xref: /openbmc/u-boot/drivers/ddr/altera/sequencer.c (revision 16cfc4b987c7078bb93da9b35c1956d1857207be)
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6 
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include <errno.h>
11 #include "sequencer.h"
12 #include "sequencer_auto.h"
13 #include "sequencer_auto_ac_init.h"
14 #include "sequencer_auto_inst_init.h"
15 #include "sequencer_defines.h"
16 
17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
18 	(struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
19 
20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
21 	(struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
22 
23 static struct socfpga_sdr_reg_file *sdr_reg_file =
24 	(struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
25 
26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
27 	(struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
28 
29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
30 	(struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
31 
32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
33 	(struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
34 
35 static struct socfpga_data_mgr *data_mgr =
36 	(struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
37 
38 static struct socfpga_sdr_ctrl *sdr_ctrl =
39 	(struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
40 
41 #define DELTA_D		1
42 
43 /*
44  * In order to reduce ROM size, most of the selectable calibration steps are
45  * decided at compile time based on the user's calibration mode selection,
46  * as captured by the STATIC_CALIB_STEPS selection below.
47  *
48  * However, to support simulation-time selection of fast simulation mode, where
49  * we skip everything except the bare minimum, we need a few of the steps to
50  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
51  * check, which is based on the rtl-supplied value, or we dynamically compute
52  * the value to use based on the dynamically-chosen calibration mode
53  */
54 
55 #define DLEVEL 0
56 #define STATIC_IN_RTL_SIM 0
57 #define STATIC_SKIP_DELAY_LOOPS 0
58 
59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
60 	STATIC_SKIP_DELAY_LOOPS)
61 
62 /* calibration steps requested by the rtl */
63 uint16_t dyn_calib_steps;
64 
65 /*
66  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
67  * instead of static, we use boolean logic to select between
68  * non-skip and skip values
69  *
70  * The mask is set to include all bits when not-skipping, but is
71  * zero when skipping
72  */
73 
74 uint16_t skip_delay_mask;	/* mask off bits when skipping/not-skipping */
75 
76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
77 	((non_skip_value) & skip_delay_mask)
78 
79 struct gbl_type *gbl;
80 struct param_type *param;
81 uint32_t curr_shadow_reg;
82 
83 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
84 	uint32_t write_group, uint32_t use_dm,
85 	uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
86 
87 static void set_failing_group_stage(uint32_t group, uint32_t stage,
88 	uint32_t substage)
89 {
90 	/*
91 	 * Only set the global stage if there was not been any other
92 	 * failing group
93 	 */
94 	if (gbl->error_stage == CAL_STAGE_NIL)	{
95 		gbl->error_substage = substage;
96 		gbl->error_stage = stage;
97 		gbl->error_group = group;
98 	}
99 }
100 
101 static void reg_file_set_group(u16 set_group)
102 {
103 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
104 }
105 
106 static void reg_file_set_stage(u8 set_stage)
107 {
108 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
109 }
110 
111 static void reg_file_set_sub_stage(u8 set_sub_stage)
112 {
113 	set_sub_stage &= 0xff;
114 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
115 }
116 
117 /**
118  * phy_mgr_initialize() - Initialize PHY Manager
119  *
120  * Initialize PHY Manager.
121  */
122 static void phy_mgr_initialize(void)
123 {
124 	u32 ratio;
125 
126 	debug("%s:%d\n", __func__, __LINE__);
127 	/* Calibration has control over path to memory */
128 	/*
129 	 * In Hard PHY this is a 2-bit control:
130 	 * 0: AFI Mux Select
131 	 * 1: DDIO Mux Select
132 	 */
133 	writel(0x3, &phy_mgr_cfg->mux_sel);
134 
135 	/* USER memory clock is not stable we begin initialization  */
136 	writel(0, &phy_mgr_cfg->reset_mem_stbl);
137 
138 	/* USER calibration status all set to zero */
139 	writel(0, &phy_mgr_cfg->cal_status);
140 
141 	writel(0, &phy_mgr_cfg->cal_debug_info);
142 
143 	/* Init params only if we do NOT skip calibration. */
144 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
145 		return;
146 
147 	ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
148 		RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
149 	param->read_correct_mask_vg = (1 << ratio) - 1;
150 	param->write_correct_mask_vg = (1 << ratio) - 1;
151 	param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
152 	param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
153 	ratio = RW_MGR_MEM_DATA_WIDTH /
154 		RW_MGR_MEM_DATA_MASK_WIDTH;
155 	param->dm_correct_mask = (1 << ratio) - 1;
156 }
157 
158 /**
159  * set_rank_and_odt_mask() - Set Rank and ODT mask
160  * @rank:	Rank mask
161  * @odt_mode:	ODT mode, OFF or READ_WRITE
162  *
163  * Set Rank and ODT mask (On-Die Termination).
