xref: /openbmc/u-boot/drivers/ddr/altera/sequencer.c (revision 192d6f9fa3c3f06f27141ea79ad0642c5a23faa0)
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6 
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include <errno.h>
11 #include "sequencer.h"
12 #include "sequencer_auto.h"
13 #include "sequencer_auto_ac_init.h"
14 #include "sequencer_auto_inst_init.h"
15 #include "sequencer_defines.h"
16 
17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
18 	(struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
19 
20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
21 	(struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
22 
23 static struct socfpga_sdr_reg_file *sdr_reg_file =
24 	(struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
25 
26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
27 	(struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
28 
29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
30 	(struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
31 
32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
33 	(struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
34 
35 static struct socfpga_data_mgr *data_mgr =
36 	(struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
37 
38 static struct socfpga_sdr_ctrl *sdr_ctrl =
39 	(struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
40 
41 #define DELTA_D		1
42 
43 /*
44  * In order to reduce ROM size, most of the selectable calibration steps are
45  * decided at compile time based on the user's calibration mode selection,
46  * as captured by the STATIC_CALIB_STEPS selection below.
47  *
48  * However, to support simulation-time selection of fast simulation mode, where
49  * we skip everything except the bare minimum, we need a few of the steps to
50  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
51  * check, which is based on the rtl-supplied value, or we dynamically compute
52  * the value to use based on the dynamically-chosen calibration mode
53  */
54 
55 #define DLEVEL 0
56 #define STATIC_IN_RTL_SIM 0
57 #define STATIC_SKIP_DELAY_LOOPS 0
58 
59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
60 	STATIC_SKIP_DELAY_LOOPS)
61 
62 /* calibration steps requested by the rtl */
63 uint16_t dyn_calib_steps;
64 
65 /*
66  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
67  * instead of static, we use boolean logic to select between
68  * non-skip and skip values
69  *
70  * The mask is set to include all bits when not-skipping, but is
71  * zero when skipping
72  */
73 
74 uint16_t skip_delay_mask;	/* mask off bits when skipping/not-skipping */
75 
76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
77 	((non_skip_value) & skip_delay_mask)
78 
79 struct gbl_type *gbl;
80 struct param_type *param;
81 uint32_t curr_shadow_reg;
82 
83 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
84 	uint32_t write_group, uint32_t use_dm,
85 	uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
86 
87 static void set_failing_group_stage(uint32_t group, uint32_t stage,
88 	uint32_t substage)
89 {
90 	/*
91 	 * Only set the global stage if there was not been any other
92 	 * failing group
93 	 */
94 	if (gbl->error_stage == CAL_STAGE_NIL)	{
95 		gbl->error_substage = substage;
96 		gbl->error_stage = stage;
97 		gbl->error_group = group;
98 	}
99 }
100 
101 static void reg_file_set_group(u16 set_group)
102 {
103 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
104 }
105 
106 static void reg_file_set_stage(u8 set_stage)
107 {
108 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
109 }
110 
111 static void reg_file_set_sub_stage(u8 set_sub_stage)
112 {
113 	set_sub_stage &= 0xff;
114 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
115 }
116 
117 /**
118  * phy_mgr_initialize() - Initialize PHY Manager
119  *
120  * Initialize PHY Manager.
121  */
122 static void phy_mgr_initialize(void)
123 {
124 	u32 ratio;
125 
126 	debug("%s:%d\n", __func__, __LINE__);
127 	/* Calibration has control over path to memory */
128 	/*
129 	 * In Hard PHY this is a 2-bit control:
130 	 * 0: AFI Mux Select
131 	 * 1: DDIO Mux Select
132 	 */
133 	writel(0x3, &phy_mgr_cfg->mux_sel);
134 
135 	/* USER memory clock is not stable we begin initialization  */
136 	writel(0, &phy_mgr_cfg->reset_mem_stbl);
137 
138 	/* USER calibration status all set to zero */
139 	writel(0, &phy_mgr_cfg->cal_status);
140 
141 	writel(0, &phy_mgr_cfg->cal_debug_info);
142 
143 	/* Init params only if we do NOT skip calibration. */
144 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
145 		return;
146 
147 	ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
148 		RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
149 	param->read_correct_mask_vg = (1 << ratio) - 1;
150 	param->write_correct_mask_vg = (1 << ratio) - 1;
151 	param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
152 	param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
153 	ratio = RW_MGR_MEM_DATA_WIDTH /
154 		RW_MGR_MEM_DATA_MASK_WIDTH;
155 	param->dm_correct_mask = (1 << ratio) - 1;
156 }
157 
158 /**
159  * set_rank_and_odt_mask() - Set Rank and ODT mask
160  * @rank:	Rank mask
161  * @odt_mode:	ODT mode, OFF or READ_WRITE
162  *
163  * Set Rank and ODT mask (On-Die Termination).
164  */
165 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
166 {
167 	u32 odt_mask_0 = 0;
168 	u32 odt_mask_1 = 0;
169 	u32 cs_and_odt_mask;
170 
171 	if (odt_mode == RW_MGR_ODT_MODE_OFF) {
172 		odt_mask_0 = 0x0;
173 		odt_mask_1 = 0x0;
174 	} else {	/* RW_MGR_ODT_MODE_READ_WRITE */
175 		switch (RW_MGR_MEM_NUMBER_OF_RANKS) {
176 		case 1:	/* 1 Rank */
177 			/* Read: ODT = 0 ; Write: ODT = 1 */
178 			odt_mask_0 = 0x0;
179 			odt_mask_1 = 0x1;
180 			break;
181 		case 2:	/* 2 Ranks */
182 			if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
183 				/*
184 				 * - Dual-Slot , Single-Rank (1 CS per DIMM)
185 				 *   OR
186 				 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
187 				 *
188 				 * Since MEM_NUMBER_OF_RANKS is 2, they
189 				 * are both single rank with 2 CS each
190 				 * (special for RDIMM).
191 				 *
192 				 * Read: Turn on ODT on the opposite rank
193 				 * Write: Turn on ODT on all ranks
194 				 */
195 				odt_mask_0 = 0x3 & ~(1 << rank);
196 				odt_mask_1 = 0x3;
197 			} else {
198 				/*
199 				 * - Single-Slot , Dual-Rank (2 CS per DIMM)
200 				 *
201 				 * Read: Turn on ODT off on all ranks
202 				 * Write: Turn on ODT on active rank
203 				 */
204 				odt_mask_0 = 0x0;
205 				odt_mask_1 = 0x3 & (1 << rank);
206 			}
207 			break;
208 		case 4:	/* 4 Ranks */
209 			/* Read:
210 			 * ----------+-----------------------+
211 			 *           |         ODT           |
212 			 * Read From +-----------------------+
213 			 *   Rank    |  3  |  2  |  1  |  0  |
214 			 * ----------+-----+-----+-----+-----+
215 			 *     0     |  0  |  1  |  0  |  0  |
216 			 *     1     |  1  |  0  |  0  |  0  |
217 			 *     2     |  0  |  0  |  0  |  1  |
218 			 *     3     |  0  |  0  |  1  |  0  |
219 			 * ----------+-----+-----+-----+-----+
220 			 *
221 			 * Write:
222 			 * ----------+-----------------------+
223 			 *           |         ODT           |
224 			 * Write To  +-----------------------+
225 			 *   Rank    |  3  |  2  |  1  |  0  |
226 			 * ----------+-----+-----+-----+-----+
227 			 *     0     |  0  |  1  |  0  |  1  |
228 			 *     1     |  1  |  0  |  1  |  0  |
229 			 *     2     |  0  |  1  |  0  |  1  |
230 			 *     3     |  1  |  0  |  1  |  0  |
231 			 * ----------+-----+-----+-----+-----+
232 			 */
233 			switch (rank) {
234 			case 0:
235 				odt_mask_0 = 0x4;
236 				odt_mask_1 = 0x5;
237 				break;
238 			case 1:
239 				odt_mask_0 = 0x8;
240 				odt_mask_1 = 0xA;
241 				break;
242 			case 2:
243 				odt_mask_0 = 0x1;
244 				odt_mask_1 = 0x5;
245 				break;
246 			case 3:
247 				odt_mask_0 = 0x2;
248 				odt_mask_1 = 0xA;
249 				break;
250 			}
251 			break;
252 		}
253 	}
254 
255 	cs_and_odt_mask = (0xFF & ~(1 << rank)) |
256 			  ((0xFF & odt_mask_0) << 8) |
257 			  ((0xFF & odt_mask_1) << 16);
258 	writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
259 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
260 }
261 
262 /**
263  * scc_mgr_set() - Set SCC Manager register
264  * @off:	Base offset in SCC Manager space
265  * @grp:	Read/Write group
266  * @val:	Value to be set
267  *
268  * This function sets the SCC Manager (Scan Chain Control Manager) register.
269  */
270 static void scc_mgr_set(u32 off, u32 grp, u32 val)
271 {
272 	writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
273 }
274 
275 /**
276  * scc_mgr_initialize() - Initialize SCC Manager registers
277  *
278  * Initialize SCC Manager registers.
279  */
280 static void scc_mgr_initialize(void)
281 {
282 	/*
283 	 * Clear register file for HPS. 16 (2^4) is the size of the
284 	 * full register file in the scc mgr:
285 	 *	RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
286 	 *                             MEM_IF_READ_DQS_WIDTH - 1);
287 	 */
288 	int i;
289 
290 	for (i = 0; i < 16; i++) {
291 		debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
292 			   __func__, __LINE__, i);
293 		scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
294 	}
295 }
296 
297 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
298 {
299 	scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
300 }
301 
302 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
303 {
304 	scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
305 }
306 
307 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
308 {
309 	scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
310 }
311 
312 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
313 {
314 	scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
315 }
316 
317 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
318 {
319 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
320 		    delay);
321 }
322 
323 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
324 {
325 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
326 }
327 
328 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
329 {
330 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
331 }
332 
333 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
334 {
335 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
336 		    delay);
337 }
338 
339 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
340 {
341 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
342 		    RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
343 		    delay);
344 }
345 
346 /* load up dqs config settings */
347 static void scc_mgr_load_dqs(uint32_t dqs)
348 {
349 	writel(dqs, &sdr_scc_mgr->dqs_ena);
350 }
351 
352 /* load up dqs io config settings */
353 static void scc_mgr_load_dqs_io(void)
354 {
355 	writel(0, &sdr_scc_mgr->dqs_io_ena);
356 }
357 
358 /* load up dq config settings */
359 static void scc_mgr_load_dq(uint32_t dq_in_group)
360 {
361 	writel(dq_in_group, &sdr_scc_mgr->dq_ena);
362 }
363 
364 /* load up dm config settings */
365 static void scc_mgr_load_dm(uint32_t dm)
366 {
367 	writel(dm, &sdr_scc_mgr->dm_ena);
368 }
369 
370 /**
371  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
372  * @off:	Base offset in SCC Manager space
373  * @grp:	Read/Write group
374  * @val:	Value to be set
375  * @update:	If non-zero, trigger SCC Manager update for all ranks
376  *
377  * This function sets the SCC Manager (Scan Chain Control Manager) register
378  * and optionally triggers the SCC update for all ranks.
379  */
380 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
381 				  const int update)
382 {
383 	u32 r;
384 
385 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
386 	     r += NUM_RANKS_PER_SHADOW_REG) {
387 		scc_mgr_set(off, grp, val);
388 
389 		if (update || (r == 0)) {
390 			writel(grp, &sdr_scc_mgr->dqs_ena);
391 			writel(0, &sdr_scc_mgr->update);
392 		}
393 	}
394 }
395 
396 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
397 {
398 	/*
399 	 * USER although the h/w doesn't support different phases per
400 	 * shadow register, for simplicity our scc manager modeling
401 	 * keeps different phase settings per shadow reg, and it's
402 	 * important for us to keep them in sync to match h/w.
403 	 * for efficiency, the scan chain update should occur only
404 	 * once to sr0.
405 	 */
406 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
407 			      read_group, phase, 0);
408 }
409 
410 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
411 						     uint32_t phase)
412 {
413 	/*
414 	 * USER although the h/w doesn't support different phases per
415 	 * shadow register, for simplicity our scc manager modeling
416 	 * keeps different phase settings per shadow reg, and it's
417 	 * important for us to keep them in sync to match h/w.
418 	 * for efficiency, the scan chain update should occur only
419 	 * once to sr0.
420 	 */
421 	scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
422 			      write_group, phase, 0);
423 }
424 
425 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
426 					       uint32_t delay)
427 {
428 	/*
429 	 * In shadow register mode, the T11 settings are stored in
430 	 * registers in the core, which are updated by the DQS_ENA
431 	 * signals. Not issuing the SCC_MGR_UPD command allows us to
432 	 * save lots of rank switching overhead, by calling
433 	 * select_shadow_regs_for_update with update_scan_chains
434 	 * set to 0.
435 	 */
436 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
437 			      read_group, delay, 1);
438 	writel(0, &sdr_scc_mgr->update);
439 }
440 
441 /**
442  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
443  * @write_group:	Write group
444  * @delay:		Delay value
445  *
446  * This function sets the OCT output delay in SCC manager.
447  */
448 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
449 {
450 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
451 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
452 	const int base = write_group * ratio;
453 	int i;
454 	/*
455 	 * Load the setting in the SCC manager
456 	 * Although OCT affects only write data, the OCT delay is controlled
457 	 * by the DQS logic block which is instantiated once per read group.
458 	 * For protocols where a write group consists of multiple read groups,
459 	 * the setting must be set multiple times.
460 	 */
461 	for (i = 0; i < ratio; i++)
462 		scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
463 }
464 
465 /**
466  * scc_mgr_set_hhp_extras() - Set HHP extras.
467  *
468  * Load the fixed setting in the SCC manager HHP extras.
469  */
470 static void scc_mgr_set_hhp_extras(void)
471 {
472 	/*
473 	 * Load the fixed setting in the SCC manager
474 	 * bits: 0:0 = 1'b1	- DQS bypass
475 	 * bits: 1:1 = 1'b1	- DQ bypass
476 	 * bits: 4:2 = 3'b001	- rfifo_mode
477 	 * bits: 6:5 = 2'b01	- rfifo clock_select
478 	 * bits: 7:7 = 1'b0	- separate gating from ungating setting
479 	 * bits: 8:8 = 1'b0	- separate OE from Output delay setting
480 	 */
481 	const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
482 			  (1 << 2) | (1 << 1) | (1 << 0);
483 	const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
484 			 SCC_MGR_HHP_GLOBALS_OFFSET |
485 			 SCC_MGR_HHP_EXTRAS_OFFSET;
486 
487 	debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
488 		   __func__, __LINE__);
489 	writel(value, addr);
490 	debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
491 		   __func__, __LINE__);
492 }
493 
494 /**
495  * scc_mgr_zero_all() - Zero all DQS config
496  *
497  * Zero all DQS config.
