893 			shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
2894 		} else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
2895 			shift_dq = -(int32_t)temp_dq_out1_delay;
2896 		}
2897 		debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
2898 			   i, shift_dq);
2899 		scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq);
2900 		scc_mgr_load_dq(i);
2901 
2902 		debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
2903 			   left_edge[i] - shift_dq + (-mid_min),
2904 			   right_edge[i] + shift_dq - (-mid_min));
2905 		/* To determine values for export structures */
2906 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2907 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
2908 
2909 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2910 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2911 	}
2912 
2913 	/* Move DQS */
2914 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
2915 	writel(0, &sdr_scc_mgr->update);
2916 
2917 	/* Centre DM */
2918 	debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
2919 
2920 	/*
2921 	 * set the left and right edge of each bit to an illegal value,
2922 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
2923 	 */
2924 	left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
2925 	right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
2926 	int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2927 	int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2928 	int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
2929 	int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
2930 	int32_t win_best = 0;
2931 
2932 	/* Search for the/part of the window with DM shift */
2933 	for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
2934 		scc_mgr_apply_group_dm_out1_delay(d);
2935 		writel(0, &sdr_scc_mgr->update);
2936 
2937 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2938 						    PASS_ALL_BITS, &bit_chk,
2939 						    0)) {
2940 			/* USE Set current end of the window */
2941 			end_curr = -d;
2942 			/*
2943 			 * If a starting edge of our window has not been seen
2944 			 * this is our current start of the DM window.
2945 			 */
2946 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
2947 				bgn_curr = -d;
2948 
2949 			/*
2950 			 * If current window is bigger than best seen.
2951 			 * Set best seen to be current window.
2952 			 */
2953 			if ((end_curr-bgn_curr+1) > win_best) {
2954 				win_best = end_curr-bgn_curr+1;
2955 				bgn_best = bgn_curr;
2956 				end_best = end_curr;
2957 			}
2958 		} else {
2959 			/* We just saw a failing test. Reset temp edge */
2960 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2961 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2962 			}
2963 		}
2964 
2965 
2966 	/* Reset DM delay chains to 0 */
2967 	scc_mgr_apply_group_dm_out1_delay(0);
2968 
2969 	/*
2970 	 * Check to see if the current window nudges up aganist 0 delay.
2971 	 * If so we need to continue the search by shifting DQS otherwise DQS
2972 	 * search begins as a new search. */
2973 	if (end_curr != 0) {
2974 		bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2975 		end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2976 	}
2977 
2978 	/* Search for the/part of the window with DQS shifts */
2979 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
2980 		/*
2981 		 * Note: This only shifts DQS, so are we limiting ourselve to
2982 		 * width of DQ unnecessarily.
2983 		 */
2984 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2985 							d + new_dqs);
2986 
2987 		writel(0, &sdr_scc_mgr->update);
2988 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2989 						    PASS_ALL_BITS, &bit_chk,
2990 						    0)) {
2991 			/* USE Set current end of the window */
2992 			end_curr = d;
2993 			/*
2994 			 * If a beginning edge of our window has not been seen
2995 			 * this is our current begin of the DM window.
2996 			 */
2997 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
2998 				bgn_curr = d;
2999 
3000 			/*
3001 			 * If current window is bigger than best seen. Set best
3002 			 * seen to be current window.