164  */
165 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
166 {
167 	u32 odt_mask_0 = 0;
168 	u32 odt_mask_1 = 0;
169 	u32 cs_and_odt_mask;
170 
171 	if (odt_mode == RW_MGR_ODT_MODE_OFF) {
172 		odt_mask_0 = 0x0;
173 		odt_mask_1 = 0x0;
174 	} else {	/* RW_MGR_ODT_MODE_READ_WRITE */
175 		switch (RW_MGR_MEM_NUMBER_OF_RANKS) {
176 		case 1:	/* 1 Rank */
177 			/* Read: ODT = 0 ; Write: ODT = 1 */
178 			odt_mask_0 = 0x0;
179 			odt_mask_1 = 0x1;
180 			break;
181 		case 2:	/* 2 Ranks */
182 			if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
183 				/*
184 				 * - Dual-Slot , Single-Rank (1 CS per DIMM)
185 				 *   OR
186 				 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
187 				 *
188 				 * Since MEM_NUMBER_OF_RANKS is 2, they
189 				 * are both single rank with 2 CS each
190 				 * (special for RDIMM).
191 				 *
192 				 * Read: Turn on ODT on the opposite rank
193 				 * Write: Turn on ODT on all ranks
194 				 */
195 				odt_mask_0 = 0x3 & ~(1 << rank);
196 				odt_mask_1 = 0x3;
197 			} else {
198 				/*
199 				 * - Single-Slot , Dual-Rank (2 CS per DIMM)
200 				 *
201 				 * Read: Turn on ODT off on all ranks
202 				 * Write: Turn on ODT on active rank
203 				 */
204 				odt_mask_0 = 0x0;
205 				odt_mask_1 = 0x3 & (1 << rank);
206 			}
207 			break;
208 		case 4:	/* 4 Ranks */
209 			/* Read:
210 			 * ----------+-----------------------+
211 			 *           |         ODT           |
212 			 * Read From +-----------------------+
213 			 *   Rank    |  3  |  2  |  1  |  0  |
214 			 * ----------+-----+-----+-----+-----+
215 			 *     0     |  0  |  1  |  0  |  0  |
216 			 *     1     |  1  |  0  |  0  |  0  |
217 			 *     2     |  0  |  0  |  0  |  1  |
218 			 *     3     |  0  |  0  |  1  |  0  |
219 			 * ----------+-----+-----+-----+-----+
220 			 *
221 			 * Write:
222 			 * ----------+-----------------------+
223 			 *           |         ODT           |
224 			 * Write To  +-----------------------+
225 			 *   Rank    |  3  |  2  |  1  |  0  |
226 			 * ----------+-----+-----+-----+-----+
227 			 *     0     |  0  |  1  |  0  |  1  |
228 			 *     1     |  1  |  0  |  1  |  0  |
229 			 *     2     |  0  |  1  |  0  |  1  |
230 			 *     3     |  1  |  0  |  1  |  0  |
231 			 * ----------+-----+-----+-----+-----+
232 			 */
233 			switch (rank) {
234 			case 0:
235 				odt_mask_0 = 0x4;
236 				odt_mask_1 = 0x5;
237 				break;
238 			case 1:
239 				odt_mask_0 = 0x8;
240 				odt_mask_1 = 0xA;
241 				break;
242 			case 2:
243 				odt_mask_0 = 0x1;
244 				odt_mask_1 = 0x5;
245 				break;
246 			case 3:
247 				odt_mask_0 = 0x2;
248 				odt_mask_1 = 0xA;
249 				break;
250 			}
251 			break;
252 		}
253 	}
254 
255 	cs_and_odt_mask = (0xFF & ~(1 << rank)) |
256 			  ((0xFF & odt_mask_0) << 8) |
257 			  ((0xFF & odt_mask_1) << 16);
258 	writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
259 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
260 }
261 
262 /**
263  * scc_mgr_set() - Set SCC Manager register
264  * @off:	Base offset in SCC Manager space
265  * @grp:	Read/Write group
266  * @val:	Value to be set
267  *
268  * This function sets the SCC Manager (Scan Chain Control Manager) register.