498  */
499 static void scc_mgr_zero_all(void)
500 {
501 	int i, r;
502 
503 	/*
504 	 * USER Zero all DQS config settings, across all groups and all
505 	 * shadow registers
506 	 */
507 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
508 	     r += NUM_RANKS_PER_SHADOW_REG) {
509 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
510 			/*
511 			 * The phases actually don't exist on a per-rank basis,
512 			 * but there's no harm updating them several times, so
513 			 * let's keep the code simple.
514 			 */
515 			scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
516 			scc_mgr_set_dqs_en_phase(i, 0);
517 			scc_mgr_set_dqs_en_delay(i, 0);
518 		}
519 
520 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
521 			scc_mgr_set_dqdqs_output_phase(i, 0);
522 			/* Arria V/Cyclone V don't have out2. */
523 			scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
524 		}
525 	}
526 
527 	/* Multicast to all DQS group enables. */
528 	writel(0xff, &sdr_scc_mgr->dqs_ena);
529 	writel(0, &sdr_scc_mgr->update);
530 }
531 
532 /**
533  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
534  * @write_group:	Write group
535  *
536  * Set bypass mode and trigger SCC update.
537  */
538 static void scc_set_bypass_mode(const u32 write_group)
539 {
540 	/* Multicast to all DQ enables. */
541 	writel(0xff, &sdr_scc_mgr->dq_ena);
542 	writel(0xff, &sdr_scc_mgr->dm_ena);
543 
544 	/* Update current DQS IO enable. */
545 	writel(0, &sdr_scc_mgr->dqs_io_ena);
546 
547 	/* Update the DQS logic. */
548 	writel(write_group, &sdr_scc_mgr->dqs_ena);
549 
550 	/* Hit update. */
551 	writel(0, &sdr_scc_mgr->update);
552 }
553 
554 /**
555  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
556  * @write_group:	Write group
557  *
558  * Load DQS settings for Write Group, do not trigger SCC update.
559  */
560 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
561 {
562 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
563 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
564 	const int base = write_group * ratio;
565 	int i;
566 	/*
567 	 * Load the setting in the SCC manager
568 	 * Although OCT affects only write data, the OCT delay is controlled
569 	 * by the DQS logic block which is instantiated once per read group.
570 	 * For protocols where a write group consists of multiple read groups,
571 	 * the setting must be set multiple times.
572 	 */
573 	for (i = 0; i < ratio; i++)
574 		writel(base + i, &sdr_scc_mgr->dqs_ena);
575 }
576 
577 /**
578  * scc_mgr_zero_group() - Zero all configs for a group
579  *
580  * Zero DQ, DM, DQS and OCT configs for a group.
581  */
582 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
583 {
584 	int i, r;
585 
586 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
587 	     r += NUM_RANKS_PER_SHADOW_REG) {
588 		/* Zero all DQ config settings. */
589 		for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
590 			scc_mgr_set_dq_out1_delay(i, 0);
591 			if (!out_only)
592 				scc_mgr_set_dq_in_delay(i, 0);
593 		}
594 
595 		/* Multicast to all DQ enables. */
596 		writel(0xff, &sdr_scc_mgr->dq_ena);
597 
598 		/* Zero all DM config settings. */
599 		for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
600 			scc_mgr_set_dm_out1_delay(i, 0);
601 
602 		/* Multicast to all DM enables. */
603 		writel(0xff, &sdr_scc_mgr->dm_ena);
604 
605 		/* Zero all DQS IO settings. */
606 		if (!out_only)
607 			scc_mgr_set_dqs_io_in_delay(0);
608 
609 		/* Arria V/Cyclone V don't have out2. */
610 		scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
611 		scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
612 		scc_mgr_load_dqs_for_write_group(write_group);
613 
614 		/* Multicast to all DQS IO enables (only 1 in total). */
615 		writel(0, &sdr_scc_mgr->dqs_io_ena);
616 
617 		/* Hit update to zero everything. */
618 		writel(0, &sdr_scc_mgr->update);
619 	}
620 }
621 
622 /*
623  * apply and load a particular input delay for the DQ pins in a group
624  * group_bgn is the index of the first dq pin (in the write group)
625  */
626 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
627 {
628 	uint32_t i, p;
629 
630 	for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
631 		scc_mgr_set_dq_in_delay(p, delay);
632 		scc_mgr_load_dq(p);
633 	}
634 }
635 
636 /**
637  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
638  * @delay:		Delay value
639  *
640  * Apply and load a particular output delay for the DQ pins in a group.
641  */
642 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
643 {
644 	int i;
645 
646 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
647 		scc_mgr_set_dq_out1_delay(i, delay);
648 		scc_mgr_load_dq(i);
649 	}
650 }
651 
652 /* apply and load a particular output delay for the DM pins in a group */
653 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
654 {
655 	uint32_t i;
656 
657 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
658 		scc_mgr_set_dm_out1_delay(i, delay1);
659 		scc_mgr_load_dm(i);
660 	}
661 }
662 
663 
664 /* apply and load delay on both DQS and OCT out1 */
665 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
666 						    uint32_t delay)
667 {
668 	scc_mgr_set_dqs_out1_delay(delay);
669 	scc_mgr_load_dqs_io();
670 
671 	scc_mgr_set_oct_out1_delay(write_group, delay);
672 	scc_mgr_load_dqs_for_write_group(write_group);
673 }
674 
675 /**
676  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
677  * @write_group:	Write group
678  * @delay:		Delay value
679  *
680  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
681  */
682 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
683 						  const u32 delay)
684 {
685 	u32 i, new_delay;
686 
687 	/* DQ shift */
688 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
689 		scc_mgr_load_dq(i);
690 
691 	/* DM shift */
692 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
693 		scc_mgr_load_dm(i);
694 
695 	/* DQS shift */
696 	new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
697 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
698 		debug_cond(DLEVEL == 1,
699 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
700 			   __func__, __LINE__, write_group, delay, new_delay,
701 			   IO_IO_OUT2_DELAY_MAX,
702 			   new_delay - IO_IO_OUT2_DELAY_MAX);
703 		new_delay -= IO_IO_OUT2_DELAY_MAX;
704 		scc_mgr_set_dqs_out1_delay(new_delay);
705 	}
706 
707 	scc_mgr_load_dqs_io();
708 
709 	/* OCT shift */
710 	new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
711 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
712 		debug_cond(DLEVEL == 1,
713 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
714 			   __func__, __LINE__, write_group, delay,
715 			   new_delay, IO_IO_OUT2_DELAY_MAX,
716 			   new_delay - IO_IO_OUT2_DELAY_MAX);
717 		new_delay -= IO_IO_OUT2_DELAY_MAX;
718 		scc_mgr_set_oct_out1_delay(write_group, new_delay);
719 	}
720 
721 	scc_mgr_load_dqs_for_write_group(write_group);
722 }
723 
724 /**
725  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
726  * @write_group:	Write group
727  * @delay:		Delay value
728  *
729  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
730  */
731 static void
732 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
733 						const u32 delay)
734 {
735 	int r;
736 
737 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
738 	     r += NUM_RANKS_PER_SHADOW_REG) {
739 		scc_mgr_apply_group_all_out_delay_add(write_group, delay);
740 		writel(0, &sdr_scc_mgr->update);
741 	}
742 }
743 
744 /**
745  * set_jump_as_return() - Return instruction optimization
746  *
747  * Optimization used to recover some slots in ddr3 inst_rom could be
748  * applied to other protocols if we wanted to
749  */
750 static void set_jump_as_return(void)
751 {
752 	/*
753 	 * To save space, we replace return with jump to special shared
754 	 * RETURN instruction so we set the counter to large value so that
755 	 * we always jump.
756 	 */
757 	writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
758 	writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
759 }
760 
761 /*
762  * should always use constants as argument to ensure all computations are
763  * performed at compile time
764  */
765 static void delay_for_n_mem_clocks(const uint32_t clocks)
766 {
767 	uint32_t afi_clocks;
768 	uint8_t inner = 0;
769 	uint8_t outer = 0;
770 	uint16_t c_loop = 0;
771 
772 	debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
773 
774 
775 	afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
776 	/* scale (rounding up) to get afi clocks */
777 
778 	/*
779 	 * Note, we don't bother accounting for being off a little bit
780 	 * because of a few extra instructions in outer loops
781 	 * Note, the loops have a test at the end, and do the test before
782 	 * the decrement, and so always perform the loop
783 	 * 1 time more than the counter value
784 	 */
785 	if (afi_clocks == 0) {
786 		;
787 	} else if (afi_clocks <= 0x100) {
788 		inner = afi_clocks-1;
789 		outer = 0;
790 		c_loop = 0;
791 	} else if (afi_clocks <= 0x10000) {
792 		inner = 0xff;
793 		outer = (afi_clocks-1) >> 8;
794 		c_loop = 0;
795 	} else {
796 		inner = 0xff;
797 		outer = 0xff;
798 		c_loop = (afi_clocks-1) >> 16;
799 	}
800 
801 	/*
802 	 * rom instructions are structured as follows:
803 	 *
804 	 *    IDLE_LOOP2: jnz cntr0, TARGET_A
805 	 *    IDLE_LOOP1: jnz cntr1, TARGET_B
806 	 *                return
807 	 *
808 	 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
809 	 * TARGET_B is set to IDLE_LOOP2 as well
810 	 *
811 	 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
812 	 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
813 	 *
814 	 * a little confusing, but it helps save precious space in the inst_rom
815 	 * and sequencer rom and keeps the delays more accurate and reduces
816 	 * overhead
817 	 */
818 	if (afi_clocks <= 0x100) {
819 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
820 			&sdr_rw_load_mgr_regs->load_cntr1);
821 
822 		writel(RW_MGR_IDLE_LOOP1,
823 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
824 
825 		writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
826 					  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
827 	} else {
828 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
829 			&sdr_rw_load_mgr_regs->load_cntr0);
830 
831 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
832 			&sdr_rw_load_mgr_regs->load_cntr1);
833 
834 		writel(RW_MGR_IDLE_LOOP2,
835 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
836 
837 		writel(RW_MGR_IDLE_LOOP2,
838 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
839 
840 		/* hack to get around compiler not being smart enough */
841 		if (afi_clocks <= 0x10000) {
842 			/* only need to run once */
843 			writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
844 						  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
845 		} else {
846 			do {
847 				writel(RW_MGR_IDLE_LOOP2,
848 					SDR_PHYGRP_RWMGRGRP_ADDRESS |
849 					RW_MGR_RUN_SINGLE_GROUP_OFFSET);
850 			} while (c_loop-- != 0);
851 		}
852 	}
853 	debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
854 }
855 
856 /**
857  * rw_mgr_mem_init_load_regs() - Load instruction registers
858  * @cntr0:	Counter 0 value
859  * @cntr1:	Counter 1 value
860  * @cntr2:	Counter 2 value
861  * @jump:	Jump instruction value
862  *
863  * Load instruction registers.
864  */
865 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
866 {
867 	uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
868 			   RW_MGR_RUN_SINGLE_GROUP_OFFSET;
869 
870 	/* Load counters */
871 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
872 	       &sdr_rw_load_mgr_regs->load_cntr0);
873 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
874 	       &sdr_rw_load_mgr_regs->load_cntr1);
875 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
876 	       &sdr_rw_load_mgr_regs->load_cntr2);
877 
878 	/* Load jump address */
879 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
880 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
881 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
882 
883 	/* Execute count instruction */
884 	writel(jump, grpaddr);
885 }
886 
887 /**
888  * rw_mgr_mem_load_user() - Load user calibration values
889  * @fin1:	Final instruction 1
890  * @fin2:	Final instruction 2
891  * @precharge:	If 1, precharge the banks at the end
892  *
893  * Load user calibration values and optionally precharge the banks.
894  */
895 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
896 				 const int precharge)
897 {
898 	u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
899 		      RW_MGR_RUN_SINGLE_GROUP_OFFSET;
900 	u32 r;
901 
902 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
903 		if (param->skip_ranks[r]) {
904 			/* request to skip the rank */
905 			continue;
906 		}
907 
908 		/* set rank */
909 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
910 
911 		/* precharge all banks ... */
912 		if (precharge)
913 			writel(RW_MGR_PRECHARGE_ALL, grpaddr);
914 
915 		/*
916 		 * USER Use Mirror-ed commands for odd ranks if address
917 		 * mirrorring is on
918 		 */
919 		if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
920 			set_jump_as_return();
921 			writel(RW_MGR_MRS2_MIRR, grpaddr);
922 			delay_for_n_mem_clocks(4);
923 			set_jump_as_return();
924 			writel(RW_MGR_MRS3_MIRR, grpaddr);
925 			delay_for_n_mem_clocks(4);
926 			set_jump_as_return();
927 			writel(RW_MGR_MRS1_MIRR, grpaddr);
928 			delay_for_n_mem_clocks(4);
929 			set_jump_as_return();
930 			writel(fin1, grpaddr);
931 		} else {
932 			set_jump_as_return();
933 			writel(RW_MGR_MRS2, grpaddr);
934 			delay_for_n_mem_clocks(4);
935 			set_jump_as_return();
936 			writel(RW_MGR_MRS3, grpaddr);
937 			delay_for_n_mem_clocks(4);
938 			set_jump_as_return();
939 			writel(RW_MGR_MRS1, grpaddr);
940 			set_jump_as_return();
941 			writel(fin2, grpaddr);
942 		}
943 
944 		if (precharge)
945 			continue;
946 
947 		set_jump_as_return();
948 		writel(RW_MGR_ZQCL, grpaddr);
949 
950 		/* tZQinit = tDLLK = 512 ck cycles */
951 		delay_for_n_mem_clocks(512);
952 	}
953 }
954 
955 /**
956  * rw_mgr_mem_initialize() - Initialize RW Manager
957  *
958  * Initialize RW Manager.