3003 			 */
3004 			if ((end_curr-bgn_curr+1) > win_best) {
3005 				win_best = end_curr-bgn_curr+1;
3006 				bgn_best = bgn_curr;
3007 				end_best = end_curr;
3008 			}
3009 		} else {
3010 			/* We just saw a failing test. Reset temp edge */
3011 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3012 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3013 
3014 			/* Early exit optimization: if ther remaining delay
3015 			chain space is less than already seen largest window
3016 			we can exit */
3017 			if ((win_best-1) >
3018 				(IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3019 					break;
3020 				}
3021 			}
3022 		}
3023 
3024 	/* assign left and right edge for cal and reporting; */
3025 	left_edge[0] = -1*bgn_best;
3026 	right_edge[0] = end_best;
3027 
3028 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3029 		   __LINE__, left_edge[0], right_edge[0]);
3030 
3031 	/* Move DQS (back to orig) */
3032 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3033 
3034 	/* Move DM */
3035 
3036 	/* Find middle of window for the DM bit */
3037 	mid = (left_edge[0] - right_edge[0]) / 2;
3038 
3039 	/* only move right, since we are not moving DQS/DQ */
3040 	if (mid < 0)
3041 		mid = 0;
3042 
3043 	/* dm_marign should fail if we never find a window */
3044 	if (win_best == 0)
3045 		dm_margin = -1;
3046 	else
3047 		dm_margin = left_edge[0] - mid;
3048 
3049 	scc_mgr_apply_group_dm_out1_delay(mid);
3050 	writel(0, &sdr_scc_mgr->update);
3051 
3052 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3053 		   dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3054 		   right_edge[0], mid, dm_margin);
3055 	/* Export values */
3056 	gbl->fom_out += dq_margin + dqs_margin;
3057 
3058 	debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3059 		   dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3060 		   dq_margin, dqs_margin, dm_margin);
3061 
3062 	/*
3063 	 * Do not remove this line as it makes sure all of our
3064 	 * decisions have been applied.
3065 	 */
3066 	writel(0, &sdr_scc_mgr->update);
3067 	return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3068 }
3069 
3070 /* calibrate the write operations */
3071 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
3072 	uint32_t test_bgn)
3073 {
3074 	/* update info for sims */
3075 	debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
3076 
3077 	reg_file_set_stage(CAL_STAGE_WRITES);
3078 	reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3079 
3080 	reg_file_set_group(g);
3081 
3082 	if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
3083 		set_failing_group_stage(g, CAL_STAGE_WRITES,
3084 					CAL_SUBSTAGE_WRITES_CENTER);
3085 		return 0;
3086 	}
3087 
3088 	return 1;
3089 }
3090 
3091 /**
3092  * mem_precharge_and_activate() - Precharge all banks and activate
3093  *
3094  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3095  */
3096 static void mem_precharge_and_activate(void)
3097 {
3098 	int r;
3099 
3100 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3101 		/* Test if the rank should be skipped. */
3102 		if (param->skip_ranks[r])
3103 			continue;
3104 
3105 		/* Set rank. */
3106 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3107 
3108 		/* Precharge all banks. */
3109 		writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3110 					     RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3111 
3112 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3113 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3114 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
3115 
3116 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3117 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3118 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
3119 
3120 		/* Activate rows. */
3121 		writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3122 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3123 	}
3124 }
3125 
3126 /**
3127  * mem_init_latency() - Configure memory RLAT and WLAT settings
3128  *
3129  * Configure memory RLAT and WLAT parameters.
3130  */
3131 static void mem_init_latency(void)
3132 {
3133 	/*
3134 	 * For AV/CV, LFIFO is hardened and always runs at full rate
3135 	 * so max latency in AFI clocks, used here, is correspondingly
3136 	 * smaller.
3137 	 */
3138 	const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3139 	u32 rlat, wlat;
3140 
3141 	debug("%s:%d\n", __func__, __LINE__);
3142 
3143 	/*
3144 	 * Read in write latency.
3145 	 * WL for Hard PHY does not include additive latency.
