xref: /openbmc/u-boot/drivers/ddr/altera/sequencer.c (revision 2290fe06)
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6 
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include <errno.h>
11 #include "sequencer.h"
12 
13 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
14 	(struct socfpga_sdr_rw_load_manager *)
15 		(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
16 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
17 	(struct socfpga_sdr_rw_load_jump_manager *)
18 		(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
19 static struct socfpga_sdr_reg_file *sdr_reg_file =
20 	(struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
21 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
22 	(struct socfpga_sdr_scc_mgr *)
23 		(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
24 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
25 	(struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
26 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
27 	(struct socfpga_phy_mgr_cfg *)
28 		(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
29 static struct socfpga_data_mgr *data_mgr =
30 	(struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
31 static struct socfpga_sdr_ctrl *sdr_ctrl =
32 	(struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
33 
34 const struct socfpga_sdram_rw_mgr_config *rwcfg;
35 const struct socfpga_sdram_io_config *iocfg;
36 const struct socfpga_sdram_misc_config *misccfg;
37 
38 #define DELTA_D		1
39 
40 /*
41  * In order to reduce ROM size, most of the selectable calibration steps are
42  * decided at compile time based on the user's calibration mode selection,
43  * as captured by the STATIC_CALIB_STEPS selection below.
44  *
45  * However, to support simulation-time selection of fast simulation mode, where
46  * we skip everything except the bare minimum, we need a few of the steps to
47  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
48  * check, which is based on the rtl-supplied value, or we dynamically compute
49  * the value to use based on the dynamically-chosen calibration mode
50  */
51 
52 #define DLEVEL 0
53 #define STATIC_IN_RTL_SIM 0
54 #define STATIC_SKIP_DELAY_LOOPS 0
55 
56 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
57 	STATIC_SKIP_DELAY_LOOPS)
58 
59 /* calibration steps requested by the rtl */
60 static u16 dyn_calib_steps;
61 
62 /*
63  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
64  * instead of static, we use boolean logic to select between
65  * non-skip and skip values
66  *
67  * The mask is set to include all bits when not-skipping, but is
68  * zero when skipping
69  */
70 
71 static u16 skip_delay_mask;	/* mask off bits when skipping/not-skipping */
72 
73 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
74 	((non_skip_value) & skip_delay_mask)
75 
76 static struct gbl_type *gbl;
77 static struct param_type *param;
78 
79 static void set_failing_group_stage(u32 group, u32 stage,
80 	u32 substage)
81 {
82 	/*
83 	 * Only set the global stage if there was not been any other
84 	 * failing group
85 	 */
86 	if (gbl->error_stage == CAL_STAGE_NIL)	{
87 		gbl->error_substage = substage;
88 		gbl->error_stage = stage;
89 		gbl->error_group = group;
90 	}
91 }
92 
93 static void reg_file_set_group(u16 set_group)
94 {
95 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
96 }
97 
98 static void reg_file_set_stage(u8 set_stage)
99 {
100 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
101 }
102 
103 static void reg_file_set_sub_stage(u8 set_sub_stage)
104 {
105 	set_sub_stage &= 0xff;
106 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
107 }
108 
109 /**
110  * phy_mgr_initialize() - Initialize PHY Manager
111  *
112  * Initialize PHY Manager.
113  */
114 static void phy_mgr_initialize(void)
115 {
116 	u32 ratio;
117 
118 	debug("%s:%d\n", __func__, __LINE__);
119 	/* Calibration has control over path to memory */
120 	/*
121 	 * In Hard PHY this is a 2-bit control:
122 	 * 0: AFI Mux Select
123 	 * 1: DDIO Mux Select
124 	 */
125 	writel(0x3, &phy_mgr_cfg->mux_sel);
126 
127 	/* USER memory clock is not stable we begin initialization  */
128 	writel(0, &phy_mgr_cfg->reset_mem_stbl);
129 
130 	/* USER calibration status all set to zero */
131 	writel(0, &phy_mgr_cfg->cal_status);
132 
133 	writel(0, &phy_mgr_cfg->cal_debug_info);
134 
135 	/* Init params only if we do NOT skip calibration. */
136 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
137 		return;
138 
139 	ratio = rwcfg->mem_dq_per_read_dqs /
140 		rwcfg->mem_virtual_groups_per_read_dqs;
141 	param->read_correct_mask_vg = (1 << ratio) - 1;
142 	param->write_correct_mask_vg = (1 << ratio) - 1;
143 	param->read_correct_mask = (1 << rwcfg->mem_dq_per_read_dqs) - 1;
144 	param->write_correct_mask = (1 << rwcfg->mem_dq_per_write_dqs) - 1;
145 }
146 
147 /**
148  * set_rank_and_odt_mask() - Set Rank and ODT mask
149  * @rank:	Rank mask
150  * @odt_mode:	ODT mode, OFF or READ_WRITE
151  *
152  * Set Rank and ODT mask (On-Die Termination).
153  */
154 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
155 {
156 	u32 odt_mask_0 = 0;
157 	u32 odt_mask_1 = 0;
158 	u32 cs_and_odt_mask;
159 
160 	if (odt_mode == RW_MGR_ODT_MODE_OFF) {
161 		odt_mask_0 = 0x0;
162 		odt_mask_1 = 0x0;
163 	} else {	/* RW_MGR_ODT_MODE_READ_WRITE */
164 		switch (rwcfg->mem_number_of_ranks) {
165 		case 1:	/* 1 Rank */
166 			/* Read: ODT = 0 ; Write: ODT = 1 */
167 			odt_mask_0 = 0x0;
168 			odt_mask_1 = 0x1;
169 			break;
170 		case 2:	/* 2 Ranks */
171 			if (rwcfg->mem_number_of_cs_per_dimm == 1) {
172 				/*
173 				 * - Dual-Slot , Single-Rank (1 CS per DIMM)
174 				 *   OR
175 				 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
176 				 *
177 				 * Since MEM_NUMBER_OF_RANKS is 2, they
178 				 * are both single rank with 2 CS each
179 				 * (special for RDIMM).
180 				 *
181 				 * Read: Turn on ODT on the opposite rank
182 				 * Write: Turn on ODT on all ranks
183 				 */
184 				odt_mask_0 = 0x3 & ~(1 << rank);
185 				odt_mask_1 = 0x3;
186 			} else {
187 				/*
188 				 * - Single-Slot , Dual-Rank (2 CS per DIMM)
189 				 *
190 				 * Read: Turn on ODT off on all ranks
191 				 * Write: Turn on ODT on active rank
192 				 */
193 				odt_mask_0 = 0x0;
194 				odt_mask_1 = 0x3 & (1 << rank);
195 			}
196 			break;
197 		case 4:	/* 4 Ranks */
198 			/* Read:
199 			 * ----------+-----------------------+
200 			 *           |         ODT           |
201 			 * Read From +-----------------------+
202 			 *   Rank    |  3  |  2  |  1  |  0  |
203 			 * ----------+-----+-----+-----+-----+
204 			 *     0     |  0  |  1  |  0  |  0  |
205 			 *     1     |  1  |  0  |  0  |  0  |
206 			 *     2     |  0  |  0  |  0  |  1  |
207 			 *     3     |  0  |  0  |  1  |  0  |
208 			 * ----------+-----+-----+-----+-----+
209 			 *
210 			 * Write:
211 			 * ----------+-----------------------+
212 			 *           |         ODT           |
213 			 * Write To  +-----------------------+
214 			 *   Rank    |  3  |  2  |  1  |  0  |
215 			 * ----------+-----+-----+-----+-----+
216 			 *     0     |  0  |  1  |  0  |  1  |
217 			 *     1     |  1  |  0  |  1  |  0  |
218 			 *     2     |  0  |  1  |  0  |  1  |
219 			 *     3     |  1  |  0  |  1  |  0  |
220 			 * ----------+-----+-----+-----+-----+
221 			 */
222 			switch (rank) {
223 			case 0:
224 				odt_mask_0 = 0x4;
225 				odt_mask_1 = 0x5;
226 				break;
227 			case 1:
228 				odt_mask_0 = 0x8;
229 				odt_mask_1 = 0xA;
230 				break;
231 			case 2:
232 				odt_mask_0 = 0x1;
233 				odt_mask_1 = 0x5;
234 				break;
235 			case 3:
236 				odt_mask_0 = 0x2;
237 				odt_mask_1 = 0xA;
238 				break;
239 			}
240 			break;
241 		}
242 	}
243 
244 	cs_and_odt_mask = (0xFF & ~(1 << rank)) |
245 			  ((0xFF & odt_mask_0) << 8) |
246 			  ((0xFF & odt_mask_1) << 16);
247 	writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
248 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
249 }
250 
251 /**
252  * scc_mgr_set() - Set SCC Manager register
253  * @off:	Base offset in SCC Manager space
254  * @grp:	Read/Write group
255  * @val:	Value to be set
256  *
257  * This function sets the SCC Manager (Scan Chain Control Manager) register.
258  */
259 static void scc_mgr_set(u32 off, u32 grp, u32 val)
260 {
261 	writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
262 }
263 
264 /**
265  * scc_mgr_initialize() - Initialize SCC Manager registers
266  *
267  * Initialize SCC Manager registers.
268  */
269 static void scc_mgr_initialize(void)
270 {
271 	/*
272 	 * Clear register file for HPS. 16 (2^4) is the size of the
273 	 * full register file in the scc mgr:
274 	 *	RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
275 	 *                             MEM_IF_READ_DQS_WIDTH - 1);
276 	 */
277 	int i;
278 
279 	for (i = 0; i < 16; i++) {
280 		debug_cond(DLEVEL >= 1, "%s:%d: Clearing SCC RFILE index %u\n",
281 			   __func__, __LINE__, i);
282 		scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, i, 0);
283 	}
284 }
285 
286 static void scc_mgr_set_dqdqs_output_phase(u32 write_group, u32 phase)
287 {
288 	scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
289 }
290 
291 static void scc_mgr_set_dqs_bus_in_delay(u32 read_group, u32 delay)
292 {
293 	scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
294 }
295 
296 static void scc_mgr_set_dqs_en_phase(u32 read_group, u32 phase)
297 {
298 	scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
299 }
300 
301 static void scc_mgr_set_dqs_en_delay(u32 read_group, u32 delay)
302 {
303 	scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
304 }
305 
306 static void scc_mgr_set_dq_in_delay(u32 dq_in_group, u32 delay)
307 {
308 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
309 }
310 
311 static void scc_mgr_set_dqs_io_in_delay(u32 delay)
312 {
313 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, rwcfg->mem_dq_per_write_dqs,
314 		    delay);
315 }
316 
317 static void scc_mgr_set_dm_in_delay(u32 dm, u32 delay)
318 {
319 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET,
320 		    rwcfg->mem_dq_per_write_dqs + 1 + dm,
321 		    delay);
322 }
323 
324 static void scc_mgr_set_dq_out1_delay(u32 dq_in_group, u32 delay)
325 {
326 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
327 }
328 
329 static void scc_mgr_set_dqs_out1_delay(u32 delay)
330 {
331 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, rwcfg->mem_dq_per_write_dqs,
332 		    delay);
333 }
334 
335 static void scc_mgr_set_dm_out1_delay(u32 dm, u32 delay)
336 {
337 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
338 		    rwcfg->mem_dq_per_write_dqs + 1 + dm,
339 		    delay);
340 }
341 
342 /* load up dqs config settings */
343 static void scc_mgr_load_dqs(u32 dqs)
344 {
345 	writel(dqs, &sdr_scc_mgr->dqs_ena);
346 }
347 
348 /* load up dqs io config settings */
349 static void scc_mgr_load_dqs_io(void)
350 {
351 	writel(0, &sdr_scc_mgr->dqs_io_ena);
352 }
353 
354 /* load up dq config settings */
355 static void scc_mgr_load_dq(u32 dq_in_group)
356 {
357 	writel(dq_in_group, &sdr_scc_mgr->dq_ena);
358 }
359 
360 /* load up dm config settings */
361 static void scc_mgr_load_dm(u32 dm)
362 {
363 	writel(dm, &sdr_scc_mgr->dm_ena);
364 }
365 
366 /**
367  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
368  * @off:	Base offset in SCC Manager space
369  * @grp:	Read/Write group
370  * @val:	Value to be set
371  * @update:	If non-zero, trigger SCC Manager update for all ranks
372  *
373  * This function sets the SCC Manager (Scan Chain Control Manager) register
374  * and optionally triggers the SCC update for all ranks.
375  */
376 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
377 				  const int update)
378 {
379 	u32 r;
380 
381 	for (r = 0; r < rwcfg->mem_number_of_ranks;
382 	     r += NUM_RANKS_PER_SHADOW_REG) {
383 		scc_mgr_set(off, grp, val);
384 
385 		if (update || (r == 0)) {
386 			writel(grp, &sdr_scc_mgr->dqs_ena);
387 			writel(0, &sdr_scc_mgr->update);
388 		}
389 	}
390 }
391 
392 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
393 {
394 	/*
395 	 * USER although the h/w doesn't support different phases per
396 	 * shadow register, for simplicity our scc manager modeling
397 	 * keeps different phase settings per shadow reg, and it's
398 	 * important for us to keep them in sync to match h/w.
399 	 * for efficiency, the scan chain update should occur only
400 	 * once to sr0.
401 	 */
402 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
403 			      read_group, phase, 0);
404 }
405 
406 static void scc_mgr_set_dqdqs_output_phase_all_ranks(u32 write_group,
407 						     u32 phase)
408 {
409 	/*
410 	 * USER although the h/w doesn't support different phases per
411 	 * shadow register, for simplicity our scc manager modeling
412 	 * keeps different phase settings per shadow reg, and it's
413 	 * important for us to keep them in sync to match h/w.
414 	 * for efficiency, the scan chain update should occur only
415 	 * once to sr0.
416 	 */
417 	scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
418 			      write_group, phase, 0);
419 }
420 
421 static void scc_mgr_set_dqs_en_delay_all_ranks(u32 read_group,
422 					       u32 delay)
423 {
424 	/*
425 	 * In shadow register mode, the T11 settings are stored in
426 	 * registers in the core, which are updated by the DQS_ENA
427 	 * signals. Not issuing the SCC_MGR_UPD command allows us to
428 	 * save lots of rank switching overhead, by calling
429 	 * select_shadow_regs_for_update with update_scan_chains
430 	 * set to 0.
431 	 */
432 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
433 			      read_group, delay, 1);
434 }
435 
436 /**
437  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
438  * @write_group:	Write group
439  * @delay:		Delay value
440  *
441  * This function sets the OCT output delay in SCC manager.
442  */
443 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
444 {
445 	const int ratio = rwcfg->mem_if_read_dqs_width /
446 			  rwcfg->mem_if_write_dqs_width;
447 	const int base = write_group * ratio;
448 	int i;
449 	/*
450 	 * Load the setting in the SCC manager
451 	 * Although OCT affects only write data, the OCT delay is controlled
452 	 * by the DQS logic block which is instantiated once per read group.
453 	 * For protocols where a write group consists of multiple read groups,
454 	 * the setting must be set multiple times.
455 	 */
456 	for (i = 0; i < ratio; i++)
457 		scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
458 }
459 
460 /**
461  * scc_mgr_set_hhp_extras() - Set HHP extras.
462  *
463  * Load the fixed setting in the SCC manager HHP extras.
464  */
465 static void scc_mgr_set_hhp_extras(void)
466 {
467 	/*
468 	 * Load the fixed setting in the SCC manager
469 	 * bits: 0:0 = 1'b1	- DQS bypass
470 	 * bits: 1:1 = 1'b1	- DQ bypass
471 	 * bits: 4:2 = 3'b001	- rfifo_mode
472 	 * bits: 6:5 = 2'b01	- rfifo clock_select
473 	 * bits: 7:7 = 1'b0	- separate gating from ungating setting
474 	 * bits: 8:8 = 1'b0	- separate OE from Output delay setting
475 	 */
476 	const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
477 			  (1 << 2) | (1 << 1) | (1 << 0);
478 	const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
479 			 SCC_MGR_HHP_GLOBALS_OFFSET |
480 			 SCC_MGR_HHP_EXTRAS_OFFSET;
481 
482 	debug_cond(DLEVEL >= 1, "%s:%d Setting HHP Extras\n",
483 		   __func__, __LINE__);
484 	writel(value, addr);
485 	debug_cond(DLEVEL >= 1, "%s:%d Done Setting HHP Extras\n",
486 		   __func__, __LINE__);
487 }
488 
489 /**
490  * scc_mgr_zero_all() - Zero all DQS config
491  *
492  * Zero all DQS config.
493  */
494 static void scc_mgr_zero_all(void)
495 {
496 	int i, r;
497 
498 	/*
499 	 * USER Zero all DQS config settings, across all groups and all
500 	 * shadow registers
501 	 */
502 	for (r = 0; r < rwcfg->mem_number_of_ranks;
503 	     r += NUM_RANKS_PER_SHADOW_REG) {
504 		for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
505 			/*
506 			 * The phases actually don't exist on a per-rank basis,
507 			 * but there's no harm updating them several times, so
508 			 * let's keep the code simple.
