1 /* 2 * Copyright Altera Corporation (C) 2012-2015 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <common.h> 8 #include <asm/io.h> 9 #include <asm/arch/sdram.h> 10 #include <errno.h> 11 #include "sequencer.h" 12 #include "sequencer_auto.h" 13 #include "sequencer_auto_ac_init.h" 14 #include "sequencer_auto_inst_init.h" 15 #include "sequencer_defines.h" 16 17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs = 18 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800); 19 20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs = 21 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00); 22 23 static struct socfpga_sdr_reg_file *sdr_reg_file = 24 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS; 25 26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr = 27 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00); 28 29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd = 30 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS; 31 32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg = 33 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40); 34 35 static struct socfpga_data_mgr *data_mgr = 36 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS; 37 38 static struct socfpga_sdr_ctrl *sdr_ctrl = 39 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS; 40 41 #define DELTA_D 1 42 43 /* 44 * In order to reduce ROM size, most of the selectable calibration steps are 45 * decided at compile time based on the user's calibration mode selection, 46 * as captured by the STATIC_CALIB_STEPS selection below. 47 * 48 * However, to support simulation-time selection of fast simulation mode, where 49 * we skip everything except the bare minimum, we need a few of the steps to 50 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the 51 * check, which is based on the rtl-supplied value, or we dynamically compute 52 * the value to use based on the dynamically-chosen calibration mode 53 */ 54 55 #define DLEVEL 0 56 #define STATIC_IN_RTL_SIM 0 57 #define STATIC_SKIP_DELAY_LOOPS 0 58 59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \ 60 STATIC_SKIP_DELAY_LOOPS) 61 62 /* calibration steps requested by the rtl */ 63 uint16_t dyn_calib_steps; 64 65 /* 66 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option 67 * instead of static, we use boolean logic to select between 68 * non-skip and skip values 69 * 70 * The mask is set to include all bits when not-skipping, but is 71 * zero when skipping 72 */ 73 74 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */ 75 76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \ 77 ((non_skip_value) & skip_delay_mask) 78 79 struct gbl_type *gbl; 80 struct param_type *param; 81 uint32_t curr_shadow_reg; 82 83 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 84 uint32_t write_group, uint32_t use_dm, 85 uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks); 86 87 static void set_failing_group_stage(uint32_t group, uint32_t stage, 88 uint32_t substage) 89 { 90 /* 91 * Only set the global stage if there was not been any other 92 * failing group 93 */ 94 if (gbl->error_stage == CAL_STAGE_NIL) { 95 gbl->error_substage = substage; 96 gbl->error_stage = stage; 97 gbl->error_group = group; 98 } 99 } 100 101 static void reg_file_set_group(u16 set_group) 102 { 103 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16); 104 } 105 106 static void reg_file_set_stage(u8 set_stage) 107 { 108 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff); 109 } 110 111 static void reg_file_set_sub_stage(u8 set_sub_stage) 112 { 113 set_sub_stage &= 0xff; 114 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8); 115 } 116 117 /** 118 * phy_mgr_initialize() - Initialize PHY Manager 119 * 120 * Initialize PHY Manager. 121 */ 122 static void phy_mgr_initialize(void) 123 { 124 u32 ratio; 125 126 debug("%s:%d\n", __func__, __LINE__); 127 /* Calibration has control over path to memory */ 128 /* 129 * In Hard PHY this is a 2-bit control: 130 * 0: AFI Mux Select 131 * 1: DDIO Mux Select 132 */ 133 writel(0x3, &phy_mgr_cfg->mux_sel); 134 135 /* USER memory clock is not stable we begin initialization */ 136 writel(0, &phy_mgr_cfg->reset_mem_stbl); 137 138 /* USER calibration status all set to zero */ 139 writel(0, &phy_mgr_cfg->cal_status); 140 141 writel(0, &phy_mgr_cfg->cal_debug_info); 142 143 /* Init params only if we do NOT skip calibration. */ 144 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) 145 return; 146 147 ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 148 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 149 param->read_correct_mask_vg = (1 << ratio) - 1; 150 param->write_correct_mask_vg = (1 << ratio) - 1; 151 param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1; 152 param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1; 153 ratio = RW_MGR_MEM_DATA_WIDTH / 154 RW_MGR_MEM_DATA_MASK_WIDTH; 155 param->dm_correct_mask = (1 << ratio) - 1; 156 } 157 158 /** 159 * set_rank_and_odt_mask() - Set Rank and ODT mask 160 * @rank: Rank mask 161 * @odt_mode: ODT mode, OFF or READ_WRITE 162 * 163 * Set Rank and ODT mask (On-Die Termination). 164 */ 165 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode) 166 { 167 u32 odt_mask_0 = 0; 168 u32 odt_mask_1 = 0; 169 u32 cs_and_odt_mask; 170 171 if (odt_mode == RW_MGR_ODT_MODE_OFF) { 172 odt_mask_0 = 0x0; 173 odt_mask_1 = 0x0; 174 } else { /* RW_MGR_ODT_MODE_READ_WRITE */ 175 switch (RW_MGR_MEM_NUMBER_OF_RANKS) { 176 case 1: /* 1 Rank */ 177 /* Read: ODT = 0 ; Write: ODT = 1 */ 178 odt_mask_0 = 0x0; 179 odt_mask_1 = 0x1; 180 break; 181 case 2: /* 2 Ranks */ 182 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) { 183 /* 184 * - Dual-Slot , Single-Rank (1 CS per DIMM) 185 * OR 186 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM) 187 * 188 * Since MEM_NUMBER_OF_RANKS is 2, they 189 * are both single rank with 2 CS each 190 * (special for RDIMM). 191 * 192 * Read: Turn on ODT on the opposite rank 193 * Write: Turn on ODT on all ranks 194 */ 195 odt_mask_0 = 0x3 & ~(1 << rank); 196 odt_mask_1 = 0x3; 197 } else { 198 /* 199 * - Single-Slot , Dual-Rank (2 CS per DIMM) 200 * 201 * Read: Turn on ODT off on all ranks 202 * Write: Turn on ODT on active rank 203 */ 204 odt_mask_0 = 0x0; 205 odt_mask_1 = 0x3 & (1 << rank); 206 } 207 break; 208 case 4: /* 4 Ranks */ 209 /* Read: 210 * ----------+-----------------------+ 211 * | ODT | 212 * Read From +-----------------------+ 213 * Rank | 3 | 2 | 1 | 0 | 214 * ----------+-----+-----+-----+-----+ 215 * 0 | 0 | 1 | 0 | 0 | 216 * 1 | 1 | 0 | 0 | 0 | 217 * 2 | 0 | 0 | 0 | 1 | 218 * 3 | 0 | 0 | 1 | 0 | 219 * ----------+-----+-----+-----+-----+ 220 * 221 * Write: 222 * ----------+-----------------------+ 223 * | ODT | 224 * Write To +-----------------------+ 225 * Rank | 3 | 2 | 1 | 0 | 226 * ----------+-----+-----+-----+-----+ 227 * 0 | 0 | 1 | 0 | 1 | 228 * 1 | 1 | 0 | 1 | 0 | 229 * 2 | 0 | 1 | 0 | 1 | 230 * 3 | 1 | 0 | 1 | 0 | 231 * ----------+-----+-----+-----+-----+ 232 */ 233 switch (rank) { 234 case 0: 235 odt_mask_0 = 0x4; 236 odt_mask_1 = 0x5; 237 break; 238 case 1: 239 odt_mask_0 = 0x8; 240 odt_mask_1 = 0xA; 241 break; 242 case 2: 243 odt_mask_0 = 0x1; 244 odt_mask_1 = 0x5; 245 break; 246 case 3: 247 odt_mask_0 = 0x2; 248 odt_mask_1 = 0xA; 249 break; 250 } 251 break; 252 } 253 } 254 255 cs_and_odt_mask = (0xFF & ~(1 << rank)) | 256 ((0xFF & odt_mask_0) << 8) | 257 ((0xFF & odt_mask_1) << 16); 258 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS | 259 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 260 } 261 262 /** 263 * scc_mgr_set() - Set SCC Manager register 264 * @off: Base offset in SCC Manager space 265 * @grp: Read/Write group 266 * @val: Value to be set 267 * 268 * This function sets the SCC Manager (Scan Chain Control Manager) register. 269 */ 270 static void scc_mgr_set(u32 off, u32 grp, u32 val) 271 { 272 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2)); 273 } 274 275 /** 276 * scc_mgr_initialize() - Initialize SCC Manager registers 277 * 278 * Initialize SCC Manager registers. 279 */ 280 static void scc_mgr_initialize(void) 281 { 282 /* 283 * Clear register file for HPS. 16 (2^4) is the size of the 284 * full register file in the scc mgr: 285 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + 286 * MEM_IF_READ_DQS_WIDTH - 1); 287 */ 288 int i; 289 290 for (i = 0; i < 16; i++) { 291 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n", 292 __func__, __LINE__, i); 293 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i); 294 } 295 } 296 297 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase) 298 { 299 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase); 300 } 301 302 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay) 303 { 304 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay); 305 } 306 307 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase) 308 { 309 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase); 310 } 311 312 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay) 313 { 314 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay); 315 } 316 317 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay) 318 { 319 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 320 delay); 321 } 322 323 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay) 324 { 325 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay); 326 } 327 328 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay) 329 { 330 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay); 331 } 332 333 static void scc_mgr_set_dqs_out1_delay(uint32_t delay) 334 { 335 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 336 delay); 337 } 338 339 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay) 340 { 341 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, 342 RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm, 343 delay); 344 } 345 346 /* load up dqs config settings */ 347 static void scc_mgr_load_dqs(uint32_t dqs) 348 { 349 writel(dqs, &sdr_scc_mgr->dqs_ena); 350 } 351 352 /* load up dqs io config settings */ 353 static void scc_mgr_load_dqs_io(void) 354 { 355 writel(0, &sdr_scc_mgr->dqs_io_ena); 356 } 357 358 /* load up dq config settings */ 359 static void scc_mgr_load_dq(uint32_t dq_in_group) 360 { 361 writel(dq_in_group, &sdr_scc_mgr->dq_ena); 362 } 363 364 /* load up dm config settings */ 365 static void scc_mgr_load_dm(uint32_t dm) 366 { 367 writel(dm, &sdr_scc_mgr->dm_ena); 368 } 369 370 /** 371 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks 372 * @off: Base offset in SCC Manager space 373 * @grp: Read/Write group 374 * @val: Value to be set 375 * @update: If non-zero, trigger SCC Manager update for all ranks 376 * 377 * This function sets the SCC Manager (Scan Chain Control Manager) register 378 * and optionally triggers the SCC update for all ranks. 379 */ 380 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val, 381 const int update) 382 { 383 u32 r; 384 385 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 386 r += NUM_RANKS_PER_SHADOW_REG) { 387 scc_mgr_set(off, grp, val); 388 389 if (update || (r == 0)) { 390 writel(grp, &sdr_scc_mgr->dqs_ena); 391 writel(0, &sdr_scc_mgr->update); 392 } 393 } 394 } 395 396 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase) 397 { 398 /* 399 * USER although the h/w doesn't support different phases per 400 * shadow register, for simplicity our scc manager modeling 401 * keeps different phase settings per shadow reg, and it's 402 * important for us to keep them in sync to match h/w. 403 * for efficiency, the scan chain update should occur only 404 * once to sr0. 405 */ 406 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET, 407 read_group, phase, 0); 408 } 409 410 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group, 411 uint32_t phase) 412 { 413 /* 414 * USER although the h/w doesn't support different phases per 415 * shadow register, for simplicity our scc manager modeling 416 * keeps different phase settings per shadow reg, and it's 417 * important for us to keep them in sync to match h/w. 418 * for efficiency, the scan chain update should occur only 419 * once to sr0. 420 */ 421 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, 422 write_group, phase, 0); 423 } 424 425 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group, 426 uint32_t delay) 427 { 428 /* 429 * In shadow register mode, the T11 settings are stored in 430 * registers in the core, which are updated by the DQS_ENA 431 * signals. Not issuing the SCC_MGR_UPD command allows us to 432 * save lots of rank switching overhead, by calling 433 * select_shadow_regs_for_update with update_scan_chains 434 * set to 0. 435 */ 436 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET, 437 read_group, delay, 1); 438 writel(0, &sdr_scc_mgr->update); 439 } 440 441 /** 442 * scc_mgr_set_oct_out1_delay() - Set OCT output delay 443 * @write_group: Write group 444 * @delay: Delay value 445 * 446 * This function sets the OCT output delay in SCC manager. 447 */ 448 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay) 449 { 450 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 451 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 452 const int base = write_group * ratio; 453 int i; 454 /* 455 * Load the setting in the SCC manager 456 * Although OCT affects only write data, the OCT delay is controlled 457 * by the DQS logic block which is instantiated once per read group. 458 * For protocols where a write group consists of multiple read groups, 459 * the setting must be set multiple times. 460 */ 461 for (i = 0; i < ratio; i++) 462 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay); 463 } 464 465 /** 466 * scc_mgr_set_hhp_extras() - Set HHP extras. 467 * 468 * Load the fixed setting in the SCC manager HHP extras. 469 */ 470 static void scc_mgr_set_hhp_extras(void) 471 { 472 /* 473 * Load the fixed setting in the SCC manager 474 * bits: 0:0 = 1'b1 - DQS bypass 475 * bits: 1:1 = 1'b1 - DQ bypass 476 * bits: 4:2 = 3'b001 - rfifo_mode 477 * bits: 6:5 = 2'b01 - rfifo clock_select 478 * bits: 7:7 = 1'b0 - separate gating from ungating setting 479 * bits: 8:8 = 1'b0 - separate OE from Output delay setting 480 */ 481 const u32 value = (0 << 8) | (0 << 7) | (1 << 5) | 482 (1 << 2) | (1 << 1) | (1 << 0); 483 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | 484 SCC_MGR_HHP_GLOBALS_OFFSET | 485 SCC_MGR_HHP_EXTRAS_OFFSET; 486 487 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", 488 __func__, __LINE__); 489 writel(value, addr); 490 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n", 491 __func__, __LINE__); 492 } 493 494 /** 495 * scc_mgr_zero_all() - Zero all DQS config 496 * 497 * Zero all DQS config. 498 */ 499 static void scc_mgr_zero_all(void) 500 { 501 int i, r; 502 503 /* 504 * USER Zero all DQS config settings, across all groups and all 505 * shadow registers 506 */ 507 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 508 r += NUM_RANKS_PER_SHADOW_REG) { 509 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 510 /* 511 * The phases actually don't exist on a per-rank basis, 512 * but there's no harm updating them several times, so 513 * let's keep the code simple. 