3146 	 */
3147 	wlat = readl(&data_mgr->t_wl_add);
3148 	wlat += readl(&data_mgr->mem_t_add);
3149 
3150 	gbl->rw_wl_nop_cycles = wlat - 1;
3151 
3152 	/* Read in readl latency. */
3153 	rlat = readl(&data_mgr->t_rl_add);
3154 
3155 	/* Set a pretty high read latency initially. */
3156 	gbl->curr_read_lat = rlat + 16;
3157 	if (gbl->curr_read_lat > max_latency)
3158 		gbl->curr_read_lat = max_latency;
3159 
3160 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3161 
3162 	/* Advertise write latency. */
3163 	writel(wlat, &phy_mgr_cfg->afi_wlat);
3164 }
3165 
3166 /* Set VFIFO and LFIFO to instant-on settings in skip calibration mode */
3167 static void mem_skip_calibrate(void)
3168 {
3169 	uint32_t vfifo_offset;
3170 	uint32_t i, j, r;
3171 
3172 	debug("%s:%d\n", __func__, __LINE__);
3173 	/* Need to update every shadow register set used by the interface */
3174 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3175 		r += NUM_RANKS_PER_SHADOW_REG) {
3176 		/*
3177 		 * Set output phase alignment settings appropriate for
3178 		 * skip calibration.
3179 		 */
3180 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3181 			scc_mgr_set_dqs_en_phase(i, 0);
3182 #if IO_DLL_CHAIN_LENGTH == 6
3183 			scc_mgr_set_dqdqs_output_phase(i, 6);
3184 #else
3185 			scc_mgr_set_dqdqs_output_phase(i, 7);
3186 #endif
3187 			/*
3188 			 * Case:33398
3189 			 *
3190 			 * Write data arrives to the I/O two cycles before write
3191 			 * latency is reached (720 deg).
3192 			 *   -> due to bit-slip in a/c bus
3193 			 *   -> to allow board skew where dqs is longer than ck
3194 			 *      -> how often can this happen!?
3195 			 *      -> can claim back some ptaps for high freq
3196 			 *       support if we can relax this, but i digress...
3197 			 *
3198 			 * The write_clk leads mem_ck by 90 deg
3199 			 * The minimum ptap of the OPA is 180 deg
3200 			 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3201 			 * The write_clk is always delayed by 2 ptaps
3202 			 *
3203 			 * Hence, to make DQS aligned to CK, we need to delay
3204 			 * DQS by:
3205 			 *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3206 			 *
3207 			 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3208 			 * gives us the number of ptaps, which simplies to:
3209 			 *
3210 			 *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3211 			 */
3212 			scc_mgr_set_dqdqs_output_phase(i, (1.25 *
3213 				IO_DLL_CHAIN_LENGTH - 2));
3214 		}
3215 		writel(0xff, &sdr_scc_mgr->dqs_ena);
3216 		writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3217 
3218 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3219 			writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3220 				  SCC_MGR_GROUP_COUNTER_OFFSET);
3221 		}
3222 		writel(0xff, &sdr_scc_mgr->dq_ena);
3223 		writel(0xff, &sdr_scc_mgr->dm_ena);
3224 		writel(0, &sdr_scc_mgr->update);
3225 	}
3226 
3227 	/* Compensate for simulation model behaviour */
3228 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3229 		scc_mgr_set_dqs_bus_in_delay(i, 10);
3230 		scc_mgr_load_dqs(i);
3231 	}
3232 	writel(0, &sdr_scc_mgr->update);
3233 
3234 	/*
3235 	 * ArriaV has hard FIFOs that can only be initialized by incrementing
3236 	 * in sequencer.
3237 	 */
3238 	vfifo_offset = CALIB_VFIFO_OFFSET;
3239 	for (j = 0; j < vfifo_offset; j++) {
3240 		writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3241 	}
3242 	writel(0, &phy_mgr_cmd->fifo_reset);
3243 
3244 	/*
3245 	 * For ACV with hard lfifo, we get the skip-cal setting from
3246 	 * generation-time constant.
