1 /* 2 * Copyright Altera Corporation (C) 2012-2015 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <common.h> 8 #include <asm/io.h> 9 #include <asm/arch/sdram.h> 10 #include <errno.h> 11 #include "sequencer.h" 12 #include "sequencer_auto.h" 13 #include "sequencer_auto_ac_init.h" 14 #include "sequencer_auto_inst_init.h" 15 #include "sequencer_defines.h" 16 17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs = 18 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800); 19 20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs = 21 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00); 22 23 static struct socfpga_sdr_reg_file *sdr_reg_file = 24 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS; 25 26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr = 27 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00); 28 29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd = 30 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS; 31 32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg = 33 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40); 34 35 static struct socfpga_data_mgr *data_mgr = 36 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS; 37 38 static struct socfpga_sdr_ctrl *sdr_ctrl = 39 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS; 40 41 #define DELTA_D 1 42 43 /* 44 * In order to reduce ROM size, most of the selectable calibration steps are 45 * decided at compile time based on the user's calibration mode selection, 46 * as captured by the STATIC_CALIB_STEPS selection below. 47 * 48 * However, to support simulation-time selection of fast simulation mode, where 49 * we skip everything except the bare minimum, we need a few of the steps to 50 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the 51 * check, which is based on the rtl-supplied value, or we dynamically compute 52 * the value to use based on the dynamically-chosen calibration mode 53 */ 54 55 #define DLEVEL 0 56 #define STATIC_IN_RTL_SIM 0 57 #define STATIC_SKIP_DELAY_LOOPS 0 58 59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \ 60 STATIC_SKIP_DELAY_LOOPS) 61 62 /* calibration steps requested by the rtl */ 63 uint16_t dyn_calib_steps; 64 65 /* 66 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option 67 * instead of static, we use boolean logic to select between 68 * non-skip and skip values 69 * 70 * The mask is set to include all bits when not-skipping, but is 71 * zero when skipping 72 */ 73 74 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */ 75 76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \ 77 ((non_skip_value) & skip_delay_mask) 78 79 struct gbl_type *gbl; 80 struct param_type *param; 81 uint32_t curr_shadow_reg; 82 83 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 84 uint32_t write_group, uint32_t use_dm, 85 uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks); 86 87 static void set_failing_group_stage(uint32_t group, uint32_t stage, 88 uint32_t substage) 89 { 90 /* 91 * Only set the global stage if there was not been any other 92 * failing group 93 */ 94 if (gbl->error_stage == CAL_STAGE_NIL) { 95 gbl->error_substage = substage; 96 gbl->error_stage = stage; 97 gbl->error_group = group; 98 } 99 } 100 101 static void reg_file_set_group(u16 set_group) 102 { 103 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16); 104 } 105 106 static void reg_file_set_stage(u8 set_stage) 107 { 108 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff); 109 } 110 111 static void reg_file_set_sub_stage(u8 set_sub_stage) 112 { 113 set_sub_stage &= 0xff; 114 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8); 115 } 116 117 /** 118 * phy_mgr_initialize() - Initialize PHY Manager 119 * 120 * Initialize PHY Manager. 121 */ 122 static void phy_mgr_initialize(void) 123 { 124 u32 ratio; 125 126 debug("%s:%d\n", __func__, __LINE__); 127 /* Calibration has control over path to memory */ 128 /* 129 * In Hard PHY this is a 2-bit control: 130 * 0: AFI Mux Select 131 * 1: DDIO Mux Select 132 */ 133 writel(0x3, &phy_mgr_cfg->mux_sel); 134 135 /* USER memory clock is not stable we begin initialization */ 136 writel(0, &phy_mgr_cfg->reset_mem_stbl); 137 138 /* USER calibration status all set to zero */ 139 writel(0, &phy_mgr_cfg->cal_status); 140 141 writel(0, &phy_mgr_cfg->cal_debug_info); 142 143 /* Init params only if we do NOT skip calibration. */ 144 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) 145 return; 146 147 ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 148 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 149 param->read_correct_mask_vg = (1 << ratio) - 1; 150 param->write_correct_mask_vg = (1 << ratio) - 1; 151 param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1; 152 param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1; 153 ratio = RW_MGR_MEM_DATA_WIDTH / 154 RW_MGR_MEM_DATA_MASK_WIDTH; 155 param->dm_correct_mask = (1 << ratio) - 1; 156 } 157 158 /** 159 * set_rank_and_odt_mask() - Set Rank and ODT mask 160 * @rank: Rank mask 161 * @odt_mode: ODT mode, OFF or READ_WRITE 162 * 163 * Set Rank and ODT mask (On-Die Termination). 164 */ 165 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode) 166 { 167 u32 odt_mask_0 = 0; 168 u32 odt_mask_1 = 0; 169 u32 cs_and_odt_mask; 170 171 if (odt_mode == RW_MGR_ODT_MODE_OFF) { 172 odt_mask_0 = 0x0; 173 odt_mask_1 = 0x0; 174 } else { /* RW_MGR_ODT_MODE_READ_WRITE */ 175 switch (RW_MGR_MEM_NUMBER_OF_RANKS) { 176 case 1: /* 1 Rank */ 177 /* Read: ODT = 0 ; Write: ODT = 1 */ 178 odt_mask_0 = 0x0; 179 odt_mask_1 = 0x1; 180 break; 181 case 2: /* 2 Ranks */ 182 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) { 183 /* 184 * - Dual-Slot , Single-Rank (1 CS per DIMM) 185 * OR 186 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM) 187 * 188 * Since MEM_NUMBER_OF_RANKS is 2, they 189 * are both single rank with 2 CS each 190 * (special for RDIMM). 191 * 192 * Read: Turn on ODT on the opposite rank 193 * Write: Turn on ODT on all ranks 194 */ 195 odt_mask_0 = 0x3 & ~(1 << rank); 196 odt_mask_1 = 0x3; 197 } else { 198 /* 199 * - Single-Slot , Dual-Rank (2 CS per DIMM) 200 * 201 * Read: Turn on ODT off on all ranks 202 * Write: Turn on ODT on active rank 203 */ 204 odt_mask_0 = 0x0; 205 odt_mask_1 = 0x3 & (1 << rank); 206 } 207 break; 208 case 4: /* 4 Ranks */ 209 /* Read: 210 * ----------+-----------------------+ 211 * | ODT | 212 * Read From +-----------------------+ 213 * Rank | 3 | 2 | 1 | 0 | 214 * ----------+-----+-----+-----+-----+ 215 * 0 | 0 | 1 | 0 | 0 | 216 * 1 | 1 | 0 | 0 | 0 | 217 * 2 | 0 | 0 | 0 | 1 | 218 * 3 | 0 | 0 | 1 | 0 | 219 * ----------+-----+-----+-----+-----+ 220 * 221 * Write: 222 * ----------+-----------------------+ 223 * | ODT | 224 * Write To +-----------------------+ 225 * Rank | 3 | 2 | 1 | 0 | 226 * ----------+-----+-----+-----+-----+ 227 * 0 | 0 | 1 | 0 | 1 | 228 * 1 | 1 | 0 | 1 | 0 | 229 * 2 | 0 | 1 | 0 | 1 | 230 * 3 | 1 | 0 | 1 | 0 | 231 * ----------+-----+-----+-----+-----+ 232 */ 233 switch (rank) { 234 case 0: 235 odt_mask_0 = 0x4; 236 odt_mask_1 = 0x5; 237 break; 238 case 1: 239 odt_mask_0 = 0x8; 240 odt_mask_1 = 0xA; 241 break; 242 case 2: 243 odt_mask_0 = 0x1; 244 odt_mask_1 = 0x5; 245 break; 246 case 3: 247 odt_mask_0 = 0x2; 248 odt_mask_1 = 0xA; 249 break; 250 } 251 break; 252 } 253 } 254 255 cs_and_odt_mask = (0xFF & ~(1 << rank)) | 256 ((0xFF & odt_mask_0) << 8) | 257 ((0xFF & odt_mask_1) << 16); 258 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS | 259 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 260 } 261 262 /** 263 * scc_mgr_set() - Set SCC Manager register 264 * @off: Base offset in SCC Manager space 265 * @grp: Read/Write group 266 * @val: Value to be set 267 * 268 * This function sets the SCC Manager (Scan Chain Control Manager) register. 269 */ 270 static void scc_mgr_set(u32 off, u32 grp, u32 val) 271 { 272 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2)); 273 } 274 275 /** 276 * scc_mgr_initialize() - Initialize SCC Manager registers 277 * 278 * Initialize SCC Manager registers. 279 */ 280 static void scc_mgr_initialize(void) 281 { 282 /* 283 * Clear register file for HPS. 16 (2^4) is the size of the 284 * full register file in the scc mgr: 285 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + 286 * MEM_IF_READ_DQS_WIDTH - 1); 287 */ 288 int i; 289 290 for (i = 0; i < 16; i++) { 291 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n", 292 __func__, __LINE__, i); 293 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i); 294 } 295 } 296 297 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase) 298 { 299 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase); 300 } 301 302 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay) 303 { 304 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay); 305 } 306 307 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase) 308 { 309 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase); 310 } 311 312 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay) 313 { 314 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay); 315 } 316 317 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay) 318 { 319 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 320 delay); 321 } 322 323 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay) 324 { 325 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay); 326 } 327 328 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay) 329 { 330 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay); 331 } 332 333 static void scc_mgr_set_dqs_out1_delay(uint32_t delay) 334 { 335 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 336 delay); 337 } 338 339 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay) 340 { 341 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, 342 RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm, 343 delay); 344 } 345 346 /* load up dqs config settings */ 347 static void scc_mgr_load_dqs(uint32_t dqs) 348 { 349 writel(dqs, &sdr_scc_mgr->dqs_ena); 350 } 351 352 /* load up dqs io config settings */ 353 static void scc_mgr_load_dqs_io(void) 354 { 355 writel(0, &sdr_scc_mgr->dqs_io_ena); 356 } 357 358 /* load up dq config settings */ 359 static void scc_mgr_load_dq(uint32_t dq_in_group) 360 { 361 writel(dq_in_group, &sdr_scc_mgr->dq_ena); 362 } 363 364 /* load up dm config settings */ 365 static void scc_mgr_load_dm(uint32_t dm) 366 { 367 writel(dm, &sdr_scc_mgr->dm_ena); 368 } 369 370 /** 371 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks 372 * @off: Base offset in SCC Manager space 373 * @grp: Read/Write group 374 * @val: Value to be set 375 * @update: If non-zero, trigger SCC Manager update for all ranks 376 * 377 * This function sets the SCC Manager (Scan Chain Control Manager) register 378 * and optionally triggers the SCC update for all ranks. 379 */ 380 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val, 381 const int update) 382 { 383 u32 r; 384 385 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 386 r += NUM_RANKS_PER_SHADOW_REG) { 387 scc_mgr_set(off, grp, val); 388 389 if (update || (r == 0)) { 390 writel(grp, &sdr_scc_mgr->dqs_ena); 391 writel(0, &sdr_scc_mgr->update); 392 } 393 } 394 } 395 396 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase) 397 { 398 /* 399 * USER although the h/w doesn't support different phases per 400 * shadow register, for simplicity our scc manager modeling 401 * keeps different phase settings per shadow reg, and it's 402 * important for us to keep them in sync to match h/w. 403 * for efficiency, the scan chain update should occur only 404 * once to sr0. 405 */ 406 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET, 407 read_group, phase, 0); 408 } 409 410 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group, 411 uint32_t phase) 412 { 413 /* 414 * USER although the h/w doesn't support different phases per 415 * shadow register, for simplicity our scc manager modeling 416 * keeps different phase settings per shadow reg, and it's 417 * important for us to keep them in sync to match h/w. 418 * for efficiency, the scan chain update should occur only 419 * once to sr0. 420 */ 421 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, 422 write_group, phase, 0); 423 } 424 425 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group, 426 uint32_t delay) 427 { 428 /* 429 * In shadow register mode, the T11 settings are stored in 430 * registers in the core, which are updated by the DQS_ENA 431 * signals. Not issuing the SCC_MGR_UPD command allows us to 432 * save lots of rank switching overhead, by calling 433 * select_shadow_regs_for_update with update_scan_chains 434 * set to 0. 435 */ 436 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET, 437 read_group, delay, 1); 438 writel(0, &sdr_scc_mgr->update); 439 } 440 441 /** 442 * scc_mgr_set_oct_out1_delay() - Set OCT output delay 443 * @write_group: Write group 444 * @delay: Delay value 445 * 446 * This function sets the OCT output delay in SCC manager. 447 */ 448 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay) 449 { 450 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 451 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 452 const int base = write_group * ratio; 453 int i; 454 /* 455 * Load the setting in the SCC manager 456 * Although OCT affects only write data, the OCT delay is controlled 457 * by the DQS logic block which is instantiated once per read group. 458 * For protocols where a write group consists of multiple read groups, 459 * the setting must be set multiple times. 460 */ 461 for (i = 0; i < ratio; i++) 462 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay); 463 } 464 465 /** 466 * scc_mgr_set_hhp_extras() - Set HHP extras. 467 * 468 * Load the fixed setting in the SCC manager HHP extras. 469 */ 470 static void scc_mgr_set_hhp_extras(void) 471 { 472 /* 473 * Load the fixed setting in the SCC manager 474 * bits: 0:0 = 1'b1 - DQS bypass 475 * bits: 1:1 = 1'b1 - DQ bypass 476 * bits: 4:2 = 3'b001 - rfifo_mode 477 * bits: 6:5 = 2'b01 - rfifo clock_select 478 * bits: 7:7 = 1'b0 - separate gating from ungating setting 479 * bits: 8:8 = 1'b0 - separate OE from Output delay setting 480 */ 481 const u32 value = (0 << 8) | (0 << 7) | (1 << 5) | 482 (1 << 2) | (1 << 1) | (1 << 0); 483 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | 484 SCC_MGR_HHP_GLOBALS_OFFSET | 485 SCC_MGR_HHP_EXTRAS_OFFSET; 486 487 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", 488 __func__, __LINE__); 489 writel(value, addr); 490 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n", 491 __func__, __LINE__); 492 } 493 494 /** 495 * scc_mgr_zero_all() - Zero all DQS config 496 * 497 * Zero all DQS config. 498 */ 499 static void scc_mgr_zero_all(void) 500 { 501 int i, r; 502 503 /* 504 * USER Zero all DQS config settings, across all groups and all 505 * shadow registers 506 */ 507 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 508 r += NUM_RANKS_PER_SHADOW_REG) { 509 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 510 /* 511 * The phases actually don't exist on a per-rank basis, 512 * but there's no harm updating them several times, so 513 * let's keep the code simple. 