959  */
960 static void rw_mgr_mem_initialize(void)
961 {
962 	debug("%s:%d\n", __func__, __LINE__);
963 
964 	/* The reset / cke part of initialization is broadcasted to all ranks */
965 	writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
966 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
967 
968 	/*
969 	 * Here's how you load register for a loop
970 	 * Counters are located @ 0x800
971 	 * Jump address are located @ 0xC00
972 	 * For both, registers 0 to 3 are selected using bits 3 and 2, like
973 	 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
974 	 * I know this ain't pretty, but Avalon bus throws away the 2 least
975 	 * significant bits
976 	 */
977 
978 	/* Start with memory RESET activated */
979 
980 	/* tINIT = 200us */
981 
982 	/*
983 	 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
984 	 * If a and b are the number of iteration in 2 nested loops
985 	 * it takes the following number of cycles to complete the operation:
986 	 * number_of_cycles = ((2 + n) * a + 2) * b
987 	 * where n is the number of instruction in the inner loop
988 	 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
989 	 * b = 6A
990 	 */
991 	rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
992 				  SEQ_TINIT_CNTR2_VAL,
993 				  RW_MGR_INIT_RESET_0_CKE_0);
994 
995 	/* Indicate that memory is stable. */
996 	writel(1, &phy_mgr_cfg->reset_mem_stbl);
997 
998 	/*
999 	 * transition the RESET to high
1000 	 * Wait for 500us
1001 	 */
1002 
1003 	/*
1004 	 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
1005 	 * If a and b are the number of iteration in 2 nested loops
1006 	 * it takes the following number of cycles to complete the operation
1007 	 * number_of_cycles = ((2 + n) * a + 2) * b
1008 	 * where n is the number of instruction in the inner loop
1009 	 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
1010 	 * b = FF
1011 	 */
1012 	rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
1013 				  SEQ_TRESET_CNTR2_VAL,
1014 				  RW_MGR_INIT_RESET_1_CKE_0);
1015 
1016 	/* Bring up clock enable. */
1017 
1018 	/* tXRP < 250 ck cycles */
1019 	delay_for_n_mem_clocks(250);
1020 
1021 	rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
1022 			     0);
1023 }
1024 
1025 /*
1026  * At the end of calibration we have to program the user settings in, and
1027  * USER  hand off the memory to the user.
1028  */
1029 static void rw_mgr_mem_handoff(void)
1030 {
1031 	rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
1032 	/*
1033 	 * USER  need to wait tMOD (12CK or 15ns) time before issuing
1034 	 * other commands, but we will have plenty of NIOS cycles before
1035 	 * actual handoff so its okay.
1036 	 */
1037 }
1038 
1039 /**
1040  * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1041  * @rank_bgn:	Rank number
1042  * @group:	Read/Write Group
1043  * @all_ranks:	Test all ranks
1044  *
1045  * Performs a guaranteed read on the patterns we are going to use during a
1046  * read test to ensure memory works.
1047  */
1048 static int
1049 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1050 					const u32 all_ranks)
1051 {
1052 	const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1053 			 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1054 	const u32 addr_offset =
1055 			 (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2;
1056 	const u32 rank_end = all_ranks ?
1057 				RW_MGR_MEM_NUMBER_OF_RANKS :
1058 				(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1059 	const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
1060 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1061 	const u32 correct_mask_vg = param->read_correct_mask_vg;
1062 
1063 	u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1064 	int vg, r;
1065 	int ret = 0;
1066 
1067 	bit_chk = param->read_correct_mask;
1068 
1069 	for (r = rank_bgn; r < rank_end; r++) {
1070 		/* Request to skip the rank */
1071 		if (param->skip_ranks[r])
1072 			continue;
1073 
1074 		/* Set rank */
1075 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1076 
1077 		/* Load up a constant bursts of read commands */
1078 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1079 		writel(RW_MGR_GUARANTEED_READ,
1080 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1081 
1082 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1083 		writel(RW_MGR_GUARANTEED_READ_CONT,
1084 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1085 
1086 		tmp_bit_chk = 0;
1087 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1;
1088 		     vg >= 0; vg--) {
1089 			/* Reset the FIFOs to get pointers to known state. */
1090 			writel(0, &phy_mgr_cmd->fifo_reset);
1091 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1092 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1093 			writel(RW_MGR_GUARANTEED_READ,
1094 			       addr + addr_offset + (vg << 2));
1095 
1096 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1097 			tmp_bit_chk <<= shift_ratio;
1098 			tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1099 		}
1100 
1101 		bit_chk &= tmp_bit_chk;
1102 	}
1103 
1104 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1105 
1106 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1107 
1108 	if (bit_chk != param->read_correct_mask)
1109 		ret = -EIO;
1110 
1111 	debug_cond(DLEVEL == 1,
1112 		   "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1113 		   __func__, __LINE__, group, bit_chk,
1114 		   param->read_correct_mask, ret);
1115 
1116 	return ret;
1117 }
1118 
1119 /**
1120  * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1121  * @rank_bgn:	Rank number
1122  * @all_ranks:	Test all ranks
1123  *
1124  * Load up the patterns we are going to use during a read test.
1125  */
1126 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1127 						    const int all_ranks)
1128 {
1129 	const u32 rank_end = all_ranks ?
1130 			RW_MGR_MEM_NUMBER_OF_RANKS :
1131 			(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1132 	u32 r;
1133 
1134 	debug("%s:%d\n", __func__, __LINE__);
1135 
1136 	for (r = rank_bgn; r < rank_end; r++) {
1137 		if (param->skip_ranks[r])
1138 			/* request to skip the rank */
1139 			continue;
1140 
1141 		/* set rank */
1142 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1143 
1144 		/* Load up a constant bursts */
1145 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1146 
1147 		writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1148 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1149 
1150 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1151 
1152 		writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1153 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1154 
1155 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1156 
1157 		writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1158 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1159 
1160 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1161 
1162 		writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1163 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1164 
1165 		writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1166 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1167 	}
1168 
1169 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1170 }
1171 
1172 /*
1173  * try a read and see if it returns correct data back. has dummy reads
1174  * inserted into the mix used to align dqs enable. has more thorough checks
1175  * than the regular read test.
1176  */
1177 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
1178 	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1179 	uint32_t all_groups, uint32_t all_ranks)
1180 {
1181 	uint32_t r, vg;
1182 	uint32_t correct_mask_vg;
1183 	uint32_t tmp_bit_chk;
1184 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1185 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1186 	uint32_t addr;
1187 	uint32_t base_rw_mgr;
1188 
1189 	*bit_chk = param->read_correct_mask;
1190 	correct_mask_vg = param->read_correct_mask_vg;
1191 
1192 	uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
1193 		CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
1194 
1195 	for (r = rank_bgn; r < rank_end; r++) {
1196 		if (param->skip_ranks[r])
1197 			/* request to skip the rank */
1198 			continue;
1199 
1200 		/* set rank */
1201 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1202 
1203 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1204 
1205 		writel(RW_MGR_READ_B2B_WAIT1,
1206 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1207 
1208 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1209 		writel(RW_MGR_READ_B2B_WAIT2,
1210 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1211 
1212 		if (quick_read_mode)
1213 			writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1214 			/* need at least two (1+1) reads to capture failures */
1215 		else if (all_groups)
1216 			writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1217 		else
1218 			writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1219 
1220 		writel(RW_MGR_READ_B2B,
1221 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1222 		if (all_groups)
1223 			writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1224 			       RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1225 			       &sdr_rw_load_mgr_regs->load_cntr3);
1226 		else
1227 			writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1228 
1229 		writel(RW_MGR_READ_B2B,
1230 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1231 
1232 		tmp_bit_chk = 0;
1233 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1234 			/* reset the fifos to get pointers to known state */
1235 			writel(0, &phy_mgr_cmd->fifo_reset);
1236 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1237 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1238 
1239 			tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1240 				/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1241 
1242 			if (all_groups)
1243 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
1244 			else
1245 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1246 
1247 			writel(RW_MGR_READ_B2B, addr +
1248 			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1249 			       vg) << 2));
1250 
1251 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1252 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
1253 
1254 			if (vg == 0)
1255 				break;
1256 		}
1257 		*bit_chk &= tmp_bit_chk;
1258 	}
1259 
1260 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1261 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1262 
1263 	if (all_correct) {
1264 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1265 		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
1266 			   (%u == %u) => %lu", __func__, __LINE__, group,
1267 			   all_groups, *bit_chk, param->read_correct_mask,
1268 			   (long unsigned int)(*bit_chk ==
1269 			   param->read_correct_mask));
1270 		return *bit_chk == param->read_correct_mask;
1271 	} else	{
1272 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1273 		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
1274 			   (%u != %lu) => %lu\n", __func__, __LINE__,
1275 			   group, all_groups, *bit_chk, (long unsigned int)0,
1276 			   (long unsigned int)(*bit_chk != 0x00));
1277 		return *bit_chk != 0x00;
1278 	}
1279 }
1280 
1281 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
1282 	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1283 	uint32_t all_groups)
1284 {
1285 	return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
1286 					      bit_chk, all_groups, 1);
1287 }
1288 
1289 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
1290 {
1291 	writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1292 	(*v)++;
1293 }
1294 
1295 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v)
1296 {
1297 	uint32_t i;
1298 
1299 	for (i = 0; i < VFIFO_SIZE-1; i++)
1300 		rw_mgr_incr_vfifo(grp, v);
1301 }
1302 
1303 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk)
1304 {
1305 	uint32_t  v;
1306 	uint32_t fail_cnt = 0;
1307 	uint32_t test_status;
1308 
1309 	for (v = 0; v < VFIFO_SIZE; ) {
1310 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n",
1311 			   __func__, __LINE__, v);
1312 		test_status = rw_mgr_mem_calibrate_read_test_all_ranks
1313 			(grp, 1, PASS_ONE_BIT, bit_chk, 0);
1314 		if (!test_status) {
1315 			fail_cnt++;
1316 
1317 			if (fail_cnt == 2)
1318 				break;
1319 		}
1320 
1321 		/* fiddle with FIFO */
1322 		rw_mgr_incr_vfifo(grp, &v);
1323 	}
1324 
1325 	if (v >= VFIFO_SIZE) {
1326 		/* no failing read found!! Something must have gone wrong */
1327 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n",
1328 			   __func__, __LINE__);
1329 		return 0;
1330 	} else {
1331 		return v;
1332 	}
1333 }
1334 
1335 /**
1336  * sdr_find_phase() - Find DQS enable phase
1337  * @working:	If 1, look for working phase, if 0, look for non-working phase
1338  * @grp:	Read/Write group
1339  * @v:		VFIFO value
1340  * @work:	Working window position
1341  * @i:		Iterator
1342  * @p:		DQS Phase Iterator
1343  * @max_working_cnt:	Counter
1344  *
1345  * Find working or non-working DQS enable phase setting.
1346  */
1347 static int sdr_find_phase(int working, const u32 grp, u32 *v, u32 *work,
1348 			  u32 *i, u32 *p, u32 *max_working_cnt)
1349 {
1350 	u32 ret, bit_chk;
1351 	const u32 end = VFIFO_SIZE + (working ? 0 : 1);
1352 
1353 	for (; *i < end; (*i)++) {
1354 		if (working)
1355 			*p = 0;
1356 
1357 		for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++) {
1358 			scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1359 
1360 			ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1361 						PASS_ONE_BIT, &bit_chk, 0);
1362 			if (ret)
1363 				(*max_working_cnt)++;
1364 
1365 			if (!working)
1366 				ret = !ret;
1367 
1368 			if (ret)
1369 				return 0;
1370 
1371 			*work += IO_DELAY_PER_OPA_TAP;
1372 		}
1373 
1374 		if (*p > IO_DQS_EN_PHASE_MAX) {
1375 			/* Fiddle with FIFO. */
1376 			rw_mgr_incr_vfifo(grp, v);
1377 			if (!working)
1378 				*p = 0;
1379 		}
1380 	}
1381 
1382 	return -EINVAL;
1383 }
1384 
1385 static int sdr_working_phase(uint32_t grp,
1386 			      uint32_t dtaps_per_ptap, uint32_t *work_bgn,
1387 			      uint32_t *v, uint32_t *d, uint32_t *p,
1388 			      uint32_t *i, uint32_t *max_working_cnt)
1389 {
1390 	int ret;
1391 
1392 	*work_bgn = 0;
1393 
1394 	for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
1395 		*i = 0;
1396 		scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
1397 		ret = sdr_find_phase(1, grp, v, work_bgn, i, p, max_working_cnt);
1398 		if (!ret)
1399 			return 0;
1400 		*work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1401 	}
1402 
1403 	/* Cannot find working solution */
1404 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
1405 		   __func__, __LINE__);
1406 	return -EINVAL;
1407 }
1408 
1409 static void sdr_backup_phase(uint32_t grp,
1410 			     uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1411 			     uint32_t *p, uint32_t *max_working_cnt)
1412 {
1413 	uint32_t found_begin = 0;
1414 	uint32_t tmp_delay;
1415 	u32 bit_chk;
1416 
1417 	/* Special case code for backing up a phase */
1418 	if (*p == 0) {
1419 		*p = IO_DQS_EN_PHASE_MAX;
1420 		rw_mgr_decr_vfifo(grp, v);
1421 	} else {
1422 		(*p)--;
1423 	}
1424 	tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1425 	scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1426 
1427 	for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn;
1428 		(*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1429 		scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
1430 
1431 		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1432 							     PASS_ONE_BIT,
1433 							     &bit_chk, 0)) {
1434 			found_begin = 1;
1435 			*work_bgn = tmp_delay;
1436 			break;
1437 		}
1438 	}
1439 
1440 	/* We have found a working dtap before the ptap found above */
1441 	if (found_begin == 1)
1442 		(*max_working_cnt)++;
1443 
1444 	/*
1445 	 * Restore VFIFO to old state before we decremented it
1446 	 * (if needed).
1447 	 */
1448 	(*p)++;
1449 	if (*p > IO_DQS_EN_PHASE_MAX) {
1450 		*p = 0;
1451 		rw_mgr_incr_vfifo(grp, v);
1452 	}
1453 
1454 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1455 }
1456 
1457 static int sdr_nonworking_phase(uint32_t grp,
1458 			     uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1459 			     uint32_t *p, uint32_t *i, uint32_t *max_working_cnt,
1460 			     uint32_t *work_end)
1461 {
1462 	int ret;
1463 
1464 	(*p)++;
1465 	*work_end += IO_DELAY_PER_OPA_TAP;
1466 	if (*p > IO_DQS_EN_PHASE_MAX) {
1467 		/* Fiddle with FIFO. */
1468 		*p = 0;
1469 		rw_mgr_incr_vfifo(grp, v);
1470 	}
1471 
1472 	ret = sdr_find_phase(0, grp, v, work_end, i, p, max_working_cnt);
1473 	if (ret) {
1474 		/* Cannot see edge of failing read. */
1475 		debug_cond(DLEVEL == 2, "%s:%d: end: failed\n",
1476 			   __func__, __LINE__);
1477 	}
1478 
1479 	return ret;
1480 }
1481 
1482 /**
1483  * sdr_find_window_center() - Find center of the working DQS window.