269  */
270 static void scc_mgr_set(u32 off, u32 grp, u32 val)
271 {
272 	writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
273 }
274 
275 /**
276  * scc_mgr_initialize() - Initialize SCC Manager registers
277  *
278  * Initialize SCC Manager registers.
279  */
280 static void scc_mgr_initialize(void)
281 {
282 	/*
283 	 * Clear register file for HPS. 16 (2^4) is the size of the
284 	 * full register file in the scc mgr:
285 	 *	RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
286 	 *                             MEM_IF_READ_DQS_WIDTH - 1);
287 	 */
288 	int i;
289 
290 	for (i = 0; i < 16; i++) {
291 		debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
292 			   __func__, __LINE__, i);
293 		scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
294 	}
295 }
296 
297 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
298 {
299 	scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
300 }
301 
302 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
303 {
304 	scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
305 }
306 
307 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
308 {
309 	scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
310 }
311 
312 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
313 {
314 	scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
315 }
316 
317 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
318 {
319 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
320 		    delay);
321 }
322 
323 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
324 {
325 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
326 }
327 
328 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
329 {
330 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
331 }
332 
333 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
334 {
335 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
336 		    delay);
337 }
338 
339 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
340 {
341 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
342 		    RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
343 		    delay);
344 }
345 
346 /* load up dqs config settings */
347 static void scc_mgr_load_dqs(uint32_t dqs)
348 {
349 	writel(dqs, &sdr_scc_mgr->dqs_ena);
350 }
351 
352 /* load up dqs io config settings */
353 static void scc_mgr_load_dqs_io(void)
354 {
355 	writel(0, &sdr_scc_mgr->dqs_io_ena);
356 }
357 
358 /* load up dq config settings */
359 static void scc_mgr_load_dq(uint32_t dq_in_group)
360 {
361 	writel(dq_in_group, &sdr_scc_mgr->dq_ena);
362 }
363 
364 /* load up dm config settings */
365 static void scc_mgr_load_dm(uint32_t dm)
366 {
367 	writel(dm, &sdr_scc_mgr->dm_ena);
368 }
369 
370 /**
371  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
372  * @off:	Base offset in SCC Manager space
373  * @grp:	Read/Write group
374  * @val:	Value to be set
375  * @update:	If non-zero, trigger SCC Manager update for all ranks
376  *
377  * This function sets the SCC Manager (Scan Chain Control Manager) register
378  * and optionally triggers the SCC update for all ranks.
379  */
380 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
381 				  const int update)
382 {
383 	u32 r;
384 
385 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
386 	     r += NUM_RANKS_PER_SHADOW_REG) {
387 		scc_mgr_set(off, grp, val);
388 
389 		if (update || (r == 0)) {
390 			writel(grp, &sdr_scc_mgr->dqs_ena);
391 			writel(0, &sdr_scc_mgr->update);
392 		}
393 	}
394 }
395 
396 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
397 {
398 	/*
399 	 * USER although the h/w doesn't support different phases per
400 	 * shadow register, for simplicity our scc manager modeling
401 	 * keeps different phase settings per shadow reg, and it's
402 	 * important for us to keep them in sync to match h/w.
403 	 * for efficiency, the scan chain update should occur only
404 	 * once to sr0.
405 	 */
406 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
407 			      read_group, phase, 0);
408 }
409 
410 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
411 						     uint32_t phase)
412 {
413 	/*
414 	 * USER although the h/w doesn't support different phases per
415 	 * shadow register, for simplicity our scc manager modeling
416 	 * keeps different phase settings per shadow reg, and it's
417 	 * important for us to keep them in sync to match h/w.
418 	 * for efficiency, the scan chain update should occur only
419 	 * once to sr0.
420 	 */
421 	scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
422 			      write_group, phase, 0);
423 }
424 
425 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
426 					       uint32_t delay)
427 {
428 	/*
429 	 * In shadow register mode, the T11 settings are stored in
430 	 * registers in the core, which are updated by the DQS_ENA
431 	 * signals. Not issuing the SCC_MGR_UPD command allows us to
432 	 * save lots of rank switching overhead, by calling
433 	 * select_shadow_regs_for_update with update_scan_chains
434 	 * set to 0.
435 	 */
436 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
437 			      read_group, delay, 1);
438 	writel(0, &sdr_scc_mgr->update);
439 }
440 
441 /**
442  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
443  * @write_group:	Write group
444  * @delay:		Delay value
445  *
446  * This function sets the OCT output delay in SCC manager.