509 			 */
510 			scc_mgr_set_dqs_bus_in_delay(i, iocfg->dqs_in_reserve);
511 			scc_mgr_set_dqs_en_phase(i, 0);
512 			scc_mgr_set_dqs_en_delay(i, 0);
513 		}
514 
515 		for (i = 0; i < rwcfg->mem_if_write_dqs_width; i++) {
516 			scc_mgr_set_dqdqs_output_phase(i, 0);
517 			/* Arria V/Cyclone V don't have out2. */
518 			scc_mgr_set_oct_out1_delay(i, iocfg->dqs_out_reserve);
519 		}
520 	}
521 
522 	/* Multicast to all DQS group enables. */
523 	writel(0xff, &sdr_scc_mgr->dqs_ena);
524 	writel(0, &sdr_scc_mgr->update);
525 }
526 
527 /**
528  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
529  * @write_group:	Write group
530  *
531  * Set bypass mode and trigger SCC update.
532  */
533 static void scc_set_bypass_mode(const u32 write_group)
534 {
535 	/* Multicast to all DQ enables. */
536 	writel(0xff, &sdr_scc_mgr->dq_ena);
537 	writel(0xff, &sdr_scc_mgr->dm_ena);
538 
539 	/* Update current DQS IO enable. */
540 	writel(0, &sdr_scc_mgr->dqs_io_ena);
541 
542 	/* Update the DQS logic. */
543 	writel(write_group, &sdr_scc_mgr->dqs_ena);
544 
545 	/* Hit update. */
546 	writel(0, &sdr_scc_mgr->update);
547 }
548 
549 /**
550  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
551  * @write_group:	Write group
552  *
553  * Load DQS settings for Write Group, do not trigger SCC update.
554  */
555 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
556 {
557 	const int ratio = rwcfg->mem_if_read_dqs_width /
558 			  rwcfg->mem_if_write_dqs_width;
559 	const int base = write_group * ratio;
560 	int i;
561 	/*
562 	 * Load the setting in the SCC manager
563 	 * Although OCT affects only write data, the OCT delay is controlled
564 	 * by the DQS logic block which is instantiated once per read group.
565 	 * For protocols where a write group consists of multiple read groups,
566 	 * the setting must be set multiple times.
567 	 */
568 	for (i = 0; i < ratio; i++)
569 		writel(base + i, &sdr_scc_mgr->dqs_ena);
570 }
571 
572 /**
573  * scc_mgr_zero_group() - Zero all configs for a group
574  *
575  * Zero DQ, DM, DQS and OCT configs for a group.
576  */
577 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
578 {
579 	int i, r;
580 
581 	for (r = 0; r < rwcfg->mem_number_of_ranks;
582 	     r += NUM_RANKS_PER_SHADOW_REG) {
583 		/* Zero all DQ config settings. */
584 		for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
585 			scc_mgr_set_dq_out1_delay(i, 0);
586 			if (!out_only)
587 				scc_mgr_set_dq_in_delay(i, 0);
588 		}
589 
590 		/* Multicast to all DQ enables. */
591 		writel(0xff, &sdr_scc_mgr->dq_ena);
592 
593 		/* Zero all DM config settings. */
594 		for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
595 			if (!out_only)
596 				scc_mgr_set_dm_in_delay(i, 0);
597 			scc_mgr_set_dm_out1_delay(i, 0);
598 		}
599 
600 		/* Multicast to all DM enables. */
601 		writel(0xff, &sdr_scc_mgr->dm_ena);
602 
603 		/* Zero all DQS IO settings. */
604 		if (!out_only)
605 			scc_mgr_set_dqs_io_in_delay(0);
606 
607 		/* Arria V/Cyclone V don't have out2. */
608 		scc_mgr_set_dqs_out1_delay(iocfg->dqs_out_reserve);
609 		scc_mgr_set_oct_out1_delay(write_group, iocfg->dqs_out_reserve);
610 		scc_mgr_load_dqs_for_write_group(write_group);
611 
612 		/* Multicast to all DQS IO enables (only 1 in total). */
613 		writel(0, &sdr_scc_mgr->dqs_io_ena);
614 
615 		/* Hit update to zero everything. */
616 		writel(0, &sdr_scc_mgr->update);
617 	}
618 }
619 
620 /*
621  * apply and load a particular input delay for the DQ pins in a group
622  * group_bgn is the index of the first dq pin (in the write group)
623  */
624 static void scc_mgr_apply_group_dq_in_delay(u32 group_bgn, u32 delay)
625 {
626 	u32 i, p;
627 
628 	for (i = 0, p = group_bgn; i < rwcfg->mem_dq_per_read_dqs; i++, p++) {
629 		scc_mgr_set_dq_in_delay(p, delay);
630 		scc_mgr_load_dq(p);
631 	}
632 }
633 
634 /**
635  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
636  * @delay:		Delay value
637  *
638  * Apply and load a particular output delay for the DQ pins in a group.
639  */
640 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
641 {
642 	int i;
643 
644 	for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
645 		scc_mgr_set_dq_out1_delay(i, delay);
646 		scc_mgr_load_dq(i);
647 	}
648 }
649 
650 /* apply and load a particular output delay for the DM pins in a group */
651 static void scc_mgr_apply_group_dm_out1_delay(u32 delay1)
652 {
653 	u32 i;
654 
655 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
656 		scc_mgr_set_dm_out1_delay(i, delay1);
657 		scc_mgr_load_dm(i);
658 	}
659 }
660 
661 
662 /* apply and load delay on both DQS and OCT out1 */
663 static void scc_mgr_apply_group_dqs_io_and_oct_out1(u32 write_group,
664 						    u32 delay)
665 {
666 	scc_mgr_set_dqs_out1_delay(delay);
667 	scc_mgr_load_dqs_io();
668 
669 	scc_mgr_set_oct_out1_delay(write_group, delay);
670 	scc_mgr_load_dqs_for_write_group(write_group);
671 }
672 
673 /**
674  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
675  * @write_group:	Write group
676  * @delay:		Delay value
677  *
678  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
679  */
680 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
681 						  const u32 delay)
682 {
683 	u32 i, new_delay;
684 
685 	/* DQ shift */
686 	for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++)
687 		scc_mgr_load_dq(i);
688 
689 	/* DM shift */
690 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
691 		scc_mgr_load_dm(i);
692 
693 	/* DQS shift */
694 	new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
695 	if (new_delay > iocfg->io_out2_delay_max) {
696 		debug_cond(DLEVEL >= 1,
697 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
698 			   __func__, __LINE__, write_group, delay, new_delay,
699 			   iocfg->io_out2_delay_max,
700 			   new_delay - iocfg->io_out2_delay_max);
701 		new_delay -= iocfg->io_out2_delay_max;
702 		scc_mgr_set_dqs_out1_delay(new_delay);
703 	}
704 
705 	scc_mgr_load_dqs_io();
706 
707 	/* OCT shift */
708 	new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
709 	if (new_delay > iocfg->io_out2_delay_max) {
710 		debug_cond(DLEVEL >= 1,
711 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
712 			   __func__, __LINE__, write_group, delay,
713 			   new_delay, iocfg->io_out2_delay_max,
714 			   new_delay - iocfg->io_out2_delay_max);
715 		new_delay -= iocfg->io_out2_delay_max;
716 		scc_mgr_set_oct_out1_delay(write_group, new_delay);
717 	}
718 
719 	scc_mgr_load_dqs_for_write_group(write_group);
720 }
721 
722 /**
723  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
724  * @write_group:	Write group
725  * @delay:		Delay value
726  *
727  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
728  */
729 static void
730 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
731 						const u32 delay)
732 {
733 	int r;
734 
735 	for (r = 0; r < rwcfg->mem_number_of_ranks;
736 	     r += NUM_RANKS_PER_SHADOW_REG) {
737 		scc_mgr_apply_group_all_out_delay_add(write_group, delay);
738 		writel(0, &sdr_scc_mgr->update);
739 	}
740 }
741 
742 /**
743  * set_jump_as_return() - Return instruction optimization
744  *
745  * Optimization used to recover some slots in ddr3 inst_rom could be
746  * applied to other protocols if we wanted to
747  */
748 static void set_jump_as_return(void)
749 {
750 	/*
751 	 * To save space, we replace return with jump to special shared
752 	 * RETURN instruction so we set the counter to large value so that
753 	 * we always jump.
754 	 */
755 	writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
756 	writel(rwcfg->rreturn, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
757 }
758 
759 /**
760  * delay_for_n_mem_clocks() - Delay for N memory clocks
761  * @clocks:	Length of the delay
762  *
763  * Delay for N memory clocks.
764  */
765 static void delay_for_n_mem_clocks(const u32 clocks)
766 {
767 	u32 afi_clocks;
768 	u16 c_loop;
769 	u8 inner;
770 	u8 outer;
771 
772 	debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
773 
774 	/* Scale (rounding up) to get afi clocks. */
775 	afi_clocks = DIV_ROUND_UP(clocks, misccfg->afi_rate_ratio);
776 	if (afi_clocks)	/* Temporary underflow protection */
777 		afi_clocks--;
778 
779 	/*
780 	 * Note, we don't bother accounting for being off a little
781 	 * bit because of a few extra instructions in outer loops.
782 	 * Note, the loops have a test at the end, and do the test
783 	 * before the decrement, and so always perform the loop
784 	 * 1 time more than the counter value
785 	 */
786 	c_loop = afi_clocks >> 16;
787 	outer = c_loop ? 0xff : (afi_clocks >> 8);
788 	inner = outer ? 0xff : afi_clocks;
789 
790 	/*
791 	 * rom instructions are structured as follows:
792 	 *
793 	 *    IDLE_LOOP2: jnz cntr0, TARGET_A
794 	 *    IDLE_LOOP1: jnz cntr1, TARGET_B
795 	 *                return
796 	 *
797 	 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
798 	 * TARGET_B is set to IDLE_LOOP2 as well
799 	 *
800 	 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
801 	 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
802 	 *
803 	 * a little confusing, but it helps save precious space in the inst_rom
804 	 * and sequencer rom and keeps the delays more accurate and reduces
805 	 * overhead
806 	 */
807 	if (afi_clocks < 0x100) {
808 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
809 		       &sdr_rw_load_mgr_regs->load_cntr1);
810 
811 		writel(rwcfg->idle_loop1,
812 		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
813 
814 		writel(rwcfg->idle_loop1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
815 					  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
816 	} else {
817 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
818 		       &sdr_rw_load_mgr_regs->load_cntr0);
819 
820 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
821 		       &sdr_rw_load_mgr_regs->load_cntr1);
822 
823 		writel(rwcfg->idle_loop2,
824 		       &sdr_rw_load_jump_mgr_regs->load_jump_add0);
825 
826 		writel(rwcfg->idle_loop2,
827 		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
828 
829 		do {
830 			writel(rwcfg->idle_loop2,
831 			       SDR_PHYGRP_RWMGRGRP_ADDRESS |
832 			       RW_MGR_RUN_SINGLE_GROUP_OFFSET);
833 		} while (c_loop-- != 0);
834 	}
835 	debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
836 }
837 
838 /**
839  * rw_mgr_mem_init_load_regs() - Load instruction registers
840  * @cntr0:	Counter 0 value
841  * @cntr1:	Counter 1 value
842  * @cntr2:	Counter 2 value
843  * @jump:	Jump instruction value
844  *
845  * Load instruction registers.
846  */
847 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
848 {
849 	u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
850 			   RW_MGR_RUN_SINGLE_GROUP_OFFSET;
851 
852 	/* Load counters */
853 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
854 	       &sdr_rw_load_mgr_regs->load_cntr0);
855 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
856 	       &sdr_rw_load_mgr_regs->load_cntr1);
857 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
858 	       &sdr_rw_load_mgr_regs->load_cntr2);
859 
860 	/* Load jump address */
861 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
862 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
863 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
864 
865 	/* Execute count instruction */
866 	writel(jump, grpaddr);
867 }
868 
869 /**
870  * rw_mgr_mem_load_user() - Load user calibration values
871  * @fin1:	Final instruction 1
872  * @fin2:	Final instruction 2
873  * @precharge:	If 1, precharge the banks at the end
874  *
875  * Load user calibration values and optionally precharge the banks.
876  */
877 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
878 				 const int precharge)
879 {
880 	u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
881 		      RW_MGR_RUN_SINGLE_GROUP_OFFSET;
882 	u32 r;
883 
884 	for (r = 0; r < rwcfg->mem_number_of_ranks; r++) {
885 		/* set rank */
886 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
887 
888 		/* precharge all banks ... */
889 		if (precharge)
890 			writel(rwcfg->precharge_all, grpaddr);
891 
892 		/*
893 		 * USER Use Mirror-ed commands for odd ranks if address
894 		 * mirrorring is on
895 		 */
896 		if ((rwcfg->mem_address_mirroring >> r) & 0x1) {
897 			set_jump_as_return();
898 			writel(rwcfg->mrs2_mirr, grpaddr);
899 			delay_for_n_mem_clocks(4);
900 			set_jump_as_return();
901 			writel(rwcfg->mrs3_mirr, grpaddr);
902 			delay_for_n_mem_clocks(4);
903 			set_jump_as_return();
904 			writel(rwcfg->mrs1_mirr, grpaddr);
905 			delay_for_n_mem_clocks(4);
906 			set_jump_as_return();
907 			writel(fin1, grpaddr);
908 		} else {
909 			set_jump_as_return();
910 			writel(rwcfg->mrs2, grpaddr);
911 			delay_for_n_mem_clocks(4);
912 			set_jump_as_return();
913 			writel(rwcfg->mrs3, grpaddr);
914 			delay_for_n_mem_clocks(4);
915 			set_jump_as_return();
916 			writel(rwcfg->mrs1, grpaddr);
917 			set_jump_as_return();
918 			writel(fin2, grpaddr);
919 		}
920 
921 		if (precharge)
922 			continue;
923 
924 		set_jump_as_return();
925 		writel(rwcfg->zqcl, grpaddr);
926 
927 		/* tZQinit = tDLLK = 512 ck cycles */
928 		delay_for_n_mem_clocks(512);
929 	}
930 }
931 
932 /**
933  * rw_mgr_mem_initialize() - Initialize RW Manager
934  *
935  * Initialize RW Manager.
936  */
937 static void rw_mgr_mem_initialize(void)
938 {
939 	debug("%s:%d\n", __func__, __LINE__);
940 
941 	/* The reset / cke part of initialization is broadcasted to all ranks */
942 	writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
943 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
944 
945 	/*
946 	 * Here's how you load register for a loop
947 	 * Counters are located @ 0x800
948 	 * Jump address are located @ 0xC00
949 	 * For both, registers 0 to 3 are selected using bits 3 and 2, like
950 	 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
951 	 * I know this ain't pretty, but Avalon bus throws away the 2 least
952 	 * significant bits
953 	 */
954 
955 	/* Start with memory RESET activated */
956 
957 	/* tINIT = 200us */
958 
959 	/*
960 	 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
961 	 * If a and b are the number of iteration in 2 nested loops
962 	 * it takes the following number of cycles to complete the operation:
963 	 * number_of_cycles = ((2 + n) * a + 2) * b
964 	 * where n is the number of instruction in the inner loop
965 	 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
966 	 * b = 6A
967 	 */
968 	rw_mgr_mem_init_load_regs(misccfg->tinit_cntr0_val,
969 				  misccfg->tinit_cntr1_val,
970 				  misccfg->tinit_cntr2_val,
971 				  rwcfg->init_reset_0_cke_0);
972 
973 	/* Indicate that memory is stable. */
974 	writel(1, &phy_mgr_cfg->reset_mem_stbl);
975 
976 	/*
977 	 * transition the RESET to high
978 	 * Wait for 500us
979 	 */
980 
981 	/*
982 	 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
983 	 * If a and b are the number of iteration in 2 nested loops
984 	 * it takes the following number of cycles to complete the operation
985 	 * number_of_cycles = ((2 + n) * a + 2) * b
986 	 * where n is the number of instruction in the inner loop
987 	 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
988 	 * b = FF
989 	 */
990 	rw_mgr_mem_init_load_regs(misccfg->treset_cntr0_val,
991 				  misccfg->treset_cntr1_val,
992 				  misccfg->treset_cntr2_val,
993 				  rwcfg->init_reset_1_cke_0);
994 
995 	/* Bring up clock enable. */
996 
997 	/* tXRP < 250 ck cycles */
998 	delay_for_n_mem_clocks(250);
999 
1000 	rw_mgr_mem_load_user(rwcfg->mrs0_dll_reset_mirr, rwcfg->mrs0_dll_reset,
1001 			     0);
1002 }
1003 
1004 /**
1005  * rw_mgr_mem_handoff() - Hand off the memory to user
1006  *
1007  * At the end of calibration we have to program the user settings in
1008  * and hand off the memory to the user.
1009  */
1010 static void rw_mgr_mem_handoff(void)
1011 {
1012 	rw_mgr_mem_load_user(rwcfg->mrs0_user_mirr, rwcfg->mrs0_user, 1);
1013 	/*
1014 	 * Need to wait tMOD (12CK or 15ns) time before issuing other
1015 	 * commands, but we will have plenty of NIOS cycles before actual
1016 	 * handoff so its okay.
1017 	 */
1018 }
1019 
1020 /**
1021  * rw_mgr_mem_calibrate_write_test_issue() - Issue write test command
1022  * @group:	Write Group
1023  * @use_dm:	Use DM
1024  *
1025  * Issue write test command. Two variants are provided, one that just tests
1026  * a write pattern and another that tests datamask functionality.