1484  * @grp:	Read/Write group
1485  * @work_bgn:	First working settings
1486  * @work_end:	Last working settings
1487  * @val:	VFIFO value
1488  *
1489  * Find center of the working DQS enable window.
1490  */
1491 static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
1492 				  const u32 work_end, const u32 val)
1493 {
1494 	u32 bit_chk, work_mid, v = val;
1495 	int tmp_delay = 0;
1496 	int i, p, d;
1497 
1498 	work_mid = (work_bgn + work_end) / 2;
1499 
1500 	debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1501 		   work_bgn, work_end, work_mid);
1502 	/* Get the middle delay to be less than a VFIFO delay */
1503 	tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP;
1504 
1505 	debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1506 	work_mid %= tmp_delay;
1507 	debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid);
1508 
1509 	tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP);
1510 	if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP)
1511 		tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP;
1512 	p = tmp_delay / IO_DELAY_PER_OPA_TAP;
1513 
1514 	debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
1515 
1516 	d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP);
1517 	if (d > IO_DQS_EN_DELAY_MAX)
1518 		d = IO_DQS_EN_DELAY_MAX;
1519 	tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1520 
1521 	debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
1522 
1523 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1524 	scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1525 
1526 	/*
1527 	 * push vfifo until we can successfully calibrate. We can do this
1528 	 * because the largest possible margin in 1 VFIFO cycle.
1529 	 */
1530 	for (i = 0; i < VFIFO_SIZE; i++) {
1531 		debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n",
1532 			   v);
1533 		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1534 							     PASS_ONE_BIT,
1535 							     &bit_chk, 0)) {
1536 			debug_cond(DLEVEL == 2,
1537 				   "%s:%d center: found: vfifo=%u ptap=%u dtap=%u\n",
1538 				   __func__, __LINE__, v, p, d);
1539 			return 0;
1540 		}
1541 
1542 		/* Fiddle with FIFO. */
1543 		rw_mgr_incr_vfifo(grp, &v);
1544 	}
1545 
1546 	debug_cond(DLEVEL == 2, "%s:%d center: failed.\n",
1547 		   __func__, __LINE__);
1548 	return -EINVAL;
1549 }
1550 
1551 /* find a good dqs enable to use */
1552 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
1553 {
1554 	uint32_t v, d, p, i;
1555 	uint32_t max_working_cnt;
1556 	uint32_t bit_chk;
1557 	uint32_t dtaps_per_ptap;
1558 	uint32_t work_bgn, work_end;
1559 	uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
1560 
1561 	debug("%s:%d %u\n", __func__, __LINE__, grp);
1562 
1563 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1564 
1565 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1566 	scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1567 
1568 	/* ************************************************************** */
1569 	/* * Step 0 : Determine number of delay taps for each phase tap * */
1570 	dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1571 
1572 	/* ********************************************************* */
1573 	/* * Step 1 : First push vfifo until we get a failing read * */
1574 	v = find_vfifo_read(grp, &bit_chk);
1575 
1576 	max_working_cnt = 0;
1577 
1578 	/* ******************************************************** */
1579 	/* * step 2: find first working phase, increment in ptaps * */
1580 	work_bgn = 0;
1581 	if (sdr_working_phase(grp, dtaps_per_ptap, &work_bgn, &v, &d,
1582 			      &p, &i, &max_working_cnt))
1583 		return 0;
1584 
1585 	work_end = work_bgn;
1586 
1587 	/*
1588 	 * If d is 0 then the working window covers a phase tap and
1589 	 * we can follow the old procedure otherwise, we've found the beginning,
1590 	 * and we need to increment the dtaps until we find the end.
1591 	 */
1592 	if (d == 0) {
1593 		/* ********************************************************* */
1594 		/* * step 3a: if we have room, back off by one and
1595 		increment in dtaps * */
1596 
1597 		sdr_backup_phase(grp, &work_bgn, &v, &d, &p,
1598 				 &max_working_cnt);
1599 
1600 		/* ********************************************************* */
1601 		/* * step 4a: go forward from working phase to non working
1602 		phase, increment in ptaps * */
1603 		if (sdr_nonworking_phase(grp, &work_bgn, &v, &d, &p,
1604 					 &i, &max_working_cnt, &work_end))
1605 			return 0;
1606 
1607 		/* ********************************************************* */
1608 		/* * step 5a:  back off one from last, increment in dtaps  * */
1609 
1610 		/* Special case code for backing up a phase */
1611 		if (p == 0) {
1612 			p = IO_DQS_EN_PHASE_MAX;
1613 			rw_mgr_decr_vfifo(grp, &v);
1614 		} else {
1615 			p = p - 1;
1616 		}
1617 
1618 		work_end -= IO_DELAY_PER_OPA_TAP;
1619 		scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1620 
1621 		/* * The actual increment of dtaps is done outside of
1622 		the if/else loop to share code */
1623 		d = 0;
1624 
1625 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \
1626 			   vfifo=%u ptap=%u\n", __func__, __LINE__,
1627 			   v, p);
1628 	} else {
1629 		/* ******************************************************* */
1630 		/* * step 3-5b:  Find the right edge of the window using
1631 		delay taps   * */
1632 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \
1633 			   ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__,
1634 			   v, p, d, work_bgn);
1635 
1636 		work_end = work_bgn;
1637 
1638 		/* * The actual increment of dtaps is done outside of the
1639 		if/else loop to share code */
1640 
1641 		/* Only here to counterbalance a subtract later on which is
1642 		not needed if this branch of the algorithm is taken */
1643 		max_working_cnt++;
1644 	}
1645 
1646 	/* The dtap increment to find the failing edge is done here */
1647 	for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
1648 		IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1649 			debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1650 				   end-2: dtap=%u\n", __func__, __LINE__, d);
1651 			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1652 
1653 			if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1654 								      PASS_ONE_BIT,
1655 								      &bit_chk, 0)) {
1656 				break;
1657 			}
1658 	}
1659 
1660 	/* Go back to working dtap */
1661 	if (d != 0)
1662 		work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1663 
1664 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \
1665 		   ptap=%u dtap=%u end=%u\n", __func__, __LINE__,
1666 		   v, p, d-1, work_end);
1667 
1668 	if (work_end < work_bgn) {
1669 		/* nil range */
1670 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \
1671 			   failed\n", __func__, __LINE__);
1672 		return 0;
1673 	}
1674 
1675 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n",
1676 		   __func__, __LINE__, work_bgn, work_end);
1677 
1678 	/* *************************************************************** */
1679 	/*
1680 	 * * We need to calculate the number of dtaps that equal a ptap
1681 	 * * To do that we'll back up a ptap and re-find the edge of the
1682 	 * * window using dtaps
1683 	 */
1684 
1685 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \
1686 		   for tracking\n", __func__, __LINE__);
1687 
1688 	/* Special case code for backing up a phase */
1689 	if (p == 0) {
1690 		p = IO_DQS_EN_PHASE_MAX;
1691 		rw_mgr_decr_vfifo(grp, &v);
1692 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1693 			   cycle/phase: v=%u p=%u\n", __func__, __LINE__,
1694 			   v, p);
1695 	} else {
1696 		p = p - 1;
1697 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1698 			   phase only: v=%u p=%u", __func__, __LINE__,
1699 			   v, p);
1700 	}
1701 
1702 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1703 
1704 	/*
1705 	 * Increase dtap until we first see a passing read (in case the
1706 	 * window is smaller than a ptap),
1707 	 * and then a failing read to mark the edge of the window again
1708 	 */
1709 
1710 	/* Find a passing read */
1711 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n",
1712 		   __func__, __LINE__);
1713 	found_passing_read = 0;
1714 	found_failing_read = 0;
1715 	initial_failing_dtap = d;
1716 	for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
1717 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \
1718 			   read d=%u\n", __func__, __LINE__, d);
1719 		scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1720 
1721 		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1722 							     PASS_ONE_BIT,
1723 							     &bit_chk, 0)) {
1724 			found_passing_read = 1;
1725 			break;
1726 		}
1727 	}
1728 
1729 	if (found_passing_read) {
1730 		/* Find a failing read */
1731 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \
1732 			   read\n", __func__, __LINE__);
1733 		for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
1734 			debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1735 				   testing read d=%u\n", __func__, __LINE__, d);
1736 			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1737 
1738 			if (!rw_mgr_mem_calibrate_read_test_all_ranks
1739 				(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
1740 				found_failing_read = 1;
1741 				break;
1742 			}
1743 		}
1744 	} else {
1745 		debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \
1746 			   calculate dtaps", __func__, __LINE__);
1747 		debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n");
1748 	}
1749 
1750 	/*
1751 	 * The dynamically calculated dtaps_per_ptap is only valid if we
1752 	 * found a passing/failing read. If we didn't, it means d hit the max
1753 	 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1754 	 * statically calculated value.
1755 	 */
1756 	if (found_passing_read && found_failing_read)
1757 		dtaps_per_ptap = d - initial_failing_dtap;
1758 
1759 	writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1760 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \
1761 		   - %u = %u",  __func__, __LINE__, d,
1762 		   initial_failing_dtap, dtaps_per_ptap);
1763 
1764 	/* ******************************************** */
1765 	/* * step 6:  Find the centre of the window   * */
1766 	if (sdr_find_window_centre(grp, work_bgn, work_end, v))
1767 		return 0; /* FIXME: Old code, return 0 means failure :-( */
1768 
1769 	return 1;
1770 }
1771 
1772 /* per-bit deskew DQ and center */
1773 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
1774 	uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
1775 	uint32_t use_read_test, uint32_t update_fom)
1776 {
1777 	uint32_t i, p, d, min_index;
1778 	/*
1779 	 * Store these as signed since there are comparisons with
1780 	 * signed numbers.
1781 	 */
1782 	uint32_t bit_chk;
1783 	uint32_t sticky_bit_chk;
1784 	int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1785 	int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1786 	int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
1787 	int32_t mid;
1788 	int32_t orig_mid_min, mid_min;
1789 	int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
1790 		final_dqs_en;
1791 	int32_t dq_margin, dqs_margin;
1792 	uint32_t stop;
1793 	uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
1794 	uint32_t addr;
1795 
1796 	debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
1797 
1798 	addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
1799 	start_dqs = readl(addr + (read_group << 2));
1800 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
1801 		start_dqs_en = readl(addr + ((read_group << 2)
1802 				     - IO_DQS_EN_DELAY_OFFSET));
1803 
1804 	/* set the left and right edge of each bit to an illegal value */
1805 	/* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
1806 	sticky_bit_chk = 0;
1807 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1808 		left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
1809 		right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1810 	}
1811 
1812 	/* Search for the left edge of the window for each bit */
1813 	for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
1814 		scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
1815 
1816 		writel(0, &sdr_scc_mgr->update);
1817 
1818 		/*
1819 		 * Stop searching when the read test doesn't pass AND when
1820 		 * we've seen a passing read on every bit.
1821 		 */
1822 		if (use_read_test) {
1823 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1824 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1825 				&bit_chk, 0, 0);
1826 		} else {
1827 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1828 							0, PASS_ONE_BIT,
1829 							&bit_chk, 0);
1830 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1831 				(read_group - (write_group *
1832 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
1833 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1834 			stop = (bit_chk == 0);
1835 		}
1836 		sticky_bit_chk = sticky_bit_chk | bit_chk;
1837 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
1838 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
1839 			   && %u", __func__, __LINE__, d,
1840 			   sticky_bit_chk,
1841 			param->read_correct_mask, stop);
1842 
1843 		if (stop == 1) {
1844 			break;
1845 		} else {
1846 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1847 				if (bit_chk & 1) {
1848 					/* Remember a passing test as the
1849 					left_edge */
1850 					left_edge[i] = d;
1851 				} else {
1852 					/* If a left edge has not been seen yet,
1853 					then a future passing test will mark
1854 					this edge as the right edge */
1855 					if (left_edge[i] ==
1856 						IO_IO_IN_DELAY_MAX + 1) {
1857 						right_edge[i] = -(d + 1);
1858 					}
1859 				}
1860 				bit_chk = bit_chk >> 1;
1861 			}
1862 		}
1863 	}
1864 
1865 	/* Reset DQ delay chains to 0 */
1866 	scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
1867 	sticky_bit_chk = 0;
1868 	for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
1869 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1870 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
1871 			   i, left_edge[i], i, right_edge[i]);
1872 
1873 		/*
1874 		 * Check for cases where we haven't found the left edge,
1875 		 * which makes our assignment of the the right edge invalid.
1876 		 * Reset it to the illegal value.
1877 		 */
1878 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
1879 			right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1880 			right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1881 			debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
1882 				   right_edge[%u]: %d\n", __func__, __LINE__,
1883 				   i, right_edge[i]);
1884 		}
1885 
1886 		/*
1887 		 * Reset sticky bit (except for bits where we have seen
1888 		 * both the left and right edge).
1889 		 */
1890 		sticky_bit_chk = sticky_bit_chk << 1;
1891 		if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
1892 		    (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1893 			sticky_bit_chk = sticky_bit_chk | 1;
1894 		}
1895 
1896 		if (i == 0)
1897 			break;
1898 	}
1899 
1900 	/* Search for the right edge of the window for each bit */
1901 	for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
1902 		scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
1903 		if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1904 			uint32_t delay = d + start_dqs_en;
1905 			if (delay > IO_DQS_EN_DELAY_MAX)
1906 				delay = IO_DQS_EN_DELAY_MAX;
1907 			scc_mgr_set_dqs_en_delay(read_group, delay);
1908 		}
1909 		scc_mgr_load_dqs(read_group);
1910 
1911 		writel(0, &sdr_scc_mgr->update);
1912 
1913 		/*
1914 		 * Stop searching when the read test doesn't pass AND when
1915 		 * we've seen a passing read on every bit.