514 */ 515 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE); 516 scc_mgr_set_dqs_en_phase(i, 0); 517 scc_mgr_set_dqs_en_delay(i, 0); 518 } 519 520 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 521 scc_mgr_set_dqdqs_output_phase(i, 0); 522 /* Arria V/Cyclone V don't have out2. */ 523 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE); 524 } 525 } 526 527 /* Multicast to all DQS group enables. */ 528 writel(0xff, &sdr_scc_mgr->dqs_ena); 529 writel(0, &sdr_scc_mgr->update); 530 } 531 532 /** 533 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update 534 * @write_group: Write group 535 * 536 * Set bypass mode and trigger SCC update. 537 */ 538 static void scc_set_bypass_mode(const u32 write_group) 539 { 540 /* Multicast to all DQ enables. */ 541 writel(0xff, &sdr_scc_mgr->dq_ena); 542 writel(0xff, &sdr_scc_mgr->dm_ena); 543 544 /* Update current DQS IO enable. */ 545 writel(0, &sdr_scc_mgr->dqs_io_ena); 546 547 /* Update the DQS logic. */ 548 writel(write_group, &sdr_scc_mgr->dqs_ena); 549 550 /* Hit update. */ 551 writel(0, &sdr_scc_mgr->update); 552 } 553 554 /** 555 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group 556 * @write_group: Write group 557 * 558 * Load DQS settings for Write Group, do not trigger SCC update. 559 */ 560 static void scc_mgr_load_dqs_for_write_group(const u32 write_group) 561 { 562 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 563 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 564 const int base = write_group * ratio; 565 int i; 566 /* 567 * Load the setting in the SCC manager 568 * Although OCT affects only write data, the OCT delay is controlled 569 * by the DQS logic block which is instantiated once per read group. 570 * For protocols where a write group consists of multiple read groups, 571 * the setting must be set multiple times. 572 */ 573 for (i = 0; i < ratio; i++) 574 writel(base + i, &sdr_scc_mgr->dqs_ena); 575 } 576 577 /** 578 * scc_mgr_zero_group() - Zero all configs for a group 579 * 580 * Zero DQ, DM, DQS and OCT configs for a group. 581 */ 582 static void scc_mgr_zero_group(const u32 write_group, const int out_only) 583 { 584 int i, r; 585 586 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 587 r += NUM_RANKS_PER_SHADOW_REG) { 588 /* Zero all DQ config settings. */ 589 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 590 scc_mgr_set_dq_out1_delay(i, 0); 591 if (!out_only) 592 scc_mgr_set_dq_in_delay(i, 0); 593 } 594 595 /* Multicast to all DQ enables. */ 596 writel(0xff, &sdr_scc_mgr->dq_ena); 597 598 /* Zero all DM config settings. */ 599 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 600 scc_mgr_set_dm_out1_delay(i, 0); 601 602 /* Multicast to all DM enables. */ 603 writel(0xff, &sdr_scc_mgr->dm_ena); 604 605 /* Zero all DQS IO settings. */ 606 if (!out_only) 607 scc_mgr_set_dqs_io_in_delay(0); 608 609 /* Arria V/Cyclone V don't have out2. */ 610 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE); 611 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE); 612 scc_mgr_load_dqs_for_write_group(write_group); 613 614 /* Multicast to all DQS IO enables (only 1 in total). */ 615 writel(0, &sdr_scc_mgr->dqs_io_ena); 616 617 /* Hit update to zero everything. */ 618 writel(0, &sdr_scc_mgr->update); 619 } 620 } 621 622 /* 623 * apply and load a particular input delay for the DQ pins in a group 624 * group_bgn is the index of the first dq pin (in the write group) 625 */ 626 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay) 627 { 628 uint32_t i, p; 629 630 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 631 scc_mgr_set_dq_in_delay(p, delay); 632 scc_mgr_load_dq(p); 633 } 634 } 635 636 /** 637 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group 638 * @delay: Delay value 639 * 640 * Apply and load a particular output delay for the DQ pins in a group. 641 */ 642 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay) 643 { 644 int i; 645 646 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 647 scc_mgr_set_dq_out1_delay(i, delay); 648 scc_mgr_load_dq(i); 649 } 650 } 651 652 /* apply and load a particular output delay for the DM pins in a group */ 653 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1) 654 { 655 uint32_t i; 656 657 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 658 scc_mgr_set_dm_out1_delay(i, delay1); 659 scc_mgr_load_dm(i); 660 } 661 } 662 663 664 /* apply and load delay on both DQS and OCT out1 */ 665 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group, 666 uint32_t delay) 667 { 668 scc_mgr_set_dqs_out1_delay(delay); 669 scc_mgr_load_dqs_io(); 670 671 scc_mgr_set_oct_out1_delay(write_group, delay); 672 scc_mgr_load_dqs_for_write_group(write_group); 673 } 674 675 /** 676 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT 677 * @write_group: Write group 678 * @delay: Delay value 679 * 680 * Apply a delay to the entire output side: DQ, DM, DQS, OCT. 681 */ 682 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group, 683 const u32 delay) 684 { 685 u32 i, new_delay; 686 687 /* DQ shift */ 688 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) 689 scc_mgr_load_dq(i); 690 691 /* DM shift */ 692 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 693 scc_mgr_load_dm(i); 694 695 /* DQS shift */ 696 new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay; 697 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 698 debug_cond(DLEVEL == 1, 699 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 700 __func__, __LINE__, write_group, delay, new_delay, 701 IO_IO_OUT2_DELAY_MAX, 702 new_delay - IO_IO_OUT2_DELAY_MAX); 703 new_delay -= IO_IO_OUT2_DELAY_MAX; 704 scc_mgr_set_dqs_out1_delay(new_delay); 705 } 706 707 scc_mgr_load_dqs_io(); 708 709 /* OCT shift */ 710 new_delay = READ_SCC_OCT_OUT2_DELAY + delay; 711 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 712 debug_cond(DLEVEL == 1, 713 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 714 __func__, __LINE__, write_group, delay, 715 new_delay, IO_IO_OUT2_DELAY_MAX, 716 new_delay - IO_IO_OUT2_DELAY_MAX); 717 new_delay -= IO_IO_OUT2_DELAY_MAX; 718 scc_mgr_set_oct_out1_delay(write_group, new_delay); 719 } 720 721 scc_mgr_load_dqs_for_write_group(write_group); 722 } 723 724 /** 725 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks 726 * @write_group: Write group 727 * @delay: Delay value 728 * 729 * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks. 730 */ 731 static void 732 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group, 733 const u32 delay) 734 { 735 int r; 736 737 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 738 r += NUM_RANKS_PER_SHADOW_REG) { 739 scc_mgr_apply_group_all_out_delay_add(write_group, delay); 740 writel(0, &sdr_scc_mgr->update); 741 } 742 } 743 744 /** 745 * set_jump_as_return() - Return instruction optimization 746 * 747 * Optimization used to recover some slots in ddr3 inst_rom could be 748 * applied to other protocols if we wanted to 749 */ 750 static void set_jump_as_return(void) 751 { 752 /* 753 * To save space, we replace return with jump to special shared 754 * RETURN instruction so we set the counter to large value so that 755 * we always jump. 756 */ 757 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0); 758 writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 759 } 760 761 /* 762 * should always use constants as argument to ensure all computations are 763 * performed at compile time 764 */ 765 static void delay_for_n_mem_clocks(const uint32_t clocks) 766 { 767 uint32_t afi_clocks; 768 uint8_t inner = 0; 769 uint8_t outer = 0; 770 uint16_t c_loop = 0; 771 772 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks); 773 774 775 afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO; 776 /* scale (rounding up) to get afi clocks */ 777 778 /* 779 * Note, we don't bother accounting for being off a little bit 780 * because of a few extra instructions in outer loops 781 * Note, the loops have a test at the end, and do the test before 782 * the decrement, and so always perform the loop 783 * 1 time more than the counter value 784 */ 785 if (afi_clocks == 0) { 786 ; 787 } else if (afi_clocks <= 0x100) { 788 inner = afi_clocks-1; 789 outer = 0; 790 c_loop = 0; 791 } else if (afi_clocks <= 0x10000) { 792 inner = 0xff; 793 outer = (afi_clocks-1) >> 8; 794 c_loop = 0; 795 } else { 796 inner = 0xff; 797 outer = 0xff; 798 c_loop = (afi_clocks-1) >> 16; 799 } 800 801 /* 802 * rom instructions are structured as follows: 803 * 804 * IDLE_LOOP2: jnz cntr0, TARGET_A 805 * IDLE_LOOP1: jnz cntr1, TARGET_B 806 * return 807 * 808 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and 809 * TARGET_B is set to IDLE_LOOP2 as well 810 * 811 * if we have no outer loop, though, then we can use IDLE_LOOP1 only, 812 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely 813 * 814 * a little confusing, but it helps save precious space in the inst_rom 815 * and sequencer rom and keeps the delays more accurate and reduces 816 * overhead 817 */ 818 if (afi_clocks <= 0x100) { 819 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 820 &sdr_rw_load_mgr_regs->load_cntr1); 821 822 writel(RW_MGR_IDLE_LOOP1, 823 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 824 825 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 826 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 827 } else { 828 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 829 &sdr_rw_load_mgr_regs->load_cntr0); 830 831 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), 832 &sdr_rw_load_mgr_regs->load_cntr1); 833 834 writel(RW_MGR_IDLE_LOOP2, 835 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 836 837 writel(RW_MGR_IDLE_LOOP2, 838 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 839 840 /* hack to get around compiler not being smart enough */ 841 if (afi_clocks <= 0x10000) { 842 /* only need to run once */ 843 writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS | 844 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 845 } else { 846 do { 847 writel(RW_MGR_IDLE_LOOP2, 848 SDR_PHYGRP_RWMGRGRP_ADDRESS | 849 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 850 } while (c_loop-- != 0); 851 } 852 } 853 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks); 854 } 855 856 /** 857 * rw_mgr_mem_init_load_regs() - Load instruction registers 858 * @cntr0: Counter 0 value 859 * @cntr1: Counter 1 value 860 * @cntr2: Counter 2 value 861 * @jump: Jump instruction value 862 * 863 * Load instruction registers. 864 */ 865 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump) 866 { 867 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 868 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 869 870 /* Load counters */ 871 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0), 872 &sdr_rw_load_mgr_regs->load_cntr0); 873 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1), 874 &sdr_rw_load_mgr_regs->load_cntr1); 875 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2), 876 &sdr_rw_load_mgr_regs->load_cntr2); 877 878 /* Load jump address */ 879 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 880 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1); 881 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 882 883 /* Execute count instruction */ 884 writel(jump, grpaddr); 885 } 886 887 /** 888 * rw_mgr_mem_load_user() - Load user calibration values 889 * @fin1: Final instruction 1 890 * @fin2: Final instruction 2 891 * @precharge: If 1, precharge the banks at the end 892 * 893 * Load user calibration values and optionally precharge the banks. 894 */ 895 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2, 896 const int precharge) 897 { 898 u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 899 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 900 u32 r; 901 902 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 903 if (param->skip_ranks[r]) { 904 /* request to skip the rank */ 905 continue; 906 } 907 908 /* set rank */ 909 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 910 911 /* precharge all banks ... */ 912 if (precharge) 913 writel(RW_MGR_PRECHARGE_ALL, grpaddr); 914 915 /* 916 * USER Use Mirror-ed commands for odd ranks if address 917 * mirrorring is on 918 */ 919 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 920 set_jump_as_return(); 921 writel(RW_MGR_MRS2_MIRR, grpaddr); 922 delay_for_n_mem_clocks(4); 923 set_jump_as_return(); 924 writel(RW_MGR_MRS3_MIRR, grpaddr); 925 delay_for_n_mem_clocks(4); 926 set_jump_as_return(); 927 writel(RW_MGR_MRS1_MIRR, grpaddr); 928 delay_for_n_mem_clocks(4); 929 set_jump_as_return(); 930 writel(fin1, grpaddr); 931 } else { 932 set_jump_as_return(); 933 writel(RW_MGR_MRS2, grpaddr); 934 delay_for_n_mem_clocks(4); 935 set_jump_as_return(); 936 writel(RW_MGR_MRS3, grpaddr); 937 delay_for_n_mem_clocks(4); 938 set_jump_as_return(); 939 writel(RW_MGR_MRS1, grpaddr); 940 set_jump_as_return(); 941 writel(fin2, grpaddr); 942 } 943 944 if (precharge) 945 continue; 946 947 set_jump_as_return(); 948 writel(RW_MGR_ZQCL, grpaddr); 949 950 /* tZQinit = tDLLK = 512 ck cycles */ 951 delay_for_n_mem_clocks(512); 952 } 953 } 954 955 /** 956 * rw_mgr_mem_initialize() - Initialize RW Manager 957 * 958 * Initialize RW Manager. 959 */ 960 static void rw_mgr_mem_initialize(void) 961 { 962 debug("%s:%d\n", __func__, __LINE__); 963 964 /* The reset / cke part of initialization is broadcasted to all ranks */ 965 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 966 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 967 968 /* 969 * Here's how you load register for a loop 970 * Counters are located @ 0x800 971 * Jump address are located @ 0xC00 972 * For both, registers 0 to 3 are selected using bits 3 and 2, like 973 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C 974 * I know this ain't pretty, but Avalon bus throws away the 2 least 975 * significant bits 976 */ 977 978 /* Start with memory RESET activated */ 979 980 /* tINIT = 200us */ 981 982 /* 983 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles 984 * If a and b are the number of iteration in 2 nested loops 985 * it takes the following number of cycles to complete the operation: 986 * number_of_cycles = ((2 + n) * a + 2) * b 987 * where n is the number of instruction in the inner loop 988 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF, 989 * b = 6A 990 */ 991 rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL, 992 SEQ_TINIT_CNTR2_VAL, 993 RW_MGR_INIT_RESET_0_CKE_0); 994 995 /* Indicate that memory is stable. */ 996 writel(1, &phy_mgr_cfg->reset_mem_stbl); 997 998 /* 999 * transition the RESET to high 1000 * Wait for 500us 1001 */ 1002 1003 /* 1004 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles 1005 * If a and b are the number of iteration in 2 nested loops 1006 * it takes the following number of cycles to complete the operation 1007 * number_of_cycles = ((2 + n) * a + 2) * b 1008 * where n is the number of instruction in the inner loop 1009 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83, 1010 * b = FF 1011 */ 1012 rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL, 1013 SEQ_TRESET_CNTR2_VAL, 1014 RW_MGR_INIT_RESET_1_CKE_0); 1015 1016 /* Bring up clock enable. */ 1017 1018 /* tXRP < 250 ck cycles */ 1019 delay_for_n_mem_clocks(250); 1020 1021 rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET, 1022 0); 1023 } 1024 1025 /* 1026 * At the end of calibration we have to program the user settings in, and 1027 * USER hand off the memory to the user. 1028 */ 1029 static void rw_mgr_mem_handoff(void) 1030 { 1031 rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1); 1032 /* 1033 * USER need to wait tMOD (12CK or 15ns) time before issuing 1034 * other commands, but we will have plenty of NIOS cycles before 1035 * actual handoff so its okay. 1036 */ 1037 } 1038 1039 /** 1040 * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns 1041 * @rank_bgn: Rank number 1042 * @group: Read/Write Group 1043 * @all_ranks: Test all ranks 1044 * 1045 * Performs a guaranteed read on the patterns we are going to use during a 1046 * read test to ensure memory works. 