1027  */
1028 static void rw_mgr_mem_calibrate_write_test_issue(u32 group,
1029 						  u32 test_dm)
1030 {
1031 	const u32 quick_write_mode =
1032 		(STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) &&
1033 		misccfg->enable_super_quick_calibration;
1034 	u32 mcc_instruction;
1035 	u32 rw_wl_nop_cycles;
1036 
1037 	/*
1038 	 * Set counter and jump addresses for the right
1039 	 * number of NOP cycles.
1040 	 * The number of supported NOP cycles can range from -1 to infinity
1041 	 * Three different cases are handled:
1042 	 *
1043 	 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
1044 	 *    mechanism will be used to insert the right number of NOPs
1045 	 *
1046 	 * 2. For a number of NOP cycles equals to 0, the micro-instruction
1047 	 *    issuing the write command will jump straight to the
1048 	 *    micro-instruction that turns on DQS (for DDRx), or outputs write
1049 	 *    data (for RLD), skipping
1050 	 *    the NOP micro-instruction all together
1051 	 *
1052 	 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
1053 	 *    turned on in the same micro-instruction that issues the write
1054 	 *    command. Then we need
1055 	 *    to directly jump to the micro-instruction that sends out the data
1056 	 *
1057 	 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
1058 	 *       (2 and 3). One jump-counter (0) is used to perform multiple
1059 	 *       write-read operations.
1060 	 *       one counter left to issue this command in "multiple-group" mode
1061 	 */
1062 
1063 	rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
1064 
1065 	if (rw_wl_nop_cycles == -1) {
1066 		/*
1067 		 * CNTR 2 - We want to execute the special write operation that
1068 		 * turns on DQS right away and then skip directly to the
1069 		 * instruction that sends out the data. We set the counter to a
1070 		 * large number so that the jump is always taken.
1071 		 */
1072 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1073 
1074 		/* CNTR 3 - Not used */
1075 		if (test_dm) {
1076 			mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0_wl_1;
1077 			writel(rwcfg->lfsr_wr_rd_dm_bank_0_data,
1078 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1079 			writel(rwcfg->lfsr_wr_rd_dm_bank_0_nop,
1080 			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1081 		} else {
1082 			mcc_instruction = rwcfg->lfsr_wr_rd_bank_0_wl_1;
1083 			writel(rwcfg->lfsr_wr_rd_bank_0_data,
1084 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1085 			writel(rwcfg->lfsr_wr_rd_bank_0_nop,
1086 			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1087 		}
1088 	} else if (rw_wl_nop_cycles == 0) {
1089 		/*
1090 		 * CNTR 2 - We want to skip the NOP operation and go straight
1091 		 * to the DQS enable instruction. We set the counter to a large
1092 		 * number so that the jump is always taken.
1093 		 */
1094 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1095 
1096 		/* CNTR 3 - Not used */
1097 		if (test_dm) {
1098 			mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0;
1099 			writel(rwcfg->lfsr_wr_rd_dm_bank_0_dqs,
1100 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1101 		} else {
1102 			mcc_instruction = rwcfg->lfsr_wr_rd_bank_0;
1103 			writel(rwcfg->lfsr_wr_rd_bank_0_dqs,
1104 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1105 		}
1106 	} else {
1107 		/*
1108 		 * CNTR 2 - In this case we want to execute the next instruction
1109 		 * and NOT take the jump. So we set the counter to 0. The jump
1110 		 * address doesn't count.
1111 		 */
1112 		writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
1113 		writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1114 
1115 		/*
1116 		 * CNTR 3 - Set the nop counter to the number of cycles we
1117 		 * need to loop for, minus 1.
1118 		 */
1119 		writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
1120 		if (test_dm) {
1121 			mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0;
1122 			writel(rwcfg->lfsr_wr_rd_dm_bank_0_nop,
1123 			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1124 		} else {
1125 			mcc_instruction = rwcfg->lfsr_wr_rd_bank_0;
1126 			writel(rwcfg->lfsr_wr_rd_bank_0_nop,
1127 			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1128 		}
1129 	}
1130 
1131 	writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1132 		  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1133 
1134 	if (quick_write_mode)
1135 		writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
1136 	else
1137 		writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
1138 
1139 	writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1140 
1141 	/*
1142 	 * CNTR 1 - This is used to ensure enough time elapses
1143 	 * for read data to come back.
1144 	 */
1145 	writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
1146 
1147 	if (test_dm) {
1148 		writel(rwcfg->lfsr_wr_rd_dm_bank_0_wait,
1149 		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1150 	} else {
1151 		writel(rwcfg->lfsr_wr_rd_bank_0_wait,
1152 		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1153 	}
1154 
1155 	writel(mcc_instruction, (SDR_PHYGRP_RWMGRGRP_ADDRESS |
1156 				RW_MGR_RUN_SINGLE_GROUP_OFFSET) +
1157 				(group << 2));
1158 }
1159 
1160 /**
1161  * rw_mgr_mem_calibrate_write_test() - Test writes, check for single/multiple pass
1162  * @rank_bgn:		Rank number
1163  * @write_group:	Write Group
1164  * @use_dm:		Use DM
1165  * @all_correct:	All bits must be correct in the mask
1166  * @bit_chk:		Resulting bit mask after the test
1167  * @all_ranks:		Test all ranks
1168  *
1169  * Test writes, can check for a single bit pass or multiple bit pass.
1170  */
1171 static int
1172 rw_mgr_mem_calibrate_write_test(const u32 rank_bgn, const u32 write_group,
1173 				const u32 use_dm, const u32 all_correct,
1174 				u32 *bit_chk, const u32 all_ranks)
1175 {
1176 	const u32 rank_end = all_ranks ?
1177 				rwcfg->mem_number_of_ranks :
1178 				(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1179 	const u32 shift_ratio = rwcfg->mem_dq_per_write_dqs /
1180 				rwcfg->mem_virtual_groups_per_write_dqs;
1181 	const u32 correct_mask_vg = param->write_correct_mask_vg;
1182 
1183 	u32 tmp_bit_chk, base_rw_mgr;
1184 	int vg, r;
1185 
1186 	*bit_chk = param->write_correct_mask;
1187 
1188 	for (r = rank_bgn; r < rank_end; r++) {
1189 		/* Set rank */
1190 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1191 
1192 		tmp_bit_chk = 0;
1193 		for (vg = rwcfg->mem_virtual_groups_per_write_dqs - 1;
1194 		     vg >= 0; vg--) {
1195 			/* Reset the FIFOs to get pointers to known state. */
1196 			writel(0, &phy_mgr_cmd->fifo_reset);
1197 
1198 			rw_mgr_mem_calibrate_write_test_issue(
1199 				write_group *
1200 				rwcfg->mem_virtual_groups_per_write_dqs + vg,
1201 				use_dm);
1202 
1203 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1204 			tmp_bit_chk <<= shift_ratio;
1205 			tmp_bit_chk |= (correct_mask_vg & ~(base_rw_mgr));
1206 		}
1207 
1208 		*bit_chk &= tmp_bit_chk;
1209 	}
1210 
1211 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1212 	if (all_correct) {
1213 		debug_cond(DLEVEL >= 2,
1214 			   "write_test(%u,%u,ALL) : %u == %u => %i\n",
1215 			   write_group, use_dm, *bit_chk,
1216 			   param->write_correct_mask,
1217 			   *bit_chk == param->write_correct_mask);
1218 		return *bit_chk == param->write_correct_mask;
1219 	} else {
1220 		debug_cond(DLEVEL >= 2,
1221 			   "write_test(%u,%u,ONE) : %u != %i => %i\n",
1222 			   write_group, use_dm, *bit_chk, 0, *bit_chk != 0);
1223 		return *bit_chk != 0x00;
1224 	}
1225 }
1226 
1227 /**
1228  * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1229  * @rank_bgn:	Rank number
1230  * @group:	Read/Write Group
1231  * @all_ranks:	Test all ranks
1232  *
1233  * Performs a guaranteed read on the patterns we are going to use during a
1234  * read test to ensure memory works.
1235  */
1236 static int
1237 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1238 					const u32 all_ranks)
1239 {
1240 	const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1241 			 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1242 	const u32 addr_offset =
1243 			 (group * rwcfg->mem_virtual_groups_per_read_dqs) << 2;
1244 	const u32 rank_end = all_ranks ?
1245 				rwcfg->mem_number_of_ranks :
1246 				(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1247 	const u32 shift_ratio = rwcfg->mem_dq_per_read_dqs /
1248 				rwcfg->mem_virtual_groups_per_read_dqs;
1249 	const u32 correct_mask_vg = param->read_correct_mask_vg;
1250 
1251 	u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1252 	int vg, r;
1253 	int ret = 0;
1254 
1255 	bit_chk = param->read_correct_mask;
1256 
1257 	for (r = rank_bgn; r < rank_end; r++) {
1258 		/* Set rank */
1259 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1260 
1261 		/* Load up a constant bursts of read commands */
1262 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1263 		writel(rwcfg->guaranteed_read,
1264 		       &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1265 
1266 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1267 		writel(rwcfg->guaranteed_read_cont,
1268 		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1269 
1270 		tmp_bit_chk = 0;
1271 		for (vg = rwcfg->mem_virtual_groups_per_read_dqs - 1;
1272 		     vg >= 0; vg--) {
1273 			/* Reset the FIFOs to get pointers to known state. */
1274 			writel(0, &phy_mgr_cmd->fifo_reset);
1275 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1276 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1277 			writel(rwcfg->guaranteed_read,
1278 			       addr + addr_offset + (vg << 2));
1279 
1280 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1281 			tmp_bit_chk <<= shift_ratio;
1282 			tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1283 		}
1284 
1285 		bit_chk &= tmp_bit_chk;
1286 	}
1287 
1288 	writel(rwcfg->clear_dqs_enable, addr + (group << 2));
1289 
1290 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1291 
1292 	if (bit_chk != param->read_correct_mask)
1293 		ret = -EIO;
1294 
1295 	debug_cond(DLEVEL >= 1,
1296 		   "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1297 		   __func__, __LINE__, group, bit_chk,
1298 		   param->read_correct_mask, ret);
1299 
1300 	return ret;
1301 }
1302 
1303 /**
1304  * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1305  * @rank_bgn:	Rank number
1306  * @all_ranks:	Test all ranks
1307  *
1308  * Load up the patterns we are going to use during a read test.
1309  */
1310 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1311 						    const int all_ranks)
1312 {
1313 	const u32 rank_end = all_ranks ?
1314 			rwcfg->mem_number_of_ranks :
1315 			(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1316 	u32 r;
1317 
1318 	debug("%s:%d\n", __func__, __LINE__);
1319 
1320 	for (r = rank_bgn; r < rank_end; r++) {
1321 		/* set rank */
1322 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1323 
1324 		/* Load up a constant bursts */
1325 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1326 
1327 		writel(rwcfg->guaranteed_write_wait0,
1328 		       &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1329 
1330 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1331 
1332 		writel(rwcfg->guaranteed_write_wait1,
1333 		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1334 
1335 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1336 
1337 		writel(rwcfg->guaranteed_write_wait2,
1338 		       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1339 
1340 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1341 
1342 		writel(rwcfg->guaranteed_write_wait3,
1343 		       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1344 
1345 		writel(rwcfg->guaranteed_write, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1346 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1347 	}
1348 
1349 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1350 }
1351 
1352 /**
1353  * rw_mgr_mem_calibrate_read_test() - Perform READ test on single rank
1354  * @rank_bgn:		Rank number
1355  * @group:		Read/Write group
1356  * @num_tries:		Number of retries of the test
1357  * @all_correct:	All bits must be correct in the mask
1358  * @bit_chk:		Resulting bit mask after the test
1359  * @all_groups:		Test all R/W groups
1360  * @all_ranks:		Test all ranks
1361  *
1362  * Try a read and see if it returns correct data back. Test has dummy reads
1363  * inserted into the mix used to align DQS enable. Test has more thorough
1364  * checks than the regular read test.
1365  */
1366 static int
1367 rw_mgr_mem_calibrate_read_test(const u32 rank_bgn, const u32 group,
1368 			       const u32 num_tries, const u32 all_correct,
1369 			       u32 *bit_chk,
1370 			       const u32 all_groups, const u32 all_ranks)
1371 {
1372 	const u32 rank_end = all_ranks ? rwcfg->mem_number_of_ranks :
1373 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1374 	const u32 quick_read_mode =
1375 		((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) &&
1376 		 misccfg->enable_super_quick_calibration);
1377 	u32 correct_mask_vg = param->read_correct_mask_vg;
1378 	u32 tmp_bit_chk;
1379 	u32 base_rw_mgr;
1380 	u32 addr;
1381 
1382 	int r, vg, ret;
1383 
1384 	*bit_chk = param->read_correct_mask;
1385 
1386 	for (r = rank_bgn; r < rank_end; r++) {
1387 		/* set rank */
1388 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1389 
1390 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1391 
1392 		writel(rwcfg->read_b2b_wait1,
1393 		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1394 
1395 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1396 		writel(rwcfg->read_b2b_wait2,
1397 		       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1398 
1399 		if (quick_read_mode)
1400 			writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1401 			/* need at least two (1+1) reads to capture failures */
1402 		else if (all_groups)
1403 			writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1404 		else
1405 			writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1406 
1407 		writel(rwcfg->read_b2b,
1408 		       &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1409 		if (all_groups)
1410 			writel(rwcfg->mem_if_read_dqs_width *
1411 			       rwcfg->mem_virtual_groups_per_read_dqs - 1,
1412 			       &sdr_rw_load_mgr_regs->load_cntr3);
1413 		else
1414 			writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1415 
1416 		writel(rwcfg->read_b2b,
1417 		       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1418 
1419 		tmp_bit_chk = 0;
1420 		for (vg = rwcfg->mem_virtual_groups_per_read_dqs - 1; vg >= 0;
1421 		     vg--) {
1422 			/* Reset the FIFOs to get pointers to known state. */
1423 			writel(0, &phy_mgr_cmd->fifo_reset);
1424 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1425 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1426 
1427 			if (all_groups) {
1428 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1429 				       RW_MGR_RUN_ALL_GROUPS_OFFSET;
1430 			} else {
1431 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1432 				       RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1433 			}
1434 
1435 			writel(rwcfg->read_b2b, addr +
1436 			       ((group *
1437 				 rwcfg->mem_virtual_groups_per_read_dqs +
1438 				 vg) << 2));
1439 
1440 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1441 			tmp_bit_chk <<= rwcfg->mem_dq_per_read_dqs /
1442 					rwcfg->mem_virtual_groups_per_read_dqs;
1443 			tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr);
1444 		}
1445 
1446 		*bit_chk &= tmp_bit_chk;
1447 	}
1448 
1449 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1450 	writel(rwcfg->clear_dqs_enable, addr + (group << 2));
1451 
1452 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1453 
1454 	if (all_correct) {
1455 		ret = (*bit_chk == param->read_correct_mask);
1456 		debug_cond(DLEVEL >= 2,
1457 			   "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n",
1458 			   __func__, __LINE__, group, all_groups, *bit_chk,
1459 			   param->read_correct_mask, ret);
1460 	} else	{
1461 		ret = (*bit_chk != 0x00);
1462 		debug_cond(DLEVEL >= 2,
1463 			   "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n",
1464 			   __func__, __LINE__, group, all_groups, *bit_chk,
1465 			   0, ret);
1466 	}
1467 
1468 	return ret;
1469 }
1470 
1471 /**
1472  * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks
1473  * @grp:		Read/Write group
1474  * @num_tries:		Number of retries of the test
1475  * @all_correct:	All bits must be correct in the mask
1476  * @all_groups:		Test all R/W groups
1477  *
1478  * Perform a READ test across all memory ranks.
1479  */
1480 static int
1481 rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries,
1482 					 const u32 all_correct,
1483 					 const u32 all_groups)
1484 {
1485 	u32 bit_chk;
1486 	return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct,
1487 					      &bit_chk, all_groups, 1);
1488 }
1489 
1490 /**
1491  * rw_mgr_incr_vfifo() - Increase VFIFO value
1492  * @grp:	Read/Write group
1493  *
1494  * Increase VFIFO value.
1495  */
1496 static void rw_mgr_incr_vfifo(const u32 grp)
1497 {
1498 	writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1499 }
1500 
1501 /**
1502  * rw_mgr_decr_vfifo() - Decrease VFIFO value
1503  * @grp:	Read/Write group
1504  *
1505  * Decrease VFIFO value.
1506  */
1507 static void rw_mgr_decr_vfifo(const u32 grp)
1508 {
1509 	u32 i;
1510 
1511 	for (i = 0; i < misccfg->read_valid_fifo_size - 1; i++)
1512 		rw_mgr_incr_vfifo(grp);
1513 }
1514 
1515 /**
1516  * find_vfifo_failing_read() - Push VFIFO to get a failing read
1517  * @grp:	Read/Write group
1518  *
1519  * Push VFIFO until a failing read happens.
