1 /* 2 * Copyright Altera Corporation (C) 2012-2015 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <common.h> 8 #include <asm/io.h> 9 #include <asm/arch/sdram.h> 10 #include <errno.h> 11 #include "sequencer.h" 12 #include "sequencer_auto.h" 13 #include "sequencer_auto_ac_init.h" 14 #include "sequencer_auto_inst_init.h" 15 #include "sequencer_defines.h" 16 17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs = 18 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800); 19 20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs = 21 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00); 22 23 static struct socfpga_sdr_reg_file *sdr_reg_file = 24 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS; 25 26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr = 27 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00); 28 29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd = 30 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS; 31 32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg = 33 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40); 34 35 static struct socfpga_data_mgr *data_mgr = 36 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS; 37 38 static struct socfpga_sdr_ctrl *sdr_ctrl = 39 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS; 40 41 #define DELTA_D 1 42 43 /* 44 * In order to reduce ROM size, most of the selectable calibration steps are 45 * decided at compile time based on the user's calibration mode selection, 46 * as captured by the STATIC_CALIB_STEPS selection below. 47 * 48 * However, to support simulation-time selection of fast simulation mode, where 49 * we skip everything except the bare minimum, we need a few of the steps to 50 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the 51 * check, which is based on the rtl-supplied value, or we dynamically compute 52 * the value to use based on the dynamically-chosen calibration mode 53 */ 54 55 #define DLEVEL 0 56 #define STATIC_IN_RTL_SIM 0 57 #define STATIC_SKIP_DELAY_LOOPS 0 58 59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \ 60 STATIC_SKIP_DELAY_LOOPS) 61 62 /* calibration steps requested by the rtl */ 63 uint16_t dyn_calib_steps; 64 65 /* 66 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option 67 * instead of static, we use boolean logic to select between 68 * non-skip and skip values 69 * 70 * The mask is set to include all bits when not-skipping, but is 71 * zero when skipping 72 */ 73 74 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */ 75 76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \ 77 ((non_skip_value) & skip_delay_mask) 78 79 struct gbl_type *gbl; 80 struct param_type *param; 81 uint32_t curr_shadow_reg; 82 83 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 84 uint32_t write_group, uint32_t use_dm, 85 uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks); 86 87 static void set_failing_group_stage(uint32_t group, uint32_t stage, 88 uint32_t substage) 89 { 90 /* 91 * Only set the global stage if there was not been any other 92 * failing group 93 */ 94 if (gbl->error_stage == CAL_STAGE_NIL) { 95 gbl->error_substage = substage; 96 gbl->error_stage = stage; 97 gbl->error_group = group; 98 } 99 } 100 101 static void reg_file_set_group(u16 set_group) 102 { 103 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16); 104 } 105 106 static void reg_file_set_stage(u8 set_stage) 107 { 108 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff); 109 } 110 111 static void reg_file_set_sub_stage(u8 set_sub_stage) 112 { 113 set_sub_stage &= 0xff; 114 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8); 115 } 116 117 /** 118 * phy_mgr_initialize() - Initialize PHY Manager 119 * 120 * Initialize PHY Manager. 121 */ 122 static void phy_mgr_initialize(void) 123 { 124 u32 ratio; 125 126 debug("%s:%d\n", __func__, __LINE__); 127 /* Calibration has control over path to memory */ 128 /* 129 * In Hard PHY this is a 2-bit control: 130 * 0: AFI Mux Select 131 * 1: DDIO Mux Select 132 */ 133 writel(0x3, &phy_mgr_cfg->mux_sel); 134 135 /* USER memory clock is not stable we begin initialization */ 136 writel(0, &phy_mgr_cfg->reset_mem_stbl); 137 138 /* USER calibration status all set to zero */ 139 writel(0, &phy_mgr_cfg->cal_status); 140 141 writel(0, &phy_mgr_cfg->cal_debug_info); 142 143 /* Init params only if we do NOT skip calibration. */ 144 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) 145 return; 146 147 ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 148 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 149 param->read_correct_mask_vg = (1 << ratio) - 1; 150 param->write_correct_mask_vg = (1 << ratio) - 1; 151 param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1; 152 param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1; 153 ratio = RW_MGR_MEM_DATA_WIDTH / 154 RW_MGR_MEM_DATA_MASK_WIDTH; 155 param->dm_correct_mask = (1 << ratio) - 1; 156 } 157 158 /** 159 * set_rank_and_odt_mask() - Set Rank and ODT mask 160 * @rank: Rank mask 161 * @odt_mode: ODT mode, OFF or READ_WRITE 162 * 163 * Set Rank and ODT mask (On-Die Termination). 164 */ 165 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode) 166 { 167 u32 odt_mask_0 = 0; 168 u32 odt_mask_1 = 0; 169 u32 cs_and_odt_mask; 170 171 if (odt_mode == RW_MGR_ODT_MODE_OFF) { 172 odt_mask_0 = 0x0; 173 odt_mask_1 = 0x0; 174 } else { /* RW_MGR_ODT_MODE_READ_WRITE */ 175 switch (RW_MGR_MEM_NUMBER_OF_RANKS) { 176 case 1: /* 1 Rank */ 177 /* Read: ODT = 0 ; Write: ODT = 1 */ 178 odt_mask_0 = 0x0; 179 odt_mask_1 = 0x1; 180 break; 181 case 2: /* 2 Ranks */ 182 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) { 183 /* 184 * - Dual-Slot , Single-Rank (1 CS per DIMM) 185 * OR 186 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM) 187 * 188 * Since MEM_NUMBER_OF_RANKS is 2, they 189 * are both single rank with 2 CS each 190 * (special for RDIMM). 191 * 192 * Read: Turn on ODT on the opposite rank 193 * Write: Turn on ODT on all ranks 194 */ 195 odt_mask_0 = 0x3 & ~(1 << rank); 196 odt_mask_1 = 0x3; 197 } else { 198 /* 199 * - Single-Slot , Dual-Rank (2 CS per DIMM) 200 * 201 * Read: Turn on ODT off on all ranks 202 * Write: Turn on ODT on active rank 203 */ 204 odt_mask_0 = 0x0; 205 odt_mask_1 = 0x3 & (1 << rank); 206 } 207 break; 208 case 4: /* 4 Ranks */ 209 /* Read: 210 * ----------+-----------------------+ 211 * | ODT | 212 * Read From +-----------------------+ 213 * Rank | 3 | 2 | 1 | 0 | 214 * ----------+-----+-----+-----+-----+ 215 * 0 | 0 | 1 | 0 | 0 | 216 * 1 | 1 | 0 | 0 | 0 | 217 * 2 | 0 | 0 | 0 | 1 | 218 * 3 | 0 | 0 | 1 | 0 | 219 * ----------+-----+-----+-----+-----+ 220 * 221 * Write: 222 * ----------+-----------------------+ 223 * | ODT | 224 * Write To +-----------------------+ 225 * Rank | 3 | 2 | 1 | 0 | 226 * ----------+-----+-----+-----+-----+ 227 * 0 | 0 | 1 | 0 | 1 | 228 * 1 | 1 | 0 | 1 | 0 | 229 * 2 | 0 | 1 | 0 | 1 | 230 * 3 | 1 | 0 | 1 | 0 | 231 * ----------+-----+-----+-----+-----+ 232 */ 233 switch (rank) { 234 case 0: 235 odt_mask_0 = 0x4; 236 odt_mask_1 = 0x5; 237 break; 238 case 1: 239 odt_mask_0 = 0x8; 240 odt_mask_1 = 0xA; 241 break; 242 case 2: 243 odt_mask_0 = 0x1; 244 odt_mask_1 = 0x5; 245 break; 246 case 3: 247 odt_mask_0 = 0x2; 248 odt_mask_1 = 0xA; 249 break; 250 } 251 break; 252 } 253 } 254 255 cs_and_odt_mask = (0xFF & ~(1 << rank)) | 256 ((0xFF & odt_mask_0) << 8) | 257 ((0xFF & odt_mask_1) << 16); 258 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS | 259 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 260 } 261 262 /** 263 * scc_mgr_set() - Set SCC Manager register 264 * @off: Base offset in SCC Manager space 265 * @grp: Read/Write group 266 * @val: Value to be set 267 * 268 * This function sets the SCC Manager (Scan Chain Control Manager) register. 269 */ 270 static void scc_mgr_set(u32 off, u32 grp, u32 val) 271 { 272 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2)); 273 } 274 275 /** 276 * scc_mgr_initialize() - Initialize SCC Manager registers 277 * 278 * Initialize SCC Manager registers. 279 */ 280 static void scc_mgr_initialize(void) 281 { 282 /* 283 * Clear register file for HPS. 16 (2^4) is the size of the 284 * full register file in the scc mgr: 285 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + 286 * MEM_IF_READ_DQS_WIDTH - 1); 287 */ 288 int i; 289 290 for (i = 0; i < 16; i++) { 291 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n", 292 __func__, __LINE__, i); 293 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i); 294 } 295 } 296 297 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase) 298 { 299 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase); 300 } 301 302 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay) 303 { 304 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay); 305 } 306 307 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase) 308 { 309 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase); 310 } 311 312 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay) 313 { 314 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay); 315 } 316 317 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay) 318 { 319 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 320 delay); 321 } 322 323 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay) 324 { 325 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay); 326 } 327 328 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay) 329 { 330 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay); 331 } 332 333 static void scc_mgr_set_dqs_out1_delay(uint32_t delay) 334 { 335 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 336 delay); 337 } 338 339 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay) 340 { 341 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, 342 RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm, 343 delay); 344 } 345 346 /* load up dqs config settings */ 347 static void scc_mgr_load_dqs(uint32_t dqs) 348 { 349 writel(dqs, &sdr_scc_mgr->dqs_ena); 350 } 351 352 /* load up dqs io config settings */ 353 static void scc_mgr_load_dqs_io(void) 354 { 355 writel(0, &sdr_scc_mgr->dqs_io_ena); 356 } 357 358 /* load up dq config settings */ 359 static void scc_mgr_load_dq(uint32_t dq_in_group) 360 { 361 writel(dq_in_group, &sdr_scc_mgr->dq_ena); 362 } 363 364 /* load up dm config settings */ 365 static void scc_mgr_load_dm(uint32_t dm) 366 { 367 writel(dm, &sdr_scc_mgr->dm_ena); 368 } 369 370 /** 371 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks 372 * @off: Base offset in SCC Manager space 373 * @grp: Read/Write group 374 * @val: Value to be set 375 * @update: If non-zero, trigger SCC Manager update for all ranks 376 * 377 * This function sets the SCC Manager (Scan Chain Control Manager) register 378 * and optionally triggers the SCC update for all ranks. 379 */ 380 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val, 381 const int update) 382 { 383 u32 r; 384 385 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 386 r += NUM_RANKS_PER_SHADOW_REG) { 387 scc_mgr_set(off, grp, val); 388 389 if (update || (r == 0)) { 390 writel(grp, &sdr_scc_mgr->dqs_ena); 391 writel(0, &sdr_scc_mgr->update); 392 } 393 } 394 } 395 396 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase) 397 { 398 /* 399 * USER although the h/w doesn't support different phases per 400 * shadow register, for simplicity our scc manager modeling 401 * keeps different phase settings per shadow reg, and it's 402 * important for us to keep them in sync to match h/w. 403 * for efficiency, the scan chain update should occur only 404 * once to sr0. 405 */ 406 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET, 407 read_group, phase, 0); 408 } 409 410 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group, 411 uint32_t phase) 412 { 413 /* 414 * USER although the h/w doesn't support different phases per 415 * shadow register, for simplicity our scc manager modeling 416 * keeps different phase settings per shadow reg, and it's 417 * important for us to keep them in sync to match h/w. 418 * for efficiency, the scan chain update should occur only 419 * once to sr0. 420 */ 421 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, 422 write_group, phase, 0); 423 } 424 425 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group, 426 uint32_t delay) 427 { 428 /* 429 * In shadow register mode, the T11 settings are stored in 430 * registers in the core, which are updated by the DQS_ENA 431 * signals. Not issuing the SCC_MGR_UPD command allows us to 432 * save lots of rank switching overhead, by calling 433 * select_shadow_regs_for_update with update_scan_chains 434 * set to 0. 435 */ 436 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET, 437 read_group, delay, 1); 438 writel(0, &sdr_scc_mgr->update); 439 } 440 441 /** 442 * scc_mgr_set_oct_out1_delay() - Set OCT output delay 443 * @write_group: Write group 444 * @delay: Delay value 445 * 446 * This function sets the OCT output delay in SCC manager. 447 */ 448 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay) 449 { 450 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 451 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 452 const int base = write_group * ratio; 453 int i; 454 /* 455 * Load the setting in the SCC manager 456 * Although OCT affects only write data, the OCT delay is controlled 457 * by the DQS logic block which is instantiated once per read group. 458 * For protocols where a write group consists of multiple read groups, 459 * the setting must be set multiple times. 460 */ 461 for (i = 0; i < ratio; i++) 462 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay); 463 } 464 465 /** 466 * scc_mgr_set_hhp_extras() - Set HHP extras. 467 * 468 * Load the fixed setting in the SCC manager HHP extras. 469 */ 470 static void scc_mgr_set_hhp_extras(void) 471 { 472 /* 473 * Load the fixed setting in the SCC manager 474 * bits: 0:0 = 1'b1 - DQS bypass 475 * bits: 1:1 = 1'b1 - DQ bypass 476 * bits: 4:2 = 3'b001 - rfifo_mode 477 * bits: 6:5 = 2'b01 - rfifo clock_select 478 * bits: 7:7 = 1'b0 - separate gating from ungating setting 479 * bits: 8:8 = 1'b0 - separate OE from Output delay setting 480 */ 481 const u32 value = (0 << 8) | (0 << 7) | (1 << 5) | 482 (1 << 2) | (1 << 1) | (1 << 0); 483 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | 484 SCC_MGR_HHP_GLOBALS_OFFSET | 485 SCC_MGR_HHP_EXTRAS_OFFSET; 486 487 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", 488 __func__, __LINE__); 489 writel(value, addr); 490 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n", 491 __func__, __LINE__); 492 } 493 494 /** 495 * scc_mgr_zero_all() - Zero all DQS config 496 * 497 * Zero all DQS config. 