1047 */ 1048 static int 1049 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group, 1050 const u32 all_ranks) 1051 { 1052 const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1053 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1054 const u32 addr_offset = 1055 (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2; 1056 const u32 rank_end = all_ranks ? 1057 RW_MGR_MEM_NUMBER_OF_RANKS : 1058 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1059 const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 1060 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 1061 const u32 correct_mask_vg = param->read_correct_mask_vg; 1062 1063 u32 tmp_bit_chk, base_rw_mgr, bit_chk; 1064 int vg, r; 1065 int ret = 0; 1066 1067 bit_chk = param->read_correct_mask; 1068 1069 for (r = rank_bgn; r < rank_end; r++) { 1070 /* Request to skip the rank */ 1071 if (param->skip_ranks[r]) 1072 continue; 1073 1074 /* Set rank */ 1075 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1076 1077 /* Load up a constant bursts of read commands */ 1078 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1079 writel(RW_MGR_GUARANTEED_READ, 1080 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1081 1082 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1083 writel(RW_MGR_GUARANTEED_READ_CONT, 1084 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1085 1086 tmp_bit_chk = 0; 1087 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; 1088 vg >= 0; vg--) { 1089 /* Reset the FIFOs to get pointers to known state. */ 1090 writel(0, &phy_mgr_cmd->fifo_reset); 1091 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1092 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1093 writel(RW_MGR_GUARANTEED_READ, 1094 addr + addr_offset + (vg << 2)); 1095 1096 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1097 tmp_bit_chk <<= shift_ratio; 1098 tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr; 1099 } 1100 1101 bit_chk &= tmp_bit_chk; 1102 } 1103 1104 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1105 1106 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1107 1108 if (bit_chk != param->read_correct_mask) 1109 ret = -EIO; 1110 1111 debug_cond(DLEVEL == 1, 1112 "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n", 1113 __func__, __LINE__, group, bit_chk, 1114 param->read_correct_mask, ret); 1115 1116 return ret; 1117 } 1118 1119 /** 1120 * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test 1121 * @rank_bgn: Rank number 1122 * @all_ranks: Test all ranks 1123 * 1124 * Load up the patterns we are going to use during a read test. 1125 */ 1126 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn, 1127 const int all_ranks) 1128 { 1129 const u32 rank_end = all_ranks ? 1130 RW_MGR_MEM_NUMBER_OF_RANKS : 1131 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1132 u32 r; 1133 1134 debug("%s:%d\n", __func__, __LINE__); 1135 1136 for (r = rank_bgn; r < rank_end; r++) { 1137 if (param->skip_ranks[r]) 1138 /* request to skip the rank */ 1139 continue; 1140 1141 /* set rank */ 1142 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1143 1144 /* Load up a constant bursts */ 1145 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1146 1147 writel(RW_MGR_GUARANTEED_WRITE_WAIT0, 1148 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1149 1150 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1151 1152 writel(RW_MGR_GUARANTEED_WRITE_WAIT1, 1153 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1154 1155 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2); 1156 1157 writel(RW_MGR_GUARANTEED_WRITE_WAIT2, 1158 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1159 1160 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3); 1161 1162 writel(RW_MGR_GUARANTEED_WRITE_WAIT3, 1163 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1164 1165 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1166 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 1167 } 1168 1169 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1170 } 1171 1172 /* 1173 * try a read and see if it returns correct data back. has dummy reads 1174 * inserted into the mix used to align dqs enable. has more thorough checks 1175 * than the regular read test. 1176 */ 1177 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group, 1178 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1179 uint32_t all_groups, uint32_t all_ranks) 1180 { 1181 uint32_t r, vg; 1182 uint32_t correct_mask_vg; 1183 uint32_t tmp_bit_chk; 1184 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1185 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1186 uint32_t addr; 1187 uint32_t base_rw_mgr; 1188 1189 *bit_chk = param->read_correct_mask; 1190 correct_mask_vg = param->read_correct_mask_vg; 1191 1192 uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) & 1193 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION); 1194 1195 for (r = rank_bgn; r < rank_end; r++) { 1196 if (param->skip_ranks[r]) 1197 /* request to skip the rank */ 1198 continue; 1199 1200 /* set rank */ 1201 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1202 1203 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1); 1204 1205 writel(RW_MGR_READ_B2B_WAIT1, 1206 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1207 1208 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2); 1209 writel(RW_MGR_READ_B2B_WAIT2, 1210 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1211 1212 if (quick_read_mode) 1213 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0); 1214 /* need at least two (1+1) reads to capture failures */ 1215 else if (all_groups) 1216 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0); 1217 else 1218 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0); 1219 1220 writel(RW_MGR_READ_B2B, 1221 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1222 if (all_groups) 1223 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH * 1224 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1, 1225 &sdr_rw_load_mgr_regs->load_cntr3); 1226 else 1227 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3); 1228 1229 writel(RW_MGR_READ_B2B, 1230 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1231 1232 tmp_bit_chk = 0; 1233 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1234 /* reset the fifos to get pointers to known state */ 1235 writel(0, &phy_mgr_cmd->fifo_reset); 1236 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1237 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1238 1239 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1240 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1241 1242 if (all_groups) 1243 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET; 1244 else 1245 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1246 1247 writel(RW_MGR_READ_B2B, addr + 1248 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1249 vg) << 2)); 1250 1251 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1252 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 1253 1254 if (vg == 0) 1255 break; 1256 } 1257 *bit_chk &= tmp_bit_chk; 1258 } 1259 1260 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1261 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1262 1263 if (all_correct) { 1264 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1265 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\ 1266 (%u == %u) => %lu", __func__, __LINE__, group, 1267 all_groups, *bit_chk, param->read_correct_mask, 1268 (long unsigned int)(*bit_chk == 1269 param->read_correct_mask)); 1270 return *bit_chk == param->read_correct_mask; 1271 } else { 1272 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1273 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\ 1274 (%u != %lu) => %lu\n", __func__, __LINE__, 1275 group, all_groups, *bit_chk, (long unsigned int)0, 1276 (long unsigned int)(*bit_chk != 0x00)); 1277 return *bit_chk != 0x00; 1278 } 1279 } 1280 1281 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group, 1282 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1283 uint32_t all_groups) 1284 { 1285 return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct, 1286 bit_chk, all_groups, 1); 1287 } 1288 1289 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v) 1290 { 1291 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy); 1292 (*v)++; 1293 } 1294 1295 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v) 1296 { 1297 uint32_t i; 1298 1299 for (i = 0; i < VFIFO_SIZE-1; i++) 1300 rw_mgr_incr_vfifo(grp, v); 1301 } 1302 1303 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk) 1304 { 1305 uint32_t v; 1306 uint32_t fail_cnt = 0; 1307 uint32_t test_status; 1308 1309 for (v = 0; v < VFIFO_SIZE; ) { 1310 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n", 1311 __func__, __LINE__, v); 1312 test_status = rw_mgr_mem_calibrate_read_test_all_ranks 1313 (grp, 1, PASS_ONE_BIT, bit_chk, 0); 1314 if (!test_status) { 1315 fail_cnt++; 1316 1317 if (fail_cnt == 2) 1318 break; 1319 } 1320 1321 /* fiddle with FIFO */ 1322 rw_mgr_incr_vfifo(grp, &v); 1323 } 1324 1325 if (v >= VFIFO_SIZE) { 1326 /* no failing read found!! Something must have gone wrong */ 1327 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n", 1328 __func__, __LINE__); 1329 return 0; 1330 } else { 1331 return v; 1332 } 1333 } 1334 1335 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk, 1336 uint32_t dtaps_per_ptap, uint32_t *work_bgn, 1337 uint32_t *v, uint32_t *d, uint32_t *p, 1338 uint32_t *i, uint32_t *max_working_cnt) 1339 { 1340 uint32_t found_begin = 0; 1341 uint32_t tmp_delay = 0; 1342 uint32_t test_status; 1343 1344 for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay += 1345 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1346 *work_bgn = tmp_delay; 1347 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1348 1349 for (*i = 0; *i < VFIFO_SIZE; (*i)++) { 1350 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn += 1351 IO_DELAY_PER_OPA_TAP) { 1352 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1353 1354 test_status = 1355 rw_mgr_mem_calibrate_read_test_all_ranks 1356 (*grp, 1, PASS_ONE_BIT, bit_chk, 0); 1357 1358 if (test_status) { 1359 *max_working_cnt = 1; 1360 found_begin = 1; 1361 break; 1362 } 1363 } 1364 1365 if (found_begin) 1366 break; 1367 1368 if (*p > IO_DQS_EN_PHASE_MAX) 1369 /* fiddle with FIFO */ 1370 rw_mgr_incr_vfifo(*grp, v); 1371 } 1372 1373 if (found_begin) 1374 break; 1375 } 1376 1377 if (*i >= VFIFO_SIZE) { 1378 /* cannot find working solution */ 1379 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\ 1380 ptap/dtap\n", __func__, __LINE__); 1381 return 0; 1382 } else { 1383 return 1; 1384 } 1385 } 1386 1387 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk, 1388 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1389 uint32_t *p, uint32_t *max_working_cnt) 1390 { 1391 uint32_t found_begin = 0; 1392 uint32_t tmp_delay; 1393 1394 /* Special case code for backing up a phase */ 1395 if (*p == 0) { 1396 *p = IO_DQS_EN_PHASE_MAX; 1397 rw_mgr_decr_vfifo(*grp, v); 1398 } else { 1399 (*p)--; 1400 } 1401 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP; 1402 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1403 1404 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; 1405 (*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1406 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1407 1408 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1, 1409 PASS_ONE_BIT, 1410 bit_chk, 0)) { 1411 found_begin = 1; 1412 *work_bgn = tmp_delay; 1413 break; 1414 } 1415 } 1416 1417 /* We have found a working dtap before the ptap found above */ 1418 if (found_begin == 1) 1419 (*max_working_cnt)++; 1420 1421 /* 1422 * Restore VFIFO to old state before we decremented it 1423 * (if needed). 1424 */ 1425 (*p)++; 1426 if (*p > IO_DQS_EN_PHASE_MAX) { 1427 *p = 0; 1428 rw_mgr_incr_vfifo(*grp, v); 1429 } 1430 1431 scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0); 1432 } 1433 1434 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk, 1435 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1436 uint32_t *p, uint32_t *i, uint32_t *max_working_cnt, 1437 uint32_t *work_end) 1438 { 1439 uint32_t found_end = 0; 1440 1441 (*p)++; 1442 *work_end += IO_DELAY_PER_OPA_TAP; 1443 if (*p > IO_DQS_EN_PHASE_MAX) { 1444 /* fiddle with FIFO */ 1445 *p = 0; 1446 rw_mgr_incr_vfifo(*grp, v); 1447 } 1448 1449 for (; *i < VFIFO_SIZE + 1; (*i)++) { 1450 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end 1451 += IO_DELAY_PER_OPA_TAP) { 1452 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1453 1454 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1455 (*grp, 1, PASS_ONE_BIT, bit_chk, 0)) { 1456 found_end = 1; 1457 break; 1458 } else { 1459 (*max_working_cnt)++; 1460 } 1461 } 1462 1463 if (found_end) 1464 break; 1465 1466 if (*p > IO_DQS_EN_PHASE_MAX) { 1467 /* fiddle with FIFO */ 1468 rw_mgr_incr_vfifo(*grp, v); 1469 *p = 0; 1470 } 1471 } 1472 1473 if (*i >= VFIFO_SIZE + 1) { 1474 /* cannot see edge of failing read */ 1475 debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\ 1476 failed\n", __func__, __LINE__); 1477 return 0; 1478 } else { 1479 return 1; 1480 } 1481 } 1482 1483 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk, 1484 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1485 uint32_t *p, uint32_t *work_mid, 1486 uint32_t *work_end) 1487 { 1488 int i; 1489 int tmp_delay = 0; 1490 1491 *work_mid = (*work_bgn + *work_end) / 2; 1492 1493 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n", 1494 *work_bgn, *work_end, *work_mid); 1495 /* Get the middle delay to be less than a VFIFO delay */ 1496 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; 1497 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP) 1498 ; 1499 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay); 1500 while (*work_mid > tmp_delay) 1501 *work_mid -= tmp_delay; 1502 debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid); 1503 1504 tmp_delay = 0; 1505 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid; 1506 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP) 1507 ; 1508 tmp_delay -= IO_DELAY_PER_OPA_TAP; 1509 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay); 1510 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++, 1511 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) 1512 ; 1513 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay); 1514 1515 scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1); 1516 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1517 1518 /* 1519 * push vfifo until we can successfully calibrate. We can do this 1520 * because the largest possible margin in 1 VFIFO cycle. 