514 */ 515 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE); 516 scc_mgr_set_dqs_en_phase(i, 0); 517 scc_mgr_set_dqs_en_delay(i, 0); 518 } 519 520 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 521 scc_mgr_set_dqdqs_output_phase(i, 0); 522 /* Arria V/Cyclone V don't have out2. */ 523 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE); 524 } 525 } 526 527 /* Multicast to all DQS group enables. */ 528 writel(0xff, &sdr_scc_mgr->dqs_ena); 529 writel(0, &sdr_scc_mgr->update); 530 } 531 532 /** 533 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update 534 * @write_group: Write group 535 * 536 * Set bypass mode and trigger SCC update. 537 */ 538 static void scc_set_bypass_mode(const u32 write_group) 539 { 540 /* Multicast to all DQ enables. */ 541 writel(0xff, &sdr_scc_mgr->dq_ena); 542 writel(0xff, &sdr_scc_mgr->dm_ena); 543 544 /* Update current DQS IO enable. */ 545 writel(0, &sdr_scc_mgr->dqs_io_ena); 546 547 /* Update the DQS logic. */ 548 writel(write_group, &sdr_scc_mgr->dqs_ena); 549 550 /* Hit update. */ 551 writel(0, &sdr_scc_mgr->update); 552 } 553 554 /** 555 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group 556 * @write_group: Write group 557 * 558 * Load DQS settings for Write Group, do not trigger SCC update. 559 */ 560 static void scc_mgr_load_dqs_for_write_group(const u32 write_group) 561 { 562 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 563 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 564 const int base = write_group * ratio; 565 int i; 566 /* 567 * Load the setting in the SCC manager 568 * Although OCT affects only write data, the OCT delay is controlled 569 * by the DQS logic block which is instantiated once per read group. 570 * For protocols where a write group consists of multiple read groups, 571 * the setting must be set multiple times. 572 */ 573 for (i = 0; i < ratio; i++) 574 writel(base + i, &sdr_scc_mgr->dqs_ena); 575 } 576 577 /** 578 * scc_mgr_zero_group() - Zero all configs for a group 579 * 580 * Zero DQ, DM, DQS and OCT configs for a group. 581 */ 582 static void scc_mgr_zero_group(const u32 write_group, const int out_only) 583 { 584 int i, r; 585 586 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 587 r += NUM_RANKS_PER_SHADOW_REG) { 588 /* Zero all DQ config settings. */ 589 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 590 scc_mgr_set_dq_out1_delay(i, 0); 591 if (!out_only) 592 scc_mgr_set_dq_in_delay(i, 0); 593 } 594 595 /* Multicast to all DQ enables. */ 596 writel(0xff, &sdr_scc_mgr->dq_ena); 597 598 /* Zero all DM config settings. */ 599 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 600 scc_mgr_set_dm_out1_delay(i, 0); 601 602 /* Multicast to all DM enables. */ 603 writel(0xff, &sdr_scc_mgr->dm_ena); 604 605 /* Zero all DQS IO settings. */ 606 if (!out_only) 607 scc_mgr_set_dqs_io_in_delay(0); 608 609 /* Arria V/Cyclone V don't have out2. */ 610 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE); 611 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE); 612 scc_mgr_load_dqs_for_write_group(write_group); 613 614 /* Multicast to all DQS IO enables (only 1 in total). */ 615 writel(0, &sdr_scc_mgr->dqs_io_ena); 616 617 /* Hit update to zero everything. */ 618 writel(0, &sdr_scc_mgr->update); 619 } 620 } 621 622 /* 623 * apply and load a particular input delay for the DQ pins in a group 624 * group_bgn is the index of the first dq pin (in the write group) 625 */ 626 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay) 627 { 628 uint32_t i, p; 629 630 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 631 scc_mgr_set_dq_in_delay(p, delay); 632 scc_mgr_load_dq(p); 633 } 634 } 635 636 /** 637 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group 638 * @delay: Delay value 639 * 640 * Apply and load a particular output delay for the DQ pins in a group. 641 */ 642 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay) 643 { 644 int i; 645 646 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 647 scc_mgr_set_dq_out1_delay(i, delay); 648 scc_mgr_load_dq(i); 649 } 650 } 651 652 /* apply and load a particular output delay for the DM pins in a group */ 653 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1) 654 { 655 uint32_t i; 656 657 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 658 scc_mgr_set_dm_out1_delay(i, delay1); 659 scc_mgr_load_dm(i); 660 } 661 } 662 663 664 /* apply and load delay on both DQS and OCT out1 */ 665 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group, 666 uint32_t delay) 667 { 668 scc_mgr_set_dqs_out1_delay(delay); 669 scc_mgr_load_dqs_io(); 670 671 scc_mgr_set_oct_out1_delay(write_group, delay); 672 scc_mgr_load_dqs_for_write_group(write_group); 673 } 674 675 /** 676 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT 677 * @write_group: Write group 678 * @delay: Delay value 679 * 680 * Apply a delay to the entire output side: DQ, DM, DQS, OCT. 681 */ 682 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group, 683 const u32 delay) 684 { 685 u32 i, new_delay; 686 687 /* DQ shift */ 688 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) 689 scc_mgr_load_dq(i); 690 691 /* DM shift */ 692 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 693 scc_mgr_load_dm(i); 694 695 /* DQS shift */ 696 new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay; 697 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 698 debug_cond(DLEVEL == 1, 699 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 700 __func__, __LINE__, write_group, delay, new_delay, 701 IO_IO_OUT2_DELAY_MAX, 702 new_delay - IO_IO_OUT2_DELAY_MAX); 703 new_delay -= IO_IO_OUT2_DELAY_MAX; 704 scc_mgr_set_dqs_out1_delay(new_delay); 705 } 706 707 scc_mgr_load_dqs_io(); 708 709 /* OCT shift */ 710 new_delay = READ_SCC_OCT_OUT2_DELAY + delay; 711 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 712 debug_cond(DLEVEL == 1, 713 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 714 __func__, __LINE__, write_group, delay, 715 new_delay, IO_IO_OUT2_DELAY_MAX, 716 new_delay - IO_IO_OUT2_DELAY_MAX); 717 new_delay -= IO_IO_OUT2_DELAY_MAX; 718 scc_mgr_set_oct_out1_delay(write_group, new_delay); 719 } 720 721 scc_mgr_load_dqs_for_write_group(write_group); 722 } 723 724 /** 725 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks 726 * @write_group: Write group 727 * @delay: Delay value 728 * 729 * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks. 730 */ 731 static void 732 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group, 733 const u32 delay) 734 { 735 int r; 736 737 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 738 r += NUM_RANKS_PER_SHADOW_REG) { 739 scc_mgr_apply_group_all_out_delay_add(write_group, delay); 740 writel(0, &sdr_scc_mgr->update); 741 } 742 } 743 744 /** 745 * set_jump_as_return() - Return instruction optimization 746 * 747 * Optimization used to recover some slots in ddr3 inst_rom could be 748 * applied to other protocols if we wanted to 749 */ 750 static void set_jump_as_return(void) 751 { 752 /* 753 * To save space, we replace return with jump to special shared 754 * RETURN instruction so we set the counter to large value so that 755 * we always jump. 756 */ 757 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0); 758 writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 759 } 760 761 /* 762 * should always use constants as argument to ensure all computations are 763 * performed at compile time 764 */ 765 static void delay_for_n_mem_clocks(const uint32_t clocks) 766 { 767 uint32_t afi_clocks; 768 uint8_t inner = 0; 769 uint8_t outer = 0; 770 uint16_t c_loop = 0; 771 772 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks); 773 774 775 afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO; 776 /* scale (rounding up) to get afi clocks */ 777 778 /* 779 * Note, we don't bother accounting for being off a little bit 780 * because of a few extra instructions in outer loops 781 * Note, the loops have a test at the end, and do the test before 782 * the decrement, and so always perform the loop 783 * 1 time more than the counter value 784 */ 785 if (afi_clocks == 0) { 786 ; 787 } else if (afi_clocks <= 0x100) { 788 inner = afi_clocks-1; 789 outer = 0; 790 c_loop = 0; 791 } else if (afi_clocks <= 0x10000) { 792 inner = 0xff; 793 outer = (afi_clocks-1) >> 8; 794 c_loop = 0; 795 } else { 796 inner = 0xff; 797 outer = 0xff; 798 c_loop = (afi_clocks-1) >> 16; 799 } 800 801 /* 802 * rom instructions are structured as follows: 803 * 804 * IDLE_LOOP2: jnz cntr0, TARGET_A 805 * IDLE_LOOP1: jnz cntr1, TARGET_B 806 * return 807 * 808 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and 809 * TARGET_B is set to IDLE_LOOP2 as well 810 * 811 * if we have no outer loop, though, then we can use IDLE_LOOP1 only, 812 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely 813 * 814 * a little confusing, but it helps save precious space in the inst_rom 815 * and sequencer rom and keeps the delays more accurate and reduces 816 * overhead 817 */ 818 if (afi_clocks <= 0x100) { 819 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 820 &sdr_rw_load_mgr_regs->load_cntr1); 821 822 writel(RW_MGR_IDLE_LOOP1, 823 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 824 825 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 826 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 827 } else { 828 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 829 &sdr_rw_load_mgr_regs->load_cntr0); 830 831 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), 832 &sdr_rw_load_mgr_regs->load_cntr1); 833 834 writel(RW_MGR_IDLE_LOOP2, 835 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 836 837 writel(RW_MGR_IDLE_LOOP2, 838 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 839 840 /* hack to get around compiler not being smart enough */ 841 if (afi_clocks <= 0x10000) { 842 /* only need to run once */ 843 writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS | 844 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 845 } else { 846 do { 847 writel(RW_MGR_IDLE_LOOP2, 848 SDR_PHYGRP_RWMGRGRP_ADDRESS | 849 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 850 } while (c_loop-- != 0); 851 } 852 } 853 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks); 854 } 855 856 /** 857 * rw_mgr_mem_init_load_regs() - Load instruction registers 858 * @cntr0: Counter 0 value 859 * @cntr1: Counter 1 value 860 * @cntr2: Counter 2 value 861 * @jump: Jump instruction value 862 * 863 * Load instruction registers. 864 */ 865 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump) 866 { 867 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 868 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 869 870 /* Load counters */ 871 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0), 872 &sdr_rw_load_mgr_regs->load_cntr0); 873 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1), 874 &sdr_rw_load_mgr_regs->load_cntr1); 875 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2), 876 &sdr_rw_load_mgr_regs->load_cntr2); 877 878 /* Load jump address */ 879 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 880 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1); 881 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 882 883 /* Execute count instruction */ 884 writel(jump, grpaddr); 885 } 886 887 /** 888 * rw_mgr_mem_load_user() - Load user calibration values 889 * @fin1: Final instruction 1 890 * @fin2: Final instruction 2 891 * @precharge: If 1, precharge the banks at the end 892 * 893 * Load user calibration values and optionally precharge the banks. 894 */ 895 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2, 896 const int precharge) 897 { 898 u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 899 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 900 u32 r; 901 902 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 903 if (param->skip_ranks[r]) { 904 /* request to skip the rank */ 905 continue; 906 } 907 908 /* set rank */ 909 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 910 911 /* precharge all banks ... */ 912 if (precharge) 913 writel(RW_MGR_PRECHARGE_ALL, grpaddr); 914 915 /* 916 * USER Use Mirror-ed commands for odd ranks if address 917 * mirrorring is on 918 */ 919 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 920 set_jump_as_return(); 921 writel(RW_MGR_MRS2_MIRR, grpaddr); 922 delay_for_n_mem_clocks(4); 923 set_jump_as_return(); 924 writel(RW_MGR_MRS3_MIRR, grpaddr); 925 delay_for_n_mem_clocks(4); 926 set_jump_as_return(); 927 writel(RW_MGR_MRS1_MIRR, grpaddr); 928 delay_for_n_mem_clocks(4); 929 set_jump_as_return(); 930 writel(fin1, grpaddr); 931 } else { 932 set_jump_as_return(); 933 writel(RW_MGR_MRS2, grpaddr); 934 delay_for_n_mem_clocks(4); 935 set_jump_as_return(); 936 writel(RW_MGR_MRS3, grpaddr); 937 delay_for_n_mem_clocks(4); 938 set_jump_as_return(); 939 writel(RW_MGR_MRS1, grpaddr); 940 set_jump_as_return(); 941 writel(fin2, grpaddr); 942 } 943 944 if (precharge) 945 continue; 946 947 set_jump_as_return(); 948 writel(RW_MGR_ZQCL, grpaddr); 949 950 /* tZQinit = tDLLK = 512 ck cycles */ 951 delay_for_n_mem_clocks(512); 952 } 953 } 954 955 /** 956 * rw_mgr_mem_initialize() - Initialize RW Manager 957 * 958 * Initialize RW Manager. 959 */ 960 static void rw_mgr_mem_initialize(void) 961 { 962 debug("%s:%d\n", __func__, __LINE__); 963 964 /* The reset / cke part of initialization is broadcasted to all ranks */ 965 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 966 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 967 968 /* 969 * Here's how you load register for a loop 970 * Counters are located @ 0x800 971 * Jump address are located @ 0xC00 972 * For both, registers 0 to 3 are selected using bits 3 and 2, like 973 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C 974 * I know this ain't pretty, but Avalon bus throws away the 2 least 975 * significant bits 976 */ 977 978 /* Start with memory RESET activated */ 979 980 /* tINIT = 200us */ 981 982 /* 983 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles 984 * If a and b are the number of iteration in 2 nested loops 985 * it takes the following number of cycles to complete the operation: 986 * number_of_cycles = ((2 + n) * a + 2) * b 987 * where n is the number of instruction in the inner loop 988 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF, 989 * b = 6A 990 */ 991 rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL, 992 SEQ_TINIT_CNTR2_VAL, 993 RW_MGR_INIT_RESET_0_CKE_0); 994 995 /* Indicate that memory is stable. */ 996 writel(1, &phy_mgr_cfg->reset_mem_stbl); 997 998 /* 999 * transition the RESET to high 1000 * Wait for 500us 1001 */ 1002 1003 /* 1004 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles 1005 * If a and b are the number of iteration in 2 nested loops 1006 * it takes the following number of cycles to complete the operation 1007 * number_of_cycles = ((2 + n) * a + 2) * b 1008 * where n is the number of instruction in the inner loop 1009 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83, 1010 * b = FF 1011 */ 1012 rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL, 1013 SEQ_TRESET_CNTR2_VAL, 1014 RW_MGR_INIT_RESET_1_CKE_0); 1015 1016 /* Bring up clock enable. */ 1017 1018 /* tXRP < 250 ck cycles */ 1019 delay_for_n_mem_clocks(250); 1020 1021 rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET, 1022 0); 1023 } 1024 1025 /* 1026 * At the end of calibration we have to program the user settings in, and 1027 * USER hand off the memory to the user. 1028 */ 1029 static void rw_mgr_mem_handoff(void) 1030 { 1031 rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1); 1032 /* 1033 * USER need to wait tMOD (12CK or 15ns) time before issuing 1034 * other commands, but we will have plenty of NIOS cycles before 1035 * actual handoff so its okay. 1036 */ 1037 } 1038 1039 /** 1040 * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns 1041 * @rank_bgn: Rank number 1042 * @group: Read/Write Group 1043 * @all_ranks: Test all ranks 1044 * 1045 * Performs a guaranteed read on the patterns we are going to use during a 1046 * read test to ensure memory works. 