1520  */
1521 static int find_vfifo_failing_read(const u32 grp)
1522 {
1523 	u32 v, ret, fail_cnt = 0;
1524 
1525 	for (v = 0; v < misccfg->read_valid_fifo_size; v++) {
1526 		debug_cond(DLEVEL >= 2, "%s:%d: vfifo %u\n",
1527 			   __func__, __LINE__, v);
1528 		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1529 						PASS_ONE_BIT, 0);
1530 		if (!ret) {
1531 			fail_cnt++;
1532 
1533 			if (fail_cnt == 2)
1534 				return v;
1535 		}
1536 
1537 		/* Fiddle with FIFO. */
1538 		rw_mgr_incr_vfifo(grp);
1539 	}
1540 
1541 	/* No failing read found! Something must have gone wrong. */
1542 	debug_cond(DLEVEL >= 2, "%s:%d: vfifo failed\n", __func__, __LINE__);
1543 	return 0;
1544 }
1545 
1546 /**
1547  * sdr_find_phase_delay() - Find DQS enable phase or delay
1548  * @working:	If 1, look for working phase/delay, if 0, look for non-working
1549  * @delay:	If 1, look for delay, if 0, look for phase
1550  * @grp:	Read/Write group
1551  * @work:	Working window position
1552  * @work_inc:	Working window increment
1553  * @pd:		DQS Phase/Delay Iterator
1554  *
1555  * Find working or non-working DQS enable phase setting.
1556  */
1557 static int sdr_find_phase_delay(int working, int delay, const u32 grp,
1558 				u32 *work, const u32 work_inc, u32 *pd)
1559 {
1560 	const u32 max = delay ? iocfg->dqs_en_delay_max :
1561 				iocfg->dqs_en_phase_max;
1562 	u32 ret;
1563 
1564 	for (; *pd <= max; (*pd)++) {
1565 		if (delay)
1566 			scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd);
1567 		else
1568 			scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd);
1569 
1570 		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1571 					PASS_ONE_BIT, 0);
1572 		if (!working)
1573 			ret = !ret;
1574 
1575 		if (ret)
1576 			return 0;
1577 
1578 		if (work)
1579 			*work += work_inc;
1580 	}
1581 
1582 	return -EINVAL;
1583 }
1584 /**
1585  * sdr_find_phase() - Find DQS enable phase
1586  * @working:	If 1, look for working phase, if 0, look for non-working phase
1587  * @grp:	Read/Write group
1588  * @work:	Working window position
1589  * @i:		Iterator
1590  * @p:		DQS Phase Iterator
1591  *
1592  * Find working or non-working DQS enable phase setting.
1593  */
1594 static int sdr_find_phase(int working, const u32 grp, u32 *work,
1595 			  u32 *i, u32 *p)
1596 {
1597 	const u32 end = misccfg->read_valid_fifo_size + (working ? 0 : 1);
1598 	int ret;
1599 
1600 	for (; *i < end; (*i)++) {
1601 		if (working)
1602 			*p = 0;
1603 
1604 		ret = sdr_find_phase_delay(working, 0, grp, work,
1605 					   iocfg->delay_per_opa_tap, p);
1606 		if (!ret)
1607 			return 0;
1608 
1609 		if (*p > iocfg->dqs_en_phase_max) {
1610 			/* Fiddle with FIFO. */
1611 			rw_mgr_incr_vfifo(grp);
1612 			if (!working)
1613 				*p = 0;
1614 		}
1615 	}
1616 
1617 	return -EINVAL;
1618 }
1619 
1620 /**
1621  * sdr_working_phase() - Find working DQS enable phase
1622  * @grp:	Read/Write group
1623  * @work_bgn:	Working window start position
1624  * @d:		dtaps output value
1625  * @p:		DQS Phase Iterator
1626  * @i:		Iterator
1627  *
1628  * Find working DQS enable phase setting.
1629  */
1630 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d,
1631 			     u32 *p, u32 *i)
1632 {
1633 	const u32 dtaps_per_ptap = iocfg->delay_per_opa_tap /
1634 				   iocfg->delay_per_dqs_en_dchain_tap;
1635 	int ret;
1636 
1637 	*work_bgn = 0;
1638 
1639 	for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
1640 		*i = 0;
1641 		scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
1642 		ret = sdr_find_phase(1, grp, work_bgn, i, p);
1643 		if (!ret)
1644 			return 0;
1645 		*work_bgn += iocfg->delay_per_dqs_en_dchain_tap;
1646 	}
1647 
1648 	/* Cannot find working solution */
1649 	debug_cond(DLEVEL >= 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
1650 		   __func__, __LINE__);
1651 	return -EINVAL;
1652 }
1653 
1654 /**
1655  * sdr_backup_phase() - Find DQS enable backup phase
1656  * @grp:	Read/Write group
1657  * @work_bgn:	Working window start position
1658  * @p:		DQS Phase Iterator
1659  *
1660  * Find DQS enable backup phase setting.
1661  */
1662 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p)
1663 {
1664 	u32 tmp_delay, d;
1665 	int ret;
1666 
1667 	/* Special case code for backing up a phase */
1668 	if (*p == 0) {
1669 		*p = iocfg->dqs_en_phase_max;
1670 		rw_mgr_decr_vfifo(grp);
1671 	} else {
1672 		(*p)--;
1673 	}
1674 	tmp_delay = *work_bgn - iocfg->delay_per_opa_tap;
1675 	scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1676 
1677 	for (d = 0; d <= iocfg->dqs_en_delay_max && tmp_delay < *work_bgn;
1678 	     d++) {
1679 		scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1680 
1681 		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1682 					PASS_ONE_BIT, 0);
1683 		if (ret) {
1684 			*work_bgn = tmp_delay;
1685 			break;
1686 		}
1687 
1688 		tmp_delay += iocfg->delay_per_dqs_en_dchain_tap;
1689 	}
1690 
1691 	/* Restore VFIFO to old state before we decremented it (if needed). */
1692 	(*p)++;
1693 	if (*p > iocfg->dqs_en_phase_max) {
1694 		*p = 0;
1695 		rw_mgr_incr_vfifo(grp);
1696 	}
1697 
1698 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1699 }
1700 
1701 /**
1702  * sdr_nonworking_phase() - Find non-working DQS enable phase
1703  * @grp:	Read/Write group
1704  * @work_end:	Working window end position
1705  * @p:		DQS Phase Iterator
1706  * @i:		Iterator
1707  *
1708  * Find non-working DQS enable phase setting.
1709  */
1710 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i)
1711 {
1712 	int ret;
1713 
1714 	(*p)++;
1715 	*work_end += iocfg->delay_per_opa_tap;
1716 	if (*p > iocfg->dqs_en_phase_max) {
1717 		/* Fiddle with FIFO. */
1718 		*p = 0;
1719 		rw_mgr_incr_vfifo(grp);
1720 	}
1721 
1722 	ret = sdr_find_phase(0, grp, work_end, i, p);
1723 	if (ret) {
1724 		/* Cannot see edge of failing read. */
1725 		debug_cond(DLEVEL >= 2, "%s:%d: end: failed\n",
1726 			   __func__, __LINE__);
1727 	}
1728 
1729 	return ret;
1730 }
1731 
1732 /**
1733  * sdr_find_window_center() - Find center of the working DQS window.
1734  * @grp:	Read/Write group
1735  * @work_bgn:	First working settings
1736  * @work_end:	Last working settings
1737  *
1738  * Find center of the working DQS enable window.
1739  */
1740 static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
1741 				  const u32 work_end)
1742 {
1743 	u32 work_mid;
1744 	int tmp_delay = 0;
1745 	int i, p, d;
1746 
1747 	work_mid = (work_bgn + work_end) / 2;
1748 
1749 	debug_cond(DLEVEL >= 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1750 		   work_bgn, work_end, work_mid);
1751 	/* Get the middle delay to be less than a VFIFO delay */
1752 	tmp_delay = (iocfg->dqs_en_phase_max + 1) * iocfg->delay_per_opa_tap;
1753 
1754 	debug_cond(DLEVEL >= 2, "vfifo ptap delay %d\n", tmp_delay);
1755 	work_mid %= tmp_delay;
1756 	debug_cond(DLEVEL >= 2, "new work_mid %d\n", work_mid);
1757 
1758 	tmp_delay = rounddown(work_mid, iocfg->delay_per_opa_tap);
1759 	if (tmp_delay > iocfg->dqs_en_phase_max * iocfg->delay_per_opa_tap)
1760 		tmp_delay = iocfg->dqs_en_phase_max * iocfg->delay_per_opa_tap;
1761 	p = tmp_delay / iocfg->delay_per_opa_tap;
1762 
1763 	debug_cond(DLEVEL >= 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
1764 
1765 	d = DIV_ROUND_UP(work_mid - tmp_delay,
1766 			 iocfg->delay_per_dqs_en_dchain_tap);
1767 	if (d > iocfg->dqs_en_delay_max)
1768 		d = iocfg->dqs_en_delay_max;
1769 	tmp_delay += d * iocfg->delay_per_dqs_en_dchain_tap;
1770 
1771 	debug_cond(DLEVEL >= 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
1772 
1773 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1774 	scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1775 
1776 	/*
1777 	 * push vfifo until we can successfully calibrate. We can do this
1778 	 * because the largest possible margin in 1 VFIFO cycle.
1779 	 */
1780 	for (i = 0; i < misccfg->read_valid_fifo_size; i++) {
1781 		debug_cond(DLEVEL >= 2, "find_dqs_en_phase: center\n");
1782 		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1783 							     PASS_ONE_BIT,
1784 							     0)) {
1785 			debug_cond(DLEVEL >= 2,
1786 				   "%s:%d center: found: ptap=%u dtap=%u\n",
1787 				   __func__, __LINE__, p, d);
1788 			return 0;
1789 		}
1790 
1791 		/* Fiddle with FIFO. */
1792 		rw_mgr_incr_vfifo(grp);
1793 	}
1794 
1795 	debug_cond(DLEVEL >= 2, "%s:%d center: failed.\n",
1796 		   __func__, __LINE__);
1797 	return -EINVAL;
1798 }
1799 
1800 /**
1801  * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use
1802  * @grp:	Read/Write Group
1803  *
1804  * Find a good DQS enable to use.
1805  */
1806 static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp)
1807 {
1808 	u32 d, p, i;
1809 	u32 dtaps_per_ptap;
1810 	u32 work_bgn, work_end;
1811 	u32 found_passing_read, found_failing_read = 0, initial_failing_dtap;
1812 	int ret;
1813 
1814 	debug("%s:%d %u\n", __func__, __LINE__, grp);
1815 
1816 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1817 
1818 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1819 	scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1820 
1821 	/* Step 0: Determine number of delay taps for each phase tap. */
1822 	dtaps_per_ptap = iocfg->delay_per_opa_tap /
1823 			 iocfg->delay_per_dqs_en_dchain_tap;
1824 
1825 	/* Step 1: First push vfifo until we get a failing read. */
1826 	find_vfifo_failing_read(grp);
1827 
1828 	/* Step 2: Find first working phase, increment in ptaps. */
1829 	work_bgn = 0;
1830 	ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i);
1831 	if (ret)
1832 		return ret;
1833 
1834 	work_end = work_bgn;
1835 
1836 	/*
1837 	 * If d is 0 then the working window covers a phase tap and we can
1838 	 * follow the old procedure. Otherwise, we've found the beginning
1839 	 * and we need to increment the dtaps until we find the end.
1840 	 */
1841 	if (d == 0) {
1842 		/*
1843 		 * Step 3a: If we have room, back off by one and
1844 		 *          increment in dtaps.
1845 		 */
1846 		sdr_backup_phase(grp, &work_bgn, &p);
1847 
1848 		/*
1849 		 * Step 4a: go forward from working phase to non working
1850 		 * phase, increment in ptaps.
1851 		 */
1852 		ret = sdr_nonworking_phase(grp, &work_end, &p, &i);
1853 		if (ret)
1854 			return ret;
1855 
1856 		/* Step 5a: Back off one from last, increment in dtaps. */
1857 
1858 		/* Special case code for backing up a phase */
1859 		if (p == 0) {
1860 			p = iocfg->dqs_en_phase_max;
1861 			rw_mgr_decr_vfifo(grp);
1862 		} else {
1863 			p = p - 1;
1864 		}
1865 
1866 		work_end -= iocfg->delay_per_opa_tap;
1867 		scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1868 
1869 		d = 0;
1870 
1871 		debug_cond(DLEVEL >= 2, "%s:%d p: ptap=%u\n",
1872 			   __func__, __LINE__, p);
1873 	}
1874 
1875 	/* The dtap increment to find the failing edge is done here. */
1876 	sdr_find_phase_delay(0, 1, grp, &work_end,
1877 			     iocfg->delay_per_dqs_en_dchain_tap, &d);
1878 
1879 	/* Go back to working dtap */
1880 	if (d != 0)
1881 		work_end -= iocfg->delay_per_dqs_en_dchain_tap;
1882 
1883 	debug_cond(DLEVEL >= 2,
1884 		   "%s:%d p/d: ptap=%u dtap=%u end=%u\n",
1885 		   __func__, __LINE__, p, d - 1, work_end);
1886 
1887 	if (work_end < work_bgn) {
1888 		/* nil range */
1889 		debug_cond(DLEVEL >= 2, "%s:%d end-2: failed\n",
1890 			   __func__, __LINE__);
1891 		return -EINVAL;
1892 	}
1893 
1894 	debug_cond(DLEVEL >= 2, "%s:%d found range [%u,%u]\n",
1895 		   __func__, __LINE__, work_bgn, work_end);
1896 
1897 	/*
1898 	 * We need to calculate the number of dtaps that equal a ptap.
1899 	 * To do that we'll back up a ptap and re-find the edge of the
1900 	 * window using dtaps
1901 	 */
1902 	debug_cond(DLEVEL >= 2, "%s:%d calculate dtaps_per_ptap for tracking\n",
1903 		   __func__, __LINE__);
1904 
1905 	/* Special case code for backing up a phase */
1906 	if (p == 0) {
1907 		p = iocfg->dqs_en_phase_max;
1908 		rw_mgr_decr_vfifo(grp);
1909 		debug_cond(DLEVEL >= 2, "%s:%d backedup cycle/phase: p=%u\n",
1910 			   __func__, __LINE__, p);
1911 	} else {
1912 		p = p - 1;
1913 		debug_cond(DLEVEL >= 2, "%s:%d backedup phase only: p=%u",
1914 			   __func__, __LINE__, p);
1915 	}
1916 
1917 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1918 
1919 	/*
1920 	 * Increase dtap until we first see a passing read (in case the
1921 	 * window is smaller than a ptap), and then a failing read to
1922 	 * mark the edge of the window again.
1923 	 */
1924 
1925 	/* Find a passing read. */
1926 	debug_cond(DLEVEL >= 2, "%s:%d find passing read\n",
1927 		   __func__, __LINE__);
1928 
1929 	initial_failing_dtap = d;
1930 
1931 	found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d);
1932 	if (found_passing_read) {
1933 		/* Find a failing read. */
1934 		debug_cond(DLEVEL >= 2, "%s:%d find failing read\n",
1935 			   __func__, __LINE__);
1936 		d++;
1937 		found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0,
1938 							   &d);
1939 	} else {
1940 		debug_cond(DLEVEL >= 1,
1941 			   "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n",
1942 			   __func__, __LINE__);
1943 	}
1944 
1945 	/*
1946 	 * The dynamically calculated dtaps_per_ptap is only valid if we
1947 	 * found a passing/failing read. If we didn't, it means d hit the max
1948 	 * (iocfg->dqs_en_delay_max). Otherwise, dtaps_per_ptap retains its
1949 	 * statically calculated value.
1950 	 */
1951 	if (found_passing_read && found_failing_read)
1952 		dtaps_per_ptap = d - initial_failing_dtap;
1953 
1954 	writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1955 	debug_cond(DLEVEL >= 2, "%s:%d dtaps_per_ptap=%u - %u = %u",
1956 		   __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap);
1957 
1958 	/* Step 6: Find the centre of the window. */
1959 	ret = sdr_find_window_center(grp, work_bgn, work_end);
1960 
1961 	return ret;
1962 }
1963 
1964 /**
1965  * search_stop_check() - Check if the detected edge is valid
1966  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
1967  * @d:			DQS delay
1968  * @rank_bgn:		Rank number
1969  * @write_group:	Write Group
1970  * @read_group:		Read Group
1971  * @bit_chk:		Resulting bit mask after the test
1972  * @sticky_bit_chk:	Resulting sticky bit mask after the test
1973  * @use_read_test:	Perform read test
1974  *
1975  * Test if the found edge is valid.
1976  */
1977 static u32 search_stop_check(const int write, const int d, const int rank_bgn,
1978 			     const u32 write_group, const u32 read_group,
1979 			     u32 *bit_chk, u32 *sticky_bit_chk,
1980 			     const u32 use_read_test)
1981 {
1982 	const u32 ratio = rwcfg->mem_if_read_dqs_width /
1983 			  rwcfg->mem_if_write_dqs_width;
1984 	const u32 correct_mask = write ? param->write_correct_mask :
1985 					 param->read_correct_mask;
1986 	const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
1987 				    rwcfg->mem_dq_per_read_dqs;
1988 	u32 ret;
1989 	/*
1990 	 * Stop searching when the read test doesn't pass AND when
1991 	 * we've seen a passing read on every bit.