1521 */ 1522 for (i = 0; i < VFIFO_SIZE; i++) { 1523 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n", 1524 *v); 1525 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1, 1526 PASS_ONE_BIT, 1527 bit_chk, 0)) { 1528 break; 1529 } 1530 1531 /* fiddle with FIFO */ 1532 rw_mgr_incr_vfifo(*grp, v); 1533 } 1534 1535 if (i >= VFIFO_SIZE) { 1536 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \ 1537 failed\n", __func__, __LINE__); 1538 return 0; 1539 } else { 1540 return 1; 1541 } 1542 } 1543 1544 /* find a good dqs enable to use */ 1545 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp) 1546 { 1547 uint32_t v, d, p, i; 1548 uint32_t max_working_cnt; 1549 uint32_t bit_chk; 1550 uint32_t dtaps_per_ptap; 1551 uint32_t work_bgn, work_mid, work_end; 1552 uint32_t found_passing_read, found_failing_read, initial_failing_dtap; 1553 1554 debug("%s:%d %u\n", __func__, __LINE__, grp); 1555 1556 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 1557 1558 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1559 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); 1560 1561 /* ************************************************************** */ 1562 /* * Step 0 : Determine number of delay taps for each phase tap * */ 1563 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1564 1565 /* ********************************************************* */ 1566 /* * Step 1 : First push vfifo until we get a failing read * */ 1567 v = find_vfifo_read(grp, &bit_chk); 1568 1569 max_working_cnt = 0; 1570 1571 /* ******************************************************** */ 1572 /* * step 2: find first working phase, increment in ptaps * */ 1573 work_bgn = 0; 1574 if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d, 1575 &p, &i, &max_working_cnt) == 0) 1576 return 0; 1577 1578 work_end = work_bgn; 1579 1580 /* 1581 * If d is 0 then the working window covers a phase tap and 1582 * we can follow the old procedure otherwise, we've found the beginning, 1583 * and we need to increment the dtaps until we find the end. 1584 */ 1585 if (d == 0) { 1586 /* ********************************************************* */ 1587 /* * step 3a: if we have room, back off by one and 1588 increment in dtaps * */ 1589 1590 sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1591 &max_working_cnt); 1592 1593 /* ********************************************************* */ 1594 /* * step 4a: go forward from working phase to non working 1595 phase, increment in ptaps * */ 1596 if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1597 &i, &max_working_cnt, &work_end) == 0) 1598 return 0; 1599 1600 /* ********************************************************* */ 1601 /* * step 5a: back off one from last, increment in dtaps * */ 1602 1603 /* Special case code for backing up a phase */ 1604 if (p == 0) { 1605 p = IO_DQS_EN_PHASE_MAX; 1606 rw_mgr_decr_vfifo(grp, &v); 1607 } else { 1608 p = p - 1; 1609 } 1610 1611 work_end -= IO_DELAY_PER_OPA_TAP; 1612 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1613 1614 /* * The actual increment of dtaps is done outside of 1615 the if/else loop to share code */ 1616 d = 0; 1617 1618 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \ 1619 vfifo=%u ptap=%u\n", __func__, __LINE__, 1620 v, p); 1621 } else { 1622 /* ******************************************************* */ 1623 /* * step 3-5b: Find the right edge of the window using 1624 delay taps * */ 1625 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \ 1626 ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__, 1627 v, p, d, work_bgn); 1628 1629 work_end = work_bgn; 1630 1631 /* * The actual increment of dtaps is done outside of the 1632 if/else loop to share code */ 1633 1634 /* Only here to counterbalance a subtract later on which is 1635 not needed if this branch of the algorithm is taken */ 1636 max_working_cnt++; 1637 } 1638 1639 /* The dtap increment to find the failing edge is done here */ 1640 for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end += 1641 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1642 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1643 end-2: dtap=%u\n", __func__, __LINE__, d); 1644 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1645 1646 if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1647 PASS_ONE_BIT, 1648 &bit_chk, 0)) { 1649 break; 1650 } 1651 } 1652 1653 /* Go back to working dtap */ 1654 if (d != 0) 1655 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1656 1657 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \ 1658 ptap=%u dtap=%u end=%u\n", __func__, __LINE__, 1659 v, p, d-1, work_end); 1660 1661 if (work_end < work_bgn) { 1662 /* nil range */ 1663 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \ 1664 failed\n", __func__, __LINE__); 1665 return 0; 1666 } 1667 1668 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n", 1669 __func__, __LINE__, work_bgn, work_end); 1670 1671 /* *************************************************************** */ 1672 /* 1673 * * We need to calculate the number of dtaps that equal a ptap 1674 * * To do that we'll back up a ptap and re-find the edge of the 1675 * * window using dtaps 1676 */ 1677 1678 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \ 1679 for tracking\n", __func__, __LINE__); 1680 1681 /* Special case code for backing up a phase */ 1682 if (p == 0) { 1683 p = IO_DQS_EN_PHASE_MAX; 1684 rw_mgr_decr_vfifo(grp, &v); 1685 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1686 cycle/phase: v=%u p=%u\n", __func__, __LINE__, 1687 v, p); 1688 } else { 1689 p = p - 1; 1690 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1691 phase only: v=%u p=%u", __func__, __LINE__, 1692 v, p); 1693 } 1694 1695 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1696 1697 /* 1698 * Increase dtap until we first see a passing read (in case the 1699 * window is smaller than a ptap), 1700 * and then a failing read to mark the edge of the window again 1701 */ 1702 1703 /* Find a passing read */ 1704 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n", 1705 __func__, __LINE__); 1706 found_passing_read = 0; 1707 found_failing_read = 0; 1708 initial_failing_dtap = d; 1709 for (; d <= IO_DQS_EN_DELAY_MAX; d++) { 1710 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \ 1711 read d=%u\n", __func__, __LINE__, d); 1712 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1713 1714 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1715 PASS_ONE_BIT, 1716 &bit_chk, 0)) { 1717 found_passing_read = 1; 1718 break; 1719 } 1720 } 1721 1722 if (found_passing_read) { 1723 /* Find a failing read */ 1724 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \ 1725 read\n", __func__, __LINE__); 1726 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) { 1727 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1728 testing read d=%u\n", __func__, __LINE__, d); 1729 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1730 1731 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1732 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { 1733 found_failing_read = 1; 1734 break; 1735 } 1736 } 1737 } else { 1738 debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \ 1739 calculate dtaps", __func__, __LINE__); 1740 debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n"); 1741 } 1742 1743 /* 1744 * The dynamically calculated dtaps_per_ptap is only valid if we 1745 * found a passing/failing read. If we didn't, it means d hit the max 1746 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its 1747 * statically calculated value. 1748 */ 1749 if (found_passing_read && found_failing_read) 1750 dtaps_per_ptap = d - initial_failing_dtap; 1751 1752 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 1753 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \ 1754 - %u = %u", __func__, __LINE__, d, 1755 initial_failing_dtap, dtaps_per_ptap); 1756 1757 /* ******************************************** */ 1758 /* * step 6: Find the centre of the window * */ 1759 if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1760 &work_mid, &work_end) == 0) 1761 return 0; 1762 1763 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \ 1764 vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__, 1765 v, p-1, d); 1766 return 1; 1767 } 1768 1769 /* 1770 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different 1771 * dq_in_delay values 1772 */ 1773 static int 1774 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay 1775 (const u32 rw_group, const u32 test_bgn) 1776 { 1777 /* We start at zero, so have one less dq to devide among */ 1778 const u32 delay_step = IO_IO_IN_DELAY_MAX / 1779 (RW_MGR_MEM_DQ_PER_READ_DQS - 1); 1780 int found; 1781 u32 i, p, d, r; 1782 1783 debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn); 1784 1785 /* Try different dq_in_delays since the DQ path is shorter than DQS. */ 1786 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 1787 r += NUM_RANKS_PER_SHADOW_REG) { 1788 for (i = 0, p = test_bgn, d = 0; 1789 i < RW_MGR_MEM_DQ_PER_READ_DQS; 1790 i++, p++, d += delay_step) { 1791 debug_cond(DLEVEL == 1, 1792 "%s:%d: g=%u r=%u i=%u p=%u d=%u\n", 1793 __func__, __LINE__, rw_group, r, i, p, d); 1794 1795 scc_mgr_set_dq_in_delay(p, d); 1796 scc_mgr_load_dq(p); 1797 } 1798 1799 writel(0, &sdr_scc_mgr->update); 1800 } 1801 1802 found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group); 1803 1804 debug_cond(DLEVEL == 1, 1805 "%s:%d: g=%u found=%u; Reseting delay chain to zero\n", 1806 __func__, __LINE__, rw_group, found); 1807 1808 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 1809 r += NUM_RANKS_PER_SHADOW_REG) { 1810 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 1811 writel(0, &sdr_scc_mgr->update); 1812 } 1813 1814 if (!found) 1815 return -EINVAL; 1816 1817 return 0; 1818 } 1819 1820 /* per-bit deskew DQ and center */ 1821 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn, 1822 uint32_t write_group, uint32_t read_group, uint32_t test_bgn, 1823 uint32_t use_read_test, uint32_t update_fom) 1824 { 1825 uint32_t i, p, d, min_index; 1826 /* 1827 * Store these as signed since there are comparisons with 1828 * signed numbers. 1829 */ 1830 uint32_t bit_chk; 1831 uint32_t sticky_bit_chk; 1832 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1833 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1834 int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS]; 1835 int32_t mid; 1836 int32_t orig_mid_min, mid_min; 1837 int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs, 1838 final_dqs_en; 1839 int32_t dq_margin, dqs_margin; 1840 uint32_t stop; 1841 uint32_t temp_dq_in_delay1, temp_dq_in_delay2; 1842 uint32_t addr; 1843 1844 debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn); 1845 1846 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET; 1847 start_dqs = readl(addr + (read_group << 2)); 1848 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 1849 start_dqs_en = readl(addr + ((read_group << 2) 1850 - IO_DQS_EN_DELAY_OFFSET)); 1851 1852 /* set the left and right edge of each bit to an illegal value */ 1853 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */ 1854 sticky_bit_chk = 0; 1855 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1856 left_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1857 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1858 } 1859 1860 /* Search for the left edge of the window for each bit */ 1861 for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) { 1862 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d); 1863 1864 writel(0, &sdr_scc_mgr->update); 1865 1866 /* 1867 * Stop searching when the read test doesn't pass AND when 1868 * we've seen a passing read on every bit. 1869 */ 1870 if (use_read_test) { 1871 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1872 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1873 &bit_chk, 0, 0); 1874 } else { 1875 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1876 0, PASS_ONE_BIT, 1877 &bit_chk, 0); 1878 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1879 (read_group - (write_group * 1880 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1881 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1882 stop = (bit_chk == 0); 1883 } 1884 sticky_bit_chk = sticky_bit_chk | bit_chk; 1885 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1886 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \ 1887 && %u", __func__, __LINE__, d, 1888 sticky_bit_chk, 1889 param->read_correct_mask, stop); 1890 1891 if (stop == 1) { 1892 break; 1893 } else { 1894 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1895 if (bit_chk & 1) { 1896 /* Remember a passing test as the 1897 left_edge */ 1898 left_edge[i] = d; 1899 } else { 1900 /* If a left edge has not been seen yet, 1901 then a future passing test will mark 1902 this edge as the right edge */ 1903 if (left_edge[i] == 1904 IO_IO_IN_DELAY_MAX + 1) { 1905 right_edge[i] = -(d + 1); 1906 } 1907 } 1908 bit_chk = bit_chk >> 1; 1909 } 1910 } 1911 } 1912 1913 /* Reset DQ delay chains to 0 */ 1914 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 1915 sticky_bit_chk = 0; 1916 for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) { 1917 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 1918 %d right_edge[%u]: %d\n", __func__, __LINE__, 1919 i, left_edge[i], i, right_edge[i]); 1920 1921 /* 1922 * Check for cases where we haven't found the left edge, 1923 * which makes our assignment of the the right edge invalid. 1924 * Reset it to the illegal value. 1925 */ 1926 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && ( 1927 right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1928 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1929 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \ 1930 right_edge[%u]: %d\n", __func__, __LINE__, 1931 i, right_edge[i]); 1932 } 1933 1934 /* 1935 * Reset sticky bit (except for bits where we have seen 1936 * both the left and right edge). 