1047 */ 1048 static int 1049 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group, 1050 const u32 all_ranks) 1051 { 1052 const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1053 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1054 const u32 addr_offset = 1055 (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2; 1056 const u32 rank_end = all_ranks ? 1057 RW_MGR_MEM_NUMBER_OF_RANKS : 1058 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1059 const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 1060 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 1061 const u32 correct_mask_vg = param->read_correct_mask_vg; 1062 1063 u32 tmp_bit_chk, base_rw_mgr, bit_chk; 1064 int vg, r; 1065 int ret = 0; 1066 1067 bit_chk = param->read_correct_mask; 1068 1069 for (r = rank_bgn; r < rank_end; r++) { 1070 /* Request to skip the rank */ 1071 if (param->skip_ranks[r]) 1072 continue; 1073 1074 /* Set rank */ 1075 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1076 1077 /* Load up a constant bursts of read commands */ 1078 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1079 writel(RW_MGR_GUARANTEED_READ, 1080 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1081 1082 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1083 writel(RW_MGR_GUARANTEED_READ_CONT, 1084 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1085 1086 tmp_bit_chk = 0; 1087 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; 1088 vg >= 0; vg--) { 1089 /* Reset the FIFOs to get pointers to known state. */ 1090 writel(0, &phy_mgr_cmd->fifo_reset); 1091 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1092 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1093 writel(RW_MGR_GUARANTEED_READ, 1094 addr + addr_offset + (vg << 2)); 1095 1096 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1097 tmp_bit_chk <<= shift_ratio; 1098 tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr; 1099 } 1100 1101 bit_chk &= tmp_bit_chk; 1102 } 1103 1104 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1105 1106 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1107 1108 if (bit_chk != param->read_correct_mask) 1109 ret = -EIO; 1110 1111 debug_cond(DLEVEL == 1, 1112 "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n", 1113 __func__, __LINE__, group, bit_chk, 1114 param->read_correct_mask, ret); 1115 1116 return ret; 1117 } 1118 1119 /** 1120 * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test 1121 * @rank_bgn: Rank number 1122 * @all_ranks: Test all ranks 1123 * 1124 * Load up the patterns we are going to use during a read test. 1125 */ 1126 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn, 1127 const int all_ranks) 1128 { 1129 const u32 rank_end = all_ranks ? 1130 RW_MGR_MEM_NUMBER_OF_RANKS : 1131 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1132 u32 r; 1133 1134 debug("%s:%d\n", __func__, __LINE__); 1135 1136 for (r = rank_bgn; r < rank_end; r++) { 1137 if (param->skip_ranks[r]) 1138 /* request to skip the rank */ 1139 continue; 1140 1141 /* set rank */ 1142 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1143 1144 /* Load up a constant bursts */ 1145 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1146 1147 writel(RW_MGR_GUARANTEED_WRITE_WAIT0, 1148 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1149 1150 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1151 1152 writel(RW_MGR_GUARANTEED_WRITE_WAIT1, 1153 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1154 1155 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2); 1156 1157 writel(RW_MGR_GUARANTEED_WRITE_WAIT2, 1158 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1159 1160 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3); 1161 1162 writel(RW_MGR_GUARANTEED_WRITE_WAIT3, 1163 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1164 1165 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1166 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 1167 } 1168 1169 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1170 } 1171 1172 /* 1173 * try a read and see if it returns correct data back. has dummy reads 1174 * inserted into the mix used to align dqs enable. has more thorough checks 1175 * than the regular read test. 1176 */ 1177 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group, 1178 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1179 uint32_t all_groups, uint32_t all_ranks) 1180 { 1181 uint32_t r, vg; 1182 uint32_t correct_mask_vg; 1183 uint32_t tmp_bit_chk; 1184 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1185 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1186 uint32_t addr; 1187 uint32_t base_rw_mgr; 1188 1189 *bit_chk = param->read_correct_mask; 1190 correct_mask_vg = param->read_correct_mask_vg; 1191 1192 uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) & 1193 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION); 1194 1195 for (r = rank_bgn; r < rank_end; r++) { 1196 if (param->skip_ranks[r]) 1197 /* request to skip the rank */ 1198 continue; 1199 1200 /* set rank */ 1201 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1202 1203 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1); 1204 1205 writel(RW_MGR_READ_B2B_WAIT1, 1206 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1207 1208 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2); 1209 writel(RW_MGR_READ_B2B_WAIT2, 1210 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1211 1212 if (quick_read_mode) 1213 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0); 1214 /* need at least two (1+1) reads to capture failures */ 1215 else if (all_groups) 1216 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0); 1217 else 1218 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0); 1219 1220 writel(RW_MGR_READ_B2B, 1221 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1222 if (all_groups) 1223 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH * 1224 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1, 1225 &sdr_rw_load_mgr_regs->load_cntr3); 1226 else 1227 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3); 1228 1229 writel(RW_MGR_READ_B2B, 1230 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1231 1232 tmp_bit_chk = 0; 1233 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1234 /* reset the fifos to get pointers to known state */ 1235 writel(0, &phy_mgr_cmd->fifo_reset); 1236 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1237 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1238 1239 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1240 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1241 1242 if (all_groups) 1243 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET; 1244 else 1245 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1246 1247 writel(RW_MGR_READ_B2B, addr + 1248 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1249 vg) << 2)); 1250 1251 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1252 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 1253 1254 if (vg == 0) 1255 break; 1256 } 1257 *bit_chk &= tmp_bit_chk; 1258 } 1259 1260 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1261 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1262 1263 if (all_correct) { 1264 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1265 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\ 1266 (%u == %u) => %lu", __func__, __LINE__, group, 1267 all_groups, *bit_chk, param->read_correct_mask, 1268 (long unsigned int)(*bit_chk == 1269 param->read_correct_mask)); 1270 return *bit_chk == param->read_correct_mask; 1271 } else { 1272 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1273 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\ 1274 (%u != %lu) => %lu\n", __func__, __LINE__, 1275 group, all_groups, *bit_chk, (long unsigned int)0, 1276 (long unsigned int)(*bit_chk != 0x00)); 1277 return *bit_chk != 0x00; 1278 } 1279 } 1280 1281 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group, 1282 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1283 uint32_t all_groups) 1284 { 1285 return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct, 1286 bit_chk, all_groups, 1); 1287 } 1288 1289 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v) 1290 { 1291 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy); 1292 (*v)++; 1293 } 1294 1295 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v) 1296 { 1297 uint32_t i; 1298 1299 for (i = 0; i < VFIFO_SIZE-1; i++) 1300 rw_mgr_incr_vfifo(grp, v); 1301 } 1302 1303 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk) 1304 { 1305 uint32_t v; 1306 uint32_t fail_cnt = 0; 1307 uint32_t test_status; 1308 1309 for (v = 0; v < VFIFO_SIZE; ) { 1310 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n", 1311 __func__, __LINE__, v); 1312 test_status = rw_mgr_mem_calibrate_read_test_all_ranks 1313 (grp, 1, PASS_ONE_BIT, bit_chk, 0); 1314 if (!test_status) { 1315 fail_cnt++; 1316 1317 if (fail_cnt == 2) 1318 break; 1319 } 1320 1321 /* fiddle with FIFO */ 1322 rw_mgr_incr_vfifo(grp, &v); 1323 } 1324 1325 if (v >= VFIFO_SIZE) { 1326 /* no failing read found!! Something must have gone wrong */ 1327 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n", 1328 __func__, __LINE__); 1329 return 0; 1330 } else { 1331 return v; 1332 } 1333 } 1334 1335 /** 1336 * sdr_find_phase() - Find DQS enable phase 1337 * @working: If 1, look for working phase, if 0, look for non-working phase 1338 * @grp: Read/Write group 1339 * @v: VFIFO value 1340 * @work: Working window position 1341 * @i: Iterator 1342 * @p: DQS Phase Iterator 1343 * @max_working_cnt: Counter 1344 * 1345 * Find working or non-working DQS enable phase setting. 1346 */ 1347 static int sdr_find_phase(int working, const u32 grp, u32 *v, u32 *work, 1348 u32 *i, u32 *p, u32 *max_working_cnt) 1349 { 1350 u32 ret, bit_chk; 1351 const u32 end = VFIFO_SIZE + (working ? 0 : 1); 1352 1353 for (; *i < end; (*i)++) { 1354 if (working) 1355 *p = 0; 1356 1357 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++) { 1358 scc_mgr_set_dqs_en_phase_all_ranks(grp, *p); 1359 1360 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1361 PASS_ONE_BIT, &bit_chk, 0); 1362 if (ret) 1363 (*max_working_cnt)++; 1364 1365 if (!working) 1366 ret = !ret; 1367 1368 if (ret) 1369 return 0; 1370 1371 *work += IO_DELAY_PER_OPA_TAP; 1372 } 1373 1374 if (*p > IO_DQS_EN_PHASE_MAX) { 1375 /* Fiddle with FIFO. */ 1376 rw_mgr_incr_vfifo(grp, v); 1377 if (!working) 1378 *p = 0; 1379 } 1380 } 1381 1382 return -EINVAL; 1383 } 1384 1385 static int sdr_working_phase(uint32_t grp, 1386 uint32_t dtaps_per_ptap, uint32_t *work_bgn, 1387 uint32_t *v, uint32_t *d, uint32_t *p, 1388 uint32_t *i, uint32_t *max_working_cnt) 1389 { 1390 int ret; 1391 1392 *work_bgn = 0; 1393 1394 for (*d = 0; *d <= dtaps_per_ptap; (*d)++) { 1395 *i = 0; 1396 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d); 1397 ret = sdr_find_phase(1, grp, v, work_bgn, i, p, max_working_cnt); 1398 if (!ret) 1399 return 0; 1400 *work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1401 } 1402 1403 /* Cannot find working solution */ 1404 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n", 1405 __func__, __LINE__); 1406 return -EINVAL; 1407 } 1408 1409 static void sdr_backup_phase(uint32_t grp, 1410 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1411 uint32_t *p, uint32_t *max_working_cnt) 1412 { 1413 uint32_t found_begin = 0; 1414 uint32_t tmp_delay; 1415 u32 bit_chk; 1416 1417 /* Special case code for backing up a phase */ 1418 if (*p == 0) { 1419 *p = IO_DQS_EN_PHASE_MAX; 1420 rw_mgr_decr_vfifo(grp, v); 1421 } else { 1422 (*p)--; 1423 } 1424 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP; 1425 scc_mgr_set_dqs_en_phase_all_ranks(grp, *p); 1426 1427 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; 1428 (*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1429 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d); 1430 1431 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1432 PASS_ONE_BIT, 1433 &bit_chk, 0)) { 1434 found_begin = 1; 1435 *work_bgn = tmp_delay; 1436 break; 1437 } 1438 } 1439 1440 /* We have found a working dtap before the ptap found above */ 1441 if (found_begin == 1) 1442 (*max_working_cnt)++; 1443 1444 /* 1445 * Restore VFIFO to old state before we decremented it 1446 * (if needed). 1447 */ 1448 (*p)++; 1449 if (*p > IO_DQS_EN_PHASE_MAX) { 1450 *p = 0; 1451 rw_mgr_incr_vfifo(grp, v); 1452 } 1453 1454 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1455 } 1456 1457 static int sdr_nonworking_phase(uint32_t grp, 1458 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1459 uint32_t *p, uint32_t *i, uint32_t *max_working_cnt, 1460 uint32_t *work_end) 1461 { 1462 int ret; 1463 1464 (*p)++; 1465 *work_end += IO_DELAY_PER_OPA_TAP; 1466 if (*p > IO_DQS_EN_PHASE_MAX) { 1467 /* Fiddle with FIFO. */ 1468 *p = 0; 1469 rw_mgr_incr_vfifo(grp, v); 1470 } 1471 1472 ret = sdr_find_phase(0, grp, v, work_end, i, p, max_working_cnt); 1473 if (ret) { 1474 /* Cannot see edge of failing read. */ 1475 debug_cond(DLEVEL == 2, "%s:%d: end: failed\n", 1476 __func__, __LINE__); 1477 } 1478 1479 return ret; 1480 } 1481 1482 /** 1483 * sdr_find_window_center() - Find center of the working DQS window. 1484 * @grp: Read/Write group 1485 * @work_bgn: First working settings 1486 * @work_end: Last working settings 1487 * @val: VFIFO value 1488 * 1489 * Find center of the working DQS enable window. 