1916 		 */
1917 		if (use_read_test) {
1918 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1919 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1920 				&bit_chk, 0, 0);
1921 		} else {
1922 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1923 							0, PASS_ONE_BIT,
1924 							&bit_chk, 0);
1925 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1926 				(read_group - (write_group *
1927 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
1928 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1929 			stop = (bit_chk == 0);
1930 		}
1931 		sticky_bit_chk = sticky_bit_chk | bit_chk;
1932 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
1933 
1934 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
1935 			   %u && %u", __func__, __LINE__, d,
1936 			   sticky_bit_chk, param->read_correct_mask, stop);
1937 
1938 		if (stop == 1) {
1939 			break;
1940 		} else {
1941 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1942 				if (bit_chk & 1) {
1943 					/* Remember a passing test as
1944 					the right_edge */
1945 					right_edge[i] = d;
1946 				} else {
1947 					if (d != 0) {
1948 						/* If a right edge has not been
1949 						seen yet, then a future passing
1950 						test will mark this edge as the
1951 						left edge */
1952 						if (right_edge[i] ==
1953 						IO_IO_IN_DELAY_MAX + 1) {
1954 							left_edge[i] = -(d + 1);
1955 						}
1956 					} else {
1957 						/* d = 0 failed, but it passed
1958 						when testing the left edge,
1959 						so it must be marginal,
1960 						set it to -1 */
1961 						if (right_edge[i] ==
1962 							IO_IO_IN_DELAY_MAX + 1 &&
1963 							left_edge[i] !=
1964 							IO_IO_IN_DELAY_MAX
1965 							+ 1) {
1966 							right_edge[i] = -1;
1967 						}
1968 						/* If a right edge has not been
1969 						seen yet, then a future passing
1970 						test will mark this edge as the
1971 						left edge */
1972 						else if (right_edge[i] ==
1973 							IO_IO_IN_DELAY_MAX +
1974 							1) {
1975 							left_edge[i] = -(d + 1);
1976 						}
1977 					}
1978 				}
1979 
1980 				debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
1981 					   d=%u]: ", __func__, __LINE__, d);
1982 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
1983 					   (int)(bit_chk & 1), i, left_edge[i]);
1984 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
1985 					   right_edge[i]);
1986 				bit_chk = bit_chk >> 1;
1987 			}
1988 		}
1989 	}
1990 
1991 	/* Check that all bits have a window */
1992 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1993 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1994 			   %d right_edge[%u]: %d", __func__, __LINE__,
1995 			   i, left_edge[i], i, right_edge[i]);
1996 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
1997 			== IO_IO_IN_DELAY_MAX + 1)) {
1998 			/*
1999 			 * Restore delay chain settings before letting the loop
2000 			 * in rw_mgr_mem_calibrate_vfifo to retry different
2001 			 * dqs/ck relationships.
2002 			 */
2003 			scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
2004 			if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2005 				scc_mgr_set_dqs_en_delay(read_group,
2006 							 start_dqs_en);
2007 			}
2008 			scc_mgr_load_dqs(read_group);
2009 			writel(0, &sdr_scc_mgr->update);
2010 
2011 			debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
2012 				   find edge [%u]: %d %d", __func__, __LINE__,
2013 				   i, left_edge[i], right_edge[i]);
2014 			if (use_read_test) {
2015 				set_failing_group_stage(read_group *
2016 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
2017 					CAL_STAGE_VFIFO,
2018 					CAL_SUBSTAGE_VFIFO_CENTER);
2019 			} else {
2020 				set_failing_group_stage(read_group *
2021 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
2022 					CAL_STAGE_VFIFO_AFTER_WRITES,
2023 					CAL_SUBSTAGE_VFIFO_CENTER);
2024 			}
2025 			return 0;
2026 		}
2027 	}
2028 
2029 	/* Find middle of window for each DQ bit */
2030 	mid_min = left_edge[0] - right_edge[0];
2031 	min_index = 0;
2032 	for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2033 		mid = left_edge[i] - right_edge[i];
2034 		if (mid < mid_min) {
2035 			mid_min = mid;
2036 			min_index = i;
2037 		}
2038 	}
2039 
2040 	/*
2041 	 * -mid_min/2 represents the amount that we need to move DQS.
2042 	 * If mid_min is odd and positive we'll need to add one to
2043 	 * make sure the rounding in further calculations is correct
2044 	 * (always bias to the right), so just add 1 for all positive values.
2045 	 */
2046 	if (mid_min > 0)
2047 		mid_min++;
2048 
2049 	mid_min = mid_min / 2;
2050 
2051 	debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2052 		   __func__, __LINE__, mid_min, min_index);
2053 
2054 	/* Determine the amount we can change DQS (which is -mid_min) */
2055 	orig_mid_min = mid_min;
2056 	new_dqs = start_dqs - mid_min;
2057 	if (new_dqs > IO_DQS_IN_DELAY_MAX)
2058 		new_dqs = IO_DQS_IN_DELAY_MAX;
2059 	else if (new_dqs < 0)
2060 		new_dqs = 0;
2061 
2062 	mid_min = start_dqs - new_dqs;
2063 	debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2064 		   mid_min, new_dqs);
2065 
2066 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2067 		if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2068 			mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2069 		else if (start_dqs_en - mid_min < 0)
2070 			mid_min += start_dqs_en - mid_min;
2071 	}
2072 	new_dqs = start_dqs - mid_min;
2073 
2074 	debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2075 		   new_dqs=%d mid_min=%d\n", start_dqs,
2076 		   IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2077 		   new_dqs, mid_min);
2078 
2079 	/* Initialize data for export structures */
2080 	dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2081 	dq_margin  = IO_IO_IN_DELAY_MAX + 1;
2082 
2083 	/* add delay to bring centre of all DQ windows to the same "level" */
2084 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2085 		/* Use values before divide by 2 to reduce round off error */
2086 		shift_dq = (left_edge[i] - right_edge[i] -
2087 			(left_edge[min_index] - right_edge[min_index]))/2  +
2088 			(orig_mid_min - mid_min);
2089 
2090 		debug_cond(DLEVEL == 2, "vfifo_center: before: \
2091 			   shift_dq[%u]=%d\n", i, shift_dq);
2092 
2093 		addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
2094 		temp_dq_in_delay1 = readl(addr + (p << 2));
2095 		temp_dq_in_delay2 = readl(addr + (i << 2));
2096 
2097 		if (shift_dq + (int32_t)temp_dq_in_delay1 >
2098 			(int32_t)IO_IO_IN_DELAY_MAX) {
2099 			shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2100 		} else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2101 			shift_dq = -(int32_t)temp_dq_in_delay1;
2102 		}
2103 		debug_cond(DLEVEL == 2, "vfifo_center: after: \
2104 			   shift_dq[%u]=%d\n", i, shift_dq);
2105 		final_dq[i] = temp_dq_in_delay1 + shift_dq;
2106 		scc_mgr_set_dq_in_delay(p, final_dq[i]);
2107 		scc_mgr_load_dq(p);
2108 
2109 		debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2110 			   left_edge[i] - shift_dq + (-mid_min),
2111 			   right_edge[i] + shift_dq - (-mid_min));
2112 		/* To determine values for export structures */
2113 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2114 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
2115 
2116 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2117 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2118 	}
2119 
2120 	final_dqs = new_dqs;
2121 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2122 		final_dqs_en = start_dqs_en - mid_min;
2123 
2124 	/* Move DQS-en */
2125 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2126 		scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2127 		scc_mgr_load_dqs(read_group);
2128 	}
2129 
2130 	/* Move DQS */
2131 	scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2132 	scc_mgr_load_dqs(read_group);
2133 	debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2134 		   dqs_margin=%d", __func__, __LINE__,
2135 		   dq_margin, dqs_margin);
2136 
2137 	/*
2138 	 * Do not remove this line as it makes sure all of our decisions
2139 	 * have been applied. Apply the update bit.
2140 	 */
2141 	writel(0, &sdr_scc_mgr->update);
2142 
2143 	return (dq_margin >= 0) && (dqs_margin >= 0);
2144 }
2145 
2146 /**
2147  * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2148  * @rw_group:	Read/Write Group
2149  * @phase:	DQ/DQS phase
2150  *
2151  * Because initially no communication ca be reliably performed with the memory
2152  * device, the sequencer uses a guaranteed write mechanism to write data into
2153  * the memory device.
2154  */
2155 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2156 						 const u32 phase)
2157 {
2158 	int ret;
2159 
2160 	/* Set a particular DQ/DQS phase. */
2161 	scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2162 
2163 	debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
2164 		   __func__, __LINE__, rw_group, phase);
2165 
2166 	/*
2167 	 * Altera EMI_RM 2015.05.04 :: Figure 1-25
2168 	 * Load up the patterns used by read calibration using the
2169 	 * current DQDQS phase.
2170 	 */
2171 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2172 
2173 	if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2174 		return 0;
2175 
2176 	/*
2177 	 * Altera EMI_RM 2015.05.04 :: Figure 1-26
2178 	 * Back-to-Back reads of the patterns used for calibration.
2179 	 */
2180 	ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2181 	if (ret)
2182 		debug_cond(DLEVEL == 1,
2183 			   "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2184 			   __func__, __LINE__, rw_group, phase);
2185 	return ret;
2186 }
2187 
2188 /**
2189  * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2190  * @rw_group:	Read/Write Group
2191  * @test_bgn:	Rank at which the test begins
2192  *
2193  * DQS enable calibration ensures reliable capture of the DQ signal without
2194  * glitches on the DQS line.
2195  */
2196 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2197 						       const u32 test_bgn)
2198 {
2199 	/*
2200 	 * Altera EMI_RM 2015.05.04 :: Figure 1-27
2201 	 * DQS and DQS Eanble Signal Relationships.
2202 	 */
2203 
2204 	/* We start at zero, so have one less dq to devide among */
2205 	const u32 delay_step = IO_IO_IN_DELAY_MAX /
2206 			       (RW_MGR_MEM_DQ_PER_READ_DQS - 1);
2207 	int found;
2208 	u32 i, p, d, r;
2209 
2210 	debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2211 
2212 	/* Try different dq_in_delays since the DQ path is shorter than DQS. */
2213 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2214 	     r += NUM_RANKS_PER_SHADOW_REG) {
2215 		for (i = 0, p = test_bgn, d = 0;
2216 		     i < RW_MGR_MEM_DQ_PER_READ_DQS;
2217 		     i++, p++, d += delay_step) {
2218 			debug_cond(DLEVEL == 1,
2219 				   "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2220 				   __func__, __LINE__, rw_group, r, i, p, d);
2221 
2222 			scc_mgr_set_dq_in_delay(p, d);
2223 			scc_mgr_load_dq(p);
2224 		}
2225 
2226 		writel(0, &sdr_scc_mgr->update);
2227 	}
2228 
2229 	/*
2230 	 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2231 	 * dq_in_delay values
2232 	 */
2233 	found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
2234 
2235 	debug_cond(DLEVEL == 1,
2236 		   "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
2237 		   __func__, __LINE__, rw_group, found);
2238 
2239 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2240 	     r += NUM_RANKS_PER_SHADOW_REG) {
2241 		scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2242 		writel(0, &sdr_scc_mgr->update);
2243 	}
2244 
2245 	if (!found)
2246 		return -EINVAL;
2247 
2248 	return 0;
2249 
2250 }
2251 
2252 /**
2253  * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2254  * @rw_group:		Read/Write Group
2255  * @test_bgn:		Rank at which the test begins
2256  * @use_read_test:	Perform a read test
2257  * @update_fom:		Update FOM
2258  *
2259  * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2260  * within a group.
2261  */
2262 static int
2263 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2264 				      const int use_read_test,
2265 				      const int update_fom)
2266 
2267 {
2268 	int ret, grp_calibrated;
2269 	u32 rank_bgn, sr;
2270 
2271 	/*
2272 	 * Altera EMI_RM 2015.05.04 :: Figure 1-28
2273 	 * Read per-bit deskew can be done on a per shadow register basis.
2274 	 */
2275 	grp_calibrated = 1;
2276 	for (rank_bgn = 0, sr = 0;
2277 	     rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2278 	     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2279 		/* Check if this set of ranks should be skipped entirely. */
2280 		if (param->skip_shadow_regs[sr])
2281 			continue;
2282 
2283 		ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2284 							rw_group, test_bgn,
2285 							use_read_test,
2286 							update_fom);
2287 		if (ret)
2288 			continue;
2289 
2290 		grp_calibrated = 0;
2291 	}
2292 
2293 	if (!grp_calibrated)
2294 		return -EIO;
2295 
2296 	return 0;
2297 }
2298 
2299 /**
2300  * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2301  * @rw_group:		Read/Write Group
2302  * @test_bgn:		Rank at which the test begins
2303  *
2304  * Stage 1: Calibrate the read valid prediction FIFO.
2305  *
2306  * This function implements UniPHY calibration Stage 1, as explained in
2307  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2308  *
2309  * - read valid prediction will consist of finding:
2310  *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2311  *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
2312  *  - we also do a per-bit deskew on the DQ lines.
2313  */
2314 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2315 {
2316 	uint32_t p, d;
2317 	uint32_t dtaps_per_ptap;
2318 	uint32_t failed_substage;
2319 
2320 	int ret;
2321 
2322 	debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2323 
2324 	/* Update info for sims */
2325 	reg_file_set_group(rw_group);
2326 	reg_file_set_stage(CAL_STAGE_VFIFO);
2327 	reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2328 
2329 	failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2330 
2331 	/* USER Determine number of delay taps for each phase tap. */
2332 	dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2333 				      IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
2334 
2335 	for (d = 0; d <= dtaps_per_ptap; d += 2) {
2336 		/*
2337 		 * In RLDRAMX we may be messing the delay of pins in
2338 		 * the same write rw_group but outside of the current read
2339 		 * the rw_group, but that's ok because we haven't calibrated
2340 		 * output side yet.
2341 		 */
2342 		if (d > 0) {
2343 			scc_mgr_apply_group_all_out_delay_add_all_ranks(
2344 								rw_group, d);
2345 		}
2346 
2347 		for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
2348 			/* 1) Guaranteed Write */
2349 			ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2350 			if (ret)
2351 				break;
2352 
2353 			/* 2) DQS Enable Calibration */
2354 			ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2355 									  test_bgn);
2356 			if (ret) {
2357 				failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2358 				continue;
2359 			}
2360 
2361 			/* 3) Centering DQ/DQS */
2362 			/*
2363 			 * If doing read after write calibration, do not update
2364 			 * FOM now. Do it then.
2365 			 */
2366 			ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2367 								test_bgn, 1, 0);
2368 			if (ret) {
2369 				failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2370 				continue;
2371 			}
2372 
2373 			/* All done. */
2374 			goto cal_done_ok;
2375 		}
2376 	}
2377 
2378 	/* Calibration Stage 1 failed. */
2379 	set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2380 	return 0;
2381 
2382 	/* Calibration Stage 1 completed OK. */
2383 cal_done_ok:
2384 	/*
2385 	 * Reset the delay chains back to zero if they have moved > 1
2386 	 * (check for > 1 because loop will increase d even when pass in
2387 	 * first case).