498 */ 499 static void scc_mgr_zero_all(void) 500 { 501 int i, r; 502 503 /* 504 * USER Zero all DQS config settings, across all groups and all 505 * shadow registers 506 */ 507 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 508 r += NUM_RANKS_PER_SHADOW_REG) { 509 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 510 /* 511 * The phases actually don't exist on a per-rank basis, 512 * but there's no harm updating them several times, so 513 * let's keep the code simple. 514 */ 515 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE); 516 scc_mgr_set_dqs_en_phase(i, 0); 517 scc_mgr_set_dqs_en_delay(i, 0); 518 } 519 520 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 521 scc_mgr_set_dqdqs_output_phase(i, 0); 522 /* Arria V/Cyclone V don't have out2. */ 523 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE); 524 } 525 } 526 527 /* Multicast to all DQS group enables. */ 528 writel(0xff, &sdr_scc_mgr->dqs_ena); 529 writel(0, &sdr_scc_mgr->update); 530 } 531 532 /** 533 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update 534 * @write_group: Write group 535 * 536 * Set bypass mode and trigger SCC update. 537 */ 538 static void scc_set_bypass_mode(const u32 write_group) 539 { 540 /* Multicast to all DQ enables. */ 541 writel(0xff, &sdr_scc_mgr->dq_ena); 542 writel(0xff, &sdr_scc_mgr->dm_ena); 543 544 /* Update current DQS IO enable. */ 545 writel(0, &sdr_scc_mgr->dqs_io_ena); 546 547 /* Update the DQS logic. */ 548 writel(write_group, &sdr_scc_mgr->dqs_ena); 549 550 /* Hit update. */ 551 writel(0, &sdr_scc_mgr->update); 552 } 553 554 /** 555 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group 556 * @write_group: Write group 557 * 558 * Load DQS settings for Write Group, do not trigger SCC update. 559 */ 560 static void scc_mgr_load_dqs_for_write_group(const u32 write_group) 561 { 562 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 563 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 564 const int base = write_group * ratio; 565 int i; 566 /* 567 * Load the setting in the SCC manager 568 * Although OCT affects only write data, the OCT delay is controlled 569 * by the DQS logic block which is instantiated once per read group. 570 * For protocols where a write group consists of multiple read groups, 571 * the setting must be set multiple times. 572 */ 573 for (i = 0; i < ratio; i++) 574 writel(base + i, &sdr_scc_mgr->dqs_ena); 575 } 576 577 /** 578 * scc_mgr_zero_group() - Zero all configs for a group 579 * 580 * Zero DQ, DM, DQS and OCT configs for a group. 581 */ 582 static void scc_mgr_zero_group(const u32 write_group, const int out_only) 583 { 584 int i, r; 585 586 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 587 r += NUM_RANKS_PER_SHADOW_REG) { 588 /* Zero all DQ config settings. */ 589 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 590 scc_mgr_set_dq_out1_delay(i, 0); 591 if (!out_only) 592 scc_mgr_set_dq_in_delay(i, 0); 593 } 594 595 /* Multicast to all DQ enables. */ 596 writel(0xff, &sdr_scc_mgr->dq_ena); 597 598 /* Zero all DM config settings. */ 599 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 600 scc_mgr_set_dm_out1_delay(i, 0); 601 602 /* Multicast to all DM enables. */ 603 writel(0xff, &sdr_scc_mgr->dm_ena); 604 605 /* Zero all DQS IO settings. */ 606 if (!out_only) 607 scc_mgr_set_dqs_io_in_delay(0); 608 609 /* Arria V/Cyclone V don't have out2. */ 610 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE); 611 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE); 612 scc_mgr_load_dqs_for_write_group(write_group); 613 614 /* Multicast to all DQS IO enables (only 1 in total). */ 615 writel(0, &sdr_scc_mgr->dqs_io_ena); 616 617 /* Hit update to zero everything. */ 618 writel(0, &sdr_scc_mgr->update); 619 } 620 } 621 622 /* 623 * apply and load a particular input delay for the DQ pins in a group 624 * group_bgn is the index of the first dq pin (in the write group) 625 */ 626 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay) 627 { 628 uint32_t i, p; 629 630 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 631 scc_mgr_set_dq_in_delay(p, delay); 632 scc_mgr_load_dq(p); 633 } 634 } 635 636 /** 637 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group 638 * @delay: Delay value 639 * 640 * Apply and load a particular output delay for the DQ pins in a group. 641 */ 642 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay) 643 { 644 int i; 645 646 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 647 scc_mgr_set_dq_out1_delay(i, delay); 648 scc_mgr_load_dq(i); 649 } 650 } 651 652 /* apply and load a particular output delay for the DM pins in a group */ 653 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1) 654 { 655 uint32_t i; 656 657 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 658 scc_mgr_set_dm_out1_delay(i, delay1); 659 scc_mgr_load_dm(i); 660 } 661 } 662 663 664 /* apply and load delay on both DQS and OCT out1 */ 665 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group, 666 uint32_t delay) 667 { 668 scc_mgr_set_dqs_out1_delay(delay); 669 scc_mgr_load_dqs_io(); 670 671 scc_mgr_set_oct_out1_delay(write_group, delay); 672 scc_mgr_load_dqs_for_write_group(write_group); 673 } 674 675 /** 676 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT 677 * @write_group: Write group 678 * @delay: Delay value 679 * 680 * Apply a delay to the entire output side: DQ, DM, DQS, OCT. 681 */ 682 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group, 683 const u32 delay) 684 { 685 u32 i, new_delay; 686 687 /* DQ shift */ 688 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) 689 scc_mgr_load_dq(i); 690 691 /* DM shift */ 692 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 693 scc_mgr_load_dm(i); 694 695 /* DQS shift */ 696 new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay; 697 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 698 debug_cond(DLEVEL == 1, 699 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 700 __func__, __LINE__, write_group, delay, new_delay, 701 IO_IO_OUT2_DELAY_MAX, 702 new_delay - IO_IO_OUT2_DELAY_MAX); 703 new_delay -= IO_IO_OUT2_DELAY_MAX; 704 scc_mgr_set_dqs_out1_delay(new_delay); 705 } 706 707 scc_mgr_load_dqs_io(); 708 709 /* OCT shift */ 710 new_delay = READ_SCC_OCT_OUT2_DELAY + delay; 711 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 712 debug_cond(DLEVEL == 1, 713 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 714 __func__, __LINE__, write_group, delay, 715 new_delay, IO_IO_OUT2_DELAY_MAX, 716 new_delay - IO_IO_OUT2_DELAY_MAX); 717 new_delay -= IO_IO_OUT2_DELAY_MAX; 718 scc_mgr_set_oct_out1_delay(write_group, new_delay); 719 } 720 721 scc_mgr_load_dqs_for_write_group(write_group); 722 } 723 724 /** 725 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks 726 * @write_group: Write group 727 * @delay: Delay value 728 * 729 * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks. 730 */ 731 static void 732 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group, 733 const u32 delay) 734 { 735 int r; 736 737 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 738 r += NUM_RANKS_PER_SHADOW_REG) { 739 scc_mgr_apply_group_all_out_delay_add(write_group, delay); 740 writel(0, &sdr_scc_mgr->update); 741 } 742 } 743 744 /** 745 * set_jump_as_return() - Return instruction optimization 746 * 747 * Optimization used to recover some slots in ddr3 inst_rom could be 748 * applied to other protocols if we wanted to 749 */ 750 static void set_jump_as_return(void) 751 { 752 /* 753 * To save space, we replace return with jump to special shared 754 * RETURN instruction so we set the counter to large value so that 755 * we always jump. 756 */ 757 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0); 758 writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 759 } 760 761 /* 762 * should always use constants as argument to ensure all computations are 763 * performed at compile time 764 */ 765 static void delay_for_n_mem_clocks(const uint32_t clocks) 766 { 767 uint32_t afi_clocks; 768 uint8_t inner = 0; 769 uint8_t outer = 0; 770 uint16_t c_loop = 0; 771 772 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks); 773 774 775 afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO; 776 /* scale (rounding up) to get afi clocks */ 777 778 /* 779 * Note, we don't bother accounting for being off a little bit 780 * because of a few extra instructions in outer loops 781 * Note, the loops have a test at the end, and do the test before 782 * the decrement, and so always perform the loop 783 * 1 time more than the counter value 784 */ 785 if (afi_clocks == 0) { 786 ; 787 } else if (afi_clocks <= 0x100) { 788 inner = afi_clocks-1; 789 outer = 0; 790 c_loop = 0; 791 } else if (afi_clocks <= 0x10000) { 792 inner = 0xff; 793 outer = (afi_clocks-1) >> 8; 794 c_loop = 0; 795 } else { 796 inner = 0xff; 797 outer = 0xff; 798 c_loop = (afi_clocks-1) >> 16; 799 } 800 801 /* 802 * rom instructions are structured as follows: 803 * 804 * IDLE_LOOP2: jnz cntr0, TARGET_A 805 * IDLE_LOOP1: jnz cntr1, TARGET_B 806 * return 807 * 808 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and 809 * TARGET_B is set to IDLE_LOOP2 as well 810 * 811 * if we have no outer loop, though, then we can use IDLE_LOOP1 only, 812 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely 813 * 814 * a little confusing, but it helps save precious space in the inst_rom 815 * and sequencer rom and keeps the delays more accurate and reduces 816 * overhead 817 */ 818 if (afi_clocks <= 0x100) { 819 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 820 &sdr_rw_load_mgr_regs->load_cntr1); 821 822 writel(RW_MGR_IDLE_LOOP1, 823 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 824 825 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 826 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 827 } else { 828 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 829 &sdr_rw_load_mgr_regs->load_cntr0); 830 831 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), 832 &sdr_rw_load_mgr_regs->load_cntr1); 833 834 writel(RW_MGR_IDLE_LOOP2, 835 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 836 837 writel(RW_MGR_IDLE_LOOP2, 838 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 839 840 /* hack to get around compiler not being smart enough */ 841 if (afi_clocks <= 0x10000) { 842 /* only need to run once */ 843 writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS | 844 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 845 } else { 846 do { 847 writel(RW_MGR_IDLE_LOOP2, 848 SDR_PHYGRP_RWMGRGRP_ADDRESS | 849 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 850 } while (c_loop-- != 0); 851 } 852 } 853 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks); 854 } 855 856 /** 857 * rw_mgr_mem_init_load_regs() - Load instruction registers 858 * @cntr0: Counter 0 value 859 * @cntr1: Counter 1 value 860 * @cntr2: Counter 2 value 861 * @jump: Jump instruction value 862 * 863 * Load instruction registers. 864 */ 865 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump) 866 { 867 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 868 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 869 870 /* Load counters */ 871 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0), 872 &sdr_rw_load_mgr_regs->load_cntr0); 873 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1), 874 &sdr_rw_load_mgr_regs->load_cntr1); 875 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2), 876 &sdr_rw_load_mgr_regs->load_cntr2); 877 878 /* Load jump address */ 879 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 880 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1); 881 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 882 883 /* Execute count instruction */ 884 writel(jump, grpaddr); 885 } 886 887 /** 888 * rw_mgr_mem_load_user() - Load user calibration values 889 * @fin1: Final instruction 1 890 * @fin2: Final instruction 2 891 * @precharge: If 1, precharge the banks at the end 892 * 893 * Load user calibration values and optionally precharge the banks. 894 */ 895 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2, 896 const int precharge) 897 { 898 u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 899 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 900 u32 r; 901 902 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 903 if (param->skip_ranks[r]) { 904 /* request to skip the rank */ 905 continue; 906 } 907 908 /* set rank */ 909 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 910 911 /* precharge all banks ... */ 912 if (precharge) 913 writel(RW_MGR_PRECHARGE_ALL, grpaddr); 914 915 /* 916 * USER Use Mirror-ed commands for odd ranks if address 917 * mirrorring is on 918 */ 919 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 920 set_jump_as_return(); 921 writel(RW_MGR_MRS2_MIRR, grpaddr); 922 delay_for_n_mem_clocks(4); 923 set_jump_as_return(); 924 writel(RW_MGR_MRS3_MIRR, grpaddr); 925 delay_for_n_mem_clocks(4); 926 set_jump_as_return(); 927 writel(RW_MGR_MRS1_MIRR, grpaddr); 928 delay_for_n_mem_clocks(4); 929 set_jump_as_return(); 930 writel(fin1, grpaddr); 931 } else { 932 set_jump_as_return(); 933 writel(RW_MGR_MRS2, grpaddr); 934 delay_for_n_mem_clocks(4); 935 set_jump_as_return(); 936 writel(RW_MGR_MRS3, grpaddr); 937 delay_for_n_mem_clocks(4); 938 set_jump_as_return(); 939 writel(RW_MGR_MRS1, grpaddr); 940 set_jump_as_return(); 941 writel(fin2, grpaddr); 942 } 943 944 if (precharge) 945 continue; 946 947 set_jump_as_return(); 948 writel(RW_MGR_ZQCL, grpaddr); 949 950 /* tZQinit = tDLLK = 512 ck cycles */ 951 delay_for_n_mem_clocks(512); 952 } 953 } 954 955 /** 956 * rw_mgr_mem_initialize() - Initialize RW Manager 957 * 958 * Initialize RW Manager. 