1937 */ 1938 sticky_bit_chk = sticky_bit_chk << 1; 1939 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) && 1940 (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1941 sticky_bit_chk = sticky_bit_chk | 1; 1942 } 1943 1944 if (i == 0) 1945 break; 1946 } 1947 1948 /* Search for the right edge of the window for each bit */ 1949 for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) { 1950 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs); 1951 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 1952 uint32_t delay = d + start_dqs_en; 1953 if (delay > IO_DQS_EN_DELAY_MAX) 1954 delay = IO_DQS_EN_DELAY_MAX; 1955 scc_mgr_set_dqs_en_delay(read_group, delay); 1956 } 1957 scc_mgr_load_dqs(read_group); 1958 1959 writel(0, &sdr_scc_mgr->update); 1960 1961 /* 1962 * Stop searching when the read test doesn't pass AND when 1963 * we've seen a passing read on every bit. 1964 */ 1965 if (use_read_test) { 1966 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1967 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1968 &bit_chk, 0, 0); 1969 } else { 1970 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1971 0, PASS_ONE_BIT, 1972 &bit_chk, 0); 1973 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1974 (read_group - (write_group * 1975 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1976 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1977 stop = (bit_chk == 0); 1978 } 1979 sticky_bit_chk = sticky_bit_chk | bit_chk; 1980 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1981 1982 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \ 1983 %u && %u", __func__, __LINE__, d, 1984 sticky_bit_chk, param->read_correct_mask, stop); 1985 1986 if (stop == 1) { 1987 break; 1988 } else { 1989 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1990 if (bit_chk & 1) { 1991 /* Remember a passing test as 1992 the right_edge */ 1993 right_edge[i] = d; 1994 } else { 1995 if (d != 0) { 1996 /* If a right edge has not been 1997 seen yet, then a future passing 1998 test will mark this edge as the 1999 left edge */ 2000 if (right_edge[i] == 2001 IO_IO_IN_DELAY_MAX + 1) { 2002 left_edge[i] = -(d + 1); 2003 } 2004 } else { 2005 /* d = 0 failed, but it passed 2006 when testing the left edge, 2007 so it must be marginal, 2008 set it to -1 */ 2009 if (right_edge[i] == 2010 IO_IO_IN_DELAY_MAX + 1 && 2011 left_edge[i] != 2012 IO_IO_IN_DELAY_MAX 2013 + 1) { 2014 right_edge[i] = -1; 2015 } 2016 /* If a right edge has not been 2017 seen yet, then a future passing 2018 test will mark this edge as the 2019 left edge */ 2020 else if (right_edge[i] == 2021 IO_IO_IN_DELAY_MAX + 2022 1) { 2023 left_edge[i] = -(d + 1); 2024 } 2025 } 2026 } 2027 2028 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\ 2029 d=%u]: ", __func__, __LINE__, d); 2030 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ", 2031 (int)(bit_chk & 1), i, left_edge[i]); 2032 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2033 right_edge[i]); 2034 bit_chk = bit_chk >> 1; 2035 } 2036 } 2037 } 2038 2039 /* Check that all bits have a window */ 2040 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2041 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 2042 %d right_edge[%u]: %d", __func__, __LINE__, 2043 i, left_edge[i], i, right_edge[i]); 2044 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i] 2045 == IO_IO_IN_DELAY_MAX + 1)) { 2046 /* 2047 * Restore delay chain settings before letting the loop 2048 * in rw_mgr_mem_calibrate_vfifo to retry different 2049 * dqs/ck relationships. 2050 */ 2051 scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs); 2052 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2053 scc_mgr_set_dqs_en_delay(read_group, 2054 start_dqs_en); 2055 } 2056 scc_mgr_load_dqs(read_group); 2057 writel(0, &sdr_scc_mgr->update); 2058 2059 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \ 2060 find edge [%u]: %d %d", __func__, __LINE__, 2061 i, left_edge[i], right_edge[i]); 2062 if (use_read_test) { 2063 set_failing_group_stage(read_group * 2064 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2065 CAL_STAGE_VFIFO, 2066 CAL_SUBSTAGE_VFIFO_CENTER); 2067 } else { 2068 set_failing_group_stage(read_group * 2069 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2070 CAL_STAGE_VFIFO_AFTER_WRITES, 2071 CAL_SUBSTAGE_VFIFO_CENTER); 2072 } 2073 return 0; 2074 } 2075 } 2076 2077 /* Find middle of window for each DQ bit */ 2078 mid_min = left_edge[0] - right_edge[0]; 2079 min_index = 0; 2080 for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2081 mid = left_edge[i] - right_edge[i]; 2082 if (mid < mid_min) { 2083 mid_min = mid; 2084 min_index = i; 2085 } 2086 } 2087 2088 /* 2089 * -mid_min/2 represents the amount that we need to move DQS. 2090 * If mid_min is odd and positive we'll need to add one to 2091 * make sure the rounding in further calculations is correct 2092 * (always bias to the right), so just add 1 for all positive values. 2093 */ 2094 if (mid_min > 0) 2095 mid_min++; 2096 2097 mid_min = mid_min / 2; 2098 2099 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n", 2100 __func__, __LINE__, mid_min, min_index); 2101 2102 /* Determine the amount we can change DQS (which is -mid_min) */ 2103 orig_mid_min = mid_min; 2104 new_dqs = start_dqs - mid_min; 2105 if (new_dqs > IO_DQS_IN_DELAY_MAX) 2106 new_dqs = IO_DQS_IN_DELAY_MAX; 2107 else if (new_dqs < 0) 2108 new_dqs = 0; 2109 2110 mid_min = start_dqs - new_dqs; 2111 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n", 2112 mid_min, new_dqs); 2113 2114 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2115 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX) 2116 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX; 2117 else if (start_dqs_en - mid_min < 0) 2118 mid_min += start_dqs_en - mid_min; 2119 } 2120 new_dqs = start_dqs - mid_min; 2121 2122 debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \ 2123 new_dqs=%d mid_min=%d\n", start_dqs, 2124 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1, 2125 new_dqs, mid_min); 2126 2127 /* Initialize data for export structures */ 2128 dqs_margin = IO_IO_IN_DELAY_MAX + 1; 2129 dq_margin = IO_IO_IN_DELAY_MAX + 1; 2130 2131 /* add delay to bring centre of all DQ windows to the same "level" */ 2132 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 2133 /* Use values before divide by 2 to reduce round off error */ 2134 shift_dq = (left_edge[i] - right_edge[i] - 2135 (left_edge[min_index] - right_edge[min_index]))/2 + 2136 (orig_mid_min - mid_min); 2137 2138 debug_cond(DLEVEL == 2, "vfifo_center: before: \ 2139 shift_dq[%u]=%d\n", i, shift_dq); 2140 2141 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET; 2142 temp_dq_in_delay1 = readl(addr + (p << 2)); 2143 temp_dq_in_delay2 = readl(addr + (i << 2)); 2144 2145 if (shift_dq + (int32_t)temp_dq_in_delay1 > 2146 (int32_t)IO_IO_IN_DELAY_MAX) { 2147 shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2; 2148 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) { 2149 shift_dq = -(int32_t)temp_dq_in_delay1; 2150 } 2151 debug_cond(DLEVEL == 2, "vfifo_center: after: \ 2152 shift_dq[%u]=%d\n", i, shift_dq); 2153 final_dq[i] = temp_dq_in_delay1 + shift_dq; 2154 scc_mgr_set_dq_in_delay(p, final_dq[i]); 2155 scc_mgr_load_dq(p); 2156 2157 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i, 2158 left_edge[i] - shift_dq + (-mid_min), 2159 right_edge[i] + shift_dq - (-mid_min)); 2160 /* To determine values for export structures */ 2161 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2162 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2163 2164 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2165 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2166 } 2167 2168 final_dqs = new_dqs; 2169 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2170 final_dqs_en = start_dqs_en - mid_min; 2171 2172 /* Move DQS-en */ 2173 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2174 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en); 2175 scc_mgr_load_dqs(read_group); 2176 } 2177 2178 /* Move DQS */ 2179 scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs); 2180 scc_mgr_load_dqs(read_group); 2181 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \ 2182 dqs_margin=%d", __func__, __LINE__, 2183 dq_margin, dqs_margin); 2184 2185 /* 2186 * Do not remove this line as it makes sure all of our decisions 2187 * have been applied. Apply the update bit. 2188 */ 2189 writel(0, &sdr_scc_mgr->update); 2190 2191 return (dq_margin >= 0) && (dqs_margin >= 0); 2192 } 2193 2194 /** 2195 * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device 2196 * @rw_group: Read/Write Group 2197 * @phase: DQ/DQS phase 2198 * 2199 * Because initially no communication ca be reliably performed with the memory 2200 * device, the sequencer uses a guaranteed write mechanism to write data into 2201 * the memory device. 2202 */ 2203 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group, 2204 const u32 phase) 2205 { 2206 int ret; 2207 2208 /* Set a particular DQ/DQS phase. */ 2209 scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase); 2210 2211 debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n", 2212 __func__, __LINE__, rw_group, phase); 2213 2214 /* 2215 * Altera EMI_RM 2015.05.04 :: Figure 1-25 2216 * Load up the patterns used by read calibration using the 2217 * current DQDQS phase. 2218 */ 2219 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2220 2221 if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ) 2222 return 0; 2223 2224 /* 2225 * Altera EMI_RM 2015.05.04 :: Figure 1-26 2226 * Back-to-Back reads of the patterns used for calibration. 2227 */ 2228 ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1); 2229 if (ret) 2230 debug_cond(DLEVEL == 1, 2231 "%s:%d Guaranteed read test failed: g=%u p=%u\n", 2232 __func__, __LINE__, rw_group, phase); 2233 return ret; 2234 } 2235 2236 /** 2237 * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration 2238 * @rw_group: Read/Write Group 2239 * @test_bgn: Rank at which the test begins 2240 * 2241 * DQS enable calibration ensures reliable capture of the DQ signal without 2242 * glitches on the DQS line. 2243 */ 2244 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group, 2245 const u32 test_bgn) 2246 { 2247 int ret; 2248 2249 /* 2250 * Altera EMI_RM 2015.05.04 :: Figure 1-27 2251 * DQS and DQS Eanble Signal Relationships. 2252 */ 2253 ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay( 2254 rw_group, test_bgn); 2255 return ret; 2256 } 2257 2258 /** 2259 * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS 2260 * @rw_group: Read/Write Group 2261 * @test_bgn: Rank at which the test begins 2262 * @use_read_test: Perform a read test 2263 * @update_fom: Update FOM 2264 * 2265 * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads 2266 * within a group. 2267 */ 2268 static int 2269 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn, 2270 const int use_read_test, 2271 const int update_fom) 2272 2273 { 2274 int ret, grp_calibrated; 2275 u32 rank_bgn, sr; 2276 2277 /* 2278 * Altera EMI_RM 2015.05.04 :: Figure 1-28 2279 * Read per-bit deskew can be done on a per shadow register basis. 2280 */ 2281 grp_calibrated = 1; 2282 for (rank_bgn = 0, sr = 0; 2283 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2284 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 2285 /* Check if this set of ranks should be skipped entirely. */ 2286 if (param->skip_shadow_regs[sr]) 2287 continue; 2288 2289 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group, 2290 rw_group, test_bgn, 2291 use_read_test, 2292 update_fom); 2293 if (ret) 2294 continue; 2295 2296 grp_calibrated = 0; 2297 } 2298 2299 if (!grp_calibrated) 2300 return -EIO; 2301 2302 return 0; 2303 } 2304 2305 /** 2306 * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO 2307 * @rw_group: Read/Write Group 2308 * @test_bgn: Rank at which the test begins 2309 * 2310 * Stage 1: Calibrate the read valid prediction FIFO. 2311 * 2312 * This function implements UniPHY calibration Stage 1, as explained in 2313 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 2314 * 2315 * - read valid prediction will consist of finding: 2316 * - DQS enable phase and DQS enable delay (DQS Enable Calibration) 2317 * - DQS input phase and DQS input delay (DQ/DQS Centering) 2318 * - we also do a per-bit deskew on the DQ lines. 2319 */ 2320 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn) 2321 { 2322 uint32_t p, d; 2323 uint32_t dtaps_per_ptap; 2324 uint32_t failed_substage; 2325 2326 int ret; 2327 2328 debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn); 2329 2330 /* Update info for sims */ 2331 reg_file_set_group(rw_group); 2332 reg_file_set_stage(CAL_STAGE_VFIFO); 2333 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ); 2334 2335 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ; 2336 2337 /* USER Determine number of delay taps for each phase tap. */ 2338 dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, 2339 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1; 2340 2341 for (d = 0; d <= dtaps_per_ptap; d += 2) { 2342 /* 2343 * In RLDRAMX we may be messing the delay of pins in 2344 * the same write rw_group but outside of the current read 2345 * the rw_group, but that's ok because we haven't calibrated 2346 * output side yet. 2347 */ 2348 if (d > 0) { 2349 scc_mgr_apply_group_all_out_delay_add_all_ranks( 2350 rw_group, d); 2351 } 2352 2353 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) { 2354 /* 1) Guaranteed Write */ 2355 ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p); 2356 if (ret) 2357 break; 2358 2359 /* 2) DQS Enable Calibration */ 2360 ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group, 2361 test_bgn); 2362 if (ret) { 2363 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE; 2364 continue; 2365 } 2366 2367 /* 3) Centering DQ/DQS */ 2368 /* 2369 * If doing read after write calibration, do not update 2370 * FOM now. Do it then. 2371 */ 2372 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, 2373 test_bgn, 1, 0); 2374 if (ret) { 2375 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER; 2376 continue; 2377 } 2378 2379 /* All done. */ 2380 goto cal_done_ok; 2381 } 2382 } 2383 2384 /* Calibration Stage 1 failed. */ 2385 set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage); 2386 return 0; 2387 2388 /* Calibration Stage 1 completed OK. */ 2389 cal_done_ok: 2390 /* 2391 * Reset the delay chains back to zero if they have moved > 1 2392 * (check for > 1 because loop will increase d even when pass in 2393 * first case). 