3247 	 */
3248 	gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3249 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3250 }
3251 
3252 /* Memory calibration entry point */
3253 static uint32_t mem_calibrate(void)
3254 {
3255 	uint32_t i;
3256 	uint32_t rank_bgn, sr;
3257 	uint32_t write_group, write_test_bgn;
3258 	uint32_t read_group, read_test_bgn;
3259 	uint32_t run_groups, current_run;
3260 	uint32_t failing_groups = 0;
3261 	uint32_t group_failed = 0;
3262 	uint32_t sr_failed = 0;
3263 
3264 	debug("%s:%d\n", __func__, __LINE__);
3265 
3266 	/* Initialize the data settings */
3267 	gbl->error_substage = CAL_SUBSTAGE_NIL;
3268 	gbl->error_stage = CAL_STAGE_NIL;
3269 	gbl->error_group = 0xff;
3270 	gbl->fom_in = 0;
3271 	gbl->fom_out = 0;
3272 
3273 	/* Initialize WLAT and RLAT. */
3274 	mem_init_latency();
3275 
3276 	/* Initialize bit slips. */
3277 	mem_precharge_and_activate();
3278 
3279 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3280 		writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3281 			  SCC_MGR_GROUP_COUNTER_OFFSET);
3282 		/* Only needed once to set all groups, pins, DQ, DQS, DM. */
3283 		if (i == 0)
3284 			scc_mgr_set_hhp_extras();
3285 
3286 		scc_set_bypass_mode(i);
3287 	}
3288 
3289 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3290 		/*
3291 		 * Set VFIFO and LFIFO to instant-on settings in skip
3292 		 * calibration mode.
3293 		 */
3294 		mem_skip_calibrate();
3295 	} else {
3296 		for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3297 			/*
3298 			 * Zero all delay chain/phase settings for all
3299 			 * groups and all shadow register sets.
3300 			 */
3301 			scc_mgr_zero_all();
3302 
3303 			run_groups = ~param->skip_groups;
3304 
3305 			for (write_group = 0, write_test_bgn = 0; write_group
3306 				< RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3307 				write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3308 				/* Initialized the group failure */
3309 				group_failed = 0;
3310 
3311 				current_run = run_groups & ((1 <<
3312 					RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3313 				run_groups = run_groups >>
3314 					RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3315 
3316 				if (current_run == 0)
3317 					continue;
3318 
3319 				writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3320 						    SCC_MGR_GROUP_COUNTER_OFFSET);
3321 				scc_mgr_zero_group(write_group, 0);
3322 
3323 				for (read_group = write_group *
3324 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
3325 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3326 					read_test_bgn = 0;
3327 					read_group < (write_group + 1) *
3328 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
3329 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
3330 					group_failed == 0;
3331 					read_group++, read_test_bgn +=
3332 					RW_MGR_MEM_DQ_PER_READ_DQS) {
3333 					/* Calibrate the VFIFO */
3334 					if (!((STATIC_CALIB_STEPS) &
3335 						CALIB_SKIP_VFIFO)) {
3336 						if (!rw_mgr_mem_calibrate_vfifo
3337 							(read_group,
3338 							read_test_bgn)) {
3339 							group_failed = 1;
3340 
3341 							if (!(gbl->
3342 							phy_debug_mode_flags &
3343 						PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3344 								return 0;
3345 							}
3346 						}
3347 					}
3348 				}
3349 
3350 				/* Calibrate the output side */
3351 				if (group_failed == 0)	{
3352 					for (rank_bgn = 0, sr = 0; rank_bgn
3353 						< RW_MGR_MEM_NUMBER_OF_RANKS;
3354 						rank_bgn +=
3355 						NUM_RANKS_PER_SHADOW_REG,
3356 						++sr) {
3357 						sr_failed = 0;
3358 						if (!((STATIC_CALIB_STEPS) &
3359 						CALIB_SKIP_WRITES)) {
3360 							if ((STATIC_CALIB_STEPS)
3361 						& CALIB_SKIP_DELAY_SWEEPS) {
3362 						/* not needed in quick mode! */
3363 							} else {
3364 						/*
3365 						 * Determine if this set of
3366 						 * ranks should be skipped
3367 						 * entirely.