1992 	 */
1993 	if (write) {			/* WRITE-ONLY */
1994 		ret = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1995 							 0, PASS_ONE_BIT,
1996 							 bit_chk, 0);
1997 	} else if (use_read_test) {	/* READ-ONLY */
1998 		ret = !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group,
1999 							NUM_READ_PB_TESTS,
2000 							PASS_ONE_BIT, bit_chk,
2001 							0, 0);
2002 	} else {			/* READ-ONLY */
2003 		rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0,
2004 						PASS_ONE_BIT, bit_chk, 0);
2005 		*bit_chk = *bit_chk >> (per_dqs *
2006 			(read_group - (write_group * ratio)));
2007 		ret = (*bit_chk == 0);
2008 	}
2009 	*sticky_bit_chk = *sticky_bit_chk | *bit_chk;
2010 	ret = ret && (*sticky_bit_chk == correct_mask);
2011 	debug_cond(DLEVEL >= 2,
2012 		   "%s:%d center(left): dtap=%u => %u == %u && %u",
2013 		   __func__, __LINE__, d,
2014 		   *sticky_bit_chk, correct_mask, ret);
2015 	return ret;
2016 }
2017 
2018 /**
2019  * search_left_edge() - Find left edge of DQ/DQS working phase
2020  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
2021  * @rank_bgn:		Rank number
2022  * @write_group:	Write Group
2023  * @read_group:		Read Group
2024  * @test_bgn:		Rank number to begin the test
2025  * @sticky_bit_chk:	Resulting sticky bit mask after the test
2026  * @left_edge:		Left edge of the DQ/DQS phase
2027  * @right_edge:		Right edge of the DQ/DQS phase
2028  * @use_read_test:	Perform read test
2029  *
2030  * Find left edge of DQ/DQS working phase.
2031  */
2032 static void search_left_edge(const int write, const int rank_bgn,
2033 	const u32 write_group, const u32 read_group, const u32 test_bgn,
2034 	u32 *sticky_bit_chk,
2035 	int *left_edge, int *right_edge, const u32 use_read_test)
2036 {
2037 	const u32 delay_max = write ? iocfg->io_out1_delay_max :
2038 				      iocfg->io_in_delay_max;
2039 	const u32 dqs_max = write ? iocfg->io_out1_delay_max :
2040 				    iocfg->dqs_in_delay_max;
2041 	const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2042 				    rwcfg->mem_dq_per_read_dqs;
2043 	u32 stop, bit_chk;
2044 	int i, d;
2045 
2046 	for (d = 0; d <= dqs_max; d++) {
2047 		if (write)
2048 			scc_mgr_apply_group_dq_out1_delay(d);
2049 		else
2050 			scc_mgr_apply_group_dq_in_delay(test_bgn, d);
2051 
2052 		writel(0, &sdr_scc_mgr->update);
2053 
2054 		stop = search_stop_check(write, d, rank_bgn, write_group,
2055 					 read_group, &bit_chk, sticky_bit_chk,
2056 					 use_read_test);
2057 		if (stop == 1)
2058 			break;
2059 
2060 		/* stop != 1 */
2061 		for (i = 0; i < per_dqs; i++) {
2062 			if (bit_chk & 1) {
2063 				/*
2064 				 * Remember a passing test as
2065 				 * the left_edge.
2066 				 */
2067 				left_edge[i] = d;
2068 			} else {
2069 				/*
2070 				 * If a left edge has not been seen
2071 				 * yet, then a future passing test
2072 				 * will mark this edge as the right
2073 				 * edge.
2074 				 */
2075 				if (left_edge[i] == delay_max + 1)
2076 					right_edge[i] = -(d + 1);
2077 			}
2078 			bit_chk >>= 1;
2079 		}
2080 	}
2081 
2082 	/* Reset DQ delay chains to 0 */
2083 	if (write)
2084 		scc_mgr_apply_group_dq_out1_delay(0);
2085 	else
2086 		scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2087 
2088 	*sticky_bit_chk = 0;
2089 	for (i = per_dqs - 1; i >= 0; i--) {
2090 		debug_cond(DLEVEL >= 2,
2091 			   "%s:%d vfifo_center: left_edge[%u]: %d right_edge[%u]: %d\n",
2092 			   __func__, __LINE__, i, left_edge[i],
2093 			   i, right_edge[i]);
2094 
2095 		/*
2096 		 * Check for cases where we haven't found the left edge,
2097 		 * which makes our assignment of the the right edge invalid.
2098 		 * Reset it to the illegal value.
2099 		 */
2100 		if ((left_edge[i] == delay_max + 1) &&
2101 		    (right_edge[i] != delay_max + 1)) {
2102 			right_edge[i] = delay_max + 1;
2103 			debug_cond(DLEVEL >= 2,
2104 				   "%s:%d vfifo_center: reset right_edge[%u]: %d\n",
2105 				   __func__, __LINE__, i, right_edge[i]);
2106 		}
2107 
2108 		/*
2109 		 * Reset sticky bit
2110 		 * READ: except for bits where we have seen both
2111 		 *       the left and right edge.
2112 		 * WRITE: except for bits where we have seen the
2113 		 *        left edge.
2114 		 */
2115 		*sticky_bit_chk <<= 1;
2116 		if (write) {
2117 			if (left_edge[i] != delay_max + 1)
2118 				*sticky_bit_chk |= 1;
2119 		} else {
2120 			if ((left_edge[i] != delay_max + 1) &&
2121 			    (right_edge[i] != delay_max + 1))
2122 				*sticky_bit_chk |= 1;
2123 		}
2124 	}
2125 }
2126 
2127 /**
2128  * search_right_edge() - Find right edge of DQ/DQS working phase
2129  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
2130  * @rank_bgn:		Rank number
2131  * @write_group:	Write Group
2132  * @read_group:		Read Group
2133  * @start_dqs:		DQS start phase
2134  * @start_dqs_en:	DQS enable start phase
2135  * @sticky_bit_chk:	Resulting sticky bit mask after the test
2136  * @left_edge:		Left edge of the DQ/DQS phase
2137  * @right_edge:		Right edge of the DQ/DQS phase
2138  * @use_read_test:	Perform read test
2139  *
2140  * Find right edge of DQ/DQS working phase.
2141  */
2142 static int search_right_edge(const int write, const int rank_bgn,
2143 	const u32 write_group, const u32 read_group,
2144 	const int start_dqs, const int start_dqs_en,
2145 	u32 *sticky_bit_chk,
2146 	int *left_edge, int *right_edge, const u32 use_read_test)
2147 {
2148 	const u32 delay_max = write ? iocfg->io_out1_delay_max :
2149 				      iocfg->io_in_delay_max;
2150 	const u32 dqs_max = write ? iocfg->io_out1_delay_max :
2151 				    iocfg->dqs_in_delay_max;
2152 	const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2153 				    rwcfg->mem_dq_per_read_dqs;
2154 	u32 stop, bit_chk;
2155 	int i, d;
2156 
2157 	for (d = 0; d <= dqs_max - start_dqs; d++) {
2158 		if (write) {	/* WRITE-ONLY */
2159 			scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2160 								d + start_dqs);
2161 		} else {	/* READ-ONLY */
2162 			scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
2163 			if (iocfg->shift_dqs_en_when_shift_dqs) {
2164 				u32 delay = d + start_dqs_en;
2165 				if (delay > iocfg->dqs_en_delay_max)
2166 					delay = iocfg->dqs_en_delay_max;
2167 				scc_mgr_set_dqs_en_delay(read_group, delay);
2168 			}
2169 			scc_mgr_load_dqs(read_group);
2170 		}
2171 
2172 		writel(0, &sdr_scc_mgr->update);
2173 
2174 		stop = search_stop_check(write, d, rank_bgn, write_group,
2175 					 read_group, &bit_chk, sticky_bit_chk,
2176 					 use_read_test);
2177 		if (stop == 1) {
2178 			if (write && (d == 0)) {	/* WRITE-ONLY */
2179 				for (i = 0; i < rwcfg->mem_dq_per_write_dqs;
2180 				     i++) {
2181 					/*
2182 					 * d = 0 failed, but it passed when
2183 					 * testing the left edge, so it must be
2184 					 * marginal, set it to -1
2185 					 */
2186 					if (right_edge[i] == delay_max + 1 &&
2187 					    left_edge[i] != delay_max + 1)
2188 						right_edge[i] = -1;
2189 				}
2190 			}
2191 			break;
2192 		}
2193 
2194 		/* stop != 1 */
2195 		for (i = 0; i < per_dqs; i++) {
2196 			if (bit_chk & 1) {
2197 				/*
2198 				 * Remember a passing test as
2199 				 * the right_edge.
2200 				 */
2201 				right_edge[i] = d;
2202 			} else {
2203 				if (d != 0) {
2204 					/*
2205 					 * If a right edge has not
2206 					 * been seen yet, then a future
2207 					 * passing test will mark this
2208 					 * edge as the left edge.
2209 					 */
2210 					if (right_edge[i] == delay_max + 1)
2211 						left_edge[i] = -(d + 1);
2212 				} else {
2213 					/*
2214 					 * d = 0 failed, but it passed
2215 					 * when testing the left edge,
2216 					 * so it must be marginal, set
2217 					 * it to -1
2218 					 */
2219 					if (right_edge[i] == delay_max + 1 &&
2220 					    left_edge[i] != delay_max + 1)
2221 						right_edge[i] = -1;
2222 					/*
2223 					 * If a right edge has not been
2224 					 * seen yet, then a future
2225 					 * passing test will mark this
2226 					 * edge as the left edge.
2227 					 */
2228 					else if (right_edge[i] == delay_max + 1)
2229 						left_edge[i] = -(d + 1);
2230 				}
2231 			}
2232 
2233 			debug_cond(DLEVEL >= 2, "%s:%d center[r,d=%u]: ",
2234 				   __func__, __LINE__, d);
2235 			debug_cond(DLEVEL >= 2,
2236 				   "bit_chk_test=%i left_edge[%u]: %d ",
2237 				   bit_chk & 1, i, left_edge[i]);
2238 			debug_cond(DLEVEL >= 2, "right_edge[%u]: %d\n", i,
2239 				   right_edge[i]);
2240 			bit_chk >>= 1;
2241 		}
2242 	}
2243 
2244 	/* Check that all bits have a window */
2245 	for (i = 0; i < per_dqs; i++) {
2246 		debug_cond(DLEVEL >= 2,
2247 			   "%s:%d write_center: left_edge[%u]: %d right_edge[%u]: %d",
2248 			   __func__, __LINE__, i, left_edge[i],
2249 			   i, right_edge[i]);
2250 		if ((left_edge[i] == dqs_max + 1) ||
2251 		    (right_edge[i] == dqs_max + 1))
2252 			return i + 1;	/* FIXME: If we fail, retval > 0 */
2253 	}
2254 
2255 	return 0;
2256 }
2257 
2258 /**
2259  * get_window_mid_index() - Find the best middle setting of DQ/DQS phase
2260  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
2261  * @left_edge:		Left edge of the DQ/DQS phase
2262  * @right_edge:		Right edge of the DQ/DQS phase
2263  * @mid_min:		Best DQ/DQS phase middle setting
2264  *
2265  * Find index and value of the middle of the DQ/DQS working phase.
2266  */
2267 static int get_window_mid_index(const int write, int *left_edge,
2268 				int *right_edge, int *mid_min)
2269 {
2270 	const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2271 				    rwcfg->mem_dq_per_read_dqs;
2272 	int i, mid, min_index;
2273 
2274 	/* Find middle of window for each DQ bit */
2275 	*mid_min = left_edge[0] - right_edge[0];
2276 	min_index = 0;
2277 	for (i = 1; i < per_dqs; i++) {
2278 		mid = left_edge[i] - right_edge[i];
2279 		if (mid < *mid_min) {
2280 			*mid_min = mid;
2281 			min_index = i;
2282 		}
2283 	}
2284 
2285 	/*
2286 	 * -mid_min/2 represents the amount that we need to move DQS.
2287 	 * If mid_min is odd and positive we'll need to add one to make
2288 	 * sure the rounding in further calculations is correct (always
2289 	 * bias to the right), so just add 1 for all positive values.
2290 	 */
2291 	if (*mid_min > 0)
2292 		(*mid_min)++;
2293 	*mid_min = *mid_min / 2;
2294 
2295 	debug_cond(DLEVEL >= 1, "%s:%d vfifo_center: *mid_min=%d (index=%u)\n",
2296 		   __func__, __LINE__, *mid_min, min_index);
2297 	return min_index;
2298 }
2299 
2300 /**
2301  * center_dq_windows() - Center the DQ/DQS windows
2302  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
2303  * @left_edge:		Left edge of the DQ/DQS phase
2304  * @right_edge:		Right edge of the DQ/DQS phase
2305  * @mid_min:		Adjusted DQ/DQS phase middle setting
2306  * @orig_mid_min:	Original DQ/DQS phase middle setting
2307  * @min_index:		DQ/DQS phase middle setting index
2308  * @test_bgn:		Rank number to begin the test
2309  * @dq_margin:		Amount of shift for the DQ
2310  * @dqs_margin:		Amount of shift for the DQS
2311  *
2312  * Align the DQ/DQS windows in each group.
2313  */
2314 static void center_dq_windows(const int write, int *left_edge, int *right_edge,
2315 			      const int mid_min, const int orig_mid_min,
2316 			      const int min_index, const int test_bgn,
2317 			      int *dq_margin, int *dqs_margin)
2318 {
2319 	const s32 delay_max = write ? iocfg->io_out1_delay_max :
2320 				      iocfg->io_in_delay_max;
2321 	const s32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2322 				    rwcfg->mem_dq_per_read_dqs;
2323 	const s32 delay_off = write ? SCC_MGR_IO_OUT1_DELAY_OFFSET :
2324 				      SCC_MGR_IO_IN_DELAY_OFFSET;
2325 	const s32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | delay_off;
2326 
2327 	s32 temp_dq_io_delay1;
2328 	int shift_dq, i, p;
2329 
2330 	/* Initialize data for export structures */
2331 	*dqs_margin = delay_max + 1;
2332 	*dq_margin  = delay_max + 1;
2333 
2334 	/* add delay to bring centre of all DQ windows to the same "level" */
2335 	for (i = 0, p = test_bgn; i < per_dqs; i++, p++) {
2336 		/* Use values before divide by 2 to reduce round off error */
2337 		shift_dq = (left_edge[i] - right_edge[i] -
2338 			(left_edge[min_index] - right_edge[min_index]))/2  +
2339 			(orig_mid_min - mid_min);
2340 
2341 		debug_cond(DLEVEL >= 2,
2342 			   "vfifo_center: before: shift_dq[%u]=%d\n",
2343 			   i, shift_dq);
2344 
2345 		temp_dq_io_delay1 = readl(addr + (i << 2));
2346 
2347 		if (shift_dq + temp_dq_io_delay1 > delay_max)
2348 			shift_dq = delay_max - temp_dq_io_delay1;
2349 		else if (shift_dq + temp_dq_io_delay1 < 0)
2350 			shift_dq = -temp_dq_io_delay1;
2351 
2352 		debug_cond(DLEVEL >= 2,
2353 			   "vfifo_center: after: shift_dq[%u]=%d\n",
2354 			   i, shift_dq);
2355 
2356 		if (write)
2357 			scc_mgr_set_dq_out1_delay(i,
2358 						  temp_dq_io_delay1 + shift_dq);
2359 		else
2360 			scc_mgr_set_dq_in_delay(p,
2361 						temp_dq_io_delay1 + shift_dq);
2362 
2363 		scc_mgr_load_dq(p);
2364 
2365 		debug_cond(DLEVEL >= 2,
2366 			   "vfifo_center: margin[%u]=[%d,%d]\n", i,
2367 			   left_edge[i] - shift_dq + (-mid_min),
2368 			   right_edge[i] + shift_dq - (-mid_min));
2369 
2370 		/* To determine values for export structures */
2371 		if (left_edge[i] - shift_dq + (-mid_min) < *dq_margin)
2372 			*dq_margin = left_edge[i] - shift_dq + (-mid_min);
2373 
2374 		if (right_edge[i] + shift_dq - (-mid_min) < *dqs_margin)
2375 			*dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2376 	}
2377 }
2378 
2379 /**
2380  * rw_mgr_mem_calibrate_vfifo_center() - Per-bit deskew DQ and centering
2381  * @rank_bgn:		Rank number
2382  * @rw_group:		Read/Write Group
2383  * @test_bgn:		Rank at which the test begins
2384  * @use_read_test:	Perform a read test
2385  * @update_fom:		Update FOM
2386  *
2387  * Per-bit deskew DQ and centering.
2388  */
2389 static int rw_mgr_mem_calibrate_vfifo_center(const u32 rank_bgn,
2390 			const u32 rw_group, const u32 test_bgn,
2391 			const int use_read_test, const int update_fom)
2392 {
2393 	const u32 addr =
2394 		SDR_PHYGRP_SCCGRP_ADDRESS + SCC_MGR_DQS_IN_DELAY_OFFSET +
2395 		(rw_group << 2);
2396 	/*
2397 	 * Store these as signed since there are comparisons with
2398 	 * signed numbers.