1490 */ 1491 static int sdr_find_window_center(const u32 grp, const u32 work_bgn, 1492 const u32 work_end, const u32 val) 1493 { 1494 u32 bit_chk, work_mid, v = val; 1495 int tmp_delay = 0; 1496 int i, p, d; 1497 1498 work_mid = (work_bgn + work_end) / 2; 1499 1500 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n", 1501 work_bgn, work_end, work_mid); 1502 /* Get the middle delay to be less than a VFIFO delay */ 1503 tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP; 1504 1505 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay); 1506 work_mid %= tmp_delay; 1507 debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid); 1508 1509 tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP); 1510 if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP) 1511 tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP; 1512 p = tmp_delay / IO_DELAY_PER_OPA_TAP; 1513 1514 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay); 1515 1516 d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP); 1517 if (d > IO_DQS_EN_DELAY_MAX) 1518 d = IO_DQS_EN_DELAY_MAX; 1519 tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1520 1521 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay); 1522 1523 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1524 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1525 1526 /* 1527 * push vfifo until we can successfully calibrate. We can do this 1528 * because the largest possible margin in 1 VFIFO cycle. 1529 */ 1530 for (i = 0; i < VFIFO_SIZE; i++) { 1531 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n", 1532 v); 1533 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1534 PASS_ONE_BIT, 1535 &bit_chk, 0)) { 1536 debug_cond(DLEVEL == 2, 1537 "%s:%d center: found: vfifo=%u ptap=%u dtap=%u\n", 1538 __func__, __LINE__, v, p, d); 1539 return 0; 1540 } 1541 1542 /* Fiddle with FIFO. */ 1543 rw_mgr_incr_vfifo(grp, &v); 1544 } 1545 1546 debug_cond(DLEVEL == 2, "%s:%d center: failed.\n", 1547 __func__, __LINE__); 1548 return -EINVAL; 1549 } 1550 1551 /* find a good dqs enable to use */ 1552 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp) 1553 { 1554 uint32_t v, d, p, i; 1555 uint32_t max_working_cnt; 1556 uint32_t bit_chk; 1557 uint32_t dtaps_per_ptap; 1558 uint32_t work_bgn, work_end; 1559 uint32_t found_passing_read, found_failing_read, initial_failing_dtap; 1560 1561 debug("%s:%d %u\n", __func__, __LINE__, grp); 1562 1563 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 1564 1565 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1566 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); 1567 1568 /* ************************************************************** */ 1569 /* * Step 0 : Determine number of delay taps for each phase tap * */ 1570 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1571 1572 /* ********************************************************* */ 1573 /* * Step 1 : First push vfifo until we get a failing read * */ 1574 v = find_vfifo_read(grp, &bit_chk); 1575 1576 max_working_cnt = 0; 1577 1578 /* ******************************************************** */ 1579 /* * step 2: find first working phase, increment in ptaps * */ 1580 work_bgn = 0; 1581 if (sdr_working_phase(grp, dtaps_per_ptap, &work_bgn, &v, &d, 1582 &p, &i, &max_working_cnt)) 1583 return 0; 1584 1585 work_end = work_bgn; 1586 1587 /* 1588 * If d is 0 then the working window covers a phase tap and 1589 * we can follow the old procedure otherwise, we've found the beginning, 1590 * and we need to increment the dtaps until we find the end. 1591 */ 1592 if (d == 0) { 1593 /* ********************************************************* */ 1594 /* * step 3a: if we have room, back off by one and 1595 increment in dtaps * */ 1596 1597 sdr_backup_phase(grp, &work_bgn, &v, &d, &p, 1598 &max_working_cnt); 1599 1600 /* ********************************************************* */ 1601 /* * step 4a: go forward from working phase to non working 1602 phase, increment in ptaps * */ 1603 if (sdr_nonworking_phase(grp, &work_bgn, &v, &d, &p, 1604 &i, &max_working_cnt, &work_end)) 1605 return 0; 1606 1607 /* ********************************************************* */ 1608 /* * step 5a: back off one from last, increment in dtaps * */ 1609 1610 /* Special case code for backing up a phase */ 1611 if (p == 0) { 1612 p = IO_DQS_EN_PHASE_MAX; 1613 rw_mgr_decr_vfifo(grp, &v); 1614 } else { 1615 p = p - 1; 1616 } 1617 1618 work_end -= IO_DELAY_PER_OPA_TAP; 1619 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1620 1621 /* * The actual increment of dtaps is done outside of 1622 the if/else loop to share code */ 1623 d = 0; 1624 1625 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \ 1626 vfifo=%u ptap=%u\n", __func__, __LINE__, 1627 v, p); 1628 } else { 1629 /* ******************************************************* */ 1630 /* * step 3-5b: Find the right edge of the window using 1631 delay taps * */ 1632 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \ 1633 ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__, 1634 v, p, d, work_bgn); 1635 1636 work_end = work_bgn; 1637 1638 /* * The actual increment of dtaps is done outside of the 1639 if/else loop to share code */ 1640 1641 /* Only here to counterbalance a subtract later on which is 1642 not needed if this branch of the algorithm is taken */ 1643 max_working_cnt++; 1644 } 1645 1646 /* The dtap increment to find the failing edge is done here */ 1647 for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end += 1648 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1649 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1650 end-2: dtap=%u\n", __func__, __LINE__, d); 1651 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1652 1653 if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1654 PASS_ONE_BIT, 1655 &bit_chk, 0)) { 1656 break; 1657 } 1658 } 1659 1660 /* Go back to working dtap */ 1661 if (d != 0) 1662 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1663 1664 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \ 1665 ptap=%u dtap=%u end=%u\n", __func__, __LINE__, 1666 v, p, d-1, work_end); 1667 1668 if (work_end < work_bgn) { 1669 /* nil range */ 1670 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \ 1671 failed\n", __func__, __LINE__); 1672 return 0; 1673 } 1674 1675 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n", 1676 __func__, __LINE__, work_bgn, work_end); 1677 1678 /* *************************************************************** */ 1679 /* 1680 * * We need to calculate the number of dtaps that equal a ptap 1681 * * To do that we'll back up a ptap and re-find the edge of the 1682 * * window using dtaps 1683 */ 1684 1685 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \ 1686 for tracking\n", __func__, __LINE__); 1687 1688 /* Special case code for backing up a phase */ 1689 if (p == 0) { 1690 p = IO_DQS_EN_PHASE_MAX; 1691 rw_mgr_decr_vfifo(grp, &v); 1692 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1693 cycle/phase: v=%u p=%u\n", __func__, __LINE__, 1694 v, p); 1695 } else { 1696 p = p - 1; 1697 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1698 phase only: v=%u p=%u", __func__, __LINE__, 1699 v, p); 1700 } 1701 1702 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1703 1704 /* 1705 * Increase dtap until we first see a passing read (in case the 1706 * window is smaller than a ptap), 1707 * and then a failing read to mark the edge of the window again 1708 */ 1709 1710 /* Find a passing read */ 1711 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n", 1712 __func__, __LINE__); 1713 found_passing_read = 0; 1714 found_failing_read = 0; 1715 initial_failing_dtap = d; 1716 for (; d <= IO_DQS_EN_DELAY_MAX; d++) { 1717 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \ 1718 read d=%u\n", __func__, __LINE__, d); 1719 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1720 1721 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1722 PASS_ONE_BIT, 1723 &bit_chk, 0)) { 1724 found_passing_read = 1; 1725 break; 1726 } 1727 } 1728 1729 if (found_passing_read) { 1730 /* Find a failing read */ 1731 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \ 1732 read\n", __func__, __LINE__); 1733 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) { 1734 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1735 testing read d=%u\n", __func__, __LINE__, d); 1736 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1737 1738 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1739 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { 1740 found_failing_read = 1; 1741 break; 1742 } 1743 } 1744 } else { 1745 debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \ 1746 calculate dtaps", __func__, __LINE__); 1747 debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n"); 1748 } 1749 1750 /* 1751 * The dynamically calculated dtaps_per_ptap is only valid if we 1752 * found a passing/failing read. If we didn't, it means d hit the max 1753 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its 1754 * statically calculated value. 1755 */ 1756 if (found_passing_read && found_failing_read) 1757 dtaps_per_ptap = d - initial_failing_dtap; 1758 1759 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 1760 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \ 1761 - %u = %u", __func__, __LINE__, d, 1762 initial_failing_dtap, dtaps_per_ptap); 1763 1764 /* ******************************************** */ 1765 /* * step 6: Find the centre of the window * */ 1766 if (sdr_find_window_centre(grp, work_bgn, work_end, v)) 1767 return 0; /* FIXME: Old code, return 0 means failure :-( */ 1768 1769 return 1; 1770 } 1771 1772 /* per-bit deskew DQ and center */ 1773 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn, 1774 uint32_t write_group, uint32_t read_group, uint32_t test_bgn, 1775 uint32_t use_read_test, uint32_t update_fom) 1776 { 1777 uint32_t i, p, d, min_index; 1778 /* 1779 * Store these as signed since there are comparisons with 1780 * signed numbers. 1781 */ 1782 uint32_t bit_chk; 1783 uint32_t sticky_bit_chk; 1784 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1785 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1786 int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS]; 1787 int32_t mid; 1788 int32_t orig_mid_min, mid_min; 1789 int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs, 1790 final_dqs_en; 1791 int32_t dq_margin, dqs_margin; 1792 uint32_t stop; 1793 uint32_t temp_dq_in_delay1, temp_dq_in_delay2; 1794 uint32_t addr; 1795 1796 debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn); 1797 1798 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET; 1799 start_dqs = readl(addr + (read_group << 2)); 1800 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 1801 start_dqs_en = readl(addr + ((read_group << 2) 1802 - IO_DQS_EN_DELAY_OFFSET)); 1803 1804 /* set the left and right edge of each bit to an illegal value */ 1805 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */ 1806 sticky_bit_chk = 0; 1807 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1808 left_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1809 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1810 } 1811 1812 /* Search for the left edge of the window for each bit */ 1813 for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) { 1814 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d); 1815 1816 writel(0, &sdr_scc_mgr->update); 1817 1818 /* 1819 * Stop searching when the read test doesn't pass AND when 1820 * we've seen a passing read on every bit. 1821 */ 1822 if (use_read_test) { 1823 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1824 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1825 &bit_chk, 0, 0); 1826 } else { 1827 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1828 0, PASS_ONE_BIT, 1829 &bit_chk, 0); 1830 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1831 (read_group - (write_group * 1832 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1833 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1834 stop = (bit_chk == 0); 1835 } 1836 sticky_bit_chk = sticky_bit_chk | bit_chk; 1837 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1838 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \ 1839 && %u", __func__, __LINE__, d, 1840 sticky_bit_chk, 1841 param->read_correct_mask, stop); 1842 1843 if (stop == 1) { 1844 break; 1845 } else { 1846 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1847 if (bit_chk & 1) { 1848 /* Remember a passing test as the 1849 left_edge */ 1850 left_edge[i] = d; 1851 } else { 1852 /* If a left edge has not been seen yet, 1853 then a future passing test will mark 1854 this edge as the right edge */ 1855 if (left_edge[i] == 1856 IO_IO_IN_DELAY_MAX + 1) { 1857 right_edge[i] = -(d + 1); 1858 } 1859 } 1860 bit_chk = bit_chk >> 1; 1861 } 1862 } 1863 } 1864 1865 /* Reset DQ delay chains to 0 */ 1866 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 1867 sticky_bit_chk = 0; 1868 for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) { 1869 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 1870 %d right_edge[%u]: %d\n", __func__, __LINE__, 1871 i, left_edge[i], i, right_edge[i]); 1872 1873 /* 1874 * Check for cases where we haven't found the left edge, 1875 * which makes our assignment of the the right edge invalid. 1876 * Reset it to the illegal value. 1877 */ 1878 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && ( 1879 right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1880 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1881 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \ 1882 right_edge[%u]: %d\n", __func__, __LINE__, 1883 i, right_edge[i]); 1884 } 1885 1886 /* 1887 * Reset sticky bit (except for bits where we have seen 1888 * both the left and right edge). 