3368 						 */
3369 					if (!param->skip_shadow_regs[sr]) {
3370 						if (!rw_mgr_mem_calibrate_writes
3371 						(rank_bgn, write_group,
3372 						write_test_bgn)) {
3373 							sr_failed = 1;
3374 							if (!(gbl->
3375 							phy_debug_mode_flags &
3376 						PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3377 								return 0;
3378 									}
3379 									}
3380 								}
3381 							}
3382 						}
3383 						if (sr_failed != 0)
3384 							group_failed = 1;
3385 					}
3386 				}
3387 
3388 				if (group_failed == 0) {
3389 					for (read_group = write_group *
3390 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
3391 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3392 					read_test_bgn = 0;
3393 						read_group < (write_group + 1)
3394 						* RW_MGR_MEM_IF_READ_DQS_WIDTH
3395 						/ RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
3396 						group_failed == 0;
3397 						read_group++, read_test_bgn +=
3398 						RW_MGR_MEM_DQ_PER_READ_DQS) {
3399 						if (!((STATIC_CALIB_STEPS) &
3400 							CALIB_SKIP_WRITES)) {
3401 					if (!rw_mgr_mem_calibrate_vfifo_end
3402 						(read_group, read_test_bgn)) {
3403 							group_failed = 1;
3404 
3405 						if (!(gbl->phy_debug_mode_flags
3406 						& PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3407 								return 0;
3408 								}
3409 							}
3410 						}
3411 					}
3412 				}
3413 
3414 				if (group_failed != 0)
3415 					failing_groups++;
3416 			}
3417 
3418 			/*
3419 			 * USER If there are any failing groups then report
3420 			 * the failure.
3421 			 */
3422 			if (failing_groups != 0)
3423 				return 0;
3424 
3425 			/* Calibrate the LFIFO */
3426 			if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_LFIFO)) {
3427 				/*
3428 				 * If we're skipping groups as part of debug,
3429 				 * don't calibrate LFIFO.
3430 				 */
3431 				if (param->skip_groups == 0) {
3432 					if (!rw_mgr_mem_calibrate_lfifo())
3433 						return 0;
3434 				}
3435 			}
3436 		}
3437 	}
3438 
3439 	/*
3440 	 * Do not remove this line as it makes sure all of our decisions
3441 	 * have been applied.
3442 	 */
3443 	writel(0, &sdr_scc_mgr->update);
3444 	return 1;
3445 }
3446 
3447 /**
3448  * run_mem_calibrate() - Perform memory calibration
3449  *
3450  * This function triggers the entire memory calibration procedure.
3451  */
3452 static int run_mem_calibrate(void)
3453 {
3454 	int pass;
3455 
3456 	debug("%s:%d\n", __func__, __LINE__);
3457 
3458 	/* Reset pass/fail status shown on afi_cal_success/fail */
3459 	writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3460 
3461 	/* Stop tracking manager. */
3462 	clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3463 
3464 	phy_mgr_initialize();
3465 	rw_mgr_mem_initialize();
3466 
3467 	/* Perform the actual memory calibration. */
3468 	pass = mem_calibrate();
3469 
3470 	mem_precharge_and_activate();
3471 	writel(0, &phy_mgr_cmd->fifo_reset);
3472 
3473 	/* Handoff. */
3474 	rw_mgr_mem_handoff();
3475 	/*
3476 	 * In Hard PHY this is a 2-bit control:
3477 	 * 0: AFI Mux Select
3478 	 * 1: DDIO Mux Select
3479 	 */
3480 	writel(0x2, &phy_mgr_cfg->mux_sel);
3481 
3482 	/* Start tracking manager. */
3483 	setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3484 
3485 	return pass;
3486 }
3487 
3488 /**
3489  * debug_mem_calibrate() - Report result of memory calibration
3490  * @pass:	Value indicating whether calibration passed or failed
3491  *
3492  * This function reports the results of the memory calibration
3493  * and writes debug information into the register file.