2388 	 */
2389 	if (d > 2)
2390 		scc_mgr_zero_group(rw_group, 1);
2391 
2392 	return 1;
2393 }
2394 
2395 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2396 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2397 					       uint32_t test_bgn)
2398 {
2399 	uint32_t rank_bgn, sr;
2400 	uint32_t grp_calibrated;
2401 	uint32_t write_group;
2402 
2403 	debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2404 
2405 	/* update info for sims */
2406 
2407 	reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2408 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2409 
2410 	write_group = read_group;
2411 
2412 	/* update info for sims */
2413 	reg_file_set_group(read_group);
2414 
2415 	grp_calibrated = 1;
2416 	/* Read per-bit deskew can be done on a per shadow register basis */
2417 	for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2418 		rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2419 		/* Determine if this set of ranks should be skipped entirely */
2420 		if (!param->skip_shadow_regs[sr]) {
2421 		/* This is the last calibration round, update FOM here */
2422 			if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2423 								write_group,
2424 								read_group,
2425 								test_bgn, 0,
2426 								1)) {
2427 				grp_calibrated = 0;
2428 			}
2429 		}
2430 	}
2431 
2432 
2433 	if (grp_calibrated == 0) {
2434 		set_failing_group_stage(write_group,
2435 					CAL_STAGE_VFIFO_AFTER_WRITES,
2436 					CAL_SUBSTAGE_VFIFO_CENTER);
2437 		return 0;
2438 	}
2439 
2440 	return 1;
2441 }
2442 
2443 /* Calibrate LFIFO to find smallest read latency */
2444 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2445 {
2446 	uint32_t found_one;
2447 	uint32_t bit_chk;
2448 
2449 	debug("%s:%d\n", __func__, __LINE__);
2450 
2451 	/* update info for sims */
2452 	reg_file_set_stage(CAL_STAGE_LFIFO);
2453 	reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2454 
2455 	/* Load up the patterns used by read calibration for all ranks */
2456 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2457 	found_one = 0;
2458 
2459 	do {
2460 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2461 		debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2462 			   __func__, __LINE__, gbl->curr_read_lat);
2463 
2464 		if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2465 							      NUM_READ_TESTS,
2466 							      PASS_ALL_BITS,
2467 							      &bit_chk, 1)) {
2468 			break;
2469 		}
2470 
2471 		found_one = 1;
2472 		/* reduce read latency and see if things are working */
2473 		/* correctly */
2474 		gbl->curr_read_lat--;
2475 	} while (gbl->curr_read_lat > 0);
2476 
2477 	/* reset the fifos to get pointers to known state */
2478 
2479 	writel(0, &phy_mgr_cmd->fifo_reset);
2480 
2481 	if (found_one) {
2482 		/* add a fudge factor to the read latency that was determined */
2483 		gbl->curr_read_lat += 2;
2484 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2485 		debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2486 			   read_lat=%u\n", __func__, __LINE__,
2487 			   gbl->curr_read_lat);
2488 		return 1;
2489 	} else {
2490 		set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2491 					CAL_SUBSTAGE_READ_LATENCY);
2492 
2493 		debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2494 			   read_lat=%u\n", __func__, __LINE__,
2495 			   gbl->curr_read_lat);
2496 		return 0;
2497 	}
2498 }
2499 
2500 /*
2501  * issue write test command.
2502  * two variants are provided. one that just tests a write pattern and
2503  * another that tests datamask functionality.
2504  */
2505 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2506 						  uint32_t test_dm)
2507 {
2508 	uint32_t mcc_instruction;
2509 	uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2510 		ENABLE_SUPER_QUICK_CALIBRATION);
2511 	uint32_t rw_wl_nop_cycles;
2512 	uint32_t addr;
2513 
2514 	/*
2515 	 * Set counter and jump addresses for the right
2516 	 * number of NOP cycles.
2517 	 * The number of supported NOP cycles can range from -1 to infinity
2518 	 * Three different cases are handled:
2519 	 *
2520 	 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2521 	 *    mechanism will be used to insert the right number of NOPs
2522 	 *
2523 	 * 2. For a number of NOP cycles equals to 0, the micro-instruction
2524 	 *    issuing the write command will jump straight to the
2525 	 *    micro-instruction that turns on DQS (for DDRx), or outputs write
2526 	 *    data (for RLD), skipping
2527 	 *    the NOP micro-instruction all together
2528 	 *
2529 	 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2530 	 *    turned on in the same micro-instruction that issues the write
2531 	 *    command. Then we need
2532 	 *    to directly jump to the micro-instruction that sends out the data
2533 	 *
2534 	 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2535 	 *       (2 and 3). One jump-counter (0) is used to perform multiple
2536 	 *       write-read operations.
2537 	 *       one counter left to issue this command in "multiple-group" mode
2538 	 */
2539 
2540 	rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2541 
2542 	if (rw_wl_nop_cycles == -1) {
2543 		/*
2544 		 * CNTR 2 - We want to execute the special write operation that
2545 		 * turns on DQS right away and then skip directly to the
2546 		 * instruction that sends out the data. We set the counter to a
2547 		 * large number so that the jump is always taken.
2548 		 */
2549 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2550 
2551 		/* CNTR 3 - Not used */
2552 		if (test_dm) {
2553 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
2554 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
2555 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2556 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2557 			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2558 		} else {
2559 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
2560 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
2561 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2562 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2563 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2564 		}
2565 	} else if (rw_wl_nop_cycles == 0) {
2566 		/*
2567 		 * CNTR 2 - We want to skip the NOP operation and go straight
2568 		 * to the DQS enable instruction. We set the counter to a large
2569 		 * number so that the jump is always taken.
2570 		 */
2571 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2572 
2573 		/* CNTR 3 - Not used */
2574 		if (test_dm) {
2575 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2576 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
2577 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2578 		} else {
2579 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2580 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
2581 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2582 		}
2583 	} else {
2584 		/*
2585 		 * CNTR 2 - In this case we want to execute the next instruction
2586 		 * and NOT take the jump. So we set the counter to 0. The jump
2587 		 * address doesn't count.
2588 		 */
2589 		writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
2590 		writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2591 
2592 		/*
2593 		 * CNTR 3 - Set the nop counter to the number of cycles we
2594 		 * need to loop for, minus 1.
2595 		 */
2596 		writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
2597 		if (test_dm) {
2598 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2599 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2600 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2601 		} else {
2602 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2603 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2604 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2605 		}
2606 	}
2607 
2608 	writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
2609 		  RW_MGR_RESET_READ_DATAPATH_OFFSET);
2610 
2611 	if (quick_write_mode)
2612 		writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
2613 	else
2614 		writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
2615 
2616 	writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
2617 
2618 	/*
2619 	 * CNTR 1 - This is used to ensure enough time elapses
2620 	 * for read data to come back.
2621 	 */
2622 	writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
2623 
2624 	if (test_dm) {
2625 		writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
2626 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2627 	} else {
2628 		writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
2629 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2630 	}
2631 
2632 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
2633 	writel(mcc_instruction, addr + (group << 2));
2634 }
2635 
2636 /* Test writes, can check for a single bit pass or multiple bit pass */
2637 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2638 	uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2639 	uint32_t *bit_chk, uint32_t all_ranks)
2640 {
2641 	uint32_t r;
2642 	uint32_t correct_mask_vg;
2643 	uint32_t tmp_bit_chk;
2644 	uint32_t vg;
2645 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2646 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2647 	uint32_t addr_rw_mgr;
2648 	uint32_t base_rw_mgr;
2649 
2650 	*bit_chk = param->write_correct_mask;
2651 	correct_mask_vg = param->write_correct_mask_vg;
2652 
2653 	for (r = rank_bgn; r < rank_end; r++) {
2654 		if (param->skip_ranks[r]) {
2655 			/* request to skip the rank */
2656 			continue;
2657 		}
2658 
2659 		/* set rank */
2660 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2661 
2662 		tmp_bit_chk = 0;
2663 		addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
2664 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2665 			/* reset the fifos to get pointers to known state */
2666 			writel(0, &phy_mgr_cmd->fifo_reset);
2667 
2668 			tmp_bit_chk = tmp_bit_chk <<
2669 				(RW_MGR_MEM_DQ_PER_WRITE_DQS /
2670 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2671 			rw_mgr_mem_calibrate_write_test_issue(write_group *
2672 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2673 				use_dm);
2674 
2675 			base_rw_mgr = readl(addr_rw_mgr);
2676 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2677 			if (vg == 0)
2678 				break;
2679 		}
2680 		*bit_chk &= tmp_bit_chk;
2681 	}
2682 
2683 	if (all_correct) {
2684 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2685 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2686 			   %u => %lu", write_group, use_dm,
2687 			   *bit_chk, param->write_correct_mask,
2688 			   (long unsigned int)(*bit_chk ==
2689 			   param->write_correct_mask));
2690 		return *bit_chk == param->write_correct_mask;
2691 	} else {
2692 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2693 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2694 		       write_group, use_dm, *bit_chk);
2695 		debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2696 			(long unsigned int)(*bit_chk != 0));
2697 		return *bit_chk != 0x00;
2698 	}
2699 }
2700 
2701 /*
2702  * center all windows. do per-bit-deskew to possibly increase size of
2703  * certain windows.
2704  */
2705 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2706 	uint32_t write_group, uint32_t test_bgn)
2707 {
2708 	uint32_t i, p, min_index;
2709 	int32_t d;
2710 	/*
2711 	 * Store these as signed since there are comparisons with
2712 	 * signed numbers.
2713 	 */
2714 	uint32_t bit_chk;
2715 	uint32_t sticky_bit_chk;
2716 	int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2717 	int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2718 	int32_t mid;
2719 	int32_t mid_min, orig_mid_min;
2720 	int32_t new_dqs, start_dqs, shift_dq;
2721 	int32_t dq_margin, dqs_margin, dm_margin;
2722 	uint32_t stop;
2723 	uint32_t temp_dq_out1_delay;
2724 	uint32_t addr;
2725 
2726 	debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2727 
2728 	dm_margin = 0;
2729 
2730 	addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2731 	start_dqs = readl(addr +
2732 			  (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2733 
2734 	/* per-bit deskew */
2735 
2736 	/*
2737 	 * set the left and right edge of each bit to an illegal value
2738 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2739 	 */
2740 	sticky_bit_chk = 0;
2741 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2742 		left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2743 		right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2744 	}
2745 
2746 	/* Search for the left edge of the window for each bit */
2747 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
2748 		scc_mgr_apply_group_dq_out1_delay(write_group, d);
2749 
2750 		writel(0, &sdr_scc_mgr->update);
2751 
2752 		/*
2753 		 * Stop searching when the read test doesn't pass AND when
2754 		 * we've seen a passing read on every bit.
2755 		 */
2756 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2757 			0, PASS_ONE_BIT, &bit_chk, 0);
2758 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2759 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2760 		debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
2761 			   == %u && %u [bit_chk= %u ]\n",
2762 			d, sticky_bit_chk, param->write_correct_mask,
2763 			stop, bit_chk);
2764 
2765 		if (stop == 1) {
2766 			break;
2767 		} else {
2768 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2769 				if (bit_chk & 1) {
2770 					/*
2771 					 * Remember a passing test as the
2772 					 * left_edge.
2773 					 */
2774 					left_edge[i] = d;
2775 				} else {
2776 					/*
2777 					 * If a left edge has not been seen
2778 					 * yet, then a future passing test will
2779 					 * mark this edge as the right edge.
2780 					 */
2781 					if (left_edge[i] ==
2782 						IO_IO_OUT1_DELAY_MAX + 1) {
2783 						right_edge[i] = -(d + 1);
2784 					}
2785 				}
2786 				debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
2787 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2788 					   (int)(bit_chk & 1), i, left_edge[i]);
2789 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2790 				       right_edge[i]);
2791 				bit_chk = bit_chk >> 1;
2792 			}
2793 		}
2794 	}
2795 
2796 	/* Reset DQ delay chains to 0 */
2797 	scc_mgr_apply_group_dq_out1_delay(0);
2798 	sticky_bit_chk = 0;
2799 	for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
2800 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2801 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
2802 			   i, left_edge[i], i, right_edge[i]);
2803 
2804 		/*
2805 		 * Check for cases where we haven't found the left edge,
2806 		 * which makes our assignment of the the right edge invalid.
2807 		 * Reset it to the illegal value.
2808 		 */
2809 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
2810 		    (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
2811 			right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2812 			debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
2813 				   right_edge[%u]: %d\n", __func__, __LINE__,
2814 				   i, right_edge[i]);
2815 		}
2816 
2817 		/*
2818 		 * Reset sticky bit (except for bits where we have
2819 		 * seen the left edge).
2820 		 */
2821 		sticky_bit_chk = sticky_bit_chk << 1;
2822 		if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
2823 			sticky_bit_chk = sticky_bit_chk | 1;
2824 
2825 		if (i == 0)
2826 			break;
2827 	}
2828 
2829 	/* Search for the right edge of the window for each bit */
2830 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
2831 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2832 							d + start_dqs);
2833 
2834 		writel(0, &sdr_scc_mgr->update);
2835 
2836 		/*
2837 		 * Stop searching when the read test doesn't pass AND when
2838 		 * we've seen a passing read on every bit.
2839 		 */
2840 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2841 			0, PASS_ONE_BIT, &bit_chk, 0);
2842 
2843 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2844 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2845 
2846 		debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
2847 			   %u && %u\n", d, sticky_bit_chk,
2848 			   param->write_correct_mask, stop);
2849 
2850 		if (stop == 1) {
2851 			if (d == 0) {
2852 				for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
2853 					i++) {
2854 					/* d = 0 failed, but it passed when
2855 					testing the left edge, so it must be
2856 					marginal, set it to -1 */
2857 					if (right_edge[i] ==
2858 						IO_IO_OUT1_DELAY_MAX + 1 &&
2859 						left_edge[i] !=
2860 						IO_IO_OUT1_DELAY_MAX + 1) {
2861 						right_edge[i] = -1;
2862 					}
2863 				}
2864 			}
2865 			break;
2866 		} else {
2867 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2868 				if (bit_chk & 1) {
2869 					/*
2870 					 * Remember a passing test as
2871 					 * the right_edge.
2872 					 */
2873 					right_edge[i] = d;
2874 				} else {
2875 					if (d != 0) {
2876 						/*
2877 						 * If a right edge has not
2878 						 * been seen yet, then a future
2879 						 * passing test will mark this
2880 						 * edge as the left edge.
2881 						 */
2882 						if (right_edge[i] ==
2883 						    IO_IO_OUT1_DELAY_MAX + 1)
2884 							left_edge[i] = -(d + 1);
2885 					} else {
2886 						/*
2887 						 * d = 0 failed, but it passed
2888 						 * when testing the left edge,
2889 						 * so it must be marginal, set
2890 						 * it to -1.