1889 */ 1890 sticky_bit_chk = sticky_bit_chk << 1; 1891 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) && 1892 (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1893 sticky_bit_chk = sticky_bit_chk | 1; 1894 } 1895 1896 if (i == 0) 1897 break; 1898 } 1899 1900 /* Search for the right edge of the window for each bit */ 1901 for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) { 1902 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs); 1903 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 1904 uint32_t delay = d + start_dqs_en; 1905 if (delay > IO_DQS_EN_DELAY_MAX) 1906 delay = IO_DQS_EN_DELAY_MAX; 1907 scc_mgr_set_dqs_en_delay(read_group, delay); 1908 } 1909 scc_mgr_load_dqs(read_group); 1910 1911 writel(0, &sdr_scc_mgr->update); 1912 1913 /* 1914 * Stop searching when the read test doesn't pass AND when 1915 * we've seen a passing read on every bit. 1916 */ 1917 if (use_read_test) { 1918 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1919 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1920 &bit_chk, 0, 0); 1921 } else { 1922 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1923 0, PASS_ONE_BIT, 1924 &bit_chk, 0); 1925 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1926 (read_group - (write_group * 1927 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1928 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1929 stop = (bit_chk == 0); 1930 } 1931 sticky_bit_chk = sticky_bit_chk | bit_chk; 1932 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1933 1934 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \ 1935 %u && %u", __func__, __LINE__, d, 1936 sticky_bit_chk, param->read_correct_mask, stop); 1937 1938 if (stop == 1) { 1939 break; 1940 } else { 1941 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1942 if (bit_chk & 1) { 1943 /* Remember a passing test as 1944 the right_edge */ 1945 right_edge[i] = d; 1946 } else { 1947 if (d != 0) { 1948 /* If a right edge has not been 1949 seen yet, then a future passing 1950 test will mark this edge as the 1951 left edge */ 1952 if (right_edge[i] == 1953 IO_IO_IN_DELAY_MAX + 1) { 1954 left_edge[i] = -(d + 1); 1955 } 1956 } else { 1957 /* d = 0 failed, but it passed 1958 when testing the left edge, 1959 so it must be marginal, 1960 set it to -1 */ 1961 if (right_edge[i] == 1962 IO_IO_IN_DELAY_MAX + 1 && 1963 left_edge[i] != 1964 IO_IO_IN_DELAY_MAX 1965 + 1) { 1966 right_edge[i] = -1; 1967 } 1968 /* If a right edge has not been 1969 seen yet, then a future passing 1970 test will mark this edge as the 1971 left edge */ 1972 else if (right_edge[i] == 1973 IO_IO_IN_DELAY_MAX + 1974 1) { 1975 left_edge[i] = -(d + 1); 1976 } 1977 } 1978 } 1979 1980 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\ 1981 d=%u]: ", __func__, __LINE__, d); 1982 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ", 1983 (int)(bit_chk & 1), i, left_edge[i]); 1984 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 1985 right_edge[i]); 1986 bit_chk = bit_chk >> 1; 1987 } 1988 } 1989 } 1990 1991 /* Check that all bits have a window */ 1992 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1993 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 1994 %d right_edge[%u]: %d", __func__, __LINE__, 1995 i, left_edge[i], i, right_edge[i]); 1996 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i] 1997 == IO_IO_IN_DELAY_MAX + 1)) { 1998 /* 1999 * Restore delay chain settings before letting the loop 2000 * in rw_mgr_mem_calibrate_vfifo to retry different 2001 * dqs/ck relationships. 2002 */ 2003 scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs); 2004 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2005 scc_mgr_set_dqs_en_delay(read_group, 2006 start_dqs_en); 2007 } 2008 scc_mgr_load_dqs(read_group); 2009 writel(0, &sdr_scc_mgr->update); 2010 2011 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \ 2012 find edge [%u]: %d %d", __func__, __LINE__, 2013 i, left_edge[i], right_edge[i]); 2014 if (use_read_test) { 2015 set_failing_group_stage(read_group * 2016 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2017 CAL_STAGE_VFIFO, 2018 CAL_SUBSTAGE_VFIFO_CENTER); 2019 } else { 2020 set_failing_group_stage(read_group * 2021 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2022 CAL_STAGE_VFIFO_AFTER_WRITES, 2023 CAL_SUBSTAGE_VFIFO_CENTER); 2024 } 2025 return 0; 2026 } 2027 } 2028 2029 /* Find middle of window for each DQ bit */ 2030 mid_min = left_edge[0] - right_edge[0]; 2031 min_index = 0; 2032 for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2033 mid = left_edge[i] - right_edge[i]; 2034 if (mid < mid_min) { 2035 mid_min = mid; 2036 min_index = i; 2037 } 2038 } 2039 2040 /* 2041 * -mid_min/2 represents the amount that we need to move DQS. 2042 * If mid_min is odd and positive we'll need to add one to 2043 * make sure the rounding in further calculations is correct 2044 * (always bias to the right), so just add 1 for all positive values. 2045 */ 2046 if (mid_min > 0) 2047 mid_min++; 2048 2049 mid_min = mid_min / 2; 2050 2051 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n", 2052 __func__, __LINE__, mid_min, min_index); 2053 2054 /* Determine the amount we can change DQS (which is -mid_min) */ 2055 orig_mid_min = mid_min; 2056 new_dqs = start_dqs - mid_min; 2057 if (new_dqs > IO_DQS_IN_DELAY_MAX) 2058 new_dqs = IO_DQS_IN_DELAY_MAX; 2059 else if (new_dqs < 0) 2060 new_dqs = 0; 2061 2062 mid_min = start_dqs - new_dqs; 2063 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n", 2064 mid_min, new_dqs); 2065 2066 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2067 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX) 2068 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX; 2069 else if (start_dqs_en - mid_min < 0) 2070 mid_min += start_dqs_en - mid_min; 2071 } 2072 new_dqs = start_dqs - mid_min; 2073 2074 debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \ 2075 new_dqs=%d mid_min=%d\n", start_dqs, 2076 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1, 2077 new_dqs, mid_min); 2078 2079 /* Initialize data for export structures */ 2080 dqs_margin = IO_IO_IN_DELAY_MAX + 1; 2081 dq_margin = IO_IO_IN_DELAY_MAX + 1; 2082 2083 /* add delay to bring centre of all DQ windows to the same "level" */ 2084 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 2085 /* Use values before divide by 2 to reduce round off error */ 2086 shift_dq = (left_edge[i] - right_edge[i] - 2087 (left_edge[min_index] - right_edge[min_index]))/2 + 2088 (orig_mid_min - mid_min); 2089 2090 debug_cond(DLEVEL == 2, "vfifo_center: before: \ 2091 shift_dq[%u]=%d\n", i, shift_dq); 2092 2093 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET; 2094 temp_dq_in_delay1 = readl(addr + (p << 2)); 2095 temp_dq_in_delay2 = readl(addr + (i << 2)); 2096 2097 if (shift_dq + (int32_t)temp_dq_in_delay1 > 2098 (int32_t)IO_IO_IN_DELAY_MAX) { 2099 shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2; 2100 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) { 2101 shift_dq = -(int32_t)temp_dq_in_delay1; 2102 } 2103 debug_cond(DLEVEL == 2, "vfifo_center: after: \ 2104 shift_dq[%u]=%d\n", i, shift_dq); 2105 final_dq[i] = temp_dq_in_delay1 + shift_dq; 2106 scc_mgr_set_dq_in_delay(p, final_dq[i]); 2107 scc_mgr_load_dq(p); 2108 2109 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i, 2110 left_edge[i] - shift_dq + (-mid_min), 2111 right_edge[i] + shift_dq - (-mid_min)); 2112 /* To determine values for export structures */ 2113 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2114 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2115 2116 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2117 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2118 } 2119 2120 final_dqs = new_dqs; 2121 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2122 final_dqs_en = start_dqs_en - mid_min; 2123 2124 /* Move DQS-en */ 2125 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2126 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en); 2127 scc_mgr_load_dqs(read_group); 2128 } 2129 2130 /* Move DQS */ 2131 scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs); 2132 scc_mgr_load_dqs(read_group); 2133 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \ 2134 dqs_margin=%d", __func__, __LINE__, 2135 dq_margin, dqs_margin); 2136 2137 /* 2138 * Do not remove this line as it makes sure all of our decisions 2139 * have been applied. Apply the update bit. 2140 */ 2141 writel(0, &sdr_scc_mgr->update); 2142 2143 return (dq_margin >= 0) && (dqs_margin >= 0); 2144 } 2145 2146 /** 2147 * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device 2148 * @rw_group: Read/Write Group 2149 * @phase: DQ/DQS phase 2150 * 2151 * Because initially no communication ca be reliably performed with the memory 2152 * device, the sequencer uses a guaranteed write mechanism to write data into 2153 * the memory device. 2154 */ 2155 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group, 2156 const u32 phase) 2157 { 2158 int ret; 2159 2160 /* Set a particular DQ/DQS phase. */ 2161 scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase); 2162 2163 debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n", 2164 __func__, __LINE__, rw_group, phase); 2165 2166 /* 2167 * Altera EMI_RM 2015.05.04 :: Figure 1-25 2168 * Load up the patterns used by read calibration using the 2169 * current DQDQS phase. 2170 */ 2171 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2172 2173 if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ) 2174 return 0; 2175 2176 /* 2177 * Altera EMI_RM 2015.05.04 :: Figure 1-26 2178 * Back-to-Back reads of the patterns used for calibration. 2179 */ 2180 ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1); 2181 if (ret) 2182 debug_cond(DLEVEL == 1, 2183 "%s:%d Guaranteed read test failed: g=%u p=%u\n", 2184 __func__, __LINE__, rw_group, phase); 2185 return ret; 2186 } 2187 2188 /** 2189 * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration 2190 * @rw_group: Read/Write Group 2191 * @test_bgn: Rank at which the test begins 2192 * 2193 * DQS enable calibration ensures reliable capture of the DQ signal without 2194 * glitches on the DQS line. 2195 */ 2196 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group, 2197 const u32 test_bgn) 2198 { 2199 /* 2200 * Altera EMI_RM 2015.05.04 :: Figure 1-27 2201 * DQS and DQS Eanble Signal Relationships. 2202 */ 2203 2204 /* We start at zero, so have one less dq to devide among */ 2205 const u32 delay_step = IO_IO_IN_DELAY_MAX / 2206 (RW_MGR_MEM_DQ_PER_READ_DQS - 1); 2207 int found; 2208 u32 i, p, d, r; 2209 2210 debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn); 2211 2212 /* Try different dq_in_delays since the DQ path is shorter than DQS. */ 2213 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 2214 r += NUM_RANKS_PER_SHADOW_REG) { 2215 for (i = 0, p = test_bgn, d = 0; 2216 i < RW_MGR_MEM_DQ_PER_READ_DQS; 2217 i++, p++, d += delay_step) { 2218 debug_cond(DLEVEL == 1, 2219 "%s:%d: g=%u r=%u i=%u p=%u d=%u\n", 2220 __func__, __LINE__, rw_group, r, i, p, d); 2221 2222 scc_mgr_set_dq_in_delay(p, d); 2223 scc_mgr_load_dq(p); 2224 } 2225 2226 writel(0, &sdr_scc_mgr->update); 2227 } 2228 2229 /* 2230 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different 2231 * dq_in_delay values 2232 */ 2233 found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group); 2234 2235 debug_cond(DLEVEL == 1, 2236 "%s:%d: g=%u found=%u; Reseting delay chain to zero\n", 2237 __func__, __LINE__, rw_group, found); 2238 2239 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 2240 r += NUM_RANKS_PER_SHADOW_REG) { 2241 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 2242 writel(0, &sdr_scc_mgr->update); 2243 } 2244 2245 if (!found) 2246 return -EINVAL; 2247 2248 return 0; 2249 2250 } 2251 2252 /** 2253 * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS 2254 * @rw_group: Read/Write Group 2255 * @test_bgn: Rank at which the test begins 2256 * @use_read_test: Perform a read test 2257 * @update_fom: Update FOM 2258 * 2259 * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads 2260 * within a group. 2261 */ 2262 static int 2263 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn, 2264 const int use_read_test, 2265 const int update_fom) 2266 2267 { 2268 int ret, grp_calibrated; 2269 u32 rank_bgn, sr; 2270 2271 /* 2272 * Altera EMI_RM 2015.05.04 :: Figure 1-28 2273 * Read per-bit deskew can be done on a per shadow register basis. 2274 */ 2275 grp_calibrated = 1; 2276 for (rank_bgn = 0, sr = 0; 2277 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2278 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 2279 /* Check if this set of ranks should be skipped entirely. */ 2280 if (param->skip_shadow_regs[sr]) 2281 continue; 2282 2283 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group, 2284 rw_group, test_bgn, 2285 use_read_test, 2286 update_fom); 2287 if (ret) 2288 continue; 2289 2290 grp_calibrated = 0; 2291 } 2292 2293 if (!grp_calibrated) 2294 return -EIO; 2295 2296 return 0; 2297 } 2298 2299 /** 2300 * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO 2301 * @rw_group: Read/Write Group 2302 * @test_bgn: Rank at which the test begins 2303 * 2304 * Stage 1: Calibrate the read valid prediction FIFO. 2305 * 2306 * This function implements UniPHY calibration Stage 1, as explained in 2307 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 2308 * 2309 * - read valid prediction will consist of finding: 2310 * - DQS enable phase and DQS enable delay (DQS Enable Calibration) 2311 * - DQS input phase and DQS input delay (DQ/DQS Centering) 2312 * - we also do a per-bit deskew on the DQ lines. 2313 */ 2314 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn) 2315 { 2316 uint32_t p, d; 2317 uint32_t dtaps_per_ptap; 2318 uint32_t failed_substage; 2319 2320 int ret; 2321 2322 debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn); 2323 2324 /* Update info for sims */ 2325 reg_file_set_group(rw_group); 2326 reg_file_set_stage(CAL_STAGE_VFIFO); 2327 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ); 2328 2329 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ; 2330 2331 /* USER Determine number of delay taps for each phase tap. */ 2332 dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, 2333 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1; 2334 2335 for (d = 0; d <= dtaps_per_ptap; d += 2) { 2336 /* 2337 * In RLDRAMX we may be messing the delay of pins in 2338 * the same write rw_group but outside of the current read 2339 * the rw_group, but that's ok because we haven't calibrated 2340 * output side yet. 2341 */ 2342 if (d > 0) { 2343 scc_mgr_apply_group_all_out_delay_add_all_ranks( 2344 rw_group, d); 2345 } 2346 2347 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) { 2348 /* 1) Guaranteed Write */ 2349 ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p); 2350 if (ret) 2351 break; 2352 2353 /* 2) DQS Enable Calibration */ 2354 ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group, 2355 test_bgn); 2356 if (ret) { 2357 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE; 2358 continue; 2359 } 2360 2361 /* 3) Centering DQ/DQS */ 2362 /* 2363 * If doing read after write calibration, do not update 2364 * FOM now. Do it then. 2365 */ 2366 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, 2367 test_bgn, 1, 0); 2368 if (ret) { 2369 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER; 2370 continue; 2371 } 2372 2373 /* All done. */ 2374 goto cal_done_ok; 2375 } 2376 } 2377 2378 /* Calibration Stage 1 failed. */ 2379 set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage); 2380 return 0; 2381 2382 /* Calibration Stage 1 completed OK. */ 2383 cal_done_ok: 2384 /* 2385 * Reset the delay chains back to zero if they have moved > 1 2386 * (check for > 1 because loop will increase d even when pass in 2387 * first case). 