2394 */ 2395 if (d > 2) 2396 scc_mgr_zero_group(rw_group, 1); 2397 2398 return 1; 2399 } 2400 2401 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */ 2402 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group, 2403 uint32_t test_bgn) 2404 { 2405 uint32_t rank_bgn, sr; 2406 uint32_t grp_calibrated; 2407 uint32_t write_group; 2408 2409 debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn); 2410 2411 /* update info for sims */ 2412 2413 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES); 2414 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 2415 2416 write_group = read_group; 2417 2418 /* update info for sims */ 2419 reg_file_set_group(read_group); 2420 2421 grp_calibrated = 1; 2422 /* Read per-bit deskew can be done on a per shadow register basis */ 2423 for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2424 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) { 2425 /* Determine if this set of ranks should be skipped entirely */ 2426 if (!param->skip_shadow_regs[sr]) { 2427 /* This is the last calibration round, update FOM here */ 2428 if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn, 2429 write_group, 2430 read_group, 2431 test_bgn, 0, 2432 1)) { 2433 grp_calibrated = 0; 2434 } 2435 } 2436 } 2437 2438 2439 if (grp_calibrated == 0) { 2440 set_failing_group_stage(write_group, 2441 CAL_STAGE_VFIFO_AFTER_WRITES, 2442 CAL_SUBSTAGE_VFIFO_CENTER); 2443 return 0; 2444 } 2445 2446 return 1; 2447 } 2448 2449 /* Calibrate LFIFO to find smallest read latency */ 2450 static uint32_t rw_mgr_mem_calibrate_lfifo(void) 2451 { 2452 uint32_t found_one; 2453 uint32_t bit_chk; 2454 2455 debug("%s:%d\n", __func__, __LINE__); 2456 2457 /* update info for sims */ 2458 reg_file_set_stage(CAL_STAGE_LFIFO); 2459 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY); 2460 2461 /* Load up the patterns used by read calibration for all ranks */ 2462 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2463 found_one = 0; 2464 2465 do { 2466 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2467 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u", 2468 __func__, __LINE__, gbl->curr_read_lat); 2469 2470 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, 2471 NUM_READ_TESTS, 2472 PASS_ALL_BITS, 2473 &bit_chk, 1)) { 2474 break; 2475 } 2476 2477 found_one = 1; 2478 /* reduce read latency and see if things are working */ 2479 /* correctly */ 2480 gbl->curr_read_lat--; 2481 } while (gbl->curr_read_lat > 0); 2482 2483 /* reset the fifos to get pointers to known state */ 2484 2485 writel(0, &phy_mgr_cmd->fifo_reset); 2486 2487 if (found_one) { 2488 /* add a fudge factor to the read latency that was determined */ 2489 gbl->curr_read_lat += 2; 2490 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2491 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \ 2492 read_lat=%u\n", __func__, __LINE__, 2493 gbl->curr_read_lat); 2494 return 1; 2495 } else { 2496 set_failing_group_stage(0xff, CAL_STAGE_LFIFO, 2497 CAL_SUBSTAGE_READ_LATENCY); 2498 2499 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \ 2500 read_lat=%u\n", __func__, __LINE__, 2501 gbl->curr_read_lat); 2502 return 0; 2503 } 2504 } 2505 2506 /* 2507 * issue write test command. 2508 * two variants are provided. one that just tests a write pattern and 2509 * another that tests datamask functionality. 2510 */ 2511 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group, 2512 uint32_t test_dm) 2513 { 2514 uint32_t mcc_instruction; 2515 uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) && 2516 ENABLE_SUPER_QUICK_CALIBRATION); 2517 uint32_t rw_wl_nop_cycles; 2518 uint32_t addr; 2519 2520 /* 2521 * Set counter and jump addresses for the right 2522 * number of NOP cycles. 2523 * The number of supported NOP cycles can range from -1 to infinity 2524 * Three different cases are handled: 2525 * 2526 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping 2527 * mechanism will be used to insert the right number of NOPs 2528 * 2529 * 2. For a number of NOP cycles equals to 0, the micro-instruction 2530 * issuing the write command will jump straight to the 2531 * micro-instruction that turns on DQS (for DDRx), or outputs write 2532 * data (for RLD), skipping 2533 * the NOP micro-instruction all together 2534 * 2535 * 3. A number of NOP cycles equal to -1 indicates that DQS must be 2536 * turned on in the same micro-instruction that issues the write 2537 * command. Then we need 2538 * to directly jump to the micro-instruction that sends out the data 2539 * 2540 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters 2541 * (2 and 3). One jump-counter (0) is used to perform multiple 2542 * write-read operations. 2543 * one counter left to issue this command in "multiple-group" mode 2544 */ 2545 2546 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles; 2547 2548 if (rw_wl_nop_cycles == -1) { 2549 /* 2550 * CNTR 2 - We want to execute the special write operation that 2551 * turns on DQS right away and then skip directly to the 2552 * instruction that sends out the data. We set the counter to a 2553 * large number so that the jump is always taken. 2554 */ 2555 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2556 2557 /* CNTR 3 - Not used */ 2558 if (test_dm) { 2559 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1; 2560 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA, 2561 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2562 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2563 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2564 } else { 2565 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1; 2566 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA, 2567 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2568 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2569 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2570 } 2571 } else if (rw_wl_nop_cycles == 0) { 2572 /* 2573 * CNTR 2 - We want to skip the NOP operation and go straight 2574 * to the DQS enable instruction. We set the counter to a large 2575 * number so that the jump is always taken. 2576 */ 2577 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2578 2579 /* CNTR 3 - Not used */ 2580 if (test_dm) { 2581 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2582 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS, 2583 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2584 } else { 2585 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2586 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS, 2587 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2588 } 2589 } else { 2590 /* 2591 * CNTR 2 - In this case we want to execute the next instruction 2592 * and NOT take the jump. So we set the counter to 0. The jump 2593 * address doesn't count. 2594 */ 2595 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2); 2596 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2597 2598 /* 2599 * CNTR 3 - Set the nop counter to the number of cycles we 2600 * need to loop for, minus 1. 2601 */ 2602 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3); 2603 if (test_dm) { 2604 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2605 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2606 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2607 } else { 2608 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2609 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2610 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2611 } 2612 } 2613 2614 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 2615 RW_MGR_RESET_READ_DATAPATH_OFFSET); 2616 2617 if (quick_write_mode) 2618 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0); 2619 else 2620 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0); 2621 2622 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 2623 2624 /* 2625 * CNTR 1 - This is used to ensure enough time elapses 2626 * for read data to come back. 2627 */ 2628 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1); 2629 2630 if (test_dm) { 2631 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT, 2632 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2633 } else { 2634 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT, 2635 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2636 } 2637 2638 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 2639 writel(mcc_instruction, addr + (group << 2)); 2640 } 2641 2642 /* Test writes, can check for a single bit pass or multiple bit pass */ 2643 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 2644 uint32_t write_group, uint32_t use_dm, uint32_t all_correct, 2645 uint32_t *bit_chk, uint32_t all_ranks) 2646 { 2647 uint32_t r; 2648 uint32_t correct_mask_vg; 2649 uint32_t tmp_bit_chk; 2650 uint32_t vg; 2651 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 2652 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 2653 uint32_t addr_rw_mgr; 2654 uint32_t base_rw_mgr; 2655 2656 *bit_chk = param->write_correct_mask; 2657 correct_mask_vg = param->write_correct_mask_vg; 2658 2659 for (r = rank_bgn; r < rank_end; r++) { 2660 if (param->skip_ranks[r]) { 2661 /* request to skip the rank */ 2662 continue; 2663 } 2664 2665 /* set rank */ 2666 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 2667 2668 tmp_bit_chk = 0; 2669 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS; 2670 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) { 2671 /* reset the fifos to get pointers to known state */ 2672 writel(0, &phy_mgr_cmd->fifo_reset); 2673 2674 tmp_bit_chk = tmp_bit_chk << 2675 (RW_MGR_MEM_DQ_PER_WRITE_DQS / 2676 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 2677 rw_mgr_mem_calibrate_write_test_issue(write_group * 2678 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg, 2679 use_dm); 2680 2681 base_rw_mgr = readl(addr_rw_mgr); 2682 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 2683 if (vg == 0) 2684 break; 2685 } 2686 *bit_chk &= tmp_bit_chk; 2687 } 2688 2689 if (all_correct) { 2690 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2691 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \ 2692 %u => %lu", write_group, use_dm, 2693 *bit_chk, param->write_correct_mask, 2694 (long unsigned int)(*bit_chk == 2695 param->write_correct_mask)); 2696 return *bit_chk == param->write_correct_mask; 2697 } else { 2698 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2699 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ", 2700 write_group, use_dm, *bit_chk); 2701 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0, 2702 (long unsigned int)(*bit_chk != 0)); 2703 return *bit_chk != 0x00; 2704 } 2705 } 2706 2707 /* 2708 * center all windows. do per-bit-deskew to possibly increase size of 2709 * certain windows. 2710 */ 2711 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn, 2712 uint32_t write_group, uint32_t test_bgn) 2713 { 2714 uint32_t i, p, min_index; 2715 int32_t d; 2716 /* 2717 * Store these as signed since there are comparisons with 2718 * signed numbers. 2719 */ 2720 uint32_t bit_chk; 2721 uint32_t sticky_bit_chk; 2722 int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2723 int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2724 int32_t mid; 2725 int32_t mid_min, orig_mid_min; 2726 int32_t new_dqs, start_dqs, shift_dq; 2727 int32_t dq_margin, dqs_margin, dm_margin; 2728 uint32_t stop; 2729 uint32_t temp_dq_out1_delay; 2730 uint32_t addr; 2731 2732 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn); 2733 2734 dm_margin = 0; 2735 2736 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2737 start_dqs = readl(addr + 2738 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 2739 2740 /* per-bit deskew */ 2741 2742 /* 2743 * set the left and right edge of each bit to an illegal value 2744 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 2745 */ 2746 sticky_bit_chk = 0; 2747 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2748 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2749 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2750 } 2751 2752 /* Search for the left edge of the window for each bit */ 2753 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) { 2754 scc_mgr_apply_group_dq_out1_delay(write_group, d); 2755 2756 writel(0, &sdr_scc_mgr->update); 2757 2758 /* 2759 * Stop searching when the read test doesn't pass AND when 2760 * we've seen a passing read on every bit. 2761 */ 2762 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2763 0, PASS_ONE_BIT, &bit_chk, 0); 2764 sticky_bit_chk = sticky_bit_chk | bit_chk; 2765 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2766 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \ 2767 == %u && %u [bit_chk= %u ]\n", 2768 d, sticky_bit_chk, param->write_correct_mask, 2769 stop, bit_chk); 2770 2771 if (stop == 1) { 2772 break; 2773 } else { 2774 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2775 if (bit_chk & 1) { 2776 /* 2777 * Remember a passing test as the 2778 * left_edge. 2779 */ 2780 left_edge[i] = d; 2781 } else { 2782 /* 2783 * If a left edge has not been seen 2784 * yet, then a future passing test will 2785 * mark this edge as the right edge. 2786 */ 2787 if (left_edge[i] == 2788 IO_IO_OUT1_DELAY_MAX + 1) { 2789 right_edge[i] = -(d + 1); 2790 } 2791 } 2792 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d); 2793 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2794 (int)(bit_chk & 1), i, left_edge[i]); 2795 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2796 right_edge[i]); 2797 bit_chk = bit_chk >> 1; 2798 } 2799 } 2800 } 2801 2802 /* Reset DQ delay chains to 0 */ 2803 scc_mgr_apply_group_dq_out1_delay(0); 2804 sticky_bit_chk = 0; 2805 for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) { 2806 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2807 %d right_edge[%u]: %d\n", __func__, __LINE__, 2808 i, left_edge[i], i, right_edge[i]); 2809 2810 /* 2811 * Check for cases where we haven't found the left edge, 2812 * which makes our assignment of the the right edge invalid. 2813 * Reset it to the illegal value. 2814 */ 2815 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) && 2816 (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) { 2817 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2818 debug_cond(DLEVEL == 2, "%s:%d write_center: reset \ 2819 right_edge[%u]: %d\n", __func__, __LINE__, 2820 i, right_edge[i]); 2821 } 2822 2823 /* 2824 * Reset sticky bit (except for bits where we have 2825 * seen the left edge). 2826 */ 2827 sticky_bit_chk = sticky_bit_chk << 1; 2828 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) 2829 sticky_bit_chk = sticky_bit_chk | 1; 2830 2831 if (i == 0) 2832 break; 2833 } 2834 2835 /* Search for the right edge of the window for each bit */ 2836 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) { 2837 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2838 d + start_dqs); 2839 2840 writel(0, &sdr_scc_mgr->update); 2841 2842 /* 2843 * Stop searching when the read test doesn't pass AND when 2844 * we've seen a passing read on every bit. 2845 */ 2846 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2847 0, PASS_ONE_BIT, &bit_chk, 0); 2848 2849 sticky_bit_chk = sticky_bit_chk | bit_chk; 2850 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2851 2852 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \ 2853 %u && %u\n", d, sticky_bit_chk, 2854 param->write_correct_mask, stop); 2855 2856 if (stop == 1) { 2857 if (d == 0) { 2858 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; 2859 i++) { 2860 /* d = 0 failed, but it passed when 2861 testing the left edge, so it must be 2862 marginal, set it to -1 */ 2863 if (right_edge[i] == 2864 IO_IO_OUT1_DELAY_MAX + 1 && 2865 left_edge[i] != 2866 IO_IO_OUT1_DELAY_MAX + 1) { 2867 right_edge[i] = -1; 2868 } 2869 } 2870 } 2871 break; 2872 } else { 2873 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2874 if (bit_chk & 1) { 2875 /* 2876 * Remember a passing test as 2877 * the right_edge. 2878 */ 2879 right_edge[i] = d; 2880 } else { 2881 if (d != 0) { 2882 /* 2883 * If a right edge has not 2884 * been seen yet, then a future 2885 * passing test will mark this 2886 * edge as the left edge. 2887 */ 2888 if (right_edge[i] == 2889 IO_IO_OUT1_DELAY_MAX + 1) 2890 left_edge[i] = -(d + 1); 2891 } else { 2892 /* 2893 * d = 0 failed, but it passed 2894 * when testing the left edge, 2895 * so it must be marginal, set 2896 * it to -1. 