959 */ 960 static void rw_mgr_mem_initialize(void) 961 { 962 debug("%s:%d\n", __func__, __LINE__); 963 964 /* The reset / cke part of initialization is broadcasted to all ranks */ 965 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 966 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 967 968 /* 969 * Here's how you load register for a loop 970 * Counters are located @ 0x800 971 * Jump address are located @ 0xC00 972 * For both, registers 0 to 3 are selected using bits 3 and 2, like 973 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C 974 * I know this ain't pretty, but Avalon bus throws away the 2 least 975 * significant bits 976 */ 977 978 /* Start with memory RESET activated */ 979 980 /* tINIT = 200us */ 981 982 /* 983 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles 984 * If a and b are the number of iteration in 2 nested loops 985 * it takes the following number of cycles to complete the operation: 986 * number_of_cycles = ((2 + n) * a + 2) * b 987 * where n is the number of instruction in the inner loop 988 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF, 989 * b = 6A 990 */ 991 rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL, 992 SEQ_TINIT_CNTR2_VAL, 993 RW_MGR_INIT_RESET_0_CKE_0); 994 995 /* Indicate that memory is stable. */ 996 writel(1, &phy_mgr_cfg->reset_mem_stbl); 997 998 /* 999 * transition the RESET to high 1000 * Wait for 500us 1001 */ 1002 1003 /* 1004 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles 1005 * If a and b are the number of iteration in 2 nested loops 1006 * it takes the following number of cycles to complete the operation 1007 * number_of_cycles = ((2 + n) * a + 2) * b 1008 * where n is the number of instruction in the inner loop 1009 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83, 1010 * b = FF 1011 */ 1012 rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL, 1013 SEQ_TRESET_CNTR2_VAL, 1014 RW_MGR_INIT_RESET_1_CKE_0); 1015 1016 /* Bring up clock enable. */ 1017 1018 /* tXRP < 250 ck cycles */ 1019 delay_for_n_mem_clocks(250); 1020 1021 rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET, 1022 0); 1023 } 1024 1025 /* 1026 * At the end of calibration we have to program the user settings in, and 1027 * USER hand off the memory to the user. 1028 */ 1029 static void rw_mgr_mem_handoff(void) 1030 { 1031 rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1); 1032 /* 1033 * USER need to wait tMOD (12CK or 15ns) time before issuing 1034 * other commands, but we will have plenty of NIOS cycles before 1035 * actual handoff so its okay. 1036 */ 1037 } 1038 1039 /** 1040 * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns 1041 * @rank_bgn: Rank number 1042 * @group: Read/Write Group 1043 * @all_ranks: Test all ranks 1044 * 1045 * Performs a guaranteed read on the patterns we are going to use during a 1046 * read test to ensure memory works. 1047 */ 1048 static int 1049 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group, 1050 const u32 all_ranks) 1051 { 1052 const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1053 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1054 const u32 addr_offset = 1055 (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2; 1056 const u32 rank_end = all_ranks ? 1057 RW_MGR_MEM_NUMBER_OF_RANKS : 1058 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1059 const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 1060 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 1061 const u32 correct_mask_vg = param->read_correct_mask_vg; 1062 1063 u32 tmp_bit_chk, base_rw_mgr, bit_chk; 1064 int vg, r; 1065 int ret = 0; 1066 1067 bit_chk = param->read_correct_mask; 1068 1069 for (r = rank_bgn; r < rank_end; r++) { 1070 /* Request to skip the rank */ 1071 if (param->skip_ranks[r]) 1072 continue; 1073 1074 /* Set rank */ 1075 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1076 1077 /* Load up a constant bursts of read commands */ 1078 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1079 writel(RW_MGR_GUARANTEED_READ, 1080 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1081 1082 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1083 writel(RW_MGR_GUARANTEED_READ_CONT, 1084 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1085 1086 tmp_bit_chk = 0; 1087 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; 1088 vg >= 0; vg--) { 1089 /* Reset the FIFOs to get pointers to known state. */ 1090 writel(0, &phy_mgr_cmd->fifo_reset); 1091 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1092 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1093 writel(RW_MGR_GUARANTEED_READ, 1094 addr + addr_offset + (vg << 2)); 1095 1096 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1097 tmp_bit_chk <<= shift_ratio; 1098 tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr; 1099 } 1100 1101 bit_chk &= tmp_bit_chk; 1102 } 1103 1104 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1105 1106 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1107 1108 if (bit_chk != param->read_correct_mask) 1109 ret = -EIO; 1110 1111 debug_cond(DLEVEL == 1, 1112 "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n", 1113 __func__, __LINE__, group, bit_chk, 1114 param->read_correct_mask, ret); 1115 1116 return ret; 1117 } 1118 1119 /** 1120 * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test 1121 * @rank_bgn: Rank number 1122 * @all_ranks: Test all ranks 1123 * 1124 * Load up the patterns we are going to use during a read test. 1125 */ 1126 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn, 1127 const int all_ranks) 1128 { 1129 const u32 rank_end = all_ranks ? 1130 RW_MGR_MEM_NUMBER_OF_RANKS : 1131 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1132 u32 r; 1133 1134 debug("%s:%d\n", __func__, __LINE__); 1135 1136 for (r = rank_bgn; r < rank_end; r++) { 1137 if (param->skip_ranks[r]) 1138 /* request to skip the rank */ 1139 continue; 1140 1141 /* set rank */ 1142 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1143 1144 /* Load up a constant bursts */ 1145 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1146 1147 writel(RW_MGR_GUARANTEED_WRITE_WAIT0, 1148 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1149 1150 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1151 1152 writel(RW_MGR_GUARANTEED_WRITE_WAIT1, 1153 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1154 1155 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2); 1156 1157 writel(RW_MGR_GUARANTEED_WRITE_WAIT2, 1158 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1159 1160 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3); 1161 1162 writel(RW_MGR_GUARANTEED_WRITE_WAIT3, 1163 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1164 1165 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1166 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 1167 } 1168 1169 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1170 } 1171 1172 /* 1173 * try a read and see if it returns correct data back. has dummy reads 1174 * inserted into the mix used to align dqs enable. has more thorough checks 1175 * than the regular read test. 1176 */ 1177 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group, 1178 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1179 uint32_t all_groups, uint32_t all_ranks) 1180 { 1181 uint32_t r, vg; 1182 uint32_t correct_mask_vg; 1183 uint32_t tmp_bit_chk; 1184 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1185 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1186 uint32_t addr; 1187 uint32_t base_rw_mgr; 1188 1189 *bit_chk = param->read_correct_mask; 1190 correct_mask_vg = param->read_correct_mask_vg; 1191 1192 uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) & 1193 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION); 1194 1195 for (r = rank_bgn; r < rank_end; r++) { 1196 if (param->skip_ranks[r]) 1197 /* request to skip the rank */ 1198 continue; 1199 1200 /* set rank */ 1201 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1202 1203 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1); 1204 1205 writel(RW_MGR_READ_B2B_WAIT1, 1206 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1207 1208 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2); 1209 writel(RW_MGR_READ_B2B_WAIT2, 1210 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1211 1212 if (quick_read_mode) 1213 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0); 1214 /* need at least two (1+1) reads to capture failures */ 1215 else if (all_groups) 1216 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0); 1217 else 1218 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0); 1219 1220 writel(RW_MGR_READ_B2B, 1221 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1222 if (all_groups) 1223 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH * 1224 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1, 1225 &sdr_rw_load_mgr_regs->load_cntr3); 1226 else 1227 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3); 1228 1229 writel(RW_MGR_READ_B2B, 1230 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1231 1232 tmp_bit_chk = 0; 1233 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1234 /* reset the fifos to get pointers to known state */ 1235 writel(0, &phy_mgr_cmd->fifo_reset); 1236 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1237 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1238 1239 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1240 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1241 1242 if (all_groups) 1243 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET; 1244 else 1245 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1246 1247 writel(RW_MGR_READ_B2B, addr + 1248 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1249 vg) << 2)); 1250 1251 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1252 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 1253 1254 if (vg == 0) 1255 break; 1256 } 1257 *bit_chk &= tmp_bit_chk; 1258 } 1259 1260 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1261 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1262 1263 if (all_correct) { 1264 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1265 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\ 1266 (%u == %u) => %lu", __func__, __LINE__, group, 1267 all_groups, *bit_chk, param->read_correct_mask, 1268 (long unsigned int)(*bit_chk == 1269 param->read_correct_mask)); 1270 return *bit_chk == param->read_correct_mask; 1271 } else { 1272 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1273 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\ 1274 (%u != %lu) => %lu\n", __func__, __LINE__, 1275 group, all_groups, *bit_chk, (long unsigned int)0, 1276 (long unsigned int)(*bit_chk != 0x00)); 1277 return *bit_chk != 0x00; 1278 } 1279 } 1280 1281 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group, 1282 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1283 uint32_t all_groups) 1284 { 1285 return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct, 1286 bit_chk, all_groups, 1); 1287 } 1288 1289 /** 1290 * rw_mgr_incr_vfifo() - Increase VFIFO value 1291 * @grp: Read/Write group 1292 * 1293 * Increase VFIFO value. 1294 */ 1295 static void rw_mgr_incr_vfifo(const u32 grp) 1296 { 1297 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy); 1298 } 1299 1300 /** 1301 * rw_mgr_decr_vfifo() - Decrease VFIFO value 1302 * @grp: Read/Write group 1303 * 1304 * Decrease VFIFO value. 1305 */ 1306 static void rw_mgr_decr_vfifo(const u32 grp) 1307 { 1308 u32 i; 1309 1310 for (i = 0; i < VFIFO_SIZE - 1; i++) 1311 rw_mgr_incr_vfifo(grp); 1312 } 1313 1314 /** 1315 * find_vfifo_failing_read() - Push VFIFO to get a failing read 1316 * @grp: Read/Write group 1317 * 1318 * Push VFIFO until a failing read happens. 1319 */ 1320 static int find_vfifo_failing_read(const u32 grp) 1321 { 1322 u32 v, ret, bit_chk, fail_cnt = 0; 1323 1324 for (v = 0; v < VFIFO_SIZE; v++) { 1325 debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n", 1326 __func__, __LINE__, v); 1327 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1328 PASS_ONE_BIT, &bit_chk, 0); 1329 if (!ret) { 1330 fail_cnt++; 1331 1332 if (fail_cnt == 2) 1333 return v; 1334 } 1335 1336 /* Fiddle with FIFO. */ 1337 rw_mgr_incr_vfifo(grp); 1338 } 1339 1340 /* No failing read found! Something must have gone wrong. */ 1341 debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__); 1342 return 0; 1343 } 1344 1345 /** 1346 * sdr_find_phase() - Find DQS enable phase 1347 * @working: If 1, look for working phase, if 0, look for non-working phase 1348 * @grp: Read/Write group 1349 * @work: Working window position 1350 * @i: Iterator 1351 * @p: DQS Phase Iterator 1352 * 1353 * Find working or non-working DQS enable phase setting. 1354 */ 1355 static int sdr_find_phase(int working, const u32 grp, u32 *work, 1356 u32 *i, u32 *p) 1357 { 1358 u32 ret, bit_chk; 1359 const u32 end = VFIFO_SIZE + (working ? 0 : 1); 1360 1361 for (; *i < end; (*i)++) { 1362 if (working) 1363 *p = 0; 1364 1365 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++) { 1366 scc_mgr_set_dqs_en_phase_all_ranks(grp, *p); 1367 1368 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1369 PASS_ONE_BIT, &bit_chk, 0); 1370 if (!working) 1371 ret = !ret; 1372 1373 if (ret) 1374 return 0; 1375 1376 *work += IO_DELAY_PER_OPA_TAP; 1377 } 1378 1379 if (*p > IO_DQS_EN_PHASE_MAX) { 1380 /* Fiddle with FIFO. */ 1381 rw_mgr_incr_vfifo(grp); 1382 if (!working) 1383 *p = 0; 1384 } 1385 } 1386 1387 return -EINVAL; 1388 } 1389 1390 /** 1391 * sdr_working_phase() - Find working DQS enable phase 1392 * @grp: Read/Write group 1393 * @work_bgn: Working window start position 1394 * @d: dtaps output value 1395 * @p: DQS Phase Iterator 1396 * @i: Iterator 1397 * 1398 * Find working DQS enable phase setting. 1399 */ 1400 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d, 1401 u32 *p, u32 *i) 1402 { 1403 const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / 1404 IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1405 int ret; 1406 1407 *work_bgn = 0; 1408 1409 for (*d = 0; *d <= dtaps_per_ptap; (*d)++) { 1410 *i = 0; 1411 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d); 1412 ret = sdr_find_phase(1, grp, work_bgn, i, p); 1413 if (!ret) 1414 return 0; 1415 *work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1416 } 1417 1418 /* Cannot find working solution */ 1419 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n", 1420 __func__, __LINE__); 1421 return -EINVAL; 1422 } 1423 1424 /** 1425 * sdr_backup_phase() - Find DQS enable backup phase 1426 * @grp: Read/Write group 1427 * @work_bgn: Working window start position 1428 * @p: DQS Phase Iterator 1429 * 1430 * Find DQS enable backup phase setting. 1431 */ 1432 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p) 1433 { 1434 u32 tmp_delay, bit_chk, d; 1435 int ret; 1436 1437 /* Special case code for backing up a phase */ 1438 if (*p == 0) { 1439 *p = IO_DQS_EN_PHASE_MAX; 1440 rw_mgr_decr_vfifo(grp); 1441 } else { 1442 (*p)--; 1443 } 1444 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP; 1445 scc_mgr_set_dqs_en_phase_all_ranks(grp, *p); 1446 1447 for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; d++) { 1448 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1449 1450 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1451 PASS_ONE_BIT, &bit_chk, 0); 1452 if (ret) { 1453 *work_bgn = tmp_delay; 1454 break; 1455 } 1456 1457 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1458 } 1459 1460 /* Restore VFIFO to old state before we decremented it (if needed). */ 1461 (*p)++; 1462 if (*p > IO_DQS_EN_PHASE_MAX) { 1463 *p = 0; 1464 rw_mgr_incr_vfifo(grp); 1465 } 1466 1467 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1468 } 1469 1470 /** 1471 * sdr_nonworking_phase() - Find non-working DQS enable phase 1472 * @grp: Read/Write group 1473 * @work_end: Working window end position 1474 * @p: DQS Phase Iterator 1475 * @i: Iterator 1476 * 1477 * Find non-working DQS enable phase setting. 