2388 */ 2389 if (d > 2) 2390 scc_mgr_zero_group(rw_group, 1); 2391 2392 return 1; 2393 } 2394 2395 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */ 2396 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group, 2397 uint32_t test_bgn) 2398 { 2399 uint32_t rank_bgn, sr; 2400 uint32_t grp_calibrated; 2401 uint32_t write_group; 2402 2403 debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn); 2404 2405 /* update info for sims */ 2406 2407 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES); 2408 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 2409 2410 write_group = read_group; 2411 2412 /* update info for sims */ 2413 reg_file_set_group(read_group); 2414 2415 grp_calibrated = 1; 2416 /* Read per-bit deskew can be done on a per shadow register basis */ 2417 for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2418 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) { 2419 /* Determine if this set of ranks should be skipped entirely */ 2420 if (!param->skip_shadow_regs[sr]) { 2421 /* This is the last calibration round, update FOM here */ 2422 if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn, 2423 write_group, 2424 read_group, 2425 test_bgn, 0, 2426 1)) { 2427 grp_calibrated = 0; 2428 } 2429 } 2430 } 2431 2432 2433 if (grp_calibrated == 0) { 2434 set_failing_group_stage(write_group, 2435 CAL_STAGE_VFIFO_AFTER_WRITES, 2436 CAL_SUBSTAGE_VFIFO_CENTER); 2437 return 0; 2438 } 2439 2440 return 1; 2441 } 2442 2443 /* Calibrate LFIFO to find smallest read latency */ 2444 static uint32_t rw_mgr_mem_calibrate_lfifo(void) 2445 { 2446 uint32_t found_one; 2447 uint32_t bit_chk; 2448 2449 debug("%s:%d\n", __func__, __LINE__); 2450 2451 /* update info for sims */ 2452 reg_file_set_stage(CAL_STAGE_LFIFO); 2453 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY); 2454 2455 /* Load up the patterns used by read calibration for all ranks */ 2456 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2457 found_one = 0; 2458 2459 do { 2460 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2461 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u", 2462 __func__, __LINE__, gbl->curr_read_lat); 2463 2464 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, 2465 NUM_READ_TESTS, 2466 PASS_ALL_BITS, 2467 &bit_chk, 1)) { 2468 break; 2469 } 2470 2471 found_one = 1; 2472 /* reduce read latency and see if things are working */ 2473 /* correctly */ 2474 gbl->curr_read_lat--; 2475 } while (gbl->curr_read_lat > 0); 2476 2477 /* reset the fifos to get pointers to known state */ 2478 2479 writel(0, &phy_mgr_cmd->fifo_reset); 2480 2481 if (found_one) { 2482 /* add a fudge factor to the read latency that was determined */ 2483 gbl->curr_read_lat += 2; 2484 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2485 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \ 2486 read_lat=%u\n", __func__, __LINE__, 2487 gbl->curr_read_lat); 2488 return 1; 2489 } else { 2490 set_failing_group_stage(0xff, CAL_STAGE_LFIFO, 2491 CAL_SUBSTAGE_READ_LATENCY); 2492 2493 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \ 2494 read_lat=%u\n", __func__, __LINE__, 2495 gbl->curr_read_lat); 2496 return 0; 2497 } 2498 } 2499 2500 /* 2501 * issue write test command. 2502 * two variants are provided. one that just tests a write pattern and 2503 * another that tests datamask functionality. 2504 */ 2505 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group, 2506 uint32_t test_dm) 2507 { 2508 uint32_t mcc_instruction; 2509 uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) && 2510 ENABLE_SUPER_QUICK_CALIBRATION); 2511 uint32_t rw_wl_nop_cycles; 2512 uint32_t addr; 2513 2514 /* 2515 * Set counter and jump addresses for the right 2516 * number of NOP cycles. 2517 * The number of supported NOP cycles can range from -1 to infinity 2518 * Three different cases are handled: 2519 * 2520 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping 2521 * mechanism will be used to insert the right number of NOPs 2522 * 2523 * 2. For a number of NOP cycles equals to 0, the micro-instruction 2524 * issuing the write command will jump straight to the 2525 * micro-instruction that turns on DQS (for DDRx), or outputs write 2526 * data (for RLD), skipping 2527 * the NOP micro-instruction all together 2528 * 2529 * 3. A number of NOP cycles equal to -1 indicates that DQS must be 2530 * turned on in the same micro-instruction that issues the write 2531 * command. Then we need 2532 * to directly jump to the micro-instruction that sends out the data 2533 * 2534 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters 2535 * (2 and 3). One jump-counter (0) is used to perform multiple 2536 * write-read operations. 2537 * one counter left to issue this command in "multiple-group" mode 2538 */ 2539 2540 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles; 2541 2542 if (rw_wl_nop_cycles == -1) { 2543 /* 2544 * CNTR 2 - We want to execute the special write operation that 2545 * turns on DQS right away and then skip directly to the 2546 * instruction that sends out the data. We set the counter to a 2547 * large number so that the jump is always taken. 2548 */ 2549 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2550 2551 /* CNTR 3 - Not used */ 2552 if (test_dm) { 2553 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1; 2554 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA, 2555 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2556 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2557 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2558 } else { 2559 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1; 2560 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA, 2561 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2562 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2563 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2564 } 2565 } else if (rw_wl_nop_cycles == 0) { 2566 /* 2567 * CNTR 2 - We want to skip the NOP operation and go straight 2568 * to the DQS enable instruction. We set the counter to a large 2569 * number so that the jump is always taken. 2570 */ 2571 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2572 2573 /* CNTR 3 - Not used */ 2574 if (test_dm) { 2575 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2576 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS, 2577 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2578 } else { 2579 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2580 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS, 2581 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2582 } 2583 } else { 2584 /* 2585 * CNTR 2 - In this case we want to execute the next instruction 2586 * and NOT take the jump. So we set the counter to 0. The jump 2587 * address doesn't count. 2588 */ 2589 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2); 2590 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2591 2592 /* 2593 * CNTR 3 - Set the nop counter to the number of cycles we 2594 * need to loop for, minus 1. 2595 */ 2596 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3); 2597 if (test_dm) { 2598 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2599 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2600 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2601 } else { 2602 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2603 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2604 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2605 } 2606 } 2607 2608 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 2609 RW_MGR_RESET_READ_DATAPATH_OFFSET); 2610 2611 if (quick_write_mode) 2612 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0); 2613 else 2614 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0); 2615 2616 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 2617 2618 /* 2619 * CNTR 1 - This is used to ensure enough time elapses 2620 * for read data to come back. 2621 */ 2622 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1); 2623 2624 if (test_dm) { 2625 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT, 2626 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2627 } else { 2628 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT, 2629 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2630 } 2631 2632 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 2633 writel(mcc_instruction, addr + (group << 2)); 2634 } 2635 2636 /* Test writes, can check for a single bit pass or multiple bit pass */ 2637 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 2638 uint32_t write_group, uint32_t use_dm, uint32_t all_correct, 2639 uint32_t *bit_chk, uint32_t all_ranks) 2640 { 2641 uint32_t r; 2642 uint32_t correct_mask_vg; 2643 uint32_t tmp_bit_chk; 2644 uint32_t vg; 2645 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 2646 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 2647 uint32_t addr_rw_mgr; 2648 uint32_t base_rw_mgr; 2649 2650 *bit_chk = param->write_correct_mask; 2651 correct_mask_vg = param->write_correct_mask_vg; 2652 2653 for (r = rank_bgn; r < rank_end; r++) { 2654 if (param->skip_ranks[r]) { 2655 /* request to skip the rank */ 2656 continue; 2657 } 2658 2659 /* set rank */ 2660 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 2661 2662 tmp_bit_chk = 0; 2663 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS; 2664 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) { 2665 /* reset the fifos to get pointers to known state */ 2666 writel(0, &phy_mgr_cmd->fifo_reset); 2667 2668 tmp_bit_chk = tmp_bit_chk << 2669 (RW_MGR_MEM_DQ_PER_WRITE_DQS / 2670 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 2671 rw_mgr_mem_calibrate_write_test_issue(write_group * 2672 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg, 2673 use_dm); 2674 2675 base_rw_mgr = readl(addr_rw_mgr); 2676 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 2677 if (vg == 0) 2678 break; 2679 } 2680 *bit_chk &= tmp_bit_chk; 2681 } 2682 2683 if (all_correct) { 2684 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2685 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \ 2686 %u => %lu", write_group, use_dm, 2687 *bit_chk, param->write_correct_mask, 2688 (long unsigned int)(*bit_chk == 2689 param->write_correct_mask)); 2690 return *bit_chk == param->write_correct_mask; 2691 } else { 2692 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2693 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ", 2694 write_group, use_dm, *bit_chk); 2695 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0, 2696 (long unsigned int)(*bit_chk != 0)); 2697 return *bit_chk != 0x00; 2698 } 2699 } 2700 2701 /* 2702 * center all windows. do per-bit-deskew to possibly increase size of 2703 * certain windows. 2704 */ 2705 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn, 2706 uint32_t write_group, uint32_t test_bgn) 2707 { 2708 uint32_t i, p, min_index; 2709 int32_t d; 2710 /* 2711 * Store these as signed since there are comparisons with 2712 * signed numbers. 2713 */ 2714 uint32_t bit_chk; 2715 uint32_t sticky_bit_chk; 2716 int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2717 int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2718 int32_t mid; 2719 int32_t mid_min, orig_mid_min; 2720 int32_t new_dqs, start_dqs, shift_dq; 2721 int32_t dq_margin, dqs_margin, dm_margin; 2722 uint32_t stop; 2723 uint32_t temp_dq_out1_delay; 2724 uint32_t addr; 2725 2726 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn); 2727 2728 dm_margin = 0; 2729 2730 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2731 start_dqs = readl(addr + 2732 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 2733 2734 /* per-bit deskew */ 2735 2736 /* 2737 * set the left and right edge of each bit to an illegal value 2738 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 2739 */ 2740 sticky_bit_chk = 0; 2741 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2742 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2743 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2744 } 2745 2746 /* Search for the left edge of the window for each bit */ 2747 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) { 2748 scc_mgr_apply_group_dq_out1_delay(write_group, d); 2749 2750 writel(0, &sdr_scc_mgr->update); 2751 2752 /* 2753 * Stop searching when the read test doesn't pass AND when 2754 * we've seen a passing read on every bit. 2755 */ 2756 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2757 0, PASS_ONE_BIT, &bit_chk, 0); 2758 sticky_bit_chk = sticky_bit_chk | bit_chk; 2759 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2760 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \ 2761 == %u && %u [bit_chk= %u ]\n", 2762 d, sticky_bit_chk, param->write_correct_mask, 2763 stop, bit_chk); 2764 2765 if (stop == 1) { 2766 break; 2767 } else { 2768 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2769 if (bit_chk & 1) { 2770 /* 2771 * Remember a passing test as the 2772 * left_edge. 2773 */ 2774 left_edge[i] = d; 2775 } else { 2776 /* 2777 * If a left edge has not been seen 2778 * yet, then a future passing test will 2779 * mark this edge as the right edge. 2780 */ 2781 if (left_edge[i] == 2782 IO_IO_OUT1_DELAY_MAX + 1) { 2783 right_edge[i] = -(d + 1); 2784 } 2785 } 2786 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d); 2787 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2788 (int)(bit_chk & 1), i, left_edge[i]); 2789 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2790 right_edge[i]); 2791 bit_chk = bit_chk >> 1; 2792 } 2793 } 2794 } 2795 2796 /* Reset DQ delay chains to 0 */ 2797 scc_mgr_apply_group_dq_out1_delay(0); 2798 sticky_bit_chk = 0; 2799 for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) { 2800 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2801 %d right_edge[%u]: %d\n", __func__, __LINE__, 2802 i, left_edge[i], i, right_edge[i]); 2803 2804 /* 2805 * Check for cases where we haven't found the left edge, 2806 * which makes our assignment of the the right edge invalid. 2807 * Reset it to the illegal value. 2808 */ 2809 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) && 2810 (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) { 2811 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2812 debug_cond(DLEVEL == 2, "%s:%d write_center: reset \ 2813 right_edge[%u]: %d\n", __func__, __LINE__, 2814 i, right_edge[i]); 2815 } 2816 2817 /* 2818 * Reset sticky bit (except for bits where we have 2819 * seen the left edge). 2820 */ 2821 sticky_bit_chk = sticky_bit_chk << 1; 2822 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) 2823 sticky_bit_chk = sticky_bit_chk | 1; 2824 2825 if (i == 0) 2826 break; 2827 } 2828 2829 /* Search for the right edge of the window for each bit */ 2830 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) { 2831 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2832 d + start_dqs); 2833 2834 writel(0, &sdr_scc_mgr->update); 2835 2836 /* 2837 * Stop searching when the read test doesn't pass AND when 2838 * we've seen a passing read on every bit. 2839 */ 2840 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2841 0, PASS_ONE_BIT, &bit_chk, 0); 2842 2843 sticky_bit_chk = sticky_bit_chk | bit_chk; 2844 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2845 2846 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \ 2847 %u && %u\n", d, sticky_bit_chk, 2848 param->write_correct_mask, stop); 2849 2850 if (stop == 1) { 2851 if (d == 0) { 2852 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; 2853 i++) { 2854 /* d = 0 failed, but it passed when 2855 testing the left edge, so it must be 2856 marginal, set it to -1 */ 2857 if (right_edge[i] == 2858 IO_IO_OUT1_DELAY_MAX + 1 && 2859 left_edge[i] != 2860 IO_IO_OUT1_DELAY_MAX + 1) { 2861 right_edge[i] = -1; 2862 } 2863 } 2864 } 2865 break; 2866 } else { 2867 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2868 if (bit_chk & 1) { 2869 /* 2870 * Remember a passing test as 2871 * the right_edge. 2872 */ 2873 right_edge[i] = d; 2874 } else { 2875 if (d != 0) { 2876 /* 2877 * If a right edge has not 2878 * been seen yet, then a future 2879 * passing test will mark this 2880 * edge as the left edge. 2881 */ 2882 if (right_edge[i] == 2883 IO_IO_OUT1_DELAY_MAX + 1) 2884 left_edge[i] = -(d + 1); 2885 } else { 2886 /* 2887 * d = 0 failed, but it passed 2888 * when testing the left edge, 2889 * so it must be marginal, set 2890 * it to -1. 