3494  */
3495 static void debug_mem_calibrate(int pass)
3496 {
3497 	uint32_t debug_info;
3498 
3499 	if (pass) {
3500 		printf("%s: CALIBRATION PASSED\n", __FILE__);
3501 
3502 		gbl->fom_in /= 2;
3503 		gbl->fom_out /= 2;
3504 
3505 		if (gbl->fom_in > 0xff)
3506 			gbl->fom_in = 0xff;
3507 
3508 		if (gbl->fom_out > 0xff)
3509 			gbl->fom_out = 0xff;
3510 
3511 		/* Update the FOM in the register file */
3512 		debug_info = gbl->fom_in;
3513 		debug_info |= gbl->fom_out << 8;
3514 		writel(debug_info, &sdr_reg_file->fom);
3515 
3516 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3517 		writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3518 	} else {
3519 		printf("%s: CALIBRATION FAILED\n", __FILE__);
3520 
3521 		debug_info = gbl->error_stage;
3522 		debug_info |= gbl->error_substage << 8;
3523 		debug_info |= gbl->error_group << 16;
3524 
3525 		writel(debug_info, &sdr_reg_file->failing_stage);
3526 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3527 		writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3528 
3529 		/* Update the failing group/stage in the register file */
3530 		debug_info = gbl->error_stage;
3531 		debug_info |= gbl->error_substage << 8;
3532 		debug_info |= gbl->error_group << 16;
3533 		writel(debug_info, &sdr_reg_file->failing_stage);
3534 	}
3535 
3536 	printf("%s: Calibration complete\n", __FILE__);
3537 }
3538 
3539 /**
3540  * hc_initialize_rom_data() - Initialize ROM data
3541  *
3542  * Initialize ROM data.
3543  */
3544 static void hc_initialize_rom_data(void)
3545 {
3546 	u32 i, addr;
3547 
3548 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3549 	for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3550 		writel(inst_rom_init[i], addr + (i << 2));
3551 
3552 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3553 	for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3554 		writel(ac_rom_init[i], addr + (i << 2));
3555 }
3556 
3557 /**
3558  * initialize_reg_file() - Initialize SDR register file
3559  *
3560  * Initialize SDR register file.
3561  */
3562 static void initialize_reg_file(void)
3563 {
3564 	/* Initialize the register file with the correct data */
3565 	writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3566 	writel(0, &sdr_reg_file->debug_data_addr);
3567 	writel(0, &sdr_reg_file->cur_stage);
3568 	writel(0, &sdr_reg_file->fom);
3569 	writel(0, &sdr_reg_file->failing_stage);
3570 	writel(0, &sdr_reg_file->debug1);
3571 	writel(0, &sdr_reg_file->debug2);
3572 }
3573 
3574 /**
3575  * initialize_hps_phy() - Initialize HPS PHY
3576  *
3577  * Initialize HPS PHY.
3578  */
3579 static void initialize_hps_phy(void)
3580 {
3581 	uint32_t reg;
3582 	/*
3583 	 * Tracking also gets configured here because it's in the
3584 	 * same register.
3585 	 */
3586 	uint32_t trk_sample_count = 7500;
3587 	uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3588 	/*
3589 	 * Format is number of outer loops in the 16 MSB, sample
3590 	 * count in 16 LSB.
3591 	 */
3592 
3593 	reg = 0;
3594 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3595 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3596 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3597 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3598 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3599 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3600 	/*
3601 	 * This field selects the intrinsic latency to RDATA_EN/FULL path.
3602 	 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3603 	 */
3604 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3605 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3606 		trk_sample_count);
3607 	writel(reg, &sdr_ctrl->phy_ctrl0);
3608 
3609 	reg = 0;
3610 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3611 		trk_sample_count >>
3612 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3613 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3614 		trk_long_idle_sample_count);
3615 	writel(reg, &sdr_ctrl->phy_ctrl1);
3616 
3617 	reg = 0;
3618 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3619 		trk_long_idle_sample_count >>
3620 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3621 	writel(reg, &sdr_ctrl->phy_ctrl2);
3622 }
3623 
3624 /**
3625  * initialize_tracking() - Initialize tracking
3626  *
3627  * Initialize the register file with usable initial data.