1478 */ 1479 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i) 1480 { 1481 int ret; 1482 1483 (*p)++; 1484 *work_end += IO_DELAY_PER_OPA_TAP; 1485 if (*p > IO_DQS_EN_PHASE_MAX) { 1486 /* Fiddle with FIFO. */ 1487 *p = 0; 1488 rw_mgr_incr_vfifo(grp); 1489 } 1490 1491 ret = sdr_find_phase(0, grp, work_end, i, p); 1492 if (ret) { 1493 /* Cannot see edge of failing read. */ 1494 debug_cond(DLEVEL == 2, "%s:%d: end: failed\n", 1495 __func__, __LINE__); 1496 } 1497 1498 return ret; 1499 } 1500 1501 /** 1502 * sdr_find_window_center() - Find center of the working DQS window. 1503 * @grp: Read/Write group 1504 * @work_bgn: First working settings 1505 * @work_end: Last working settings 1506 * 1507 * Find center of the working DQS enable window. 1508 */ 1509 static int sdr_find_window_center(const u32 grp, const u32 work_bgn, 1510 const u32 work_end) 1511 { 1512 u32 bit_chk, work_mid; 1513 int tmp_delay = 0; 1514 int i, p, d; 1515 1516 work_mid = (work_bgn + work_end) / 2; 1517 1518 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n", 1519 work_bgn, work_end, work_mid); 1520 /* Get the middle delay to be less than a VFIFO delay */ 1521 tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP; 1522 1523 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay); 1524 work_mid %= tmp_delay; 1525 debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid); 1526 1527 tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP); 1528 if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP) 1529 tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP; 1530 p = tmp_delay / IO_DELAY_PER_OPA_TAP; 1531 1532 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay); 1533 1534 d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP); 1535 if (d > IO_DQS_EN_DELAY_MAX) 1536 d = IO_DQS_EN_DELAY_MAX; 1537 tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1538 1539 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay); 1540 1541 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1542 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1543 1544 /* 1545 * push vfifo until we can successfully calibrate. We can do this 1546 * because the largest possible margin in 1 VFIFO cycle. 1547 */ 1548 for (i = 0; i < VFIFO_SIZE; i++) { 1549 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n"); 1550 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1551 PASS_ONE_BIT, 1552 &bit_chk, 0)) { 1553 debug_cond(DLEVEL == 2, 1554 "%s:%d center: found: ptap=%u dtap=%u\n", 1555 __func__, __LINE__, p, d); 1556 return 0; 1557 } 1558 1559 /* Fiddle with FIFO. */ 1560 rw_mgr_incr_vfifo(grp); 1561 } 1562 1563 debug_cond(DLEVEL == 2, "%s:%d center: failed.\n", 1564 __func__, __LINE__); 1565 return -EINVAL; 1566 } 1567 1568 /* find a good dqs enable to use */ 1569 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(u32 grp) 1570 { 1571 uint32_t d, p, i; 1572 uint32_t bit_chk; 1573 uint32_t dtaps_per_ptap; 1574 uint32_t work_bgn, work_end; 1575 uint32_t found_passing_read, found_failing_read, initial_failing_dtap; 1576 1577 debug("%s:%d %u\n", __func__, __LINE__, grp); 1578 1579 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 1580 1581 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1582 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); 1583 1584 /* Step 0: Determine number of delay taps for each phase tap. */ 1585 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1586 1587 /* Step 1: First push vfifo until we get a failing read. */ 1588 find_vfifo_failing_read(grp); 1589 1590 /* Step 2: Find first working phase, increment in ptaps. */ 1591 work_bgn = 0; 1592 if (sdr_working_phase(grp, &work_bgn, &d, &p, &i)) 1593 return 0; 1594 1595 work_end = work_bgn; 1596 1597 /* 1598 * If d is 0 then the working window covers a phase tap and we can 1599 * follow the old procedure. Otherwise, we've found the beginning 1600 * and we need to increment the dtaps until we find the end. 1601 */ 1602 if (d == 0) { 1603 /* 1604 * Step 3a: If we have room, back off by one and 1605 * increment in dtaps. 1606 */ 1607 sdr_backup_phase(grp, &work_bgn, &p); 1608 1609 /* 1610 * Step 4a: go forward from working phase to non working 1611 * phase, increment in ptaps. 1612 */ 1613 if (sdr_nonworking_phase(grp, &work_end, &p, &i)) 1614 return 0; 1615 1616 /* Step 5a: Back off one from last, increment in dtaps. */ 1617 1618 /* Special case code for backing up a phase */ 1619 if (p == 0) { 1620 p = IO_DQS_EN_PHASE_MAX; 1621 rw_mgr_decr_vfifo(grp); 1622 } else { 1623 p = p - 1; 1624 } 1625 1626 work_end -= IO_DELAY_PER_OPA_TAP; 1627 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1628 1629 d = 0; 1630 1631 debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n", 1632 __func__, __LINE__, p); 1633 } 1634 1635 /* The dtap increment to find the failing edge is done here. */ 1636 for (; d <= IO_DQS_EN_DELAY_MAX; 1637 d++, work_end += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1638 debug_cond(DLEVEL == 2, "%s:%d end-2: dtap=%u\n", 1639 __func__, __LINE__, d); 1640 1641 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1642 1643 if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1644 PASS_ONE_BIT, 1645 &bit_chk, 0)) { 1646 break; 1647 } 1648 } 1649 1650 /* Go back to working dtap */ 1651 if (d != 0) 1652 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1653 1654 debug_cond(DLEVEL == 2, 1655 "%s:%d p/d: ptap=%u dtap=%u end=%u\n", 1656 __func__, __LINE__, p, d - 1, work_end); 1657 1658 if (work_end < work_bgn) { 1659 /* nil range */ 1660 debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n", 1661 __func__, __LINE__); 1662 return 0; 1663 } 1664 1665 debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n", 1666 __func__, __LINE__, work_bgn, work_end); 1667 1668 /* 1669 * We need to calculate the number of dtaps that equal a ptap. 1670 * To do that we'll back up a ptap and re-find the edge of the 1671 * window using dtaps 1672 */ 1673 debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n", 1674 __func__, __LINE__); 1675 1676 /* Special case code for backing up a phase */ 1677 if (p == 0) { 1678 p = IO_DQS_EN_PHASE_MAX; 1679 rw_mgr_decr_vfifo(grp); 1680 debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n", 1681 __func__, __LINE__, p); 1682 } else { 1683 p = p - 1; 1684 debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u", 1685 __func__, __LINE__, p); 1686 } 1687 1688 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1689 1690 /* 1691 * Increase dtap until we first see a passing read (in case the 1692 * window is smaller than a ptap), and then a failing read to 1693 * mark the edge of the window again. 1694 */ 1695 1696 /* Find a passing read. */ 1697 debug_cond(DLEVEL == 2, "%s:%d find passing read\n", 1698 __func__, __LINE__); 1699 found_passing_read = 0; 1700 found_failing_read = 0; 1701 initial_failing_dtap = d; 1702 for (; d <= IO_DQS_EN_DELAY_MAX; d++) { 1703 debug_cond(DLEVEL == 2, "%s:%d testing read d=%u\n", 1704 __func__, __LINE__, d); 1705 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1706 1707 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1708 PASS_ONE_BIT, 1709 &bit_chk, 0)) { 1710 found_passing_read = 1; 1711 break; 1712 } 1713 } 1714 1715 if (found_passing_read) { 1716 /* Find a failing read. */ 1717 debug_cond(DLEVEL == 2, "%s:%d find failing read\n", 1718 __func__, __LINE__); 1719 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) { 1720 debug_cond(DLEVEL == 2, "%s:%d testing read d=%u\n", 1721 __func__, __LINE__, d); 1722 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1723 1724 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1725 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { 1726 found_failing_read = 1; 1727 break; 1728 } 1729 } 1730 } else { 1731 debug_cond(DLEVEL == 1, 1732 "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n", 1733 __func__, __LINE__); 1734 } 1735 1736 /* 1737 * The dynamically calculated dtaps_per_ptap is only valid if we 1738 * found a passing/failing read. If we didn't, it means d hit the max 1739 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its 1740 * statically calculated value. 1741 */ 1742 if (found_passing_read && found_failing_read) 1743 dtaps_per_ptap = d - initial_failing_dtap; 1744 1745 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 1746 debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u", 1747 __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap); 1748 1749 /* Step 6: Find the centre of the window. */ 1750 if (sdr_find_window_centre(grp, work_bgn, work_end)) 1751 return 0; 1752 1753 return 1; 1754 } 1755 1756 /* per-bit deskew DQ and center */ 1757 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn, 1758 uint32_t write_group, uint32_t read_group, uint32_t test_bgn, 1759 uint32_t use_read_test, uint32_t update_fom) 1760 { 1761 uint32_t i, p, d, min_index; 1762 /* 1763 * Store these as signed since there are comparisons with 1764 * signed numbers. 1765 */ 1766 uint32_t bit_chk; 1767 uint32_t sticky_bit_chk; 1768 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1769 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1770 int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS]; 1771 int32_t mid; 1772 int32_t orig_mid_min, mid_min; 1773 int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs, 1774 final_dqs_en; 1775 int32_t dq_margin, dqs_margin; 1776 uint32_t stop; 1777 uint32_t temp_dq_in_delay1, temp_dq_in_delay2; 1778 uint32_t addr; 1779 1780 debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn); 1781 1782 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET; 1783 start_dqs = readl(addr + (read_group << 2)); 1784 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 1785 start_dqs_en = readl(addr + ((read_group << 2) 1786 - IO_DQS_EN_DELAY_OFFSET)); 1787 1788 /* set the left and right edge of each bit to an illegal value */ 1789 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */ 1790 sticky_bit_chk = 0; 1791 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1792 left_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1793 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1794 } 1795 1796 /* Search for the left edge of the window for each bit */ 1797 for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) { 1798 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d); 1799 1800 writel(0, &sdr_scc_mgr->update); 1801 1802 /* 1803 * Stop searching when the read test doesn't pass AND when 1804 * we've seen a passing read on every bit. 1805 */ 1806 if (use_read_test) { 1807 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1808 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1809 &bit_chk, 0, 0); 1810 } else { 1811 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1812 0, PASS_ONE_BIT, 1813 &bit_chk, 0); 1814 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1815 (read_group - (write_group * 1816 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1817 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1818 stop = (bit_chk == 0); 1819 } 1820 sticky_bit_chk = sticky_bit_chk | bit_chk; 1821 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1822 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \ 1823 && %u", __func__, __LINE__, d, 1824 sticky_bit_chk, 1825 param->read_correct_mask, stop); 1826 1827 if (stop == 1) { 1828 break; 1829 } else { 1830 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1831 if (bit_chk & 1) { 1832 /* Remember a passing test as the 1833 left_edge */ 1834 left_edge[i] = d; 1835 } else { 1836 /* If a left edge has not been seen yet, 1837 then a future passing test will mark 1838 this edge as the right edge */ 1839 if (left_edge[i] == 1840 IO_IO_IN_DELAY_MAX + 1) { 1841 right_edge[i] = -(d + 1); 1842 } 1843 } 1844 bit_chk = bit_chk >> 1; 1845 } 1846 } 1847 } 1848 1849 /* Reset DQ delay chains to 0 */ 1850 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 1851 sticky_bit_chk = 0; 1852 for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) { 1853 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 1854 %d right_edge[%u]: %d\n", __func__, __LINE__, 1855 i, left_edge[i], i, right_edge[i]); 1856 1857 /* 1858 * Check for cases where we haven't found the left edge, 1859 * which makes our assignment of the the right edge invalid. 1860 * Reset it to the illegal value. 1861 */ 1862 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && ( 1863 right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1864 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1865 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \ 1866 right_edge[%u]: %d\n", __func__, __LINE__, 1867 i, right_edge[i]); 1868 } 1869 1870 /* 1871 * Reset sticky bit (except for bits where we have seen 1872 * both the left and right edge). 1873 */ 1874 sticky_bit_chk = sticky_bit_chk << 1; 1875 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) && 1876 (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1877 sticky_bit_chk = sticky_bit_chk | 1; 1878 } 1879 1880 if (i == 0) 1881 break; 1882 } 1883 1884 /* Search for the right edge of the window for each bit */ 1885 for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) { 1886 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs); 1887 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 1888 uint32_t delay = d + start_dqs_en; 1889 if (delay > IO_DQS_EN_DELAY_MAX) 1890 delay = IO_DQS_EN_DELAY_MAX; 1891 scc_mgr_set_dqs_en_delay(read_group, delay); 1892 } 1893 scc_mgr_load_dqs(read_group); 1894 1895 writel(0, &sdr_scc_mgr->update); 1896 1897 /* 1898 * Stop searching when the read test doesn't pass AND when 1899 * we've seen a passing read on every bit. 1900 */ 1901 if (use_read_test) { 1902 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1903 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1904 &bit_chk, 0, 0); 1905 } else { 1906 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1907 0, PASS_ONE_BIT, 1908 &bit_chk, 0); 1909 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1910 (read_group - (write_group * 1911 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1912 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1913 stop = (bit_chk == 0); 1914 } 1915 sticky_bit_chk = sticky_bit_chk | bit_chk; 1916 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1917 1918 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \ 1919 %u && %u", __func__, __LINE__, d, 1920 sticky_bit_chk, param->read_correct_mask, stop); 1921 1922 if (stop == 1) { 1923 break; 1924 } else { 1925 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1926 if (bit_chk & 1) { 1927 /* Remember a passing test as 1928 the right_edge */ 1929 right_edge[i] = d; 1930 } else { 1931 if (d != 0) { 1932 /* If a right edge has not been 1933 seen yet, then a future passing 1934 test will mark this edge as the 1935 left edge */ 1936 if (right_edge[i] == 1937 IO_IO_IN_DELAY_MAX + 1) { 1938 left_edge[i] = -(d + 1); 1939 } 1940 } else { 1941 /* d = 0 failed, but it passed 1942 when testing the left edge, 1943 so it must be marginal, 1944 set it to -1 */ 1945 if (right_edge[i] == 1946 IO_IO_IN_DELAY_MAX + 1 && 1947 left_edge[i] != 1948 IO_IO_IN_DELAY_MAX 1949 + 1) { 1950 right_edge[i] = -1; 1951 } 1952 /* If a right edge has not been 1953 seen yet, then a future passing 1954 test will mark this edge as the 1955 left edge */ 1956 else if (right_edge[i] == 1957 IO_IO_IN_DELAY_MAX + 1958 1) { 1959 left_edge[i] = -(d + 1); 1960 } 1961 } 1962 } 1963 1964 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\ 1965 d=%u]: ", __func__, __LINE__, d); 1966 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ", 1967 (int)(bit_chk & 1), i, left_edge[i]); 1968 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 1969 right_edge[i]); 1970 bit_chk = bit_chk >> 1; 1971 } 1972 } 1973 } 1974 1975 /* Check that all bits have a window */ 1976 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1977 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 1978 %d right_edge[%u]: %d", __func__, __LINE__, 1979 i, left_edge[i], i, right_edge[i]); 1980 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i] 1981 == IO_IO_IN_DELAY_MAX + 1)) { 1982 /* 1983 * Restore delay chain settings before letting the loop 1984 * in rw_mgr_mem_calibrate_vfifo to retry different 1985 * dqs/ck relationships. 