2891 */ 2892 if (right_edge[i] == 2893 IO_IO_OUT1_DELAY_MAX + 1 && 2894 left_edge[i] != 2895 IO_IO_OUT1_DELAY_MAX + 1) 2896 right_edge[i] = -1; 2897 /* 2898 * If a right edge has not been 2899 * seen yet, then a future 2900 * passing test will mark this 2901 * edge as the left edge. 2902 */ 2903 else if (right_edge[i] == 2904 IO_IO_OUT1_DELAY_MAX + 2905 1) 2906 left_edge[i] = -(d + 1); 2907 } 2908 } 2909 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d); 2910 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2911 (int)(bit_chk & 1), i, left_edge[i]); 2912 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2913 right_edge[i]); 2914 bit_chk = bit_chk >> 1; 2915 } 2916 } 2917 } 2918 2919 /* Check that all bits have a window */ 2920 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2921 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2922 %d right_edge[%u]: %d", __func__, __LINE__, 2923 i, left_edge[i], i, right_edge[i]); 2924 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) || 2925 (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) { 2926 set_failing_group_stage(test_bgn + i, 2927 CAL_STAGE_WRITES, 2928 CAL_SUBSTAGE_WRITES_CENTER); 2929 return 0; 2930 } 2931 } 2932 2933 /* Find middle of window for each DQ bit */ 2934 mid_min = left_edge[0] - right_edge[0]; 2935 min_index = 0; 2936 for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2937 mid = left_edge[i] - right_edge[i]; 2938 if (mid < mid_min) { 2939 mid_min = mid; 2940 min_index = i; 2941 } 2942 } 2943 2944 /* 2945 * -mid_min/2 represents the amount that we need to move DQS. 2946 * If mid_min is odd and positive we'll need to add one to 2947 * make sure the rounding in further calculations is correct 2948 * (always bias to the right), so just add 1 for all positive values. 2949 */ 2950 if (mid_min > 0) 2951 mid_min++; 2952 mid_min = mid_min / 2; 2953 debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__, 2954 __LINE__, mid_min); 2955 2956 /* Determine the amount we can change DQS (which is -mid_min) */ 2957 orig_mid_min = mid_min; 2958 new_dqs = start_dqs; 2959 mid_min = 0; 2960 debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \ 2961 mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min); 2962 /* Initialize data for export structures */ 2963 dqs_margin = IO_IO_OUT1_DELAY_MAX + 1; 2964 dq_margin = IO_IO_OUT1_DELAY_MAX + 1; 2965 2966 /* add delay to bring centre of all DQ windows to the same "level" */ 2967 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 2968 /* Use values before divide by 2 to reduce round off error */ 2969 shift_dq = (left_edge[i] - right_edge[i] - 2970 (left_edge[min_index] - right_edge[min_index]))/2 + 2971 (orig_mid_min - mid_min); 2972 2973 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \ 2974 [%u]=%d\n", __func__, __LINE__, i, shift_dq); 2975 2976 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2977 temp_dq_out1_delay = readl(addr + (i << 2)); 2978 if (shift_dq + (int32_t)temp_dq_out1_delay > 2979 (int32_t)IO_IO_OUT1_DELAY_MAX) { 2980 shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay; 2981 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) { 2982 shift_dq = -(int32_t)temp_dq_out1_delay; 2983 } 2984 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n", 2985 i, shift_dq); 2986 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq); 2987 scc_mgr_load_dq(i); 2988 2989 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i, 2990 left_edge[i] - shift_dq + (-mid_min), 2991 right_edge[i] + shift_dq - (-mid_min)); 2992 /* To determine values for export structures */ 2993 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2994 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2995 2996 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2997 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2998 } 2999 3000 /* Move DQS */ 3001 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3002 writel(0, &sdr_scc_mgr->update); 3003 3004 /* Centre DM */ 3005 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__); 3006 3007 /* 3008 * set the left and right edge of each bit to an illegal value, 3009 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value, 3010 */ 3011 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 3012 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 3013 int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3014 int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3015 int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1; 3016 int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1; 3017 int32_t win_best = 0; 3018 3019 /* Search for the/part of the window with DM shift */ 3020 for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) { 3021 scc_mgr_apply_group_dm_out1_delay(d); 3022 writel(0, &sdr_scc_mgr->update); 3023 3024 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3025 PASS_ALL_BITS, &bit_chk, 3026 0)) { 3027 /* USE Set current end of the window */ 3028 end_curr = -d; 3029 /* 3030 * If a starting edge of our window has not been seen 3031 * this is our current start of the DM window. 3032 */ 3033 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3034 bgn_curr = -d; 3035 3036 /* 3037 * If current window is bigger than best seen. 3038 * Set best seen to be current window. 3039 */ 3040 if ((end_curr-bgn_curr+1) > win_best) { 3041 win_best = end_curr-bgn_curr+1; 3042 bgn_best = bgn_curr; 3043 end_best = end_curr; 3044 } 3045 } else { 3046 /* We just saw a failing test. Reset temp edge */ 3047 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3048 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3049 } 3050 } 3051 3052 3053 /* Reset DM delay chains to 0 */ 3054 scc_mgr_apply_group_dm_out1_delay(0); 3055 3056 /* 3057 * Check to see if the current window nudges up aganist 0 delay. 3058 * If so we need to continue the search by shifting DQS otherwise DQS 3059 * search begins as a new search. */ 3060 if (end_curr != 0) { 3061 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3062 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3063 } 3064 3065 /* Search for the/part of the window with DQS shifts */ 3066 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) { 3067 /* 3068 * Note: This only shifts DQS, so are we limiting ourselve to 3069 * width of DQ unnecessarily. 3070 */ 3071 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 3072 d + new_dqs); 3073 3074 writel(0, &sdr_scc_mgr->update); 3075 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3076 PASS_ALL_BITS, &bit_chk, 3077 0)) { 3078 /* USE Set current end of the window */ 3079 end_curr = d; 3080 /* 3081 * If a beginning edge of our window has not been seen 3082 * this is our current begin of the DM window. 3083 */ 3084 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3085 bgn_curr = d; 3086 3087 /* 3088 * If current window is bigger than best seen. Set best 3089 * seen to be current window. 3090 */ 3091 if ((end_curr-bgn_curr+1) > win_best) { 3092 win_best = end_curr-bgn_curr+1; 3093 bgn_best = bgn_curr; 3094 end_best = end_curr; 3095 } 3096 } else { 3097 /* We just saw a failing test. Reset temp edge */ 3098 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3099 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3100 3101 /* Early exit optimization: if ther remaining delay 3102 chain space is less than already seen largest window 3103 we can exit */ 3104 if ((win_best-1) > 3105 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) { 3106 break; 3107 } 3108 } 3109 } 3110 3111 /* assign left and right edge for cal and reporting; */ 3112 left_edge[0] = -1*bgn_best; 3113 right_edge[0] = end_best; 3114 3115 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__, 3116 __LINE__, left_edge[0], right_edge[0]); 3117 3118 /* Move DQS (back to orig) */ 3119 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3120 3121 /* Move DM */ 3122 3123 /* Find middle of window for the DM bit */ 3124 mid = (left_edge[0] - right_edge[0]) / 2; 3125 3126 /* only move right, since we are not moving DQS/DQ */ 3127 if (mid < 0) 3128 mid = 0; 3129 3130 /* dm_marign should fail if we never find a window */ 3131 if (win_best == 0) 3132 dm_margin = -1; 3133 else 3134 dm_margin = left_edge[0] - mid; 3135 3136 scc_mgr_apply_group_dm_out1_delay(mid); 3137 writel(0, &sdr_scc_mgr->update); 3138 3139 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \ 3140 dm_margin=%d\n", __func__, __LINE__, left_edge[0], 3141 right_edge[0], mid, dm_margin); 3142 /* Export values */ 3143 gbl->fom_out += dq_margin + dqs_margin; 3144 3145 debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \ 3146 dqs_margin=%d dm_margin=%d\n", __func__, __LINE__, 3147 dq_margin, dqs_margin, dm_margin); 3148 3149 /* 3150 * Do not remove this line as it makes sure all of our 3151 * decisions have been applied. 3152 */ 3153 writel(0, &sdr_scc_mgr->update); 3154 return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0); 3155 } 3156 3157 /* calibrate the write operations */ 3158 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g, 3159 uint32_t test_bgn) 3160 { 3161 /* update info for sims */ 3162 debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn); 3163 3164 reg_file_set_stage(CAL_STAGE_WRITES); 3165 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER); 3166 3167 reg_file_set_group(g); 3168 3169 if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) { 3170 set_failing_group_stage(g, CAL_STAGE_WRITES, 3171 CAL_SUBSTAGE_WRITES_CENTER); 3172 return 0; 3173 } 3174 3175 return 1; 3176 } 3177 3178 /** 3179 * mem_precharge_and_activate() - Precharge all banks and activate 3180 * 3181 * Precharge all banks and activate row 0 in bank "000..." and bank "111...". 3182 */ 3183 static void mem_precharge_and_activate(void) 3184 { 3185 int r; 3186 3187 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 3188 /* Test if the rank should be skipped. */ 3189 if (param->skip_ranks[r]) 3190 continue; 3191 3192 /* Set rank. */ 3193 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 3194 3195 /* Precharge all banks. */ 3196 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3197 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3198 3199 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0); 3200 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1, 3201 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 3202 3203 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1); 3204 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2, 3205 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 3206 3207 /* Activate rows. */ 3208 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3209 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3210 } 3211 } 3212 3213 /** 3214 * mem_init_latency() - Configure memory RLAT and WLAT settings 3215 * 3216 * Configure memory RLAT and WLAT parameters. 3217 */ 3218 static void mem_init_latency(void) 3219 { 3220 /* 3221 * For AV/CV, LFIFO is hardened and always runs at full rate 3222 * so max latency in AFI clocks, used here, is correspondingly 3223 * smaller. 3224 */ 3225 const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1; 3226 u32 rlat, wlat; 3227 3228 debug("%s:%d\n", __func__, __LINE__); 3229 3230 /* 3231 * Read in write latency. 3232 * WL for Hard PHY does not include additive latency. 3233 */ 3234 wlat = readl(&data_mgr->t_wl_add); 3235 wlat += readl(&data_mgr->mem_t_add); 3236 3237 gbl->rw_wl_nop_cycles = wlat - 1; 3238 3239 /* Read in readl latency. */ 3240 rlat = readl(&data_mgr->t_rl_add); 3241 3242 /* Set a pretty high read latency initially. */ 3243 gbl->curr_read_lat = rlat + 16; 3244 if (gbl->curr_read_lat > max_latency) 3245 gbl->curr_read_lat = max_latency; 3246 3247 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3248 3249 /* Advertise write latency. */ 3250 writel(wlat, &phy_mgr_cfg->afi_wlat); 3251 } 3252 3253 /** 3254 * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings 3255 * 3256 * Set VFIFO and LFIFO to instant-on settings in skip calibration mode. 3257 */ 3258 static void mem_skip_calibrate(void) 3259 { 3260 uint32_t vfifo_offset; 3261 uint32_t i, j, r; 3262 3263 debug("%s:%d\n", __func__, __LINE__); 3264 /* Need to update every shadow register set used by the interface */ 3265 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 3266 r += NUM_RANKS_PER_SHADOW_REG) { 3267 /* 3268 * Set output phase alignment settings appropriate for 3269 * skip calibration. 3270 */ 3271 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3272 scc_mgr_set_dqs_en_phase(i, 0); 3273 #if IO_DLL_CHAIN_LENGTH == 6 3274 scc_mgr_set_dqdqs_output_phase(i, 6); 3275 #else 3276 scc_mgr_set_dqdqs_output_phase(i, 7); 3277 #endif 3278 /* 3279 * Case:33398 3280 * 3281 * Write data arrives to the I/O two cycles before write 3282 * latency is reached (720 deg). 3283 * -> due to bit-slip in a/c bus 3284 * -> to allow board skew where dqs is longer than ck 3285 * -> how often can this happen!? 3286 * -> can claim back some ptaps for high freq 3287 * support if we can relax this, but i digress... 3288 * 3289 * The write_clk leads mem_ck by 90 deg 3290 * The minimum ptap of the OPA is 180 deg 3291 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay 3292 * The write_clk is always delayed by 2 ptaps 3293 * 3294 * Hence, to make DQS aligned to CK, we need to delay 3295 * DQS by: 3296 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH)) 3297 * 3298 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH) 3299 * gives us the number of ptaps, which simplies to: 3300 * 3301 * (1.25 * IO_DLL_CHAIN_LENGTH - 2) 3302 */ 3303 scc_mgr_set_dqdqs_output_phase(i, 3304 1.25 * IO_DLL_CHAIN_LENGTH - 2); 3305 } 3306 writel(0xff, &sdr_scc_mgr->dqs_ena); 3307 writel(0xff, &sdr_scc_mgr->dqs_io_ena); 3308 3309 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 3310 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3311 SCC_MGR_GROUP_COUNTER_OFFSET); 3312 } 3313 writel(0xff, &sdr_scc_mgr->dq_ena); 3314 writel(0xff, &sdr_scc_mgr->dm_ena); 3315 writel(0, &sdr_scc_mgr->update); 3316 } 3317 3318 /* Compensate for simulation model behaviour */ 3319 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3320 scc_mgr_set_dqs_bus_in_delay(i, 10); 3321 scc_mgr_load_dqs(i); 3322 } 3323 writel(0, &sdr_scc_mgr->update); 3324 3325 /* 3326 * ArriaV has hard FIFOs that can only be initialized by incrementing 3327 * in sequencer. 3328 */ 3329 vfifo_offset = CALIB_VFIFO_OFFSET; 3330 for (j = 0; j < vfifo_offset; j++) 3331 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy); 3332 writel(0, &phy_mgr_cmd->fifo_reset); 3333 3334 /* 3335 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal 3336 * setting from generation-time constant. 