3628  */
3629 static void initialize_tracking(void)
3630 {
3631 	/*
3632 	 * Initialize the register file with the correct data.
3633 	 * Compute usable version of value in case we skip full
3634 	 * computation later.
3635 	 */
3636 	writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3637 	       &sdr_reg_file->dtaps_per_ptap);
3638 
3639 	/* trk_sample_count */
3640 	writel(7500, &sdr_reg_file->trk_sample_count);
3641 
3642 	/* longidle outer loop [15:0] */
3643 	writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3644 
3645 	/*
3646 	 * longidle sample count [31:24]
3647 	 * trfc, worst case of 933Mhz 4Gb [23:16]
3648 	 * trcd, worst case [15:8]
3649 	 * vfifo wait [7:0]
3650 	 */
3651 	writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3652 	       &sdr_reg_file->delays);
3653 
3654 	/* mux delay */
3655 	writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
3656 	       (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
3657 	       &sdr_reg_file->trk_rw_mgr_addr);
3658 
3659 	writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
3660 	       &sdr_reg_file->trk_read_dqs_width);
3661 
3662 	/* trefi [7:0] */
3663 	writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
3664 	       &sdr_reg_file->trk_rfsh);
3665 }
3666 
3667 int sdram_calibration_full(void)
3668 {
3669 	struct param_type my_param;
3670 	struct gbl_type my_gbl;
3671 	uint32_t pass;
3672 
3673 	memset(&my_param, 0, sizeof(my_param));
3674 	memset(&my_gbl, 0, sizeof(my_gbl));
3675 
3676 	param = &my_param;
3677 	gbl = &my_gbl;
3678 
3679 	/* Set the calibration enabled by default */
3680 	gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3681 	/*
3682 	 * Only sweep all groups (regardless of fail state) by default
3683 	 * Set enabled read test by default.
3684 	 */
3685 #if DISABLE_GUARANTEED_READ
3686 	gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3687 #endif
3688 	/* Initialize the register file */
3689 	initialize_reg_file();
3690 
3691 	/* Initialize any PHY CSR */
3692 	initialize_hps_phy();
3693 
3694 	scc_mgr_initialize();
3695 
3696 	initialize_tracking();
3697 
3698 	printf("%s: Preparing to start memory calibration\n", __FILE__);
3699 
3700 	debug("%s:%d\n", __func__, __LINE__);
3701 	debug_cond(DLEVEL == 1,
3702 		   "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3703 		   RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3704 		   RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3705 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3706 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3707 	debug_cond(DLEVEL == 1,
3708 		   "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3709 		   RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3710 		   RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3711 		   IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3712 	debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3713 		   IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3714 	debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3715 		   IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3716 		   IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3717 	debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3718 		   IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3719 		   IO_IO_OUT2_DELAY_MAX);
3720 	debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3721 		   IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3722 
3723 	hc_initialize_rom_data();
3724 
3725 	/* update info for sims */
3726 	reg_file_set_stage(CAL_STAGE_NIL);
3727 	reg_file_set_group(0);
3728 
3729 	/*
3730 	 * Load global needed for those actions that require
3731 	 * some dynamic calibration support.
3732 	 */
3733 	dyn_calib_steps = STATIC_CALIB_STEPS;
3734 	/*
3735 	 * Load global to allow dynamic selection of delay loop settings
3736 	 * based on calibration mode.
3737 	 */
3738 	if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3739 		skip_delay_mask = 0xff;
3740 	else
3741 		skip_delay_mask = 0x0;
3742 
3743 	pass = run_mem_calibrate();
3744 	debug_mem_calibrate(pass);
3745 	return pass;
3746 }
3747