2399 	 */
2400 	u32 sticky_bit_chk;
2401 	int32_t left_edge[rwcfg->mem_dq_per_read_dqs];
2402 	int32_t right_edge[rwcfg->mem_dq_per_read_dqs];
2403 	int32_t orig_mid_min, mid_min;
2404 	int32_t new_dqs, start_dqs, start_dqs_en = 0, final_dqs_en;
2405 	int32_t dq_margin, dqs_margin;
2406 	int i, min_index;
2407 	int ret;
2408 
2409 	debug("%s:%d: %u %u", __func__, __LINE__, rw_group, test_bgn);
2410 
2411 	start_dqs = readl(addr);
2412 	if (iocfg->shift_dqs_en_when_shift_dqs)
2413 		start_dqs_en = readl(addr - iocfg->dqs_en_delay_offset);
2414 
2415 	/* set the left and right edge of each bit to an illegal value */
2416 	/* use (iocfg->io_in_delay_max + 1) as an illegal value */
2417 	sticky_bit_chk = 0;
2418 	for (i = 0; i < rwcfg->mem_dq_per_read_dqs; i++) {
2419 		left_edge[i]  = iocfg->io_in_delay_max + 1;
2420 		right_edge[i] = iocfg->io_in_delay_max + 1;
2421 	}
2422 
2423 	/* Search for the left edge of the window for each bit */
2424 	search_left_edge(0, rank_bgn, rw_group, rw_group, test_bgn,
2425 			 &sticky_bit_chk,
2426 			 left_edge, right_edge, use_read_test);
2427 
2428 
2429 	/* Search for the right edge of the window for each bit */
2430 	ret = search_right_edge(0, rank_bgn, rw_group, rw_group,
2431 				start_dqs, start_dqs_en,
2432 				&sticky_bit_chk,
2433 				left_edge, right_edge, use_read_test);
2434 	if (ret) {
2435 		/*
2436 		 * Restore delay chain settings before letting the loop
2437 		 * in rw_mgr_mem_calibrate_vfifo to retry different
2438 		 * dqs/ck relationships.
2439 		 */
2440 		scc_mgr_set_dqs_bus_in_delay(rw_group, start_dqs);
2441 		if (iocfg->shift_dqs_en_when_shift_dqs)
2442 			scc_mgr_set_dqs_en_delay(rw_group, start_dqs_en);
2443 
2444 		scc_mgr_load_dqs(rw_group);
2445 		writel(0, &sdr_scc_mgr->update);
2446 
2447 		debug_cond(DLEVEL >= 1,
2448 			   "%s:%d vfifo_center: failed to find edge [%u]: %d %d",
2449 			   __func__, __LINE__, i, left_edge[i], right_edge[i]);
2450 		if (use_read_test) {
2451 			set_failing_group_stage(rw_group *
2452 				rwcfg->mem_dq_per_read_dqs + i,
2453 				CAL_STAGE_VFIFO,
2454 				CAL_SUBSTAGE_VFIFO_CENTER);
2455 		} else {
2456 			set_failing_group_stage(rw_group *
2457 				rwcfg->mem_dq_per_read_dqs + i,
2458 				CAL_STAGE_VFIFO_AFTER_WRITES,
2459 				CAL_SUBSTAGE_VFIFO_CENTER);
2460 		}
2461 		return -EIO;
2462 	}
2463 
2464 	min_index = get_window_mid_index(0, left_edge, right_edge, &mid_min);
2465 
2466 	/* Determine the amount we can change DQS (which is -mid_min) */
2467 	orig_mid_min = mid_min;
2468 	new_dqs = start_dqs - mid_min;
2469 	if (new_dqs > iocfg->dqs_in_delay_max)
2470 		new_dqs = iocfg->dqs_in_delay_max;
2471 	else if (new_dqs < 0)
2472 		new_dqs = 0;
2473 
2474 	mid_min = start_dqs - new_dqs;
2475 	debug_cond(DLEVEL >= 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2476 		   mid_min, new_dqs);
2477 
2478 	if (iocfg->shift_dqs_en_when_shift_dqs) {
2479 		if (start_dqs_en - mid_min > iocfg->dqs_en_delay_max)
2480 			mid_min += start_dqs_en - mid_min -
2481 				   iocfg->dqs_en_delay_max;
2482 		else if (start_dqs_en - mid_min < 0)
2483 			mid_min += start_dqs_en - mid_min;
2484 	}
2485 	new_dqs = start_dqs - mid_min;
2486 
2487 	debug_cond(DLEVEL >= 1,
2488 		   "vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d\n",
2489 		   start_dqs,
2490 		   iocfg->shift_dqs_en_when_shift_dqs ? start_dqs_en : -1,
2491 		   new_dqs, mid_min);
2492 
2493 	/* Add delay to bring centre of all DQ windows to the same "level". */
2494 	center_dq_windows(0, left_edge, right_edge, mid_min, orig_mid_min,
2495 			  min_index, test_bgn, &dq_margin, &dqs_margin);
2496 
2497 	/* Move DQS-en */
2498 	if (iocfg->shift_dqs_en_when_shift_dqs) {
2499 		final_dqs_en = start_dqs_en - mid_min;
2500 		scc_mgr_set_dqs_en_delay(rw_group, final_dqs_en);
2501 		scc_mgr_load_dqs(rw_group);
2502 	}
2503 
2504 	/* Move DQS */
2505 	scc_mgr_set_dqs_bus_in_delay(rw_group, new_dqs);
2506 	scc_mgr_load_dqs(rw_group);
2507 	debug_cond(DLEVEL >= 2,
2508 		   "%s:%d vfifo_center: dq_margin=%d dqs_margin=%d",
2509 		   __func__, __LINE__, dq_margin, dqs_margin);
2510 
2511 	/*
2512 	 * Do not remove this line as it makes sure all of our decisions
2513 	 * have been applied. Apply the update bit.
2514 	 */
2515 	writel(0, &sdr_scc_mgr->update);
2516 
2517 	if ((dq_margin < 0) || (dqs_margin < 0))
2518 		return -EINVAL;
2519 
2520 	return 0;
2521 }
2522 
2523 /**
2524  * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2525  * @rw_group:	Read/Write Group
2526  * @phase:	DQ/DQS phase
2527  *
2528  * Because initially no communication ca be reliably performed with the memory
2529  * device, the sequencer uses a guaranteed write mechanism to write data into
2530  * the memory device.
2531  */
2532 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2533 						 const u32 phase)
2534 {
2535 	int ret;
2536 
2537 	/* Set a particular DQ/DQS phase. */
2538 	scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2539 
2540 	debug_cond(DLEVEL >= 1, "%s:%d guaranteed write: g=%u p=%u\n",
2541 		   __func__, __LINE__, rw_group, phase);
2542 
2543 	/*
2544 	 * Altera EMI_RM 2015.05.04 :: Figure 1-25
2545 	 * Load up the patterns used by read calibration using the
2546 	 * current DQDQS phase.
2547 	 */
2548 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2549 
2550 	if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2551 		return 0;
2552 
2553 	/*
2554 	 * Altera EMI_RM 2015.05.04 :: Figure 1-26
2555 	 * Back-to-Back reads of the patterns used for calibration.
2556 	 */
2557 	ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2558 	if (ret)
2559 		debug_cond(DLEVEL >= 1,
2560 			   "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2561 			   __func__, __LINE__, rw_group, phase);
2562 	return ret;
2563 }
2564 
2565 /**
2566  * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2567  * @rw_group:	Read/Write Group
2568  * @test_bgn:	Rank at which the test begins
2569  *
2570  * DQS enable calibration ensures reliable capture of the DQ signal without
2571  * glitches on the DQS line.
2572  */
2573 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2574 						       const u32 test_bgn)
2575 {
2576 	/*
2577 	 * Altera EMI_RM 2015.05.04 :: Figure 1-27
2578 	 * DQS and DQS Eanble Signal Relationships.
2579 	 */
2580 
2581 	/* We start at zero, so have one less dq to devide among */
2582 	const u32 delay_step = iocfg->io_in_delay_max /
2583 			       (rwcfg->mem_dq_per_read_dqs - 1);
2584 	int ret;
2585 	u32 i, p, d, r;
2586 
2587 	debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2588 
2589 	/* Try different dq_in_delays since the DQ path is shorter than DQS. */
2590 	for (r = 0; r < rwcfg->mem_number_of_ranks;
2591 	     r += NUM_RANKS_PER_SHADOW_REG) {
2592 		for (i = 0, p = test_bgn, d = 0;
2593 		     i < rwcfg->mem_dq_per_read_dqs;
2594 		     i++, p++, d += delay_step) {
2595 			debug_cond(DLEVEL >= 1,
2596 				   "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2597 				   __func__, __LINE__, rw_group, r, i, p, d);
2598 
2599 			scc_mgr_set_dq_in_delay(p, d);
2600 			scc_mgr_load_dq(p);
2601 		}
2602 
2603 		writel(0, &sdr_scc_mgr->update);
2604 	}
2605 
2606 	/*
2607 	 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2608 	 * dq_in_delay values
2609 	 */
2610 	ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
2611 
2612 	debug_cond(DLEVEL >= 1,
2613 		   "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
2614 		   __func__, __LINE__, rw_group, !ret);
2615 
2616 	for (r = 0; r < rwcfg->mem_number_of_ranks;
2617 	     r += NUM_RANKS_PER_SHADOW_REG) {
2618 		scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2619 		writel(0, &sdr_scc_mgr->update);
2620 	}
2621 
2622 	return ret;
2623 }
2624 
2625 /**
2626  * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2627  * @rw_group:		Read/Write Group
2628  * @test_bgn:		Rank at which the test begins
2629  * @use_read_test:	Perform a read test
2630  * @update_fom:		Update FOM
2631  *
2632  * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2633  * within a group.
2634  */
2635 static int
2636 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2637 				      const int use_read_test,
2638 				      const int update_fom)
2639 
2640 {
2641 	int ret, grp_calibrated;
2642 	u32 rank_bgn, sr;
2643 
2644 	/*
2645 	 * Altera EMI_RM 2015.05.04 :: Figure 1-28
2646 	 * Read per-bit deskew can be done on a per shadow register basis.
2647 	 */
2648 	grp_calibrated = 1;
2649 	for (rank_bgn = 0, sr = 0;
2650 	     rank_bgn < rwcfg->mem_number_of_ranks;
2651 	     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2652 		ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2653 							test_bgn,
2654 							use_read_test,
2655 							update_fom);
2656 		if (!ret)
2657 			continue;
2658 
2659 		grp_calibrated = 0;
2660 	}
2661 
2662 	if (!grp_calibrated)
2663 		return -EIO;
2664 
2665 	return 0;
2666 }
2667 
2668 /**
2669  * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2670  * @rw_group:		Read/Write Group
2671  * @test_bgn:		Rank at which the test begins
2672  *
2673  * Stage 1: Calibrate the read valid prediction FIFO.
2674  *
2675  * This function implements UniPHY calibration Stage 1, as explained in
2676  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2677  *
2678  * - read valid prediction will consist of finding:
2679  *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2680  *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
2681  *  - we also do a per-bit deskew on the DQ lines.
2682  */
2683 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2684 {
2685 	u32 p, d;
2686 	u32 dtaps_per_ptap;
2687 	u32 failed_substage;
2688 
2689 	int ret;
2690 
2691 	debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2692 
2693 	/* Update info for sims */
2694 	reg_file_set_group(rw_group);
2695 	reg_file_set_stage(CAL_STAGE_VFIFO);
2696 	reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2697 
2698 	failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2699 
2700 	/* USER Determine number of delay taps for each phase tap. */
2701 	dtaps_per_ptap = DIV_ROUND_UP(iocfg->delay_per_opa_tap,
2702 				      iocfg->delay_per_dqs_en_dchain_tap) - 1;
2703 
2704 	for (d = 0; d <= dtaps_per_ptap; d += 2) {
2705 		/*
2706 		 * In RLDRAMX we may be messing the delay of pins in
2707 		 * the same write rw_group but outside of the current read
2708 		 * the rw_group, but that's ok because we haven't calibrated
2709 		 * output side yet.
2710 		 */
2711 		if (d > 0) {
2712 			scc_mgr_apply_group_all_out_delay_add_all_ranks(
2713 								rw_group, d);
2714 		}
2715 
2716 		for (p = 0; p <= iocfg->dqdqs_out_phase_max; p++) {
2717 			/* 1) Guaranteed Write */
2718 			ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2719 			if (ret)
2720 				break;
2721 
2722 			/* 2) DQS Enable Calibration */
2723 			ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2724 									  test_bgn);
2725 			if (ret) {
2726 				failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2727 				continue;
2728 			}
2729 
2730 			/* 3) Centering DQ/DQS */
2731 			/*
2732 			 * If doing read after write calibration, do not update
2733 			 * FOM now. Do it then.
2734 			 */
2735 			ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2736 								test_bgn, 1, 0);
2737 			if (ret) {
2738 				failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2739 				continue;
2740 			}
2741 
2742 			/* All done. */
2743 			goto cal_done_ok;
2744 		}
2745 	}
2746 
2747 	/* Calibration Stage 1 failed. */
2748 	set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2749 	return 0;
2750 
2751 	/* Calibration Stage 1 completed OK. */
2752 cal_done_ok:
2753 	/*
2754 	 * Reset the delay chains back to zero if they have moved > 1
2755 	 * (check for > 1 because loop will increase d even when pass in
2756 	 * first case).
2757 	 */
2758 	if (d > 2)
2759 		scc_mgr_zero_group(rw_group, 1);
2760 
2761 	return 1;
2762 }
2763 
2764 /**
2765  * rw_mgr_mem_calibrate_vfifo_end() - DQ/DQS Centering.
2766  * @rw_group:		Read/Write Group
2767  * @test_bgn:		Rank at which the test begins
2768  *
2769  * Stage 3: DQ/DQS Centering.
2770  *
2771  * This function implements UniPHY calibration Stage 3, as explained in
2772  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2773  */
2774 static int rw_mgr_mem_calibrate_vfifo_end(const u32 rw_group,
2775 					  const u32 test_bgn)
2776 {
2777 	int ret;
2778 
2779 	debug("%s:%d %u %u", __func__, __LINE__, rw_group, test_bgn);
2780 
2781 	/* Update info for sims. */
2782 	reg_file_set_group(rw_group);
2783 	reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2784 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2785 
2786 	ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, test_bgn, 0, 1);
2787 	if (ret)
2788 		set_failing_group_stage(rw_group,
2789 					CAL_STAGE_VFIFO_AFTER_WRITES,
2790 					CAL_SUBSTAGE_VFIFO_CENTER);
2791 	return ret;
2792 }
2793 
2794 /**
2795  * rw_mgr_mem_calibrate_lfifo() - Minimize latency
2796  *
2797  * Stage 4: Minimize latency.
2798  *
2799  * This function implements UniPHY calibration Stage 4, as explained in
2800  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2801  * Calibrate LFIFO to find smallest read latency.
2802  */
2803 static u32 rw_mgr_mem_calibrate_lfifo(void)
2804 {
2805 	int found_one = 0;
2806 
2807 	debug("%s:%d\n", __func__, __LINE__);
2808 
2809 	/* Update info for sims. */
2810 	reg_file_set_stage(CAL_STAGE_LFIFO);
2811 	reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2812 
2813 	/* Load up the patterns used by read calibration for all ranks */
2814 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2815 
2816 	do {
2817 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2818 		debug_cond(DLEVEL >= 2, "%s:%d lfifo: read_lat=%u",
2819 			   __func__, __LINE__, gbl->curr_read_lat);
2820 
2821 		if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, NUM_READ_TESTS,
2822 							      PASS_ALL_BITS, 1))
2823 			break;
2824 
2825 		found_one = 1;
2826 		/*
2827 		 * Reduce read latency and see if things are
2828 		 * working correctly.
2829 		 */
2830 		gbl->curr_read_lat--;
2831 	} while (gbl->curr_read_lat > 0);
2832 
2833 	/* Reset the fifos to get pointers to known state. */
2834 	writel(0, &phy_mgr_cmd->fifo_reset);
2835 
2836 	if (found_one) {
2837 		/* Add a fudge factor to the read latency that was determined */
2838 		gbl->curr_read_lat += 2;
2839 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2840 		debug_cond(DLEVEL >= 2,
2841 			   "%s:%d lfifo: success: using read_lat=%u\n",
2842 			   __func__, __LINE__, gbl->curr_read_lat);
2843 	} else {
2844 		set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2845 					CAL_SUBSTAGE_READ_LATENCY);
2846 
2847 		debug_cond(DLEVEL >= 2,
2848 			   "%s:%d lfifo: failed at initial read_lat=%u\n",
2849 			   __func__, __LINE__, gbl->curr_read_lat);
2850 	}
2851 
2852 	return found_one;
2853 }
2854 
2855 /**
2856  * search_window() - Search for the/part of the window with DM/DQS shift
2857  * @search_dm:		If 1, search for the DM shift, if 0, search for DQS shift
2858  * @rank_bgn:		Rank number
2859  * @write_group:	Write Group
2860  * @bgn_curr:		Current window begin
2861  * @end_curr:		Current window end
2862  * @bgn_best:		Current best window begin
2863  * @end_best:		Current best window end
2864  * @win_best:		Size of the best window
2865  * @new_dqs:		New DQS value (only applicable if search_dm = 0).
2866  *
2867  * Search for the/part of the window with DM/DQS shift.