2891 						 */
2892 						if (right_edge[i] ==
2893 						    IO_IO_OUT1_DELAY_MAX + 1 &&
2894 						    left_edge[i] !=
2895 						    IO_IO_OUT1_DELAY_MAX + 1)
2896 							right_edge[i] = -1;
2897 						/*
2898 						 * If a right edge has not been
2899 						 * seen yet, then a future
2900 						 * passing test will mark this
2901 						 * edge as the left edge.
2902 						 */
2903 						else if (right_edge[i] ==
2904 							IO_IO_OUT1_DELAY_MAX +
2905 							1)
2906 							left_edge[i] = -(d + 1);
2907 					}
2908 				}
2909 				debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
2910 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2911 					   (int)(bit_chk & 1), i, left_edge[i]);
2912 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2913 					   right_edge[i]);
2914 				bit_chk = bit_chk >> 1;
2915 			}
2916 		}
2917 	}
2918 
2919 	/* Check that all bits have a window */
2920 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2921 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2922 			   %d right_edge[%u]: %d", __func__, __LINE__,
2923 			   i, left_edge[i], i, right_edge[i]);
2924 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
2925 		    (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
2926 			set_failing_group_stage(test_bgn + i,
2927 						CAL_STAGE_WRITES,
2928 						CAL_SUBSTAGE_WRITES_CENTER);
2929 			return 0;
2930 		}
2931 	}
2932 
2933 	/* Find middle of window for each DQ bit */
2934 	mid_min = left_edge[0] - right_edge[0];
2935 	min_index = 0;
2936 	for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2937 		mid = left_edge[i] - right_edge[i];
2938 		if (mid < mid_min) {
2939 			mid_min = mid;
2940 			min_index = i;
2941 		}
2942 	}
2943 
2944 	/*
2945 	 * -mid_min/2 represents the amount that we need to move DQS.
2946 	 * If mid_min is odd and positive we'll need to add one to
2947 	 * make sure the rounding in further calculations is correct
2948 	 * (always bias to the right), so just add 1 for all positive values.
2949 	 */
2950 	if (mid_min > 0)
2951 		mid_min++;
2952 	mid_min = mid_min / 2;
2953 	debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
2954 		   __LINE__, mid_min);
2955 
2956 	/* Determine the amount we can change DQS (which is -mid_min) */
2957 	orig_mid_min = mid_min;
2958 	new_dqs = start_dqs;
2959 	mid_min = 0;
2960 	debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
2961 		   mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
2962 	/* Initialize data for export structures */
2963 	dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
2964 	dq_margin  = IO_IO_OUT1_DELAY_MAX + 1;
2965 
2966 	/* add delay to bring centre of all DQ windows to the same "level" */
2967 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
2968 		/* Use values before divide by 2 to reduce round off error */
2969 		shift_dq = (left_edge[i] - right_edge[i] -
2970 			(left_edge[min_index] - right_edge[min_index]))/2  +
2971 		(orig_mid_min - mid_min);
2972 
2973 		debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
2974 			   [%u]=%d\n", __func__, __LINE__, i, shift_dq);
2975 
2976 		addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2977 		temp_dq_out1_delay = readl(addr + (i << 2));
2978 		if (shift_dq + (int32_t)temp_dq_out1_delay >
2979 			(int32_t)IO_IO_OUT1_DELAY_MAX) {
2980 			shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
2981 		} else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
2982 			shift_dq = -(int32_t)temp_dq_out1_delay;
2983 		}
2984 		debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
2985 			   i, shift_dq);
2986 		scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq);
2987 		scc_mgr_load_dq(i);
2988 
2989 		debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
2990 			   left_edge[i] - shift_dq + (-mid_min),
2991 			   right_edge[i] + shift_dq - (-mid_min));
2992 		/* To determine values for export structures */
2993 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2994 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
2995 
2996 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2997 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2998 	}
2999 
3000 	/* Move DQS */
3001 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3002 	writel(0, &sdr_scc_mgr->update);
3003 
3004 	/* Centre DM */
3005 	debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3006 
3007 	/*
3008 	 * set the left and right edge of each bit to an illegal value,
3009 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
3010 	 */
3011 	left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
3012 	right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
3013 	int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3014 	int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3015 	int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
3016 	int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
3017 	int32_t win_best = 0;
3018 
3019 	/* Search for the/part of the window with DM shift */
3020 	for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
3021 		scc_mgr_apply_group_dm_out1_delay(d);
3022 		writel(0, &sdr_scc_mgr->update);
3023 
3024 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3025 						    PASS_ALL_BITS, &bit_chk,
3026 						    0)) {
3027 			/* USE Set current end of the window */
3028 			end_curr = -d;
3029 			/*
3030 			 * If a starting edge of our window has not been seen
3031 			 * this is our current start of the DM window.
3032 			 */
3033 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3034 				bgn_curr = -d;
3035 
3036 			/*
3037 			 * If current window is bigger than best seen.
3038 			 * Set best seen to be current window.
3039 			 */
3040 			if ((end_curr-bgn_curr+1) > win_best) {
3041 				win_best = end_curr-bgn_curr+1;
3042 				bgn_best = bgn_curr;
3043 				end_best = end_curr;
3044 			}
3045 		} else {
3046 			/* We just saw a failing test. Reset temp edge */
3047 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3048 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3049 			}
3050 		}
3051 
3052 
3053 	/* Reset DM delay chains to 0 */
3054 	scc_mgr_apply_group_dm_out1_delay(0);
3055 
3056 	/*
3057 	 * Check to see if the current window nudges up aganist 0 delay.
3058 	 * If so we need to continue the search by shifting DQS otherwise DQS
3059 	 * search begins as a new search. */
3060 	if (end_curr != 0) {
3061 		bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3062 		end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3063 	}
3064 
3065 	/* Search for the/part of the window with DQS shifts */
3066 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
3067 		/*
3068 		 * Note: This only shifts DQS, so are we limiting ourselve to
3069 		 * width of DQ unnecessarily.
3070 		 */
3071 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
3072 							d + new_dqs);
3073 
3074 		writel(0, &sdr_scc_mgr->update);
3075 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3076 						    PASS_ALL_BITS, &bit_chk,
3077 						    0)) {
3078 			/* USE Set current end of the window */
3079 			end_curr = d;
3080 			/*
3081 			 * If a beginning edge of our window has not been seen
3082 			 * this is our current begin of the DM window.
3083 			 */
3084 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3085 				bgn_curr = d;
3086 
3087 			/*
3088 			 * If current window is bigger than best seen. Set best
3089 			 * seen to be current window.
3090 			 */
3091 			if ((end_curr-bgn_curr+1) > win_best) {
3092 				win_best = end_curr-bgn_curr+1;
3093 				bgn_best = bgn_curr;
3094 				end_best = end_curr;
3095 			}
3096 		} else {
3097 			/* We just saw a failing test. Reset temp edge */
3098 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3099 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3100 
3101 			/* Early exit optimization: if ther remaining delay
3102 			chain space is less than already seen largest window
3103 			we can exit */
3104 			if ((win_best-1) >
3105 				(IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3106 					break;
3107 				}
3108 			}
3109 		}
3110 
3111 	/* assign left and right edge for cal and reporting; */
3112 	left_edge[0] = -1*bgn_best;
3113 	right_edge[0] = end_best;
3114 
3115 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3116 		   __LINE__, left_edge[0], right_edge[0]);
3117 
3118 	/* Move DQS (back to orig) */
3119 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3120 
3121 	/* Move DM */
3122 
3123 	/* Find middle of window for the DM bit */
3124 	mid = (left_edge[0] - right_edge[0]) / 2;
3125 
3126 	/* only move right, since we are not moving DQS/DQ */
3127 	if (mid < 0)
3128 		mid = 0;
3129 
3130 	/* dm_marign should fail if we never find a window */
3131 	if (win_best == 0)
3132 		dm_margin = -1;
3133 	else
3134 		dm_margin = left_edge[0] - mid;
3135 
3136 	scc_mgr_apply_group_dm_out1_delay(mid);
3137 	writel(0, &sdr_scc_mgr->update);
3138 
3139 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3140 		   dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3141 		   right_edge[0], mid, dm_margin);
3142 	/* Export values */
3143 	gbl->fom_out += dq_margin + dqs_margin;
3144 
3145 	debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3146 		   dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3147 		   dq_margin, dqs_margin, dm_margin);
3148 
3149 	/*
3150 	 * Do not remove this line as it makes sure all of our
3151 	 * decisions have been applied.
3152 	 */
3153 	writel(0, &sdr_scc_mgr->update);
3154 	return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3155 }
3156 
3157 /* calibrate the write operations */
3158 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
3159 	uint32_t test_bgn)
3160 {
3161 	/* update info for sims */
3162 	debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
3163 
3164 	reg_file_set_stage(CAL_STAGE_WRITES);
3165 	reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3166 
3167 	reg_file_set_group(g);
3168 
3169 	if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
3170 		set_failing_group_stage(g, CAL_STAGE_WRITES,
3171 					CAL_SUBSTAGE_WRITES_CENTER);
3172 		return 0;
3173 	}
3174 
3175 	return 1;
3176 }
3177 
3178 /**
3179  * mem_precharge_and_activate() - Precharge all banks and activate
3180  *
3181  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3182  */
3183 static void mem_precharge_and_activate(void)
3184 {
3185 	int r;
3186 
3187 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3188 		/* Test if the rank should be skipped. */
3189 		if (param->skip_ranks[r])
3190 			continue;
3191 
3192 		/* Set rank. */
3193 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3194 
3195 		/* Precharge all banks. */
3196 		writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3197 					     RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3198 
3199 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3200 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3201 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
3202 
3203 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3204 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3205 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
3206 
3207 		/* Activate rows. */
3208 		writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3209 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3210 	}
3211 }
3212 
3213 /**
3214  * mem_init_latency() - Configure memory RLAT and WLAT settings
3215  *
3216  * Configure memory RLAT and WLAT parameters.
3217  */
3218 static void mem_init_latency(void)
3219 {
3220 	/*
3221 	 * For AV/CV, LFIFO is hardened and always runs at full rate
3222 	 * so max latency in AFI clocks, used here, is correspondingly
3223 	 * smaller.
3224 	 */
3225 	const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3226 	u32 rlat, wlat;
3227 
3228 	debug("%s:%d\n", __func__, __LINE__);
3229 
3230 	/*
3231 	 * Read in write latency.
3232 	 * WL for Hard PHY does not include additive latency.
3233 	 */
3234 	wlat = readl(&data_mgr->t_wl_add);
3235 	wlat += readl(&data_mgr->mem_t_add);
3236 
3237 	gbl->rw_wl_nop_cycles = wlat - 1;
3238 
3239 	/* Read in readl latency. */
3240 	rlat = readl(&data_mgr->t_rl_add);
3241 
3242 	/* Set a pretty high read latency initially. */
3243 	gbl->curr_read_lat = rlat + 16;
3244 	if (gbl->curr_read_lat > max_latency)
3245 		gbl->curr_read_lat = max_latency;
3246 
3247 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3248 
3249 	/* Advertise write latency. */
3250 	writel(wlat, &phy_mgr_cfg->afi_wlat);
3251 }
3252 
3253 /**
3254  * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3255  *
3256  * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3257  */
3258 static void mem_skip_calibrate(void)
3259 {
3260 	uint32_t vfifo_offset;
3261 	uint32_t i, j, r;
3262 
3263 	debug("%s:%d\n", __func__, __LINE__);
3264 	/* Need to update every shadow register set used by the interface */
3265 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3266 	     r += NUM_RANKS_PER_SHADOW_REG) {
3267 		/*
3268 		 * Set output phase alignment settings appropriate for
3269 		 * skip calibration.
3270 		 */
3271 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3272 			scc_mgr_set_dqs_en_phase(i, 0);
3273 #if IO_DLL_CHAIN_LENGTH == 6
3274 			scc_mgr_set_dqdqs_output_phase(i, 6);
3275 #else
3276 			scc_mgr_set_dqdqs_output_phase(i, 7);
3277 #endif
3278 			/*
3279 			 * Case:33398
3280 			 *
3281 			 * Write data arrives to the I/O two cycles before write
3282 			 * latency is reached (720 deg).
3283 			 *   -> due to bit-slip in a/c bus
3284 			 *   -> to allow board skew where dqs is longer than ck
3285 			 *      -> how often can this happen!?
3286 			 *      -> can claim back some ptaps for high freq
3287 			 *       support if we can relax this, but i digress...
3288 			 *
3289 			 * The write_clk leads mem_ck by 90 deg
3290 			 * The minimum ptap of the OPA is 180 deg
3291 			 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3292 			 * The write_clk is always delayed by 2 ptaps
3293 			 *
3294 			 * Hence, to make DQS aligned to CK, we need to delay
3295 			 * DQS by:
3296 			 *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3297 			 *
3298 			 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3299 			 * gives us the number of ptaps, which simplies to:
3300 			 *
3301 			 *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3302 			 */
3303 			scc_mgr_set_dqdqs_output_phase(i,
3304 					1.25 * IO_DLL_CHAIN_LENGTH - 2);
3305 		}
3306 		writel(0xff, &sdr_scc_mgr->dqs_ena);
3307 		writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3308 
3309 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3310 			writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3311 				  SCC_MGR_GROUP_COUNTER_OFFSET);
3312 		}
3313 		writel(0xff, &sdr_scc_mgr->dq_ena);
3314 		writel(0xff, &sdr_scc_mgr->dm_ena);
3315 		writel(0, &sdr_scc_mgr->update);
3316 	}
3317 
3318 	/* Compensate for simulation model behaviour */
3319 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3320 		scc_mgr_set_dqs_bus_in_delay(i, 10);
3321 		scc_mgr_load_dqs(i);
3322 	}
3323 	writel(0, &sdr_scc_mgr->update);
3324 
3325 	/*
3326 	 * ArriaV has hard FIFOs that can only be initialized by incrementing
3327 	 * in sequencer.
3328 	 */
3329 	vfifo_offset = CALIB_VFIFO_OFFSET;
3330 	for (j = 0; j < vfifo_offset; j++)
3331 		writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3332 	writel(0, &phy_mgr_cmd->fifo_reset);
3333 
3334 	/*
3335 	 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3336 	 * setting from generation-time constant.
3337 	 */
3338 	gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3339 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3340 }
3341 
3342 /**
3343  * mem_calibrate() - Memory calibration entry point.
3344  *
3345  * Perform memory calibration.