3337 */ 3338 gbl->curr_read_lat = CALIB_LFIFO_OFFSET; 3339 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3340 } 3341 3342 /** 3343 * mem_calibrate() - Memory calibration entry point. 3344 * 3345 * Perform memory calibration. 3346 */ 3347 static uint32_t mem_calibrate(void) 3348 { 3349 uint32_t i; 3350 uint32_t rank_bgn, sr; 3351 uint32_t write_group, write_test_bgn; 3352 uint32_t read_group, read_test_bgn; 3353 uint32_t run_groups, current_run; 3354 uint32_t failing_groups = 0; 3355 uint32_t group_failed = 0; 3356 3357 const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 3358 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 3359 3360 debug("%s:%d\n", __func__, __LINE__); 3361 3362 /* Initialize the data settings */ 3363 gbl->error_substage = CAL_SUBSTAGE_NIL; 3364 gbl->error_stage = CAL_STAGE_NIL; 3365 gbl->error_group = 0xff; 3366 gbl->fom_in = 0; 3367 gbl->fom_out = 0; 3368 3369 /* Initialize WLAT and RLAT. */ 3370 mem_init_latency(); 3371 3372 /* Initialize bit slips. */ 3373 mem_precharge_and_activate(); 3374 3375 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3376 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3377 SCC_MGR_GROUP_COUNTER_OFFSET); 3378 /* Only needed once to set all groups, pins, DQ, DQS, DM. */ 3379 if (i == 0) 3380 scc_mgr_set_hhp_extras(); 3381 3382 scc_set_bypass_mode(i); 3383 } 3384 3385 /* Calibration is skipped. */ 3386 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) { 3387 /* 3388 * Set VFIFO and LFIFO to instant-on settings in skip 3389 * calibration mode. 3390 */ 3391 mem_skip_calibrate(); 3392 3393 /* 3394 * Do not remove this line as it makes sure all of our 3395 * decisions have been applied. 3396 */ 3397 writel(0, &sdr_scc_mgr->update); 3398 return 1; 3399 } 3400 3401 /* Calibration is not skipped. */ 3402 for (i = 0; i < NUM_CALIB_REPEAT; i++) { 3403 /* 3404 * Zero all delay chain/phase settings for all 3405 * groups and all shadow register sets. 3406 */ 3407 scc_mgr_zero_all(); 3408 3409 run_groups = ~param->skip_groups; 3410 3411 for (write_group = 0, write_test_bgn = 0; write_group 3412 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++, 3413 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) { 3414 3415 /* Initialize the group failure */ 3416 group_failed = 0; 3417 3418 current_run = run_groups & ((1 << 3419 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1); 3420 run_groups = run_groups >> 3421 RW_MGR_NUM_DQS_PER_WRITE_GROUP; 3422 3423 if (current_run == 0) 3424 continue; 3425 3426 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS | 3427 SCC_MGR_GROUP_COUNTER_OFFSET); 3428 scc_mgr_zero_group(write_group, 0); 3429 3430 for (read_group = write_group * rwdqs_ratio, 3431 read_test_bgn = 0; 3432 read_group < (write_group + 1) * rwdqs_ratio; 3433 read_group++, 3434 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3435 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO) 3436 continue; 3437 3438 /* Calibrate the VFIFO */ 3439 if (rw_mgr_mem_calibrate_vfifo(read_group, 3440 read_test_bgn)) 3441 continue; 3442 3443 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3444 return 0; 3445 3446 /* The group failed, we're done. */ 3447 goto grp_failed; 3448 } 3449 3450 /* Calibrate the output side */ 3451 for (rank_bgn = 0, sr = 0; 3452 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 3453 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 3454 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3455 continue; 3456 3457 /* Not needed in quick mode! */ 3458 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) 3459 continue; 3460 3461 /* 3462 * Determine if this set of ranks 3463 * should be skipped entirely. 3464 */ 3465 if (param->skip_shadow_regs[sr]) 3466 continue; 3467 3468 /* Calibrate WRITEs */ 3469 if (rw_mgr_mem_calibrate_writes(rank_bgn, 3470 write_group, write_test_bgn)) 3471 continue; 3472 3473 group_failed = 1; 3474 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3475 return 0; 3476 } 3477 3478 /* Some group failed, we're done. */ 3479 if (group_failed) 3480 goto grp_failed; 3481 3482 for (read_group = write_group * rwdqs_ratio, 3483 read_test_bgn = 0; 3484 read_group < (write_group + 1) * rwdqs_ratio; 3485 read_group++, 3486 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3487 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3488 continue; 3489 3490 if (rw_mgr_mem_calibrate_vfifo_end(read_group, 3491 read_test_bgn)) 3492 continue; 3493 3494 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3495 return 0; 3496 3497 /* The group failed, we're done. */ 3498 goto grp_failed; 3499 } 3500 3501 /* No group failed, continue as usual. */ 3502 continue; 3503 3504 grp_failed: /* A group failed, increment the counter. */ 3505 failing_groups++; 3506 } 3507 3508 /* 3509 * USER If there are any failing groups then report 3510 * the failure. 3511 */ 3512 if (failing_groups != 0) 3513 return 0; 3514 3515 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO) 3516 continue; 3517 3518 /* 3519 * If we're skipping groups as part of debug, 3520 * don't calibrate LFIFO. 3521 */ 3522 if (param->skip_groups != 0) 3523 continue; 3524 3525 /* Calibrate the LFIFO */ 3526 if (!rw_mgr_mem_calibrate_lfifo()) 3527 return 0; 3528 } 3529 3530 /* 3531 * Do not remove this line as it makes sure all of our decisions 3532 * have been applied. 3533 */ 3534 writel(0, &sdr_scc_mgr->update); 3535 return 1; 3536 } 3537 3538 /** 3539 * run_mem_calibrate() - Perform memory calibration 3540 * 3541 * This function triggers the entire memory calibration procedure. 3542 */ 3543 static int run_mem_calibrate(void) 3544 { 3545 int pass; 3546 3547 debug("%s:%d\n", __func__, __LINE__); 3548 3549 /* Reset pass/fail status shown on afi_cal_success/fail */ 3550 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status); 3551 3552 /* Stop tracking manager. */ 3553 clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3554 3555 phy_mgr_initialize(); 3556 rw_mgr_mem_initialize(); 3557 3558 /* Perform the actual memory calibration. */ 3559 pass = mem_calibrate(); 3560 3561 mem_precharge_and_activate(); 3562 writel(0, &phy_mgr_cmd->fifo_reset); 3563 3564 /* Handoff. */ 3565 rw_mgr_mem_handoff(); 3566 /* 3567 * In Hard PHY this is a 2-bit control: 3568 * 0: AFI Mux Select 3569 * 1: DDIO Mux Select 3570 */ 3571 writel(0x2, &phy_mgr_cfg->mux_sel); 3572 3573 /* Start tracking manager. */ 3574 setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3575 3576 return pass; 3577 } 3578 3579 /** 3580 * debug_mem_calibrate() - Report result of memory calibration 3581 * @pass: Value indicating whether calibration passed or failed 3582 * 3583 * This function reports the results of the memory calibration 3584 * and writes debug information into the register file. 3585 */ 3586 static void debug_mem_calibrate(int pass) 3587 { 3588 uint32_t debug_info; 3589 3590 if (pass) { 3591 printf("%s: CALIBRATION PASSED\n", __FILE__); 3592 3593 gbl->fom_in /= 2; 3594 gbl->fom_out /= 2; 3595 3596 if (gbl->fom_in > 0xff) 3597 gbl->fom_in = 0xff; 3598 3599 if (gbl->fom_out > 0xff) 3600 gbl->fom_out = 0xff; 3601 3602 /* Update the FOM in the register file */ 3603 debug_info = gbl->fom_in; 3604 debug_info |= gbl->fom_out << 8; 3605 writel(debug_info, &sdr_reg_file->fom); 3606 3607 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3608 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status); 3609 } else { 3610 printf("%s: CALIBRATION FAILED\n", __FILE__); 3611 3612 debug_info = gbl->error_stage; 3613 debug_info |= gbl->error_substage << 8; 3614 debug_info |= gbl->error_group << 16; 3615 3616 writel(debug_info, &sdr_reg_file->failing_stage); 3617 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3618 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status); 3619 3620 /* Update the failing group/stage in the register file */ 3621 debug_info = gbl->error_stage; 3622 debug_info |= gbl->error_substage << 8; 3623 debug_info |= gbl->error_group << 16; 3624 writel(debug_info, &sdr_reg_file->failing_stage); 3625 } 3626 3627 printf("%s: Calibration complete\n", __FILE__); 3628 } 3629 3630 /** 3631 * hc_initialize_rom_data() - Initialize ROM data 3632 * 3633 * Initialize ROM data. 3634 */ 3635 static void hc_initialize_rom_data(void) 3636 { 3637 u32 i, addr; 3638 3639 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET; 3640 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++) 3641 writel(inst_rom_init[i], addr + (i << 2)); 3642 3643 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET; 3644 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++) 3645 writel(ac_rom_init[i], addr + (i << 2)); 3646 } 3647 3648 /** 3649 * initialize_reg_file() - Initialize SDR register file 3650 * 3651 * Initialize SDR register file. 3652 */ 3653 static void initialize_reg_file(void) 3654 { 3655 /* Initialize the register file with the correct data */ 3656 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature); 3657 writel(0, &sdr_reg_file->debug_data_addr); 3658 writel(0, &sdr_reg_file->cur_stage); 3659 writel(0, &sdr_reg_file->fom); 3660 writel(0, &sdr_reg_file->failing_stage); 3661 writel(0, &sdr_reg_file->debug1); 3662 writel(0, &sdr_reg_file->debug2); 3663 } 3664 3665 /** 3666 * initialize_hps_phy() - Initialize HPS PHY 3667 * 3668 * Initialize HPS PHY. 3669 */ 3670 static void initialize_hps_phy(void) 3671 { 3672 uint32_t reg; 3673 /* 3674 * Tracking also gets configured here because it's in the 3675 * same register. 3676 */ 3677 uint32_t trk_sample_count = 7500; 3678 uint32_t trk_long_idle_sample_count = (10 << 16) | 100; 3679 /* 3680 * Format is number of outer loops in the 16 MSB, sample 3681 * count in 16 LSB. 3682 */ 3683 3684 reg = 0; 3685 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2); 3686 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1); 3687 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1); 3688 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1); 3689 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0); 3690 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1); 3691 /* 3692 * This field selects the intrinsic latency to RDATA_EN/FULL path. 3693 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles. 3694 */ 3695 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0); 3696 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET( 3697 trk_sample_count); 3698 writel(reg, &sdr_ctrl->phy_ctrl0); 3699 3700 reg = 0; 3701 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET( 3702 trk_sample_count >> 3703 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH); 3704 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET( 3705 trk_long_idle_sample_count); 3706 writel(reg, &sdr_ctrl->phy_ctrl1); 3707 3708 reg = 0; 3709 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET( 3710 trk_long_idle_sample_count >> 3711 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH); 3712 writel(reg, &sdr_ctrl->phy_ctrl2); 3713 } 3714 3715 /** 3716 * initialize_tracking() - Initialize tracking 3717 * 3718 * Initialize the register file with usable initial data. 3719 */ 3720 static void initialize_tracking(void) 3721 { 3722 /* 3723 * Initialize the register file with the correct data. 3724 * Compute usable version of value in case we skip full 3725 * computation later. 3726 */ 3727 writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1, 3728 &sdr_reg_file->dtaps_per_ptap); 3729 3730 /* trk_sample_count */ 3731 writel(7500, &sdr_reg_file->trk_sample_count); 3732 3733 /* longidle outer loop [15:0] */ 3734 writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle); 3735 3736 /* 3737 * longidle sample count [31:24] 3738 * trfc, worst case of 933Mhz 4Gb [23:16] 3739 * trcd, worst case [15:8] 3740 * vfifo wait [7:0] 3741 */ 3742 writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0), 3743 &sdr_reg_file->delays); 3744 3745 /* mux delay */ 3746 writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) | 3747 (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0), 3748 &sdr_reg_file->trk_rw_mgr_addr); 3749 3750 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, 3751 &sdr_reg_file->trk_read_dqs_width); 3752 3753 /* trefi [7:0] */ 3754 writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0), 3755 &sdr_reg_file->trk_rfsh); 3756 } 3757 3758 int sdram_calibration_full(void) 3759 { 3760 struct param_type my_param; 3761 struct gbl_type my_gbl; 3762 uint32_t pass; 3763 3764 memset(&my_param, 0, sizeof(my_param)); 3765 memset(&my_gbl, 0, sizeof(my_gbl)); 3766 3767 param = &my_param; 3768 gbl = &my_gbl; 3769 3770 /* Set the calibration enabled by default */ 3771 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT; 3772 /* 3773 * Only sweep all groups (regardless of fail state) by default 3774 * Set enabled read test by default. 3775 */ 3776 #if DISABLE_GUARANTEED_READ 3777 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ; 3778 #endif 3779 /* Initialize the register file */ 3780 initialize_reg_file(); 3781 3782 /* Initialize any PHY CSR */ 3783 initialize_hps_phy(); 3784 3785 scc_mgr_initialize(); 3786 3787 initialize_tracking(); 3788 3789 printf("%s: Preparing to start memory calibration\n", __FILE__); 3790 3791 debug("%s:%d\n", __func__, __LINE__); 3792 debug_cond(DLEVEL == 1, 3793 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ", 3794 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM, 3795 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS, 3796 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS, 3797 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 3798 debug_cond(DLEVEL == 1, 3799 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ", 3800 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3801 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH, 3802 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP); 3803 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u", 3804 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH); 3805 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ", 3806 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX, 3807 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX); 3808 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ", 3809 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX, 3810 IO_IO_OUT2_DELAY_MAX); 3811 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n", 3812 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE); 3813 3814 hc_initialize_rom_data(); 3815 3816 /* update info for sims */ 3817 reg_file_set_stage(CAL_STAGE_NIL); 3818 reg_file_set_group(0); 3819 3820 /* 3821 * Load global needed for those actions that require 3822 * some dynamic calibration support. 3823 */ 3824 dyn_calib_steps = STATIC_CALIB_STEPS; 3825 /* 3826 * Load global to allow dynamic selection of delay loop settings 3827 * based on calibration mode. 3828 */ 3829 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS)) 3830 skip_delay_mask = 0xff; 3831 else 3832 skip_delay_mask = 0x0; 3833 3834 pass = run_mem_calibrate(); 3835 debug_mem_calibrate(pass); 3836 return pass; 3837 } 3838