1986 */ 1987 scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs); 1988 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 1989 scc_mgr_set_dqs_en_delay(read_group, 1990 start_dqs_en); 1991 } 1992 scc_mgr_load_dqs(read_group); 1993 writel(0, &sdr_scc_mgr->update); 1994 1995 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \ 1996 find edge [%u]: %d %d", __func__, __LINE__, 1997 i, left_edge[i], right_edge[i]); 1998 if (use_read_test) { 1999 set_failing_group_stage(read_group * 2000 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2001 CAL_STAGE_VFIFO, 2002 CAL_SUBSTAGE_VFIFO_CENTER); 2003 } else { 2004 set_failing_group_stage(read_group * 2005 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2006 CAL_STAGE_VFIFO_AFTER_WRITES, 2007 CAL_SUBSTAGE_VFIFO_CENTER); 2008 } 2009 return 0; 2010 } 2011 } 2012 2013 /* Find middle of window for each DQ bit */ 2014 mid_min = left_edge[0] - right_edge[0]; 2015 min_index = 0; 2016 for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2017 mid = left_edge[i] - right_edge[i]; 2018 if (mid < mid_min) { 2019 mid_min = mid; 2020 min_index = i; 2021 } 2022 } 2023 2024 /* 2025 * -mid_min/2 represents the amount that we need to move DQS. 2026 * If mid_min is odd and positive we'll need to add one to 2027 * make sure the rounding in further calculations is correct 2028 * (always bias to the right), so just add 1 for all positive values. 2029 */ 2030 if (mid_min > 0) 2031 mid_min++; 2032 2033 mid_min = mid_min / 2; 2034 2035 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n", 2036 __func__, __LINE__, mid_min, min_index); 2037 2038 /* Determine the amount we can change DQS (which is -mid_min) */ 2039 orig_mid_min = mid_min; 2040 new_dqs = start_dqs - mid_min; 2041 if (new_dqs > IO_DQS_IN_DELAY_MAX) 2042 new_dqs = IO_DQS_IN_DELAY_MAX; 2043 else if (new_dqs < 0) 2044 new_dqs = 0; 2045 2046 mid_min = start_dqs - new_dqs; 2047 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n", 2048 mid_min, new_dqs); 2049 2050 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2051 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX) 2052 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX; 2053 else if (start_dqs_en - mid_min < 0) 2054 mid_min += start_dqs_en - mid_min; 2055 } 2056 new_dqs = start_dqs - mid_min; 2057 2058 debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \ 2059 new_dqs=%d mid_min=%d\n", start_dqs, 2060 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1, 2061 new_dqs, mid_min); 2062 2063 /* Initialize data for export structures */ 2064 dqs_margin = IO_IO_IN_DELAY_MAX + 1; 2065 dq_margin = IO_IO_IN_DELAY_MAX + 1; 2066 2067 /* add delay to bring centre of all DQ windows to the same "level" */ 2068 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 2069 /* Use values before divide by 2 to reduce round off error */ 2070 shift_dq = (left_edge[i] - right_edge[i] - 2071 (left_edge[min_index] - right_edge[min_index]))/2 + 2072 (orig_mid_min - mid_min); 2073 2074 debug_cond(DLEVEL == 2, "vfifo_center: before: \ 2075 shift_dq[%u]=%d\n", i, shift_dq); 2076 2077 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET; 2078 temp_dq_in_delay1 = readl(addr + (p << 2)); 2079 temp_dq_in_delay2 = readl(addr + (i << 2)); 2080 2081 if (shift_dq + (int32_t)temp_dq_in_delay1 > 2082 (int32_t)IO_IO_IN_DELAY_MAX) { 2083 shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2; 2084 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) { 2085 shift_dq = -(int32_t)temp_dq_in_delay1; 2086 } 2087 debug_cond(DLEVEL == 2, "vfifo_center: after: \ 2088 shift_dq[%u]=%d\n", i, shift_dq); 2089 final_dq[i] = temp_dq_in_delay1 + shift_dq; 2090 scc_mgr_set_dq_in_delay(p, final_dq[i]); 2091 scc_mgr_load_dq(p); 2092 2093 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i, 2094 left_edge[i] - shift_dq + (-mid_min), 2095 right_edge[i] + shift_dq - (-mid_min)); 2096 /* To determine values for export structures */ 2097 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2098 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2099 2100 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2101 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2102 } 2103 2104 final_dqs = new_dqs; 2105 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2106 final_dqs_en = start_dqs_en - mid_min; 2107 2108 /* Move DQS-en */ 2109 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2110 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en); 2111 scc_mgr_load_dqs(read_group); 2112 } 2113 2114 /* Move DQS */ 2115 scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs); 2116 scc_mgr_load_dqs(read_group); 2117 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \ 2118 dqs_margin=%d", __func__, __LINE__, 2119 dq_margin, dqs_margin); 2120 2121 /* 2122 * Do not remove this line as it makes sure all of our decisions 2123 * have been applied. Apply the update bit. 2124 */ 2125 writel(0, &sdr_scc_mgr->update); 2126 2127 return (dq_margin >= 0) && (dqs_margin >= 0); 2128 } 2129 2130 /** 2131 * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device 2132 * @rw_group: Read/Write Group 2133 * @phase: DQ/DQS phase 2134 * 2135 * Because initially no communication ca be reliably performed with the memory 2136 * device, the sequencer uses a guaranteed write mechanism to write data into 2137 * the memory device. 2138 */ 2139 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group, 2140 const u32 phase) 2141 { 2142 int ret; 2143 2144 /* Set a particular DQ/DQS phase. */ 2145 scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase); 2146 2147 debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n", 2148 __func__, __LINE__, rw_group, phase); 2149 2150 /* 2151 * Altera EMI_RM 2015.05.04 :: Figure 1-25 2152 * Load up the patterns used by read calibration using the 2153 * current DQDQS phase. 2154 */ 2155 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2156 2157 if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ) 2158 return 0; 2159 2160 /* 2161 * Altera EMI_RM 2015.05.04 :: Figure 1-26 2162 * Back-to-Back reads of the patterns used for calibration. 2163 */ 2164 ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1); 2165 if (ret) 2166 debug_cond(DLEVEL == 1, 2167 "%s:%d Guaranteed read test failed: g=%u p=%u\n", 2168 __func__, __LINE__, rw_group, phase); 2169 return ret; 2170 } 2171 2172 /** 2173 * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration 2174 * @rw_group: Read/Write Group 2175 * @test_bgn: Rank at which the test begins 2176 * 2177 * DQS enable calibration ensures reliable capture of the DQ signal without 2178 * glitches on the DQS line. 2179 */ 2180 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group, 2181 const u32 test_bgn) 2182 { 2183 /* 2184 * Altera EMI_RM 2015.05.04 :: Figure 1-27 2185 * DQS and DQS Eanble Signal Relationships. 2186 */ 2187 2188 /* We start at zero, so have one less dq to devide among */ 2189 const u32 delay_step = IO_IO_IN_DELAY_MAX / 2190 (RW_MGR_MEM_DQ_PER_READ_DQS - 1); 2191 int found; 2192 u32 i, p, d, r; 2193 2194 debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn); 2195 2196 /* Try different dq_in_delays since the DQ path is shorter than DQS. */ 2197 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 2198 r += NUM_RANKS_PER_SHADOW_REG) { 2199 for (i = 0, p = test_bgn, d = 0; 2200 i < RW_MGR_MEM_DQ_PER_READ_DQS; 2201 i++, p++, d += delay_step) { 2202 debug_cond(DLEVEL == 1, 2203 "%s:%d: g=%u r=%u i=%u p=%u d=%u\n", 2204 __func__, __LINE__, rw_group, r, i, p, d); 2205 2206 scc_mgr_set_dq_in_delay(p, d); 2207 scc_mgr_load_dq(p); 2208 } 2209 2210 writel(0, &sdr_scc_mgr->update); 2211 } 2212 2213 /* 2214 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different 2215 * dq_in_delay values 2216 */ 2217 found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group); 2218 2219 debug_cond(DLEVEL == 1, 2220 "%s:%d: g=%u found=%u; Reseting delay chain to zero\n", 2221 __func__, __LINE__, rw_group, found); 2222 2223 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 2224 r += NUM_RANKS_PER_SHADOW_REG) { 2225 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 2226 writel(0, &sdr_scc_mgr->update); 2227 } 2228 2229 if (!found) 2230 return -EINVAL; 2231 2232 return 0; 2233 2234 } 2235 2236 /** 2237 * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS 2238 * @rw_group: Read/Write Group 2239 * @test_bgn: Rank at which the test begins 2240 * @use_read_test: Perform a read test 2241 * @update_fom: Update FOM 2242 * 2243 * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads 2244 * within a group. 2245 */ 2246 static int 2247 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn, 2248 const int use_read_test, 2249 const int update_fom) 2250 2251 { 2252 int ret, grp_calibrated; 2253 u32 rank_bgn, sr; 2254 2255 /* 2256 * Altera EMI_RM 2015.05.04 :: Figure 1-28 2257 * Read per-bit deskew can be done on a per shadow register basis. 2258 */ 2259 grp_calibrated = 1; 2260 for (rank_bgn = 0, sr = 0; 2261 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2262 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 2263 /* Check if this set of ranks should be skipped entirely. */ 2264 if (param->skip_shadow_regs[sr]) 2265 continue; 2266 2267 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group, 2268 rw_group, test_bgn, 2269 use_read_test, 2270 update_fom); 2271 if (ret) 2272 continue; 2273 2274 grp_calibrated = 0; 2275 } 2276 2277 if (!grp_calibrated) 2278 return -EIO; 2279 2280 return 0; 2281 } 2282 2283 /** 2284 * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO 2285 * @rw_group: Read/Write Group 2286 * @test_bgn: Rank at which the test begins 2287 * 2288 * Stage 1: Calibrate the read valid prediction FIFO. 2289 * 2290 * This function implements UniPHY calibration Stage 1, as explained in 2291 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 2292 * 2293 * - read valid prediction will consist of finding: 2294 * - DQS enable phase and DQS enable delay (DQS Enable Calibration) 2295 * - DQS input phase and DQS input delay (DQ/DQS Centering) 2296 * - we also do a per-bit deskew on the DQ lines. 2297 */ 2298 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn) 2299 { 2300 uint32_t p, d; 2301 uint32_t dtaps_per_ptap; 2302 uint32_t failed_substage; 2303 2304 int ret; 2305 2306 debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn); 2307 2308 /* Update info for sims */ 2309 reg_file_set_group(rw_group); 2310 reg_file_set_stage(CAL_STAGE_VFIFO); 2311 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ); 2312 2313 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ; 2314 2315 /* USER Determine number of delay taps for each phase tap. */ 2316 dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, 2317 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1; 2318 2319 for (d = 0; d <= dtaps_per_ptap; d += 2) { 2320 /* 2321 * In RLDRAMX we may be messing the delay of pins in 2322 * the same write rw_group but outside of the current read 2323 * the rw_group, but that's ok because we haven't calibrated 2324 * output side yet. 2325 */ 2326 if (d > 0) { 2327 scc_mgr_apply_group_all_out_delay_add_all_ranks( 2328 rw_group, d); 2329 } 2330 2331 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) { 2332 /* 1) Guaranteed Write */ 2333 ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p); 2334 if (ret) 2335 break; 2336 2337 /* 2) DQS Enable Calibration */ 2338 ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group, 2339 test_bgn); 2340 if (ret) { 2341 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE; 2342 continue; 2343 } 2344 2345 /* 3) Centering DQ/DQS */ 2346 /* 2347 * If doing read after write calibration, do not update 2348 * FOM now. Do it then. 2349 */ 2350 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, 2351 test_bgn, 1, 0); 2352 if (ret) { 2353 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER; 2354 continue; 2355 } 2356 2357 /* All done. */ 2358 goto cal_done_ok; 2359 } 2360 } 2361 2362 /* Calibration Stage 1 failed. */ 2363 set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage); 2364 return 0; 2365 2366 /* Calibration Stage 1 completed OK. */ 2367 cal_done_ok: 2368 /* 2369 * Reset the delay chains back to zero if they have moved > 1 2370 * (check for > 1 because loop will increase d even when pass in 2371 * first case). 