2897 */ 2898 if (right_edge[i] == 2899 IO_IO_OUT1_DELAY_MAX + 1 && 2900 left_edge[i] != 2901 IO_IO_OUT1_DELAY_MAX + 1) 2902 right_edge[i] = -1; 2903 /* 2904 * If a right edge has not been 2905 * seen yet, then a future 2906 * passing test will mark this 2907 * edge as the left edge. 2908 */ 2909 else if (right_edge[i] == 2910 IO_IO_OUT1_DELAY_MAX + 2911 1) 2912 left_edge[i] = -(d + 1); 2913 } 2914 } 2915 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d); 2916 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2917 (int)(bit_chk & 1), i, left_edge[i]); 2918 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2919 right_edge[i]); 2920 bit_chk = bit_chk >> 1; 2921 } 2922 } 2923 } 2924 2925 /* Check that all bits have a window */ 2926 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2927 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2928 %d right_edge[%u]: %d", __func__, __LINE__, 2929 i, left_edge[i], i, right_edge[i]); 2930 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) || 2931 (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) { 2932 set_failing_group_stage(test_bgn + i, 2933 CAL_STAGE_WRITES, 2934 CAL_SUBSTAGE_WRITES_CENTER); 2935 return 0; 2936 } 2937 } 2938 2939 /* Find middle of window for each DQ bit */ 2940 mid_min = left_edge[0] - right_edge[0]; 2941 min_index = 0; 2942 for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2943 mid = left_edge[i] - right_edge[i]; 2944 if (mid < mid_min) { 2945 mid_min = mid; 2946 min_index = i; 2947 } 2948 } 2949 2950 /* 2951 * -mid_min/2 represents the amount that we need to move DQS. 2952 * If mid_min is odd and positive we'll need to add one to 2953 * make sure the rounding in further calculations is correct 2954 * (always bias to the right), so just add 1 for all positive values. 2955 */ 2956 if (mid_min > 0) 2957 mid_min++; 2958 mid_min = mid_min / 2; 2959 debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__, 2960 __LINE__, mid_min); 2961 2962 /* Determine the amount we can change DQS (which is -mid_min) */ 2963 orig_mid_min = mid_min; 2964 new_dqs = start_dqs; 2965 mid_min = 0; 2966 debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \ 2967 mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min); 2968 /* Initialize data for export structures */ 2969 dqs_margin = IO_IO_OUT1_DELAY_MAX + 1; 2970 dq_margin = IO_IO_OUT1_DELAY_MAX + 1; 2971 2972 /* add delay to bring centre of all DQ windows to the same "level" */ 2973 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 2974 /* Use values before divide by 2 to reduce round off error */ 2975 shift_dq = (left_edge[i] - right_edge[i] - 2976 (left_edge[min_index] - right_edge[min_index]))/2 + 2977 (orig_mid_min - mid_min); 2978 2979 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \ 2980 [%u]=%d\n", __func__, __LINE__, i, shift_dq); 2981 2982 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2983 temp_dq_out1_delay = readl(addr + (i << 2)); 2984 if (shift_dq + (int32_t)temp_dq_out1_delay > 2985 (int32_t)IO_IO_OUT1_DELAY_MAX) { 2986 shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay; 2987 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) { 2988 shift_dq = -(int32_t)temp_dq_out1_delay; 2989 } 2990 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n", 2991 i, shift_dq); 2992 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq); 2993 scc_mgr_load_dq(i); 2994 2995 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i, 2996 left_edge[i] - shift_dq + (-mid_min), 2997 right_edge[i] + shift_dq - (-mid_min)); 2998 /* To determine values for export structures */ 2999 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 3000 dq_margin = left_edge[i] - shift_dq + (-mid_min); 3001 3002 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 3003 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 3004 } 3005 3006 /* Move DQS */ 3007 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3008 writel(0, &sdr_scc_mgr->update); 3009 3010 /* Centre DM */ 3011 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__); 3012 3013 /* 3014 * set the left and right edge of each bit to an illegal value, 3015 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value, 3016 */ 3017 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 3018 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 3019 int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3020 int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3021 int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1; 3022 int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1; 3023 int32_t win_best = 0; 3024 3025 /* Search for the/part of the window with DM shift */ 3026 for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) { 3027 scc_mgr_apply_group_dm_out1_delay(d); 3028 writel(0, &sdr_scc_mgr->update); 3029 3030 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3031 PASS_ALL_BITS, &bit_chk, 3032 0)) { 3033 /* USE Set current end of the window */ 3034 end_curr = -d; 3035 /* 3036 * If a starting edge of our window has not been seen 3037 * this is our current start of the DM window. 3038 */ 3039 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3040 bgn_curr = -d; 3041 3042 /* 3043 * If current window is bigger than best seen. 3044 * Set best seen to be current window. 3045 */ 3046 if ((end_curr-bgn_curr+1) > win_best) { 3047 win_best = end_curr-bgn_curr+1; 3048 bgn_best = bgn_curr; 3049 end_best = end_curr; 3050 } 3051 } else { 3052 /* We just saw a failing test. Reset temp edge */ 3053 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3054 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3055 } 3056 } 3057 3058 3059 /* Reset DM delay chains to 0 */ 3060 scc_mgr_apply_group_dm_out1_delay(0); 3061 3062 /* 3063 * Check to see if the current window nudges up aganist 0 delay. 3064 * If so we need to continue the search by shifting DQS otherwise DQS 3065 * search begins as a new search. */ 3066 if (end_curr != 0) { 3067 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3068 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3069 } 3070 3071 /* Search for the/part of the window with DQS shifts */ 3072 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) { 3073 /* 3074 * Note: This only shifts DQS, so are we limiting ourselve to 3075 * width of DQ unnecessarily. 3076 */ 3077 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 3078 d + new_dqs); 3079 3080 writel(0, &sdr_scc_mgr->update); 3081 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3082 PASS_ALL_BITS, &bit_chk, 3083 0)) { 3084 /* USE Set current end of the window */ 3085 end_curr = d; 3086 /* 3087 * If a beginning edge of our window has not been seen 3088 * this is our current begin of the DM window. 3089 */ 3090 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3091 bgn_curr = d; 3092 3093 /* 3094 * If current window is bigger than best seen. Set best 3095 * seen to be current window. 3096 */ 3097 if ((end_curr-bgn_curr+1) > win_best) { 3098 win_best = end_curr-bgn_curr+1; 3099 bgn_best = bgn_curr; 3100 end_best = end_curr; 3101 } 3102 } else { 3103 /* We just saw a failing test. Reset temp edge */ 3104 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3105 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3106 3107 /* Early exit optimization: if ther remaining delay 3108 chain space is less than already seen largest window 3109 we can exit */ 3110 if ((win_best-1) > 3111 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) { 3112 break; 3113 } 3114 } 3115 } 3116 3117 /* assign left and right edge for cal and reporting; */ 3118 left_edge[0] = -1*bgn_best; 3119 right_edge[0] = end_best; 3120 3121 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__, 3122 __LINE__, left_edge[0], right_edge[0]); 3123 3124 /* Move DQS (back to orig) */ 3125 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3126 3127 /* Move DM */ 3128 3129 /* Find middle of window for the DM bit */ 3130 mid = (left_edge[0] - right_edge[0]) / 2; 3131 3132 /* only move right, since we are not moving DQS/DQ */ 3133 if (mid < 0) 3134 mid = 0; 3135 3136 /* dm_marign should fail if we never find a window */ 3137 if (win_best == 0) 3138 dm_margin = -1; 3139 else 3140 dm_margin = left_edge[0] - mid; 3141 3142 scc_mgr_apply_group_dm_out1_delay(mid); 3143 writel(0, &sdr_scc_mgr->update); 3144 3145 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \ 3146 dm_margin=%d\n", __func__, __LINE__, left_edge[0], 3147 right_edge[0], mid, dm_margin); 3148 /* Export values */ 3149 gbl->fom_out += dq_margin + dqs_margin; 3150 3151 debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \ 3152 dqs_margin=%d dm_margin=%d\n", __func__, __LINE__, 3153 dq_margin, dqs_margin, dm_margin); 3154 3155 /* 3156 * Do not remove this line as it makes sure all of our 3157 * decisions have been applied. 3158 */ 3159 writel(0, &sdr_scc_mgr->update); 3160 return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0); 3161 } 3162 3163 /* calibrate the write operations */ 3164 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g, 3165 uint32_t test_bgn) 3166 { 3167 /* update info for sims */ 3168 debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn); 3169 3170 reg_file_set_stage(CAL_STAGE_WRITES); 3171 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER); 3172 3173 reg_file_set_group(g); 3174 3175 if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) { 3176 set_failing_group_stage(g, CAL_STAGE_WRITES, 3177 CAL_SUBSTAGE_WRITES_CENTER); 3178 return 0; 3179 } 3180 3181 return 1; 3182 } 3183 3184 /** 3185 * mem_precharge_and_activate() - Precharge all banks and activate 3186 * 3187 * Precharge all banks and activate row 0 in bank "000..." and bank "111...". 3188 */ 3189 static void mem_precharge_and_activate(void) 3190 { 3191 int r; 3192 3193 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 3194 /* Test if the rank should be skipped. */ 3195 if (param->skip_ranks[r]) 3196 continue; 3197 3198 /* Set rank. */ 3199 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 3200 3201 /* Precharge all banks. */ 3202 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3203 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3204 3205 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0); 3206 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1, 3207 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 3208 3209 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1); 3210 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2, 3211 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 3212 3213 /* Activate rows. */ 3214 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3215 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3216 } 3217 } 3218 3219 /** 3220 * mem_init_latency() - Configure memory RLAT and WLAT settings 3221 * 3222 * Configure memory RLAT and WLAT parameters. 3223 */ 3224 static void mem_init_latency(void) 3225 { 3226 /* 3227 * For AV/CV, LFIFO is hardened and always runs at full rate 3228 * so max latency in AFI clocks, used here, is correspondingly 3229 * smaller. 3230 */ 3231 const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1; 3232 u32 rlat, wlat; 3233 3234 debug("%s:%d\n", __func__, __LINE__); 3235 3236 /* 3237 * Read in write latency. 3238 * WL for Hard PHY does not include additive latency. 3239 */ 3240 wlat = readl(&data_mgr->t_wl_add); 3241 wlat += readl(&data_mgr->mem_t_add); 3242 3243 gbl->rw_wl_nop_cycles = wlat - 1; 3244 3245 /* Read in readl latency. */ 3246 rlat = readl(&data_mgr->t_rl_add); 3247 3248 /* Set a pretty high read latency initially. */ 3249 gbl->curr_read_lat = rlat + 16; 3250 if (gbl->curr_read_lat > max_latency) 3251 gbl->curr_read_lat = max_latency; 3252 3253 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3254 3255 /* Advertise write latency. */ 3256 writel(wlat, &phy_mgr_cfg->afi_wlat); 3257 } 3258 3259 /** 3260 * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings 3261 * 3262 * Set VFIFO and LFIFO to instant-on settings in skip calibration mode. 3263 */ 3264 static void mem_skip_calibrate(void) 3265 { 3266 uint32_t vfifo_offset; 3267 uint32_t i, j, r; 3268 3269 debug("%s:%d\n", __func__, __LINE__); 3270 /* Need to update every shadow register set used by the interface */ 3271 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 3272 r += NUM_RANKS_PER_SHADOW_REG) { 3273 /* 3274 * Set output phase alignment settings appropriate for 3275 * skip calibration. 3276 */ 3277 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3278 scc_mgr_set_dqs_en_phase(i, 0); 3279 #if IO_DLL_CHAIN_LENGTH == 6 3280 scc_mgr_set_dqdqs_output_phase(i, 6); 3281 #else 3282 scc_mgr_set_dqdqs_output_phase(i, 7); 3283 #endif 3284 /* 3285 * Case:33398 3286 * 3287 * Write data arrives to the I/O two cycles before write 3288 * latency is reached (720 deg). 3289 * -> due to bit-slip in a/c bus 3290 * -> to allow board skew where dqs is longer than ck 3291 * -> how often can this happen!? 3292 * -> can claim back some ptaps for high freq 3293 * support if we can relax this, but i digress... 3294 * 3295 * The write_clk leads mem_ck by 90 deg 3296 * The minimum ptap of the OPA is 180 deg 3297 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay 3298 * The write_clk is always delayed by 2 ptaps 3299 * 3300 * Hence, to make DQS aligned to CK, we need to delay 3301 * DQS by: 3302 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH)) 3303 * 3304 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH) 3305 * gives us the number of ptaps, which simplies to: 3306 * 3307 * (1.25 * IO_DLL_CHAIN_LENGTH - 2) 3308 */ 3309 scc_mgr_set_dqdqs_output_phase(i, 3310 1.25 * IO_DLL_CHAIN_LENGTH - 2); 3311 } 3312 writel(0xff, &sdr_scc_mgr->dqs_ena); 3313 writel(0xff, &sdr_scc_mgr->dqs_io_ena); 3314 3315 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 3316 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3317 SCC_MGR_GROUP_COUNTER_OFFSET); 3318 } 3319 writel(0xff, &sdr_scc_mgr->dq_ena); 3320 writel(0xff, &sdr_scc_mgr->dm_ena); 3321 writel(0, &sdr_scc_mgr->update); 3322 } 3323 3324 /* Compensate for simulation model behaviour */ 3325 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3326 scc_mgr_set_dqs_bus_in_delay(i, 10); 3327 scc_mgr_load_dqs(i); 3328 } 3329 writel(0, &sdr_scc_mgr->update); 3330 3331 /* 3332 * ArriaV has hard FIFOs that can only be initialized by incrementing 3333 * in sequencer. 3334 */ 3335 vfifo_offset = CALIB_VFIFO_OFFSET; 3336 for (j = 0; j < vfifo_offset; j++) 3337 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy); 3338 writel(0, &phy_mgr_cmd->fifo_reset); 3339 3340 /* 3341 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal 3342 * setting from generation-time constant. 