2868  */
2869 static void search_window(const int search_dm,
2870 			  const u32 rank_bgn, const u32 write_group,
2871 			  int *bgn_curr, int *end_curr, int *bgn_best,
2872 			  int *end_best, int *win_best, int new_dqs)
2873 {
2874 	u32 bit_chk;
2875 	const int max = iocfg->io_out1_delay_max - new_dqs;
2876 	int d, di;
2877 
2878 	/* Search for the/part of the window with DM/DQS shift. */
2879 	for (di = max; di >= 0; di -= DELTA_D) {
2880 		if (search_dm) {
2881 			d = di;
2882 			scc_mgr_apply_group_dm_out1_delay(d);
2883 		} else {
2884 			/* For DQS, we go from 0...max */
2885 			d = max - di;
2886 			/*
2887 			 * Note: This only shifts DQS, so are we limiting
2888 			 *       ourselves to width of DQ unnecessarily.
2889 			 */
2890 			scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2891 								d + new_dqs);
2892 		}
2893 
2894 		writel(0, &sdr_scc_mgr->update);
2895 
2896 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2897 						    PASS_ALL_BITS, &bit_chk,
2898 						    0)) {
2899 			/* Set current end of the window. */
2900 			*end_curr = search_dm ? -d : d;
2901 
2902 			/*
2903 			 * If a starting edge of our window has not been seen
2904 			 * this is our current start of the DM window.
2905 			 */
2906 			if (*bgn_curr == iocfg->io_out1_delay_max + 1)
2907 				*bgn_curr = search_dm ? -d : d;
2908 
2909 			/*
2910 			 * If current window is bigger than best seen.
2911 			 * Set best seen to be current window.
2912 			 */
2913 			if ((*end_curr - *bgn_curr + 1) > *win_best) {
2914 				*win_best = *end_curr - *bgn_curr + 1;
2915 				*bgn_best = *bgn_curr;
2916 				*end_best = *end_curr;
2917 			}
2918 		} else {
2919 			/* We just saw a failing test. Reset temp edge. */
2920 			*bgn_curr = iocfg->io_out1_delay_max + 1;
2921 			*end_curr = iocfg->io_out1_delay_max + 1;
2922 
2923 			/* Early exit is only applicable to DQS. */
2924 			if (search_dm)
2925 				continue;
2926 
2927 			/*
2928 			 * Early exit optimization: if the remaining delay
2929 			 * chain space is less than already seen largest
2930 			 * window we can exit.
2931 			 */
2932 			if (*win_best - 1 > iocfg->io_out1_delay_max - new_dqs - d)
2933 				break;
2934 		}
2935 	}
2936 }
2937 
2938 /*
2939  * rw_mgr_mem_calibrate_writes_center() - Center all windows
2940  * @rank_bgn:		Rank number
2941  * @write_group:	Write group
2942  * @test_bgn:		Rank at which the test begins
2943  *
2944  * Center all windows. Do per-bit-deskew to possibly increase size of
2945  * certain windows.
2946  */
2947 static int
2948 rw_mgr_mem_calibrate_writes_center(const u32 rank_bgn, const u32 write_group,
2949 				   const u32 test_bgn)
2950 {
2951 	int i;
2952 	u32 sticky_bit_chk;
2953 	u32 min_index;
2954 	int left_edge[rwcfg->mem_dq_per_write_dqs];
2955 	int right_edge[rwcfg->mem_dq_per_write_dqs];
2956 	int mid;
2957 	int mid_min, orig_mid_min;
2958 	int new_dqs, start_dqs;
2959 	int dq_margin, dqs_margin, dm_margin;
2960 	int bgn_curr = iocfg->io_out1_delay_max + 1;
2961 	int end_curr = iocfg->io_out1_delay_max + 1;
2962 	int bgn_best = iocfg->io_out1_delay_max + 1;
2963 	int end_best = iocfg->io_out1_delay_max + 1;
2964 	int win_best = 0;
2965 
2966 	int ret;
2967 
2968 	debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2969 
2970 	dm_margin = 0;
2971 
2972 	start_dqs = readl((SDR_PHYGRP_SCCGRP_ADDRESS |
2973 			  SCC_MGR_IO_OUT1_DELAY_OFFSET) +
2974 			  (rwcfg->mem_dq_per_write_dqs << 2));
2975 
2976 	/* Per-bit deskew. */
2977 
2978 	/*
2979 	 * Set the left and right edge of each bit to an illegal value.
2980 	 * Use (iocfg->io_out1_delay_max + 1) as an illegal value.
2981 	 */
2982 	sticky_bit_chk = 0;
2983 	for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
2984 		left_edge[i]  = iocfg->io_out1_delay_max + 1;
2985 		right_edge[i] = iocfg->io_out1_delay_max + 1;
2986 	}
2987 
2988 	/* Search for the left edge of the window for each bit. */
2989 	search_left_edge(1, rank_bgn, write_group, 0, test_bgn,
2990 			 &sticky_bit_chk,
2991 			 left_edge, right_edge, 0);
2992 
2993 	/* Search for the right edge of the window for each bit. */
2994 	ret = search_right_edge(1, rank_bgn, write_group, 0,
2995 				start_dqs, 0,
2996 				&sticky_bit_chk,
2997 				left_edge, right_edge, 0);
2998 	if (ret) {
2999 		set_failing_group_stage(test_bgn + ret - 1, CAL_STAGE_WRITES,
3000 					CAL_SUBSTAGE_WRITES_CENTER);
3001 		return -EINVAL;
3002 	}
3003 
3004 	min_index = get_window_mid_index(1, left_edge, right_edge, &mid_min);
3005 
3006 	/* Determine the amount we can change DQS (which is -mid_min). */
3007 	orig_mid_min = mid_min;
3008 	new_dqs = start_dqs;
3009 	mid_min = 0;
3010 	debug_cond(DLEVEL >= 1,
3011 		   "%s:%d write_center: start_dqs=%d new_dqs=%d mid_min=%d\n",
3012 		   __func__, __LINE__, start_dqs, new_dqs, mid_min);
3013 
3014 	/* Add delay to bring centre of all DQ windows to the same "level". */
3015 	center_dq_windows(1, left_edge, right_edge, mid_min, orig_mid_min,
3016 			  min_index, 0, &dq_margin, &dqs_margin);
3017 
3018 	/* Move DQS */
3019 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3020 	writel(0, &sdr_scc_mgr->update);
3021 
3022 	/* Centre DM */
3023 	debug_cond(DLEVEL >= 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3024 
3025 	/*
3026 	 * Set the left and right edge of each bit to an illegal value.
3027 	 * Use (iocfg->io_out1_delay_max + 1) as an illegal value.
3028 	 */
3029 	left_edge[0]  = iocfg->io_out1_delay_max + 1;
3030 	right_edge[0] = iocfg->io_out1_delay_max + 1;
3031 
3032 	/* Search for the/part of the window with DM shift. */
3033 	search_window(1, rank_bgn, write_group, &bgn_curr, &end_curr,
3034 		      &bgn_best, &end_best, &win_best, 0);
3035 
3036 	/* Reset DM delay chains to 0. */
3037 	scc_mgr_apply_group_dm_out1_delay(0);
3038 
3039 	/*
3040 	 * Check to see if the current window nudges up aganist 0 delay.
3041 	 * If so we need to continue the search by shifting DQS otherwise DQS
3042 	 * search begins as a new search.
3043 	 */
3044 	if (end_curr != 0) {
3045 		bgn_curr = iocfg->io_out1_delay_max + 1;
3046 		end_curr = iocfg->io_out1_delay_max + 1;
3047 	}
3048 
3049 	/* Search for the/part of the window with DQS shifts. */
3050 	search_window(0, rank_bgn, write_group, &bgn_curr, &end_curr,
3051 		      &bgn_best, &end_best, &win_best, new_dqs);
3052 
3053 	/* Assign left and right edge for cal and reporting. */
3054 	left_edge[0] = -1 * bgn_best;
3055 	right_edge[0] = end_best;
3056 
3057 	debug_cond(DLEVEL >= 2, "%s:%d dm_calib: left=%d right=%d\n",
3058 		   __func__, __LINE__, left_edge[0], right_edge[0]);
3059 
3060 	/* Move DQS (back to orig). */
3061 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3062 
3063 	/* Move DM */
3064 
3065 	/* Find middle of window for the DM bit. */
3066 	mid = (left_edge[0] - right_edge[0]) / 2;
3067 
3068 	/* Only move right, since we are not moving DQS/DQ. */
3069 	if (mid < 0)
3070 		mid = 0;
3071 
3072 	/* dm_marign should fail if we never find a window. */
3073 	if (win_best == 0)
3074 		dm_margin = -1;
3075 	else
3076 		dm_margin = left_edge[0] - mid;
3077 
3078 	scc_mgr_apply_group_dm_out1_delay(mid);
3079 	writel(0, &sdr_scc_mgr->update);
3080 
3081 	debug_cond(DLEVEL >= 2,
3082 		   "%s:%d dm_calib: left=%d right=%d mid=%d dm_margin=%d\n",
3083 		   __func__, __LINE__, left_edge[0], right_edge[0],
3084 		   mid, dm_margin);
3085 	/* Export values. */
3086 	gbl->fom_out += dq_margin + dqs_margin;
3087 
3088 	debug_cond(DLEVEL >= 2,
3089 		   "%s:%d write_center: dq_margin=%d dqs_margin=%d dm_margin=%d\n",
3090 		   __func__, __LINE__, dq_margin, dqs_margin, dm_margin);
3091 
3092 	/*
3093 	 * Do not remove this line as it makes sure all of our
3094 	 * decisions have been applied.
3095 	 */
3096 	writel(0, &sdr_scc_mgr->update);
3097 
3098 	if ((dq_margin < 0) || (dqs_margin < 0) || (dm_margin < 0))
3099 		return -EINVAL;
3100 
3101 	return 0;
3102 }
3103 
3104 /**
3105  * rw_mgr_mem_calibrate_writes() - Write Calibration Part One
3106  * @rank_bgn:		Rank number
3107  * @group:		Read/Write Group
3108  * @test_bgn:		Rank at which the test begins
3109  *
3110  * Stage 2: Write Calibration Part One.
3111  *
3112  * This function implements UniPHY calibration Stage 2, as explained in
3113  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
3114  */
3115 static int rw_mgr_mem_calibrate_writes(const u32 rank_bgn, const u32 group,
3116 				       const u32 test_bgn)
3117 {
3118 	int ret;
3119 
3120 	/* Update info for sims */
3121 	debug("%s:%d %u %u\n", __func__, __LINE__, group, test_bgn);
3122 
3123 	reg_file_set_group(group);
3124 	reg_file_set_stage(CAL_STAGE_WRITES);
3125 	reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3126 
3127 	ret = rw_mgr_mem_calibrate_writes_center(rank_bgn, group, test_bgn);
3128 	if (ret)
3129 		set_failing_group_stage(group, CAL_STAGE_WRITES,
3130 					CAL_SUBSTAGE_WRITES_CENTER);
3131 
3132 	return ret;
3133 }
3134 
3135 /**
3136  * mem_precharge_and_activate() - Precharge all banks and activate
3137  *
3138  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3139  */
3140 static void mem_precharge_and_activate(void)
3141 {
3142 	int r;
3143 
3144 	for (r = 0; r < rwcfg->mem_number_of_ranks; r++) {
3145 		/* Set rank. */
3146 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3147 
3148 		/* Precharge all banks. */
3149 		writel(rwcfg->precharge_all, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3150 					     RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3151 
3152 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3153 		writel(rwcfg->activate_0_and_1_wait1,
3154 		       &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3155 
3156 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3157 		writel(rwcfg->activate_0_and_1_wait2,
3158 		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3159 
3160 		/* Activate rows. */
3161 		writel(rwcfg->activate_0_and_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3162 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3163 	}
3164 }
3165 
3166 /**
3167  * mem_init_latency() - Configure memory RLAT and WLAT settings
3168  *
3169  * Configure memory RLAT and WLAT parameters.
3170  */
3171 static void mem_init_latency(void)
3172 {
3173 	/*
3174 	 * For AV/CV, LFIFO is hardened and always runs at full rate
3175 	 * so max latency in AFI clocks, used here, is correspondingly
3176 	 * smaller.
3177 	 */
3178 	const u32 max_latency = (1 << misccfg->max_latency_count_width) - 1;
3179 	u32 rlat, wlat;
3180 
3181 	debug("%s:%d\n", __func__, __LINE__);
3182 
3183 	/*
3184 	 * Read in write latency.
3185 	 * WL for Hard PHY does not include additive latency.
3186 	 */
3187 	wlat = readl(&data_mgr->t_wl_add);
3188 	wlat += readl(&data_mgr->mem_t_add);
3189 
3190 	gbl->rw_wl_nop_cycles = wlat - 1;
3191 
3192 	/* Read in readl latency. */
3193 	rlat = readl(&data_mgr->t_rl_add);
3194 
3195 	/* Set a pretty high read latency initially. */
3196 	gbl->curr_read_lat = rlat + 16;
3197 	if (gbl->curr_read_lat > max_latency)
3198 		gbl->curr_read_lat = max_latency;
3199 
3200 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3201 
3202 	/* Advertise write latency. */
3203 	writel(wlat, &phy_mgr_cfg->afi_wlat);
3204 }
3205 
3206 /**
3207  * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3208  *
3209  * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3210  */
3211 static void mem_skip_calibrate(void)
3212 {
3213 	u32 vfifo_offset;
3214 	u32 i, j, r;
3215 
3216 	debug("%s:%d\n", __func__, __LINE__);
3217 	/* Need to update every shadow register set used by the interface */
3218 	for (r = 0; r < rwcfg->mem_number_of_ranks;
3219 	     r += NUM_RANKS_PER_SHADOW_REG) {
3220 		/*
3221 		 * Set output phase alignment settings appropriate for
3222 		 * skip calibration.
3223 		 */
3224 		for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
3225 			scc_mgr_set_dqs_en_phase(i, 0);
3226 			if (iocfg->dll_chain_length == 6)
3227 				scc_mgr_set_dqdqs_output_phase(i, 6);
3228 			else
3229 				scc_mgr_set_dqdqs_output_phase(i, 7);
3230 			/*
3231 			 * Case:33398
3232 			 *
3233 			 * Write data arrives to the I/O two cycles before write
3234 			 * latency is reached (720 deg).
3235 			 *   -> due to bit-slip in a/c bus
3236 			 *   -> to allow board skew where dqs is longer than ck
3237 			 *      -> how often can this happen!?
3238 			 *      -> can claim back some ptaps for high freq
3239 			 *       support if we can relax this, but i digress...
3240 			 *
3241 			 * The write_clk leads mem_ck by 90 deg
3242 			 * The minimum ptap of the OPA is 180 deg
3243 			 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3244 			 * The write_clk is always delayed by 2 ptaps
3245 			 *
3246 			 * Hence, to make DQS aligned to CK, we need to delay
3247 			 * DQS by:
3248 			 *    (720 - 90 - 180 - 2) *
3249 			 *      (360 / iocfg->dll_chain_length)
3250 			 *
3251 			 * Dividing the above by (360 / iocfg->dll_chain_length)
3252 			 * gives us the number of ptaps, which simplies to:
3253 			 *
3254 			 *    (1.25 * iocfg->dll_chain_length - 2)
3255 			 */
3256 			scc_mgr_set_dqdqs_output_phase(i,
3257 				       ((125 * iocfg->dll_chain_length) / 100) - 2);
3258 		}
3259 		writel(0xff, &sdr_scc_mgr->dqs_ena);
3260 		writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3261 
3262 		for (i = 0; i < rwcfg->mem_if_write_dqs_width; i++) {
3263 			writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3264 				  SCC_MGR_GROUP_COUNTER_OFFSET);
3265 		}
3266 		writel(0xff, &sdr_scc_mgr->dq_ena);
3267 		writel(0xff, &sdr_scc_mgr->dm_ena);
3268 		writel(0, &sdr_scc_mgr->update);
3269 	}
3270 
3271 	/* Compensate for simulation model behaviour */
3272 	for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
3273 		scc_mgr_set_dqs_bus_in_delay(i, 10);
3274 		scc_mgr_load_dqs(i);
3275 	}
3276 	writel(0, &sdr_scc_mgr->update);
3277 
3278 	/*
3279 	 * ArriaV has hard FIFOs that can only be initialized by incrementing
3280 	 * in sequencer.
3281 	 */
3282 	vfifo_offset = misccfg->calib_vfifo_offset;
3283 	for (j = 0; j < vfifo_offset; j++)
3284 		writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3285 	writel(0, &phy_mgr_cmd->fifo_reset);
3286 
3287 	/*
3288 	 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3289 	 * setting from generation-time constant.
3290 	 */
3291 	gbl->curr_read_lat = misccfg->calib_lfifo_offset;
3292 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3293 }
3294 
3295 /**
3296  * mem_calibrate() - Memory calibration entry point.
3297  *
3298  * Perform memory calibration.