2372 */ 2373 if (d > 2) 2374 scc_mgr_zero_group(rw_group, 1); 2375 2376 return 1; 2377 } 2378 2379 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */ 2380 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group, 2381 uint32_t test_bgn) 2382 { 2383 uint32_t rank_bgn, sr; 2384 uint32_t grp_calibrated; 2385 uint32_t write_group; 2386 2387 debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn); 2388 2389 /* update info for sims */ 2390 2391 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES); 2392 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 2393 2394 write_group = read_group; 2395 2396 /* update info for sims */ 2397 reg_file_set_group(read_group); 2398 2399 grp_calibrated = 1; 2400 /* Read per-bit deskew can be done on a per shadow register basis */ 2401 for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2402 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) { 2403 /* Determine if this set of ranks should be skipped entirely */ 2404 if (!param->skip_shadow_regs[sr]) { 2405 /* This is the last calibration round, update FOM here */ 2406 if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn, 2407 write_group, 2408 read_group, 2409 test_bgn, 0, 2410 1)) { 2411 grp_calibrated = 0; 2412 } 2413 } 2414 } 2415 2416 2417 if (grp_calibrated == 0) { 2418 set_failing_group_stage(write_group, 2419 CAL_STAGE_VFIFO_AFTER_WRITES, 2420 CAL_SUBSTAGE_VFIFO_CENTER); 2421 return 0; 2422 } 2423 2424 return 1; 2425 } 2426 2427 /* Calibrate LFIFO to find smallest read latency */ 2428 static uint32_t rw_mgr_mem_calibrate_lfifo(void) 2429 { 2430 uint32_t found_one; 2431 uint32_t bit_chk; 2432 2433 debug("%s:%d\n", __func__, __LINE__); 2434 2435 /* update info for sims */ 2436 reg_file_set_stage(CAL_STAGE_LFIFO); 2437 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY); 2438 2439 /* Load up the patterns used by read calibration for all ranks */ 2440 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2441 found_one = 0; 2442 2443 do { 2444 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2445 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u", 2446 __func__, __LINE__, gbl->curr_read_lat); 2447 2448 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, 2449 NUM_READ_TESTS, 2450 PASS_ALL_BITS, 2451 &bit_chk, 1)) { 2452 break; 2453 } 2454 2455 found_one = 1; 2456 /* reduce read latency and see if things are working */ 2457 /* correctly */ 2458 gbl->curr_read_lat--; 2459 } while (gbl->curr_read_lat > 0); 2460 2461 /* reset the fifos to get pointers to known state */ 2462 2463 writel(0, &phy_mgr_cmd->fifo_reset); 2464 2465 if (found_one) { 2466 /* add a fudge factor to the read latency that was determined */ 2467 gbl->curr_read_lat += 2; 2468 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2469 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \ 2470 read_lat=%u\n", __func__, __LINE__, 2471 gbl->curr_read_lat); 2472 return 1; 2473 } else { 2474 set_failing_group_stage(0xff, CAL_STAGE_LFIFO, 2475 CAL_SUBSTAGE_READ_LATENCY); 2476 2477 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \ 2478 read_lat=%u\n", __func__, __LINE__, 2479 gbl->curr_read_lat); 2480 return 0; 2481 } 2482 } 2483 2484 /* 2485 * issue write test command. 2486 * two variants are provided. one that just tests a write pattern and 2487 * another that tests datamask functionality. 2488 */ 2489 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group, 2490 uint32_t test_dm) 2491 { 2492 uint32_t mcc_instruction; 2493 uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) && 2494 ENABLE_SUPER_QUICK_CALIBRATION); 2495 uint32_t rw_wl_nop_cycles; 2496 uint32_t addr; 2497 2498 /* 2499 * Set counter and jump addresses for the right 2500 * number of NOP cycles. 2501 * The number of supported NOP cycles can range from -1 to infinity 2502 * Three different cases are handled: 2503 * 2504 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping 2505 * mechanism will be used to insert the right number of NOPs 2506 * 2507 * 2. For a number of NOP cycles equals to 0, the micro-instruction 2508 * issuing the write command will jump straight to the 2509 * micro-instruction that turns on DQS (for DDRx), or outputs write 2510 * data (for RLD), skipping 2511 * the NOP micro-instruction all together 2512 * 2513 * 3. A number of NOP cycles equal to -1 indicates that DQS must be 2514 * turned on in the same micro-instruction that issues the write 2515 * command. Then we need 2516 * to directly jump to the micro-instruction that sends out the data 2517 * 2518 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters 2519 * (2 and 3). One jump-counter (0) is used to perform multiple 2520 * write-read operations. 2521 * one counter left to issue this command in "multiple-group" mode 2522 */ 2523 2524 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles; 2525 2526 if (rw_wl_nop_cycles == -1) { 2527 /* 2528 * CNTR 2 - We want to execute the special write operation that 2529 * turns on DQS right away and then skip directly to the 2530 * instruction that sends out the data. We set the counter to a 2531 * large number so that the jump is always taken. 2532 */ 2533 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2534 2535 /* CNTR 3 - Not used */ 2536 if (test_dm) { 2537 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1; 2538 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA, 2539 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2540 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2541 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2542 } else { 2543 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1; 2544 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA, 2545 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2546 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2547 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2548 } 2549 } else if (rw_wl_nop_cycles == 0) { 2550 /* 2551 * CNTR 2 - We want to skip the NOP operation and go straight 2552 * to the DQS enable instruction. We set the counter to a large 2553 * number so that the jump is always taken. 2554 */ 2555 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2556 2557 /* CNTR 3 - Not used */ 2558 if (test_dm) { 2559 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2560 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS, 2561 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2562 } else { 2563 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2564 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS, 2565 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2566 } 2567 } else { 2568 /* 2569 * CNTR 2 - In this case we want to execute the next instruction 2570 * and NOT take the jump. So we set the counter to 0. The jump 2571 * address doesn't count. 2572 */ 2573 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2); 2574 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2575 2576 /* 2577 * CNTR 3 - Set the nop counter to the number of cycles we 2578 * need to loop for, minus 1. 2579 */ 2580 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3); 2581 if (test_dm) { 2582 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2583 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2584 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2585 } else { 2586 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2587 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2588 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2589 } 2590 } 2591 2592 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 2593 RW_MGR_RESET_READ_DATAPATH_OFFSET); 2594 2595 if (quick_write_mode) 2596 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0); 2597 else 2598 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0); 2599 2600 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 2601 2602 /* 2603 * CNTR 1 - This is used to ensure enough time elapses 2604 * for read data to come back. 2605 */ 2606 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1); 2607 2608 if (test_dm) { 2609 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT, 2610 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2611 } else { 2612 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT, 2613 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2614 } 2615 2616 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 2617 writel(mcc_instruction, addr + (group << 2)); 2618 } 2619 2620 /* Test writes, can check for a single bit pass or multiple bit pass */ 2621 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 2622 uint32_t write_group, uint32_t use_dm, uint32_t all_correct, 2623 uint32_t *bit_chk, uint32_t all_ranks) 2624 { 2625 uint32_t r; 2626 uint32_t correct_mask_vg; 2627 uint32_t tmp_bit_chk; 2628 uint32_t vg; 2629 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 2630 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 2631 uint32_t addr_rw_mgr; 2632 uint32_t base_rw_mgr; 2633 2634 *bit_chk = param->write_correct_mask; 2635 correct_mask_vg = param->write_correct_mask_vg; 2636 2637 for (r = rank_bgn; r < rank_end; r++) { 2638 if (param->skip_ranks[r]) { 2639 /* request to skip the rank */ 2640 continue; 2641 } 2642 2643 /* set rank */ 2644 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 2645 2646 tmp_bit_chk = 0; 2647 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS; 2648 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) { 2649 /* reset the fifos to get pointers to known state */ 2650 writel(0, &phy_mgr_cmd->fifo_reset); 2651 2652 tmp_bit_chk = tmp_bit_chk << 2653 (RW_MGR_MEM_DQ_PER_WRITE_DQS / 2654 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 2655 rw_mgr_mem_calibrate_write_test_issue(write_group * 2656 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg, 2657 use_dm); 2658 2659 base_rw_mgr = readl(addr_rw_mgr); 2660 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 2661 if (vg == 0) 2662 break; 2663 } 2664 *bit_chk &= tmp_bit_chk; 2665 } 2666 2667 if (all_correct) { 2668 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2669 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \ 2670 %u => %lu", write_group, use_dm, 2671 *bit_chk, param->write_correct_mask, 2672 (long unsigned int)(*bit_chk == 2673 param->write_correct_mask)); 2674 return *bit_chk == param->write_correct_mask; 2675 } else { 2676 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2677 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ", 2678 write_group, use_dm, *bit_chk); 2679 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0, 2680 (long unsigned int)(*bit_chk != 0)); 2681 return *bit_chk != 0x00; 2682 } 2683 } 2684 2685 /* 2686 * center all windows. do per-bit-deskew to possibly increase size of 2687 * certain windows. 2688 */ 2689 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn, 2690 uint32_t write_group, uint32_t test_bgn) 2691 { 2692 uint32_t i, p, min_index; 2693 int32_t d; 2694 /* 2695 * Store these as signed since there are comparisons with 2696 * signed numbers. 2697 */ 2698 uint32_t bit_chk; 2699 uint32_t sticky_bit_chk; 2700 int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2701 int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2702 int32_t mid; 2703 int32_t mid_min, orig_mid_min; 2704 int32_t new_dqs, start_dqs, shift_dq; 2705 int32_t dq_margin, dqs_margin, dm_margin; 2706 uint32_t stop; 2707 uint32_t temp_dq_out1_delay; 2708 uint32_t addr; 2709 2710 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn); 2711 2712 dm_margin = 0; 2713 2714 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2715 start_dqs = readl(addr + 2716 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 2717 2718 /* per-bit deskew */ 2719 2720 /* 2721 * set the left and right edge of each bit to an illegal value 2722 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 2723 */ 2724 sticky_bit_chk = 0; 2725 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2726 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2727 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2728 } 2729 2730 /* Search for the left edge of the window for each bit */ 2731 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) { 2732 scc_mgr_apply_group_dq_out1_delay(write_group, d); 2733 2734 writel(0, &sdr_scc_mgr->update); 2735 2736 /* 2737 * Stop searching when the read test doesn't pass AND when 2738 * we've seen a passing read on every bit. 2739 */ 2740 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2741 0, PASS_ONE_BIT, &bit_chk, 0); 2742 sticky_bit_chk = sticky_bit_chk | bit_chk; 2743 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2744 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \ 2745 == %u && %u [bit_chk= %u ]\n", 2746 d, sticky_bit_chk, param->write_correct_mask, 2747 stop, bit_chk); 2748 2749 if (stop == 1) { 2750 break; 2751 } else { 2752 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2753 if (bit_chk & 1) { 2754 /* 2755 * Remember a passing test as the 2756 * left_edge. 2757 */ 2758 left_edge[i] = d; 2759 } else { 2760 /* 2761 * If a left edge has not been seen 2762 * yet, then a future passing test will 2763 * mark this edge as the right edge. 2764 */ 2765 if (left_edge[i] == 2766 IO_IO_OUT1_DELAY_MAX + 1) { 2767 right_edge[i] = -(d + 1); 2768 } 2769 } 2770 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d); 2771 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2772 (int)(bit_chk & 1), i, left_edge[i]); 2773 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2774 right_edge[i]); 2775 bit_chk = bit_chk >> 1; 2776 } 2777 } 2778 } 2779 2780 /* Reset DQ delay chains to 0 */ 2781 scc_mgr_apply_group_dq_out1_delay(0); 2782 sticky_bit_chk = 0; 2783 for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) { 2784 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2785 %d right_edge[%u]: %d\n", __func__, __LINE__, 2786 i, left_edge[i], i, right_edge[i]); 2787 2788 /* 2789 * Check for cases where we haven't found the left edge, 2790 * which makes our assignment of the the right edge invalid. 2791 * Reset it to the illegal value. 2792 */ 2793 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) && 2794 (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) { 2795 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2796 debug_cond(DLEVEL == 2, "%s:%d write_center: reset \ 2797 right_edge[%u]: %d\n", __func__, __LINE__, 2798 i, right_edge[i]); 2799 } 2800 2801 /* 2802 * Reset sticky bit (except for bits where we have 2803 * seen the left edge). 2804 */ 2805 sticky_bit_chk = sticky_bit_chk << 1; 2806 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) 2807 sticky_bit_chk = sticky_bit_chk | 1; 2808 2809 if (i == 0) 2810 break; 2811 } 2812 2813 /* Search for the right edge of the window for each bit */ 2814 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) { 2815 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2816 d + start_dqs); 2817 2818 writel(0, &sdr_scc_mgr->update); 2819 2820 /* 2821 * Stop searching when the read test doesn't pass AND when 2822 * we've seen a passing read on every bit. 2823 */ 2824 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2825 0, PASS_ONE_BIT, &bit_chk, 0); 2826 2827 sticky_bit_chk = sticky_bit_chk | bit_chk; 2828 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2829 2830 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \ 2831 %u && %u\n", d, sticky_bit_chk, 2832 param->write_correct_mask, stop); 2833 2834 if (stop == 1) { 2835 if (d == 0) { 2836 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; 2837 i++) { 2838 /* d = 0 failed, but it passed when 2839 testing the left edge, so it must be 2840 marginal, set it to -1 */ 2841 if (right_edge[i] == 2842 IO_IO_OUT1_DELAY_MAX + 1 && 2843 left_edge[i] != 2844 IO_IO_OUT1_DELAY_MAX + 1) { 2845 right_edge[i] = -1; 2846 } 2847 } 2848 } 2849 break; 2850 } else { 2851 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2852 if (bit_chk & 1) { 2853 /* 2854 * Remember a passing test as 2855 * the right_edge. 2856 */ 2857 right_edge[i] = d; 2858 } else { 2859 if (d != 0) { 2860 /* 2861 * If a right edge has not 2862 * been seen yet, then a future 2863 * passing test will mark this 2864 * edge as the left edge. 2865 */ 2866 if (right_edge[i] == 2867 IO_IO_OUT1_DELAY_MAX + 1) 2868 left_edge[i] = -(d + 1); 2869 } else { 2870 /* 2871 * d = 0 failed, but it passed 2872 * when testing the left edge, 2873 * so it must be marginal, set 2874 * it to -1. 