3346  */
3347 static uint32_t mem_calibrate(void)
3348 {
3349 	uint32_t i;
3350 	uint32_t rank_bgn, sr;
3351 	uint32_t write_group, write_test_bgn;
3352 	uint32_t read_group, read_test_bgn;
3353 	uint32_t run_groups, current_run;
3354 	uint32_t failing_groups = 0;
3355 	uint32_t group_failed = 0;
3356 
3357 	const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
3358 				RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
3359 
3360 	debug("%s:%d\n", __func__, __LINE__);
3361 
3362 	/* Initialize the data settings */
3363 	gbl->error_substage = CAL_SUBSTAGE_NIL;
3364 	gbl->error_stage = CAL_STAGE_NIL;
3365 	gbl->error_group = 0xff;
3366 	gbl->fom_in = 0;
3367 	gbl->fom_out = 0;
3368 
3369 	/* Initialize WLAT and RLAT. */
3370 	mem_init_latency();
3371 
3372 	/* Initialize bit slips. */
3373 	mem_precharge_and_activate();
3374 
3375 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3376 		writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3377 			  SCC_MGR_GROUP_COUNTER_OFFSET);
3378 		/* Only needed once to set all groups, pins, DQ, DQS, DM. */
3379 		if (i == 0)
3380 			scc_mgr_set_hhp_extras();
3381 
3382 		scc_set_bypass_mode(i);
3383 	}
3384 
3385 	/* Calibration is skipped. */
3386 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3387 		/*
3388 		 * Set VFIFO and LFIFO to instant-on settings in skip
3389 		 * calibration mode.
3390 		 */
3391 		mem_skip_calibrate();
3392 
3393 		/*
3394 		 * Do not remove this line as it makes sure all of our
3395 		 * decisions have been applied.
3396 		 */
3397 		writel(0, &sdr_scc_mgr->update);
3398 		return 1;
3399 	}
3400 
3401 	/* Calibration is not skipped. */
3402 	for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3403 		/*
3404 		 * Zero all delay chain/phase settings for all
3405 		 * groups and all shadow register sets.
3406 		 */
3407 		scc_mgr_zero_all();
3408 
3409 		run_groups = ~param->skip_groups;
3410 
3411 		for (write_group = 0, write_test_bgn = 0; write_group
3412 			< RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3413 			write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3414 
3415 			/* Initialize the group failure */
3416 			group_failed = 0;
3417 
3418 			current_run = run_groups & ((1 <<
3419 				RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3420 			run_groups = run_groups >>
3421 				RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3422 
3423 			if (current_run == 0)
3424 				continue;
3425 
3426 			writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3427 					    SCC_MGR_GROUP_COUNTER_OFFSET);
3428 			scc_mgr_zero_group(write_group, 0);
3429 
3430 			for (read_group = write_group * rwdqs_ratio,
3431 			     read_test_bgn = 0;
3432 			     read_group < (write_group + 1) * rwdqs_ratio;
3433 			     read_group++,
3434 			     read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3435 				if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3436 					continue;
3437 
3438 				/* Calibrate the VFIFO */
3439 				if (rw_mgr_mem_calibrate_vfifo(read_group,
3440 							       read_test_bgn))
3441 					continue;
3442 
3443 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3444 					return 0;
3445 
3446 				/* The group failed, we're done. */
3447 				goto grp_failed;
3448 			}
3449 
3450 			/* Calibrate the output side */
3451 			for (rank_bgn = 0, sr = 0;
3452 			     rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
3453 			     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3454 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3455 					continue;
3456 
3457 				/* Not needed in quick mode! */
3458 				if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
3459 					continue;
3460 
3461 				/*
3462 				 * Determine if this set of ranks
3463 				 * should be skipped entirely.
3464 				 */
3465 				if (param->skip_shadow_regs[sr])
3466 					continue;
3467 
3468 				/* Calibrate WRITEs */
3469 				if (rw_mgr_mem_calibrate_writes(rank_bgn,
3470 						write_group, write_test_bgn))
3471 					continue;
3472 
3473 				group_failed = 1;
3474 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3475 					return 0;
3476 			}
3477 
3478 			/* Some group failed, we're done. */
3479 			if (group_failed)
3480 				goto grp_failed;
3481 
3482 			for (read_group = write_group * rwdqs_ratio,
3483 			     read_test_bgn = 0;
3484 			     read_group < (write_group + 1) * rwdqs_ratio;
3485 			     read_group++,
3486 			     read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3487 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3488 					continue;
3489 
3490 				if (rw_mgr_mem_calibrate_vfifo_end(read_group,
3491 								read_test_bgn))
3492 					continue;
3493 
3494 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3495 					return 0;
3496 
3497 				/* The group failed, we're done. */
3498 				goto grp_failed;
3499 			}
3500 
3501 			/* No group failed, continue as usual. */
3502 			continue;
3503 
3504 grp_failed:		/* A group failed, increment the counter. */
3505 			failing_groups++;
3506 		}
3507 
3508 		/*
3509 		 * USER If there are any failing groups then report
3510 		 * the failure.
3511 		 */
3512 		if (failing_groups != 0)
3513 			return 0;
3514 
3515 		if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3516 			continue;
3517 
3518 		/*
3519 		 * If we're skipping groups as part of debug,
3520 		 * don't calibrate LFIFO.
3521 		 */
3522 		if (param->skip_groups != 0)
3523 			continue;
3524 
3525 		/* Calibrate the LFIFO */
3526 		if (!rw_mgr_mem_calibrate_lfifo())
3527 			return 0;
3528 	}
3529 
3530 	/*
3531 	 * Do not remove this line as it makes sure all of our decisions
3532 	 * have been applied.
3533 	 */
3534 	writel(0, &sdr_scc_mgr->update);
3535 	return 1;
3536 }
3537 
3538 /**
3539  * run_mem_calibrate() - Perform memory calibration
3540  *
3541  * This function triggers the entire memory calibration procedure.
3542  */
3543 static int run_mem_calibrate(void)
3544 {
3545 	int pass;
3546 
3547 	debug("%s:%d\n", __func__, __LINE__);
3548 
3549 	/* Reset pass/fail status shown on afi_cal_success/fail */
3550 	writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3551 
3552 	/* Stop tracking manager. */
3553 	clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3554 
3555 	phy_mgr_initialize();
3556 	rw_mgr_mem_initialize();
3557 
3558 	/* Perform the actual memory calibration. */
3559 	pass = mem_calibrate();
3560 
3561 	mem_precharge_and_activate();
3562 	writel(0, &phy_mgr_cmd->fifo_reset);
3563 
3564 	/* Handoff. */
3565 	rw_mgr_mem_handoff();
3566 	/*
3567 	 * In Hard PHY this is a 2-bit control:
3568 	 * 0: AFI Mux Select
3569 	 * 1: DDIO Mux Select
3570 	 */
3571 	writel(0x2, &phy_mgr_cfg->mux_sel);
3572 
3573 	/* Start tracking manager. */
3574 	setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3575 
3576 	return pass;
3577 }
3578 
3579 /**
3580  * debug_mem_calibrate() - Report result of memory calibration
3581  * @pass:	Value indicating whether calibration passed or failed
3582  *
3583  * This function reports the results of the memory calibration
3584  * and writes debug information into the register file.
3585  */
3586 static void debug_mem_calibrate(int pass)
3587 {
3588 	uint32_t debug_info;
3589 
3590 	if (pass) {
3591 		printf("%s: CALIBRATION PASSED\n", __FILE__);
3592 
3593 		gbl->fom_in /= 2;
3594 		gbl->fom_out /= 2;
3595 
3596 		if (gbl->fom_in > 0xff)
3597 			gbl->fom_in = 0xff;
3598 
3599 		if (gbl->fom_out > 0xff)
3600 			gbl->fom_out = 0xff;
3601 
3602 		/* Update the FOM in the register file */
3603 		debug_info = gbl->fom_in;
3604 		debug_info |= gbl->fom_out << 8;
3605 		writel(debug_info, &sdr_reg_file->fom);
3606 
3607 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3608 		writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3609 	} else {
3610 		printf("%s: CALIBRATION FAILED\n", __FILE__);
3611 
3612 		debug_info = gbl->error_stage;
3613 		debug_info |= gbl->error_substage << 8;
3614 		debug_info |= gbl->error_group << 16;
3615 
3616 		writel(debug_info, &sdr_reg_file->failing_stage);
3617 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3618 		writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3619 
3620 		/* Update the failing group/stage in the register file */
3621 		debug_info = gbl->error_stage;
3622 		debug_info |= gbl->error_substage << 8;
3623 		debug_info |= gbl->error_group << 16;
3624 		writel(debug_info, &sdr_reg_file->failing_stage);
3625 	}
3626 
3627 	printf("%s: Calibration complete\n", __FILE__);
3628 }
3629 
3630 /**
3631  * hc_initialize_rom_data() - Initialize ROM data
3632  *
3633  * Initialize ROM data.
3634  */
3635 static void hc_initialize_rom_data(void)
3636 {
3637 	u32 i, addr;
3638 
3639 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3640 	for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3641 		writel(inst_rom_init[i], addr + (i << 2));
3642 
3643 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3644 	for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3645 		writel(ac_rom_init[i], addr + (i << 2));
3646 }
3647 
3648 /**
3649  * initialize_reg_file() - Initialize SDR register file
3650  *
3651  * Initialize SDR register file.
3652  */
3653 static void initialize_reg_file(void)
3654 {
3655 	/* Initialize the register file with the correct data */
3656 	writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3657 	writel(0, &sdr_reg_file->debug_data_addr);
3658 	writel(0, &sdr_reg_file->cur_stage);
3659 	writel(0, &sdr_reg_file->fom);
3660 	writel(0, &sdr_reg_file->failing_stage);
3661 	writel(0, &sdr_reg_file->debug1);
3662 	writel(0, &sdr_reg_file->debug2);
3663 }
3664 
3665 /**
3666  * initialize_hps_phy() - Initialize HPS PHY
3667  *
3668  * Initialize HPS PHY.
3669  */
3670 static void initialize_hps_phy(void)
3671 {
3672 	uint32_t reg;
3673 	/*
3674 	 * Tracking also gets configured here because it's in the
3675 	 * same register.
3676 	 */
3677 	uint32_t trk_sample_count = 7500;
3678 	uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3679 	/*
3680 	 * Format is number of outer loops in the 16 MSB, sample
3681 	 * count in 16 LSB.
3682 	 */
3683 
3684 	reg = 0;
3685 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3686 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3687 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3688 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3689 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3690 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3691 	/*
3692 	 * This field selects the intrinsic latency to RDATA_EN/FULL path.
3693 	 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3694 	 */
3695 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3696 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3697 		trk_sample_count);
3698 	writel(reg, &sdr_ctrl->phy_ctrl0);
3699 
3700 	reg = 0;
3701 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3702 		trk_sample_count >>
3703 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3704 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3705 		trk_long_idle_sample_count);
3706 	writel(reg, &sdr_ctrl->phy_ctrl1);
3707 
3708 	reg = 0;
3709 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3710 		trk_long_idle_sample_count >>
3711 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3712 	writel(reg, &sdr_ctrl->phy_ctrl2);
3713 }
3714 
3715 /**
3716  * initialize_tracking() - Initialize tracking
3717  *
3718  * Initialize the register file with usable initial data.
3719  */
3720 static void initialize_tracking(void)
3721 {
3722 	/*
3723 	 * Initialize the register file with the correct data.
3724 	 * Compute usable version of value in case we skip full
3725 	 * computation later.
3726 	 */
3727 	writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3728 	       &sdr_reg_file->dtaps_per_ptap);
3729 
3730 	/* trk_sample_count */
3731 	writel(7500, &sdr_reg_file->trk_sample_count);
3732 
3733 	/* longidle outer loop [15:0] */
3734 	writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3735 
3736 	/*
3737 	 * longidle sample count [31:24]
3738 	 * trfc, worst case of 933Mhz 4Gb [23:16]
3739 	 * trcd, worst case [15:8]
3740 	 * vfifo wait [7:0]
3741 	 */
3742 	writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3743 	       &sdr_reg_file->delays);
3744 
3745 	/* mux delay */
3746 	writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
3747 	       (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
3748 	       &sdr_reg_file->trk_rw_mgr_addr);
3749 
3750 	writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
3751 	       &sdr_reg_file->trk_read_dqs_width);
3752 
3753 	/* trefi [7:0] */
3754 	writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
3755 	       &sdr_reg_file->trk_rfsh);
3756 }
3757 
3758 int sdram_calibration_full(void)
3759 {
3760 	struct param_type my_param;
3761 	struct gbl_type my_gbl;
3762 	uint32_t pass;
3763 
3764 	memset(&my_param, 0, sizeof(my_param));
3765 	memset(&my_gbl, 0, sizeof(my_gbl));
3766 
3767 	param = &my_param;
3768 	gbl = &my_gbl;
3769 
3770 	/* Set the calibration enabled by default */
3771 	gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3772 	/*
3773 	 * Only sweep all groups (regardless of fail state) by default
3774 	 * Set enabled read test by default.
3775 	 */
3776 #if DISABLE_GUARANTEED_READ
3777 	gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3778 #endif
3779 	/* Initialize the register file */
3780 	initialize_reg_file();
3781 
3782 	/* Initialize any PHY CSR */
3783 	initialize_hps_phy();
3784 
3785 	scc_mgr_initialize();
3786 
3787 	initialize_tracking();
3788 
3789 	printf("%s: Preparing to start memory calibration\n", __FILE__);
3790 
3791 	debug("%s:%d\n", __func__, __LINE__);
3792 	debug_cond(DLEVEL == 1,
3793 		   "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3794 		   RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3795 		   RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3796 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3797 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3798 	debug_cond(DLEVEL == 1,
3799 		   "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3800 		   RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3801 		   RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3802 		   IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3803 	debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3804 		   IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3805 	debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3806 		   IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3807 		   IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3808 	debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3809 		   IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3810 		   IO_IO_OUT2_DELAY_MAX);
3811 	debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3812 		   IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3813 
3814 	hc_initialize_rom_data();
3815 
3816 	/* update info for sims */
3817 	reg_file_set_stage(CAL_STAGE_NIL);
3818 	reg_file_set_group(0);
3819 
3820 	/*
3821 	 * Load global needed for those actions that require
3822 	 * some dynamic calibration support.
3823 	 */
3824 	dyn_calib_steps = STATIC_CALIB_STEPS;
3825 	/*
3826 	 * Load global to allow dynamic selection of delay loop settings
3827 	 * based on calibration mode.
3828 	 */
3829 	if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3830 		skip_delay_mask = 0xff;
3831 	else
3832 		skip_delay_mask = 0x0;
3833 
3834 	pass = run_mem_calibrate();
3835 	debug_mem_calibrate(pass);
3836 	return pass;
3837 }
3838