3343 */ 3344 gbl->curr_read_lat = CALIB_LFIFO_OFFSET; 3345 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3346 } 3347 3348 /** 3349 * mem_calibrate() - Memory calibration entry point. 3350 * 3351 * Perform memory calibration. 3352 */ 3353 static uint32_t mem_calibrate(void) 3354 { 3355 uint32_t i; 3356 uint32_t rank_bgn, sr; 3357 uint32_t write_group, write_test_bgn; 3358 uint32_t read_group, read_test_bgn; 3359 uint32_t run_groups, current_run; 3360 uint32_t failing_groups = 0; 3361 uint32_t group_failed = 0; 3362 3363 const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 3364 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 3365 3366 debug("%s:%d\n", __func__, __LINE__); 3367 3368 /* Initialize the data settings */ 3369 gbl->error_substage = CAL_SUBSTAGE_NIL; 3370 gbl->error_stage = CAL_STAGE_NIL; 3371 gbl->error_group = 0xff; 3372 gbl->fom_in = 0; 3373 gbl->fom_out = 0; 3374 3375 /* Initialize WLAT and RLAT. */ 3376 mem_init_latency(); 3377 3378 /* Initialize bit slips. */ 3379 mem_precharge_and_activate(); 3380 3381 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3382 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3383 SCC_MGR_GROUP_COUNTER_OFFSET); 3384 /* Only needed once to set all groups, pins, DQ, DQS, DM. */ 3385 if (i == 0) 3386 scc_mgr_set_hhp_extras(); 3387 3388 scc_set_bypass_mode(i); 3389 } 3390 3391 /* Calibration is skipped. */ 3392 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) { 3393 /* 3394 * Set VFIFO and LFIFO to instant-on settings in skip 3395 * calibration mode. 3396 */ 3397 mem_skip_calibrate(); 3398 3399 /* 3400 * Do not remove this line as it makes sure all of our 3401 * decisions have been applied. 3402 */ 3403 writel(0, &sdr_scc_mgr->update); 3404 return 1; 3405 } 3406 3407 /* Calibration is not skipped. */ 3408 for (i = 0; i < NUM_CALIB_REPEAT; i++) { 3409 /* 3410 * Zero all delay chain/phase settings for all 3411 * groups and all shadow register sets. 3412 */ 3413 scc_mgr_zero_all(); 3414 3415 run_groups = ~param->skip_groups; 3416 3417 for (write_group = 0, write_test_bgn = 0; write_group 3418 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++, 3419 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) { 3420 3421 /* Initialize the group failure */ 3422 group_failed = 0; 3423 3424 current_run = run_groups & ((1 << 3425 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1); 3426 run_groups = run_groups >> 3427 RW_MGR_NUM_DQS_PER_WRITE_GROUP; 3428 3429 if (current_run == 0) 3430 continue; 3431 3432 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS | 3433 SCC_MGR_GROUP_COUNTER_OFFSET); 3434 scc_mgr_zero_group(write_group, 0); 3435 3436 for (read_group = write_group * rwdqs_ratio, 3437 read_test_bgn = 0; 3438 read_group < (write_group + 1) * rwdqs_ratio; 3439 read_group++, 3440 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3441 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO) 3442 continue; 3443 3444 /* Calibrate the VFIFO */ 3445 if (rw_mgr_mem_calibrate_vfifo(read_group, 3446 read_test_bgn)) 3447 continue; 3448 3449 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3450 return 0; 3451 3452 /* The group failed, we're done. */ 3453 goto grp_failed; 3454 } 3455 3456 /* Calibrate the output side */ 3457 for (rank_bgn = 0, sr = 0; 3458 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 3459 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 3460 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3461 continue; 3462 3463 /* Not needed in quick mode! */ 3464 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) 3465 continue; 3466 3467 /* 3468 * Determine if this set of ranks 3469 * should be skipped entirely. 3470 */ 3471 if (param->skip_shadow_regs[sr]) 3472 continue; 3473 3474 /* Calibrate WRITEs */ 3475 if (rw_mgr_mem_calibrate_writes(rank_bgn, 3476 write_group, write_test_bgn)) 3477 continue; 3478 3479 group_failed = 1; 3480 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3481 return 0; 3482 } 3483 3484 /* Some group failed, we're done. */ 3485 if (group_failed) 3486 goto grp_failed; 3487 3488 for (read_group = write_group * rwdqs_ratio, 3489 read_test_bgn = 0; 3490 read_group < (write_group + 1) * rwdqs_ratio; 3491 read_group++, 3492 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3493 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3494 continue; 3495 3496 if (rw_mgr_mem_calibrate_vfifo_end(read_group, 3497 read_test_bgn)) 3498 continue; 3499 3500 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3501 return 0; 3502 3503 /* The group failed, we're done. */ 3504 goto grp_failed; 3505 } 3506 3507 /* No group failed, continue as usual. */ 3508 continue; 3509 3510 grp_failed: /* A group failed, increment the counter. */ 3511 failing_groups++; 3512 } 3513 3514 /* 3515 * USER If there are any failing groups then report 3516 * the failure. 3517 */ 3518 if (failing_groups != 0) 3519 return 0; 3520 3521 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO) 3522 continue; 3523 3524 /* 3525 * If we're skipping groups as part of debug, 3526 * don't calibrate LFIFO. 3527 */ 3528 if (param->skip_groups != 0) 3529 continue; 3530 3531 /* Calibrate the LFIFO */ 3532 if (!rw_mgr_mem_calibrate_lfifo()) 3533 return 0; 3534 } 3535 3536 /* 3537 * Do not remove this line as it makes sure all of our decisions 3538 * have been applied. 3539 */ 3540 writel(0, &sdr_scc_mgr->update); 3541 return 1; 3542 } 3543 3544 /** 3545 * run_mem_calibrate() - Perform memory calibration 3546 * 3547 * This function triggers the entire memory calibration procedure. 3548 */ 3549 static int run_mem_calibrate(void) 3550 { 3551 int pass; 3552 3553 debug("%s:%d\n", __func__, __LINE__); 3554 3555 /* Reset pass/fail status shown on afi_cal_success/fail */ 3556 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status); 3557 3558 /* Stop tracking manager. */ 3559 clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3560 3561 phy_mgr_initialize(); 3562 rw_mgr_mem_initialize(); 3563 3564 /* Perform the actual memory calibration. */ 3565 pass = mem_calibrate(); 3566 3567 mem_precharge_and_activate(); 3568 writel(0, &phy_mgr_cmd->fifo_reset); 3569 3570 /* Handoff. */ 3571 rw_mgr_mem_handoff(); 3572 /* 3573 * In Hard PHY this is a 2-bit control: 3574 * 0: AFI Mux Select 3575 * 1: DDIO Mux Select 3576 */ 3577 writel(0x2, &phy_mgr_cfg->mux_sel); 3578 3579 /* Start tracking manager. */ 3580 setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3581 3582 return pass; 3583 } 3584 3585 /** 3586 * debug_mem_calibrate() - Report result of memory calibration 3587 * @pass: Value indicating whether calibration passed or failed 3588 * 3589 * This function reports the results of the memory calibration 3590 * and writes debug information into the register file. 3591 */ 3592 static void debug_mem_calibrate(int pass) 3593 { 3594 uint32_t debug_info; 3595 3596 if (pass) { 3597 printf("%s: CALIBRATION PASSED\n", __FILE__); 3598 3599 gbl->fom_in /= 2; 3600 gbl->fom_out /= 2; 3601 3602 if (gbl->fom_in > 0xff) 3603 gbl->fom_in = 0xff; 3604 3605 if (gbl->fom_out > 0xff) 3606 gbl->fom_out = 0xff; 3607 3608 /* Update the FOM in the register file */ 3609 debug_info = gbl->fom_in; 3610 debug_info |= gbl->fom_out << 8; 3611 writel(debug_info, &sdr_reg_file->fom); 3612 3613 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3614 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status); 3615 } else { 3616 printf("%s: CALIBRATION FAILED\n", __FILE__); 3617 3618 debug_info = gbl->error_stage; 3619 debug_info |= gbl->error_substage << 8; 3620 debug_info |= gbl->error_group << 16; 3621 3622 writel(debug_info, &sdr_reg_file->failing_stage); 3623 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3624 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status); 3625 3626 /* Update the failing group/stage in the register file */ 3627 debug_info = gbl->error_stage; 3628 debug_info |= gbl->error_substage << 8; 3629 debug_info |= gbl->error_group << 16; 3630 writel(debug_info, &sdr_reg_file->failing_stage); 3631 } 3632 3633 printf("%s: Calibration complete\n", __FILE__); 3634 } 3635 3636 /** 3637 * hc_initialize_rom_data() - Initialize ROM data 3638 * 3639 * Initialize ROM data. 3640 */ 3641 static void hc_initialize_rom_data(void) 3642 { 3643 u32 i, addr; 3644 3645 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET; 3646 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++) 3647 writel(inst_rom_init[i], addr + (i << 2)); 3648 3649 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET; 3650 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++) 3651 writel(ac_rom_init[i], addr + (i << 2)); 3652 } 3653 3654 /** 3655 * initialize_reg_file() - Initialize SDR register file 3656 * 3657 * Initialize SDR register file. 3658 */ 3659 static void initialize_reg_file(void) 3660 { 3661 /* Initialize the register file with the correct data */ 3662 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature); 3663 writel(0, &sdr_reg_file->debug_data_addr); 3664 writel(0, &sdr_reg_file->cur_stage); 3665 writel(0, &sdr_reg_file->fom); 3666 writel(0, &sdr_reg_file->failing_stage); 3667 writel(0, &sdr_reg_file->debug1); 3668 writel(0, &sdr_reg_file->debug2); 3669 } 3670 3671 /** 3672 * initialize_hps_phy() - Initialize HPS PHY 3673 * 3674 * Initialize HPS PHY. 3675 */ 3676 static void initialize_hps_phy(void) 3677 { 3678 uint32_t reg; 3679 /* 3680 * Tracking also gets configured here because it's in the 3681 * same register. 3682 */ 3683 uint32_t trk_sample_count = 7500; 3684 uint32_t trk_long_idle_sample_count = (10 << 16) | 100; 3685 /* 3686 * Format is number of outer loops in the 16 MSB, sample 3687 * count in 16 LSB. 3688 */ 3689 3690 reg = 0; 3691 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2); 3692 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1); 3693 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1); 3694 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1); 3695 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0); 3696 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1); 3697 /* 3698 * This field selects the intrinsic latency to RDATA_EN/FULL path. 3699 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles. 3700 */ 3701 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0); 3702 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET( 3703 trk_sample_count); 3704 writel(reg, &sdr_ctrl->phy_ctrl0); 3705 3706 reg = 0; 3707 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET( 3708 trk_sample_count >> 3709 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH); 3710 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET( 3711 trk_long_idle_sample_count); 3712 writel(reg, &sdr_ctrl->phy_ctrl1); 3713 3714 reg = 0; 3715 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET( 3716 trk_long_idle_sample_count >> 3717 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH); 3718 writel(reg, &sdr_ctrl->phy_ctrl2); 3719 } 3720 3721 /** 3722 * initialize_tracking() - Initialize tracking 3723 * 3724 * Initialize the register file with usable initial data. 3725 */ 3726 static void initialize_tracking(void) 3727 { 3728 /* 3729 * Initialize the register file with the correct data. 3730 * Compute usable version of value in case we skip full 3731 * computation later. 3732 */ 3733 writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1, 3734 &sdr_reg_file->dtaps_per_ptap); 3735 3736 /* trk_sample_count */ 3737 writel(7500, &sdr_reg_file->trk_sample_count); 3738 3739 /* longidle outer loop [15:0] */ 3740 writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle); 3741 3742 /* 3743 * longidle sample count [31:24] 3744 * trfc, worst case of 933Mhz 4Gb [23:16] 3745 * trcd, worst case [15:8] 3746 * vfifo wait [7:0] 3747 */ 3748 writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0), 3749 &sdr_reg_file->delays); 3750 3751 /* mux delay */ 3752 writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) | 3753 (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0), 3754 &sdr_reg_file->trk_rw_mgr_addr); 3755 3756 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, 3757 &sdr_reg_file->trk_read_dqs_width); 3758 3759 /* trefi [7:0] */ 3760 writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0), 3761 &sdr_reg_file->trk_rfsh); 3762 } 3763 3764 int sdram_calibration_full(void) 3765 { 3766 struct param_type my_param; 3767 struct gbl_type my_gbl; 3768 uint32_t pass; 3769 3770 memset(&my_param, 0, sizeof(my_param)); 3771 memset(&my_gbl, 0, sizeof(my_gbl)); 3772 3773 param = &my_param; 3774 gbl = &my_gbl; 3775 3776 /* Set the calibration enabled by default */ 3777 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT; 3778 /* 3779 * Only sweep all groups (regardless of fail state) by default 3780 * Set enabled read test by default. 3781 */ 3782 #if DISABLE_GUARANTEED_READ 3783 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ; 3784 #endif 3785 /* Initialize the register file */ 3786 initialize_reg_file(); 3787 3788 /* Initialize any PHY CSR */ 3789 initialize_hps_phy(); 3790 3791 scc_mgr_initialize(); 3792 3793 initialize_tracking(); 3794 3795 printf("%s: Preparing to start memory calibration\n", __FILE__); 3796 3797 debug("%s:%d\n", __func__, __LINE__); 3798 debug_cond(DLEVEL == 1, 3799 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ", 3800 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM, 3801 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS, 3802 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS, 3803 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 3804 debug_cond(DLEVEL == 1, 3805 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ", 3806 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3807 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH, 3808 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP); 3809 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u", 3810 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH); 3811 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ", 3812 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX, 3813 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX); 3814 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ", 3815 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX, 3816 IO_IO_OUT2_DELAY_MAX); 3817 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n", 3818 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE); 3819 3820 hc_initialize_rom_data(); 3821 3822 /* update info for sims */ 3823 reg_file_set_stage(CAL_STAGE_NIL); 3824 reg_file_set_group(0); 3825 3826 /* 3827 * Load global needed for those actions that require 3828 * some dynamic calibration support. 3829 */ 3830 dyn_calib_steps = STATIC_CALIB_STEPS; 3831 /* 3832 * Load global to allow dynamic selection of delay loop settings 3833 * based on calibration mode. 3834 */ 3835 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS)) 3836 skip_delay_mask = 0xff; 3837 else 3838 skip_delay_mask = 0x0; 3839 3840 pass = run_mem_calibrate(); 3841 debug_mem_calibrate(pass); 3842 return pass; 3843 } 3844