2875 */ 2876 if (right_edge[i] == 2877 IO_IO_OUT1_DELAY_MAX + 1 && 2878 left_edge[i] != 2879 IO_IO_OUT1_DELAY_MAX + 1) 2880 right_edge[i] = -1; 2881 /* 2882 * If a right edge has not been 2883 * seen yet, then a future 2884 * passing test will mark this 2885 * edge as the left edge. 2886 */ 2887 else if (right_edge[i] == 2888 IO_IO_OUT1_DELAY_MAX + 2889 1) 2890 left_edge[i] = -(d + 1); 2891 } 2892 } 2893 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d); 2894 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2895 (int)(bit_chk & 1), i, left_edge[i]); 2896 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2897 right_edge[i]); 2898 bit_chk = bit_chk >> 1; 2899 } 2900 } 2901 } 2902 2903 /* Check that all bits have a window */ 2904 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2905 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2906 %d right_edge[%u]: %d", __func__, __LINE__, 2907 i, left_edge[i], i, right_edge[i]); 2908 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) || 2909 (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) { 2910 set_failing_group_stage(test_bgn + i, 2911 CAL_STAGE_WRITES, 2912 CAL_SUBSTAGE_WRITES_CENTER); 2913 return 0; 2914 } 2915 } 2916 2917 /* Find middle of window for each DQ bit */ 2918 mid_min = left_edge[0] - right_edge[0]; 2919 min_index = 0; 2920 for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2921 mid = left_edge[i] - right_edge[i]; 2922 if (mid < mid_min) { 2923 mid_min = mid; 2924 min_index = i; 2925 } 2926 } 2927 2928 /* 2929 * -mid_min/2 represents the amount that we need to move DQS. 2930 * If mid_min is odd and positive we'll need to add one to 2931 * make sure the rounding in further calculations is correct 2932 * (always bias to the right), so just add 1 for all positive values. 2933 */ 2934 if (mid_min > 0) 2935 mid_min++; 2936 mid_min = mid_min / 2; 2937 debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__, 2938 __LINE__, mid_min); 2939 2940 /* Determine the amount we can change DQS (which is -mid_min) */ 2941 orig_mid_min = mid_min; 2942 new_dqs = start_dqs; 2943 mid_min = 0; 2944 debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \ 2945 mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min); 2946 /* Initialize data for export structures */ 2947 dqs_margin = IO_IO_OUT1_DELAY_MAX + 1; 2948 dq_margin = IO_IO_OUT1_DELAY_MAX + 1; 2949 2950 /* add delay to bring centre of all DQ windows to the same "level" */ 2951 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 2952 /* Use values before divide by 2 to reduce round off error */ 2953 shift_dq = (left_edge[i] - right_edge[i] - 2954 (left_edge[min_index] - right_edge[min_index]))/2 + 2955 (orig_mid_min - mid_min); 2956 2957 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \ 2958 [%u]=%d\n", __func__, __LINE__, i, shift_dq); 2959 2960 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2961 temp_dq_out1_delay = readl(addr + (i << 2)); 2962 if (shift_dq + (int32_t)temp_dq_out1_delay > 2963 (int32_t)IO_IO_OUT1_DELAY_MAX) { 2964 shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay; 2965 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) { 2966 shift_dq = -(int32_t)temp_dq_out1_delay; 2967 } 2968 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n", 2969 i, shift_dq); 2970 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq); 2971 scc_mgr_load_dq(i); 2972 2973 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i, 2974 left_edge[i] - shift_dq + (-mid_min), 2975 right_edge[i] + shift_dq - (-mid_min)); 2976 /* To determine values for export structures */ 2977 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2978 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2979 2980 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2981 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2982 } 2983 2984 /* Move DQS */ 2985 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 2986 writel(0, &sdr_scc_mgr->update); 2987 2988 /* Centre DM */ 2989 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__); 2990 2991 /* 2992 * set the left and right edge of each bit to an illegal value, 2993 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value, 2994 */ 2995 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 2996 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 2997 int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2998 int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2999 int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1; 3000 int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1; 3001 int32_t win_best = 0; 3002 3003 /* Search for the/part of the window with DM shift */ 3004 for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) { 3005 scc_mgr_apply_group_dm_out1_delay(d); 3006 writel(0, &sdr_scc_mgr->update); 3007 3008 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3009 PASS_ALL_BITS, &bit_chk, 3010 0)) { 3011 /* USE Set current end of the window */ 3012 end_curr = -d; 3013 /* 3014 * If a starting edge of our window has not been seen 3015 * this is our current start of the DM window. 3016 */ 3017 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3018 bgn_curr = -d; 3019 3020 /* 3021 * If current window is bigger than best seen. 3022 * Set best seen to be current window. 3023 */ 3024 if ((end_curr-bgn_curr+1) > win_best) { 3025 win_best = end_curr-bgn_curr+1; 3026 bgn_best = bgn_curr; 3027 end_best = end_curr; 3028 } 3029 } else { 3030 /* We just saw a failing test. Reset temp edge */ 3031 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3032 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3033 } 3034 } 3035 3036 3037 /* Reset DM delay chains to 0 */ 3038 scc_mgr_apply_group_dm_out1_delay(0); 3039 3040 /* 3041 * Check to see if the current window nudges up aganist 0 delay. 3042 * If so we need to continue the search by shifting DQS otherwise DQS 3043 * search begins as a new search. */ 3044 if (end_curr != 0) { 3045 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3046 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3047 } 3048 3049 /* Search for the/part of the window with DQS shifts */ 3050 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) { 3051 /* 3052 * Note: This only shifts DQS, so are we limiting ourselve to 3053 * width of DQ unnecessarily. 3054 */ 3055 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 3056 d + new_dqs); 3057 3058 writel(0, &sdr_scc_mgr->update); 3059 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3060 PASS_ALL_BITS, &bit_chk, 3061 0)) { 3062 /* USE Set current end of the window */ 3063 end_curr = d; 3064 /* 3065 * If a beginning edge of our window has not been seen 3066 * this is our current begin of the DM window. 3067 */ 3068 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3069 bgn_curr = d; 3070 3071 /* 3072 * If current window is bigger than best seen. Set best 3073 * seen to be current window. 3074 */ 3075 if ((end_curr-bgn_curr+1) > win_best) { 3076 win_best = end_curr-bgn_curr+1; 3077 bgn_best = bgn_curr; 3078 end_best = end_curr; 3079 } 3080 } else { 3081 /* We just saw a failing test. Reset temp edge */ 3082 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3083 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3084 3085 /* Early exit optimization: if ther remaining delay 3086 chain space is less than already seen largest window 3087 we can exit */ 3088 if ((win_best-1) > 3089 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) { 3090 break; 3091 } 3092 } 3093 } 3094 3095 /* assign left and right edge for cal and reporting; */ 3096 left_edge[0] = -1*bgn_best; 3097 right_edge[0] = end_best; 3098 3099 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__, 3100 __LINE__, left_edge[0], right_edge[0]); 3101 3102 /* Move DQS (back to orig) */ 3103 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3104 3105 /* Move DM */ 3106 3107 /* Find middle of window for the DM bit */ 3108 mid = (left_edge[0] - right_edge[0]) / 2; 3109 3110 /* only move right, since we are not moving DQS/DQ */ 3111 if (mid < 0) 3112 mid = 0; 3113 3114 /* dm_marign should fail if we never find a window */ 3115 if (win_best == 0) 3116 dm_margin = -1; 3117 else 3118 dm_margin = left_edge[0] - mid; 3119 3120 scc_mgr_apply_group_dm_out1_delay(mid); 3121 writel(0, &sdr_scc_mgr->update); 3122 3123 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \ 3124 dm_margin=%d\n", __func__, __LINE__, left_edge[0], 3125 right_edge[0], mid, dm_margin); 3126 /* Export values */ 3127 gbl->fom_out += dq_margin + dqs_margin; 3128 3129 debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \ 3130 dqs_margin=%d dm_margin=%d\n", __func__, __LINE__, 3131 dq_margin, dqs_margin, dm_margin); 3132 3133 /* 3134 * Do not remove this line as it makes sure all of our 3135 * decisions have been applied. 3136 */ 3137 writel(0, &sdr_scc_mgr->update); 3138 return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0); 3139 } 3140 3141 /* calibrate the write operations */ 3142 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g, 3143 uint32_t test_bgn) 3144 { 3145 /* update info for sims */ 3146 debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn); 3147 3148 reg_file_set_stage(CAL_STAGE_WRITES); 3149 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER); 3150 3151 reg_file_set_group(g); 3152 3153 if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) { 3154 set_failing_group_stage(g, CAL_STAGE_WRITES, 3155 CAL_SUBSTAGE_WRITES_CENTER); 3156 return 0; 3157 } 3158 3159 return 1; 3160 } 3161 3162 /** 3163 * mem_precharge_and_activate() - Precharge all banks and activate 3164 * 3165 * Precharge all banks and activate row 0 in bank "000..." and bank "111...". 3166 */ 3167 static void mem_precharge_and_activate(void) 3168 { 3169 int r; 3170 3171 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 3172 /* Test if the rank should be skipped. */ 3173 if (param->skip_ranks[r]) 3174 continue; 3175 3176 /* Set rank. */ 3177 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 3178 3179 /* Precharge all banks. */ 3180 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3181 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3182 3183 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0); 3184 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1, 3185 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 3186 3187 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1); 3188 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2, 3189 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 3190 3191 /* Activate rows. */ 3192 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3193 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3194 } 3195 } 3196 3197 /** 3198 * mem_init_latency() - Configure memory RLAT and WLAT settings 3199 * 3200 * Configure memory RLAT and WLAT parameters. 3201 */ 3202 static void mem_init_latency(void) 3203 { 3204 /* 3205 * For AV/CV, LFIFO is hardened and always runs at full rate 3206 * so max latency in AFI clocks, used here, is correspondingly 3207 * smaller. 3208 */ 3209 const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1; 3210 u32 rlat, wlat; 3211 3212 debug("%s:%d\n", __func__, __LINE__); 3213 3214 /* 3215 * Read in write latency. 3216 * WL for Hard PHY does not include additive latency. 3217 */ 3218 wlat = readl(&data_mgr->t_wl_add); 3219 wlat += readl(&data_mgr->mem_t_add); 3220 3221 gbl->rw_wl_nop_cycles = wlat - 1; 3222 3223 /* Read in readl latency. */ 3224 rlat = readl(&data_mgr->t_rl_add); 3225 3226 /* Set a pretty high read latency initially. */ 3227 gbl->curr_read_lat = rlat + 16; 3228 if (gbl->curr_read_lat > max_latency) 3229 gbl->curr_read_lat = max_latency; 3230 3231 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3232 3233 /* Advertise write latency. */ 3234 writel(wlat, &phy_mgr_cfg->afi_wlat); 3235 } 3236 3237 /** 3238 * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings 3239 * 3240 * Set VFIFO and LFIFO to instant-on settings in skip calibration mode. 3241 */ 3242 static void mem_skip_calibrate(void) 3243 { 3244 uint32_t vfifo_offset; 3245 uint32_t i, j, r; 3246 3247 debug("%s:%d\n", __func__, __LINE__); 3248 /* Need to update every shadow register set used by the interface */ 3249 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 3250 r += NUM_RANKS_PER_SHADOW_REG) { 3251 /* 3252 * Set output phase alignment settings appropriate for 3253 * skip calibration. 3254 */ 3255 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3256 scc_mgr_set_dqs_en_phase(i, 0); 3257 #if IO_DLL_CHAIN_LENGTH == 6 3258 scc_mgr_set_dqdqs_output_phase(i, 6); 3259 #else 3260 scc_mgr_set_dqdqs_output_phase(i, 7); 3261 #endif 3262 /* 3263 * Case:33398 3264 * 3265 * Write data arrives to the I/O two cycles before write 3266 * latency is reached (720 deg). 3267 * -> due to bit-slip in a/c bus 3268 * -> to allow board skew where dqs is longer than ck 3269 * -> how often can this happen!? 3270 * -> can claim back some ptaps for high freq 3271 * support if we can relax this, but i digress... 3272 * 3273 * The write_clk leads mem_ck by 90 deg 3274 * The minimum ptap of the OPA is 180 deg 3275 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay 3276 * The write_clk is always delayed by 2 ptaps 3277 * 3278 * Hence, to make DQS aligned to CK, we need to delay 3279 * DQS by: 3280 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH)) 3281 * 3282 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH) 3283 * gives us the number of ptaps, which simplies to: 3284 * 3285 * (1.25 * IO_DLL_CHAIN_LENGTH - 2) 3286 */ 3287 scc_mgr_set_dqdqs_output_phase(i, 3288 1.25 * IO_DLL_CHAIN_LENGTH - 2); 3289 } 3290 writel(0xff, &sdr_scc_mgr->dqs_ena); 3291 writel(0xff, &sdr_scc_mgr->dqs_io_ena); 3292 3293 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 3294 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3295 SCC_MGR_GROUP_COUNTER_OFFSET); 3296 } 3297 writel(0xff, &sdr_scc_mgr->dq_ena); 3298 writel(0xff, &sdr_scc_mgr->dm_ena); 3299 writel(0, &sdr_scc_mgr->update); 3300 } 3301 3302 /* Compensate for simulation model behaviour */ 3303 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3304 scc_mgr_set_dqs_bus_in_delay(i, 10); 3305 scc_mgr_load_dqs(i); 3306 } 3307 writel(0, &sdr_scc_mgr->update); 3308 3309 /* 3310 * ArriaV has hard FIFOs that can only be initialized by incrementing 3311 * in sequencer. 3312 */ 3313 vfifo_offset = CALIB_VFIFO_OFFSET; 3314 for (j = 0; j < vfifo_offset; j++) 3315 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy); 3316 writel(0, &phy_mgr_cmd->fifo_reset); 3317 3318 /* 3319 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal 3320 * setting from generation-time constant. 3321 */ 3322 gbl->curr_read_lat = CALIB_LFIFO_OFFSET; 3323 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3324 } 3325 3326 /** 3327 * mem_calibrate() - Memory calibration entry point. 