3299  */
3300 static u32 mem_calibrate(void)
3301 {
3302 	u32 i;
3303 	u32 rank_bgn, sr;
3304 	u32 write_group, write_test_bgn;
3305 	u32 read_group, read_test_bgn;
3306 	u32 run_groups, current_run;
3307 	u32 failing_groups = 0;
3308 	u32 group_failed = 0;
3309 
3310 	const u32 rwdqs_ratio = rwcfg->mem_if_read_dqs_width /
3311 				rwcfg->mem_if_write_dqs_width;
3312 
3313 	debug("%s:%d\n", __func__, __LINE__);
3314 
3315 	/* Initialize the data settings */
3316 	gbl->error_substage = CAL_SUBSTAGE_NIL;
3317 	gbl->error_stage = CAL_STAGE_NIL;
3318 	gbl->error_group = 0xff;
3319 	gbl->fom_in = 0;
3320 	gbl->fom_out = 0;
3321 
3322 	/* Initialize WLAT and RLAT. */
3323 	mem_init_latency();
3324 
3325 	/* Initialize bit slips. */
3326 	mem_precharge_and_activate();
3327 
3328 	for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
3329 		writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3330 			  SCC_MGR_GROUP_COUNTER_OFFSET);
3331 		/* Only needed once to set all groups, pins, DQ, DQS, DM. */
3332 		if (i == 0)
3333 			scc_mgr_set_hhp_extras();
3334 
3335 		scc_set_bypass_mode(i);
3336 	}
3337 
3338 	/* Calibration is skipped. */
3339 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3340 		/*
3341 		 * Set VFIFO and LFIFO to instant-on settings in skip
3342 		 * calibration mode.
3343 		 */
3344 		mem_skip_calibrate();
3345 
3346 		/*
3347 		 * Do not remove this line as it makes sure all of our
3348 		 * decisions have been applied.
3349 		 */
3350 		writel(0, &sdr_scc_mgr->update);
3351 		return 1;
3352 	}
3353 
3354 	/* Calibration is not skipped. */
3355 	for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3356 		/*
3357 		 * Zero all delay chain/phase settings for all
3358 		 * groups and all shadow register sets.
3359 		 */
3360 		scc_mgr_zero_all();
3361 
3362 		run_groups = ~0;
3363 
3364 		for (write_group = 0, write_test_bgn = 0; write_group
3365 			< rwcfg->mem_if_write_dqs_width; write_group++,
3366 			write_test_bgn += rwcfg->mem_dq_per_write_dqs) {
3367 			/* Initialize the group failure */
3368 			group_failed = 0;
3369 
3370 			current_run = run_groups & ((1 <<
3371 				RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3372 			run_groups = run_groups >>
3373 				RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3374 
3375 			if (current_run == 0)
3376 				continue;
3377 
3378 			writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3379 					    SCC_MGR_GROUP_COUNTER_OFFSET);
3380 			scc_mgr_zero_group(write_group, 0);
3381 
3382 			for (read_group = write_group * rwdqs_ratio,
3383 			     read_test_bgn = 0;
3384 			     read_group < (write_group + 1) * rwdqs_ratio;
3385 			     read_group++,
3386 			     read_test_bgn += rwcfg->mem_dq_per_read_dqs) {
3387 				if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3388 					continue;
3389 
3390 				/* Calibrate the VFIFO */
3391 				if (rw_mgr_mem_calibrate_vfifo(read_group,
3392 							       read_test_bgn))
3393 					continue;
3394 
3395 				if (!(gbl->phy_debug_mode_flags &
3396 				      PHY_DEBUG_SWEEP_ALL_GROUPS))
3397 					return 0;
3398 
3399 				/* The group failed, we're done. */
3400 				goto grp_failed;
3401 			}
3402 
3403 			/* Calibrate the output side */
3404 			for (rank_bgn = 0, sr = 0;
3405 			     rank_bgn < rwcfg->mem_number_of_ranks;
3406 			     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3407 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3408 					continue;
3409 
3410 				/* Not needed in quick mode! */
3411 				if (STATIC_CALIB_STEPS &
3412 				    CALIB_SKIP_DELAY_SWEEPS)
3413 					continue;
3414 
3415 				/* Calibrate WRITEs */
3416 				if (!rw_mgr_mem_calibrate_writes(rank_bgn,
3417 								 write_group,
3418 								 write_test_bgn))
3419 					continue;
3420 
3421 				group_failed = 1;
3422 				if (!(gbl->phy_debug_mode_flags &
3423 				      PHY_DEBUG_SWEEP_ALL_GROUPS))
3424 					return 0;
3425 			}
3426 
3427 			/* Some group failed, we're done. */
3428 			if (group_failed)
3429 				goto grp_failed;
3430 
3431 			for (read_group = write_group * rwdqs_ratio,
3432 			     read_test_bgn = 0;
3433 			     read_group < (write_group + 1) * rwdqs_ratio;
3434 			     read_group++,
3435 			     read_test_bgn += rwcfg->mem_dq_per_read_dqs) {
3436 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3437 					continue;
3438 
3439 				if (!rw_mgr_mem_calibrate_vfifo_end(read_group,
3440 								    read_test_bgn))
3441 					continue;
3442 
3443 				if (!(gbl->phy_debug_mode_flags &
3444 				      PHY_DEBUG_SWEEP_ALL_GROUPS))
3445 					return 0;
3446 
3447 				/* The group failed, we're done. */
3448 				goto grp_failed;
3449 			}
3450 
3451 			/* No group failed, continue as usual. */
3452 			continue;
3453 
3454 grp_failed:		/* A group failed, increment the counter. */
3455 			failing_groups++;
3456 		}
3457 
3458 		/*
3459 		 * USER If there are any failing groups then report
3460 		 * the failure.
3461 		 */
3462 		if (failing_groups != 0)
3463 			return 0;
3464 
3465 		if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3466 			continue;
3467 
3468 		/* Calibrate the LFIFO */
3469 		if (!rw_mgr_mem_calibrate_lfifo())
3470 			return 0;
3471 	}
3472 
3473 	/*
3474 	 * Do not remove this line as it makes sure all of our decisions
3475 	 * have been applied.
3476 	 */
3477 	writel(0, &sdr_scc_mgr->update);
3478 	return 1;
3479 }
3480 
3481 /**
3482  * run_mem_calibrate() - Perform memory calibration
3483  *
3484  * This function triggers the entire memory calibration procedure.
3485  */
3486 static int run_mem_calibrate(void)
3487 {
3488 	int pass;
3489 	u32 ctrl_cfg;
3490 
3491 	debug("%s:%d\n", __func__, __LINE__);
3492 
3493 	/* Reset pass/fail status shown on afi_cal_success/fail */
3494 	writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3495 
3496 	/* Stop tracking manager. */
3497 	ctrl_cfg = readl(&sdr_ctrl->ctrl_cfg);
3498 	writel(ctrl_cfg & ~SDR_CTRLGRP_CTRLCFG_DQSTRKEN_MASK,
3499 	       &sdr_ctrl->ctrl_cfg);
3500 
3501 	phy_mgr_initialize();
3502 	rw_mgr_mem_initialize();
3503 
3504 	/* Perform the actual memory calibration. */
3505 	pass = mem_calibrate();
3506 
3507 	mem_precharge_and_activate();
3508 	writel(0, &phy_mgr_cmd->fifo_reset);
3509 
3510 	/* Handoff. */
3511 	rw_mgr_mem_handoff();
3512 	/*
3513 	 * In Hard PHY this is a 2-bit control:
3514 	 * 0: AFI Mux Select
3515 	 * 1: DDIO Mux Select
3516 	 */
3517 	writel(0x2, &phy_mgr_cfg->mux_sel);
3518 
3519 	/* Start tracking manager. */
3520 	writel(ctrl_cfg, &sdr_ctrl->ctrl_cfg);
3521 
3522 	return pass;
3523 }
3524 
3525 /**
3526  * debug_mem_calibrate() - Report result of memory calibration
3527  * @pass:	Value indicating whether calibration passed or failed
3528  *
3529  * This function reports the results of the memory calibration
3530  * and writes debug information into the register file.
3531  */
3532 static void debug_mem_calibrate(int pass)
3533 {
3534 	u32 debug_info;
3535 
3536 	if (pass) {
3537 		printf("%s: CALIBRATION PASSED\n", __FILE__);
3538 
3539 		gbl->fom_in /= 2;
3540 		gbl->fom_out /= 2;
3541 
3542 		if (gbl->fom_in > 0xff)
3543 			gbl->fom_in = 0xff;
3544 
3545 		if (gbl->fom_out > 0xff)
3546 			gbl->fom_out = 0xff;
3547 
3548 		/* Update the FOM in the register file */
3549 		debug_info = gbl->fom_in;
3550 		debug_info |= gbl->fom_out << 8;
3551 		writel(debug_info, &sdr_reg_file->fom);
3552 
3553 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3554 		writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3555 	} else {
3556 		printf("%s: CALIBRATION FAILED\n", __FILE__);
3557 
3558 		debug_info = gbl->error_stage;
3559 		debug_info |= gbl->error_substage << 8;
3560 		debug_info |= gbl->error_group << 16;
3561 
3562 		writel(debug_info, &sdr_reg_file->failing_stage);
3563 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3564 		writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3565 
3566 		/* Update the failing group/stage in the register file */
3567 		debug_info = gbl->error_stage;
3568 		debug_info |= gbl->error_substage << 8;
3569 		debug_info |= gbl->error_group << 16;
3570 		writel(debug_info, &sdr_reg_file->failing_stage);
3571 	}
3572 
3573 	printf("%s: Calibration complete\n", __FILE__);
3574 }
3575 
3576 /**
3577  * hc_initialize_rom_data() - Initialize ROM data
3578  *
3579  * Initialize ROM data.
3580  */
3581 static void hc_initialize_rom_data(void)
3582 {
3583 	unsigned int nelem = 0;
3584 	const u32 *rom_init;
3585 	u32 i, addr;
3586 
3587 	socfpga_get_seq_inst_init(&rom_init, &nelem);
3588 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3589 	for (i = 0; i < nelem; i++)
3590 		writel(rom_init[i], addr + (i << 2));
3591 
3592 	socfpga_get_seq_ac_init(&rom_init, &nelem);
3593 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3594 	for (i = 0; i < nelem; i++)
3595 		writel(rom_init[i], addr + (i << 2));
3596 }
3597 
3598 /**
3599  * initialize_reg_file() - Initialize SDR register file
3600  *
3601  * Initialize SDR register file.
3602  */
3603 static void initialize_reg_file(void)
3604 {
3605 	/* Initialize the register file with the correct data */
3606 	writel(misccfg->reg_file_init_seq_signature, &sdr_reg_file->signature);
3607 	writel(0, &sdr_reg_file->debug_data_addr);
3608 	writel(0, &sdr_reg_file->cur_stage);
3609 	writel(0, &sdr_reg_file->fom);
3610 	writel(0, &sdr_reg_file->failing_stage);
3611 	writel(0, &sdr_reg_file->debug1);
3612 	writel(0, &sdr_reg_file->debug2);
3613 }
3614 
3615 /**
3616  * initialize_hps_phy() - Initialize HPS PHY
3617  *
3618  * Initialize HPS PHY.
3619  */
3620 static void initialize_hps_phy(void)
3621 {
3622 	u32 reg;
3623 	/*
3624 	 * Tracking also gets configured here because it's in the
3625 	 * same register.
3626 	 */
3627 	u32 trk_sample_count = 7500;
3628 	u32 trk_long_idle_sample_count = (10 << 16) | 100;
3629 	/*
3630 	 * Format is number of outer loops in the 16 MSB, sample
3631 	 * count in 16 LSB.
3632 	 */
3633 
3634 	reg = 0;
3635 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3636 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3637 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3638 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3639 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3640 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3641 	/*
3642 	 * This field selects the intrinsic latency to RDATA_EN/FULL path.
3643 	 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3644 	 */
3645 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3646 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3647 		trk_sample_count);
3648 	writel(reg, &sdr_ctrl->phy_ctrl0);
3649 
3650 	reg = 0;
3651 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3652 		trk_sample_count >>
3653 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3654 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3655 		trk_long_idle_sample_count);
3656 	writel(reg, &sdr_ctrl->phy_ctrl1);
3657 
3658 	reg = 0;
3659 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3660 		trk_long_idle_sample_count >>
3661 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3662 	writel(reg, &sdr_ctrl->phy_ctrl2);
3663 }
3664 
3665 /**
3666  * initialize_tracking() - Initialize tracking
3667  *
3668  * Initialize the register file with usable initial data.
3669  */
3670 static void initialize_tracking(void)
3671 {
3672 	/*
3673 	 * Initialize the register file with the correct data.
3674 	 * Compute usable version of value in case we skip full
3675 	 * computation later.
3676 	 */
3677 	writel(DIV_ROUND_UP(iocfg->delay_per_opa_tap,
3678 			    iocfg->delay_per_dchain_tap) - 1,
3679 	       &sdr_reg_file->dtaps_per_ptap);
3680 
3681 	/* trk_sample_count */
3682 	writel(7500, &sdr_reg_file->trk_sample_count);
3683 
3684 	/* longidle outer loop [15:0] */
3685 	writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3686 
3687 	/*
3688 	 * longidle sample count [31:24]
3689 	 * trfc, worst case of 933Mhz 4Gb [23:16]
3690 	 * trcd, worst case [15:8]
3691 	 * vfifo wait [7:0]
3692 	 */
3693 	writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3694 	       &sdr_reg_file->delays);
3695 
3696 	/* mux delay */
3697 	writel((rwcfg->idle << 24) | (rwcfg->activate_1 << 16) |
3698 	       (rwcfg->sgle_read << 8) | (rwcfg->precharge_all << 0),
3699 	       &sdr_reg_file->trk_rw_mgr_addr);
3700 
3701 	writel(rwcfg->mem_if_read_dqs_width,
3702 	       &sdr_reg_file->trk_read_dqs_width);
3703 
3704 	/* trefi [7:0] */
3705 	writel((rwcfg->refresh_all << 24) | (1000 << 0),
3706 	       &sdr_reg_file->trk_rfsh);
3707 }
3708 
3709 int sdram_calibration_full(void)
3710 {
3711 	struct param_type my_param;
3712 	struct gbl_type my_gbl;
3713 	u32 pass;
3714 
3715 	memset(&my_param, 0, sizeof(my_param));
3716 	memset(&my_gbl, 0, sizeof(my_gbl));
3717 
3718 	param = &my_param;
3719 	gbl = &my_gbl;
3720 
3721 	rwcfg = socfpga_get_sdram_rwmgr_config();
3722 	iocfg = socfpga_get_sdram_io_config();
3723 	misccfg = socfpga_get_sdram_misc_config();
3724 
3725 	/* Set the calibration enabled by default */
3726 	gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3727 	/*
3728 	 * Only sweep all groups (regardless of fail state) by default
3729 	 * Set enabled read test by default.
3730 	 */
3731 #if DISABLE_GUARANTEED_READ
3732 	gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3733 #endif
3734 	/* Initialize the register file */
3735 	initialize_reg_file();
3736 
3737 	/* Initialize any PHY CSR */
3738 	initialize_hps_phy();
3739 
3740 	scc_mgr_initialize();
3741 
3742 	initialize_tracking();
3743 
3744 	printf("%s: Preparing to start memory calibration\n", __FILE__);
3745 
3746 	debug("%s:%d\n", __func__, __LINE__);
3747 	debug_cond(DLEVEL >= 1,
3748 		   "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3749 		   rwcfg->mem_number_of_ranks, rwcfg->mem_number_of_cs_per_dimm,
3750 		   rwcfg->mem_dq_per_read_dqs, rwcfg->mem_dq_per_write_dqs,
3751 		   rwcfg->mem_virtual_groups_per_read_dqs,
3752 		   rwcfg->mem_virtual_groups_per_write_dqs);
3753 	debug_cond(DLEVEL >= 1,
3754 		   "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3755 		   rwcfg->mem_if_read_dqs_width, rwcfg->mem_if_write_dqs_width,
3756 		   rwcfg->mem_data_width, rwcfg->mem_data_mask_width,
3757 		   iocfg->delay_per_opa_tap, iocfg->delay_per_dchain_tap);
3758 	debug_cond(DLEVEL >= 1, "dtap_dqsen_delay=%u, dll=%u",
3759 		   iocfg->delay_per_dqs_en_dchain_tap, iocfg->dll_chain_length);
3760 	debug_cond(DLEVEL >= 1,
3761 		   "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3762 		   iocfg->dqs_en_phase_max, iocfg->dqdqs_out_phase_max,
3763 		   iocfg->dqs_en_delay_max, iocfg->dqs_in_delay_max);
3764 	debug_cond(DLEVEL >= 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3765 		   iocfg->io_in_delay_max, iocfg->io_out1_delay_max,
3766 		   iocfg->io_out2_delay_max);
3767 	debug_cond(DLEVEL >= 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3768 		   iocfg->dqs_in_reserve, iocfg->dqs_out_reserve);
3769 
3770 	hc_initialize_rom_data();
3771 
3772 	/* update info for sims */
3773 	reg_file_set_stage(CAL_STAGE_NIL);
3774 	reg_file_set_group(0);
3775 
3776 	/*
3777 	 * Load global needed for those actions that require
3778 	 * some dynamic calibration support.
3779 	 */
3780 	dyn_calib_steps = STATIC_CALIB_STEPS;
3781 	/*
3782 	 * Load global to allow dynamic selection of delay loop settings
3783 	 * based on calibration mode.
3784 	 */
3785 	if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3786 		skip_delay_mask = 0xff;
3787 	else
3788 		skip_delay_mask = 0x0;
3789 
3790 	pass = run_mem_calibrate();
3791 	debug_mem_calibrate(pass);
3792 	return pass;
3793 }
3794