3328 * 3329 * Perform memory calibration. 3330 */ 3331 static uint32_t mem_calibrate(void) 3332 { 3333 uint32_t i; 3334 uint32_t rank_bgn, sr; 3335 uint32_t write_group, write_test_bgn; 3336 uint32_t read_group, read_test_bgn; 3337 uint32_t run_groups, current_run; 3338 uint32_t failing_groups = 0; 3339 uint32_t group_failed = 0; 3340 3341 const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 3342 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 3343 3344 debug("%s:%d\n", __func__, __LINE__); 3345 3346 /* Initialize the data settings */ 3347 gbl->error_substage = CAL_SUBSTAGE_NIL; 3348 gbl->error_stage = CAL_STAGE_NIL; 3349 gbl->error_group = 0xff; 3350 gbl->fom_in = 0; 3351 gbl->fom_out = 0; 3352 3353 /* Initialize WLAT and RLAT. */ 3354 mem_init_latency(); 3355 3356 /* Initialize bit slips. */ 3357 mem_precharge_and_activate(); 3358 3359 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3360 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3361 SCC_MGR_GROUP_COUNTER_OFFSET); 3362 /* Only needed once to set all groups, pins, DQ, DQS, DM. */ 3363 if (i == 0) 3364 scc_mgr_set_hhp_extras(); 3365 3366 scc_set_bypass_mode(i); 3367 } 3368 3369 /* Calibration is skipped. */ 3370 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) { 3371 /* 3372 * Set VFIFO and LFIFO to instant-on settings in skip 3373 * calibration mode. 3374 */ 3375 mem_skip_calibrate(); 3376 3377 /* 3378 * Do not remove this line as it makes sure all of our 3379 * decisions have been applied. 3380 */ 3381 writel(0, &sdr_scc_mgr->update); 3382 return 1; 3383 } 3384 3385 /* Calibration is not skipped. */ 3386 for (i = 0; i < NUM_CALIB_REPEAT; i++) { 3387 /* 3388 * Zero all delay chain/phase settings for all 3389 * groups and all shadow register sets. 3390 */ 3391 scc_mgr_zero_all(); 3392 3393 run_groups = ~param->skip_groups; 3394 3395 for (write_group = 0, write_test_bgn = 0; write_group 3396 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++, 3397 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) { 3398 3399 /* Initialize the group failure */ 3400 group_failed = 0; 3401 3402 current_run = run_groups & ((1 << 3403 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1); 3404 run_groups = run_groups >> 3405 RW_MGR_NUM_DQS_PER_WRITE_GROUP; 3406 3407 if (current_run == 0) 3408 continue; 3409 3410 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS | 3411 SCC_MGR_GROUP_COUNTER_OFFSET); 3412 scc_mgr_zero_group(write_group, 0); 3413 3414 for (read_group = write_group * rwdqs_ratio, 3415 read_test_bgn = 0; 3416 read_group < (write_group + 1) * rwdqs_ratio; 3417 read_group++, 3418 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3419 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO) 3420 continue; 3421 3422 /* Calibrate the VFIFO */ 3423 if (rw_mgr_mem_calibrate_vfifo(read_group, 3424 read_test_bgn)) 3425 continue; 3426 3427 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3428 return 0; 3429 3430 /* The group failed, we're done. */ 3431 goto grp_failed; 3432 } 3433 3434 /* Calibrate the output side */ 3435 for (rank_bgn = 0, sr = 0; 3436 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 3437 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 3438 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3439 continue; 3440 3441 /* Not needed in quick mode! */ 3442 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) 3443 continue; 3444 3445 /* 3446 * Determine if this set of ranks 3447 * should be skipped entirely. 3448 */ 3449 if (param->skip_shadow_regs[sr]) 3450 continue; 3451 3452 /* Calibrate WRITEs */ 3453 if (rw_mgr_mem_calibrate_writes(rank_bgn, 3454 write_group, write_test_bgn)) 3455 continue; 3456 3457 group_failed = 1; 3458 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3459 return 0; 3460 } 3461 3462 /* Some group failed, we're done. */ 3463 if (group_failed) 3464 goto grp_failed; 3465 3466 for (read_group = write_group * rwdqs_ratio, 3467 read_test_bgn = 0; 3468 read_group < (write_group + 1) * rwdqs_ratio; 3469 read_group++, 3470 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3471 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3472 continue; 3473 3474 if (rw_mgr_mem_calibrate_vfifo_end(read_group, 3475 read_test_bgn)) 3476 continue; 3477 3478 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3479 return 0; 3480 3481 /* The group failed, we're done. */ 3482 goto grp_failed; 3483 } 3484 3485 /* No group failed, continue as usual. */ 3486 continue; 3487 3488 grp_failed: /* A group failed, increment the counter. */ 3489 failing_groups++; 3490 } 3491 3492 /* 3493 * USER If there are any failing groups then report 3494 * the failure. 3495 */ 3496 if (failing_groups != 0) 3497 return 0; 3498 3499 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO) 3500 continue; 3501 3502 /* 3503 * If we're skipping groups as part of debug, 3504 * don't calibrate LFIFO. 3505 */ 3506 if (param->skip_groups != 0) 3507 continue; 3508 3509 /* Calibrate the LFIFO */ 3510 if (!rw_mgr_mem_calibrate_lfifo()) 3511 return 0; 3512 } 3513 3514 /* 3515 * Do not remove this line as it makes sure all of our decisions 3516 * have been applied. 3517 */ 3518 writel(0, &sdr_scc_mgr->update); 3519 return 1; 3520 } 3521 3522 /** 3523 * run_mem_calibrate() - Perform memory calibration 3524 * 3525 * This function triggers the entire memory calibration procedure. 3526 */ 3527 static int run_mem_calibrate(void) 3528 { 3529 int pass; 3530 3531 debug("%s:%d\n", __func__, __LINE__); 3532 3533 /* Reset pass/fail status shown on afi_cal_success/fail */ 3534 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status); 3535 3536 /* Stop tracking manager. */ 3537 clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3538 3539 phy_mgr_initialize(); 3540 rw_mgr_mem_initialize(); 3541 3542 /* Perform the actual memory calibration. */ 3543 pass = mem_calibrate(); 3544 3545 mem_precharge_and_activate(); 3546 writel(0, &phy_mgr_cmd->fifo_reset); 3547 3548 /* Handoff. */ 3549 rw_mgr_mem_handoff(); 3550 /* 3551 * In Hard PHY this is a 2-bit control: 3552 * 0: AFI Mux Select 3553 * 1: DDIO Mux Select 3554 */ 3555 writel(0x2, &phy_mgr_cfg->mux_sel); 3556 3557 /* Start tracking manager. */ 3558 setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3559 3560 return pass; 3561 } 3562 3563 /** 3564 * debug_mem_calibrate() - Report result of memory calibration 3565 * @pass: Value indicating whether calibration passed or failed 3566 * 3567 * This function reports the results of the memory calibration 3568 * and writes debug information into the register file. 3569 */ 3570 static void debug_mem_calibrate(int pass) 3571 { 3572 uint32_t debug_info; 3573 3574 if (pass) { 3575 printf("%s: CALIBRATION PASSED\n", __FILE__); 3576 3577 gbl->fom_in /= 2; 3578 gbl->fom_out /= 2; 3579 3580 if (gbl->fom_in > 0xff) 3581 gbl->fom_in = 0xff; 3582 3583 if (gbl->fom_out > 0xff) 3584 gbl->fom_out = 0xff; 3585 3586 /* Update the FOM in the register file */ 3587 debug_info = gbl->fom_in; 3588 debug_info |= gbl->fom_out << 8; 3589 writel(debug_info, &sdr_reg_file->fom); 3590 3591 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3592 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status); 3593 } else { 3594 printf("%s: CALIBRATION FAILED\n", __FILE__); 3595 3596 debug_info = gbl->error_stage; 3597 debug_info |= gbl->error_substage << 8; 3598 debug_info |= gbl->error_group << 16; 3599 3600 writel(debug_info, &sdr_reg_file->failing_stage); 3601 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3602 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status); 3603 3604 /* Update the failing group/stage in the register file */ 3605 debug_info = gbl->error_stage; 3606 debug_info |= gbl->error_substage << 8; 3607 debug_info |= gbl->error_group << 16; 3608 writel(debug_info, &sdr_reg_file->failing_stage); 3609 } 3610 3611 printf("%s: Calibration complete\n", __FILE__); 3612 } 3613 3614 /** 3615 * hc_initialize_rom_data() - Initialize ROM data 3616 * 3617 * Initialize ROM data. 3618 */ 3619 static void hc_initialize_rom_data(void) 3620 { 3621 u32 i, addr; 3622 3623 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET; 3624 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++) 3625 writel(inst_rom_init[i], addr + (i << 2)); 3626 3627 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET; 3628 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++) 3629 writel(ac_rom_init[i], addr + (i << 2)); 3630 } 3631 3632 /** 3633 * initialize_reg_file() - Initialize SDR register file 3634 * 3635 * Initialize SDR register file. 3636 */ 3637 static void initialize_reg_file(void) 3638 { 3639 /* Initialize the register file with the correct data */ 3640 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature); 3641 writel(0, &sdr_reg_file->debug_data_addr); 3642 writel(0, &sdr_reg_file->cur_stage); 3643 writel(0, &sdr_reg_file->fom); 3644 writel(0, &sdr_reg_file->failing_stage); 3645 writel(0, &sdr_reg_file->debug1); 3646 writel(0, &sdr_reg_file->debug2); 3647 } 3648 3649 /** 3650 * initialize_hps_phy() - Initialize HPS PHY 3651 * 3652 * Initialize HPS PHY. 3653 */ 3654 static void initialize_hps_phy(void) 3655 { 3656 uint32_t reg; 3657 /* 3658 * Tracking also gets configured here because it's in the 3659 * same register. 3660 */ 3661 uint32_t trk_sample_count = 7500; 3662 uint32_t trk_long_idle_sample_count = (10 << 16) | 100; 3663 /* 3664 * Format is number of outer loops in the 16 MSB, sample 3665 * count in 16 LSB. 3666 */ 3667 3668 reg = 0; 3669 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2); 3670 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1); 3671 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1); 3672 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1); 3673 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0); 3674 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1); 3675 /* 3676 * This field selects the intrinsic latency to RDATA_EN/FULL path. 3677 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles. 3678 */ 3679 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0); 3680 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET( 3681 trk_sample_count); 3682 writel(reg, &sdr_ctrl->phy_ctrl0); 3683 3684 reg = 0; 3685 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET( 3686 trk_sample_count >> 3687 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH); 3688 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET( 3689 trk_long_idle_sample_count); 3690 writel(reg, &sdr_ctrl->phy_ctrl1); 3691 3692 reg = 0; 3693 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET( 3694 trk_long_idle_sample_count >> 3695 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH); 3696 writel(reg, &sdr_ctrl->phy_ctrl2); 3697 } 3698 3699 /** 3700 * initialize_tracking() - Initialize tracking 3701 * 3702 * Initialize the register file with usable initial data. 3703 */ 3704 static void initialize_tracking(void) 3705 { 3706 /* 3707 * Initialize the register file with the correct data. 3708 * Compute usable version of value in case we skip full 3709 * computation later. 3710 */ 3711 writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1, 3712 &sdr_reg_file->dtaps_per_ptap); 3713 3714 /* trk_sample_count */ 3715 writel(7500, &sdr_reg_file->trk_sample_count); 3716 3717 /* longidle outer loop [15:0] */ 3718 writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle); 3719 3720 /* 3721 * longidle sample count [31:24] 3722 * trfc, worst case of 933Mhz 4Gb [23:16] 3723 * trcd, worst case [15:8] 3724 * vfifo wait [7:0] 3725 */ 3726 writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0), 3727 &sdr_reg_file->delays); 3728 3729 /* mux delay */ 3730 writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) | 3731 (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0), 3732 &sdr_reg_file->trk_rw_mgr_addr); 3733 3734 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, 3735 &sdr_reg_file->trk_read_dqs_width); 3736 3737 /* trefi [7:0] */ 3738 writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0), 3739 &sdr_reg_file->trk_rfsh); 3740 } 3741 3742 int sdram_calibration_full(void) 3743 { 3744 struct param_type my_param; 3745 struct gbl_type my_gbl; 3746 uint32_t pass; 3747 3748 memset(&my_param, 0, sizeof(my_param)); 3749 memset(&my_gbl, 0, sizeof(my_gbl)); 3750 3751 param = &my_param; 3752 gbl = &my_gbl; 3753 3754 /* Set the calibration enabled by default */ 3755 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT; 3756 /* 3757 * Only sweep all groups (regardless of fail state) by default 3758 * Set enabled read test by default. 3759 */ 3760 #if DISABLE_GUARANTEED_READ 3761 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ; 3762 #endif 3763 /* Initialize the register file */ 3764 initialize_reg_file(); 3765 3766 /* Initialize any PHY CSR */ 3767 initialize_hps_phy(); 3768 3769 scc_mgr_initialize(); 3770 3771 initialize_tracking(); 3772 3773 printf("%s: Preparing to start memory calibration\n", __FILE__); 3774 3775 debug("%s:%d\n", __func__, __LINE__); 3776 debug_cond(DLEVEL == 1, 3777 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ", 3778 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM, 3779 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS, 3780 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS, 3781 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 3782 debug_cond(DLEVEL == 1, 3783 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ", 3784 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3785 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH, 3786 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP); 3787 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u", 3788 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH); 3789 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ", 3790 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX, 3791 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX); 3792 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ", 3793 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX, 3794 IO_IO_OUT2_DELAY_MAX); 3795 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n", 3796 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE); 3797 3798 hc_initialize_rom_data(); 3799 3800 /* update info for sims */ 3801 reg_file_set_stage(CAL_STAGE_NIL); 3802 reg_file_set_group(0); 3803 3804 /* 3805 * Load global needed for those actions that require 3806 * some dynamic calibration support. 3807 */ 3808 dyn_calib_steps = STATIC_CALIB_STEPS; 3809 /* 3810 * Load global to allow dynamic selection of delay loop settings 3811 * based on calibration mode. 3812 */ 3813 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS)) 3814 skip_delay_mask = 0xff; 3815 else 3816 skip_delay_mask = 0x0; 3817 3818 pass = run_mem_calibrate(); 3819 debug_mem_calibrate(pass); 3820 return pass; 3821 } 3822