447  */
448 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
449 {
450 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
451 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
452 	const int base = write_group * ratio;
453 	int i;
454 	/*
455 	 * Load the setting in the SCC manager
456 	 * Although OCT affects only write data, the OCT delay is controlled
457 	 * by the DQS logic block which is instantiated once per read group.
458 	 * For protocols where a write group consists of multiple read groups,
459 	 * the setting must be set multiple times.
460 	 */
461 	for (i = 0; i < ratio; i++)
462 		scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
463 }
464 
465 /**
466  * scc_mgr_set_hhp_extras() - Set HHP extras.
467  *
468  * Load the fixed setting in the SCC manager HHP extras.
469  */
470 static void scc_mgr_set_hhp_extras(void)
471 {
472 	/*
473 	 * Load the fixed setting in the SCC manager
474 	 * bits: 0:0 = 1'b1	- DQS bypass
475 	 * bits: 1:1 = 1'b1	- DQ bypass
476 	 * bits: 4:2 = 3'b001	- rfifo_mode
477 	 * bits: 6:5 = 2'b01	- rfifo clock_select
478 	 * bits: 7:7 = 1'b0	- separate gating from ungating setting
479 	 * bits: 8:8 = 1'b0	- separate OE from Output delay setting
480 	 */
481 	const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
482 			  (1 << 2) | (1 << 1) | (1 << 0);
483 	const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
484 			 SCC_MGR_HHP_GLOBALS_OFFSET |
485 			 SCC_MGR_HHP_EXTRAS_OFFSET;
486 
487 	debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
488 		   __func__, __LINE__);
489 	writel(value, addr);
490 	debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
491 		   __func__, __LINE__);
492 }
493 
494 /**
495  * scc_mgr_zero_all() - Zero all DQS config
496  *
497  * Zero all DQS config.
498  */
499 static void scc_mgr_zero_all(void)
500 {
501 	int i, r;
502 
503 	/*
504 	 * USER Zero all DQS config settings, across all groups and all
505 	 * shadow registers
506 	 */
507 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
508 	     r += NUM_RANKS_PER_SHADOW_REG) {
509 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
510 			/*
511 			 * The phases actually don't exist on a per-rank basis,
512 			 * but there's no harm updating them several times, so
513 			 * let's keep the code simple.
514 			 */
515 			scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
516 			scc_mgr_set_dqs_en_phase(i, 0);
517 			scc_mgr_set_dqs_en_delay(i, 0);
518 		}
519 
520 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
521 			scc_mgr_set_dqdqs_output_phase(i, 0);
522 			/* Arria V/Cyclone V don't have out2. */
523 			scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
524 		}
525 	}
526 
527 	/* Multicast to all DQS group enables. */
528 	writel(0xff, &sdr_scc_mgr->dqs_ena);
529 	writel(0, &sdr_scc_mgr->update);
530 }
531 
532 /**
533  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
534  * @write_group:	Write group
535  *
536  * Set bypass mode and trigger SCC update.
537  */
538 static void scc_set_bypass_mode(const u32 write_group)
539 {
540 	/* Multicast to all DQ enables. */
541 	writel(0xff, &sdr_scc_mgr->dq_ena);
542 	writel(0xff, &sdr_scc_mgr->dm_ena);
543 
544 	/* Update current DQS IO enable. */
545 	writel(0, &sdr_scc_mgr->dqs_io_ena);
546 
547 	/* Update the DQS logic. */
548 	writel(write_group, &sdr_scc_mgr->dqs_ena);
549 
550 	/* Hit update. */
551 	writel(0, &sdr_scc_mgr->update);
552 }
553 
554 /**
555  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
556  * @write_group:	Write group
557  *
558  * Load DQS settings for Write Group, do not trigger SCC update.
559  */
560 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
561 {
562 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
563 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
564 	const int base = write_group * ratio;
565 	int i;
566 	/*
567 	 * Load the setting in the SCC manager
568 	 * Although OCT affects only write data, the OCT delay is controlled
569 	 * by the DQS logic block which is instantiated once per read group.
570 	 * For protocols where a write group consists of multiple read groups,
571 	 * the setting must be set multiple times.
572 	 */
573 	for (i = 0; i < ratio; i++)
574 		writel(base + i, &sdr_scc_mgr->dqs_ena);
575 }
576 
577 /**
578  * scc_mgr_zero_group() - Zero all configs for a group
579  *
580  * Zero DQ, DM, DQS and OCT configs for a group.
581  */
582 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
583 {
584 	int i, r;
585 
586 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
587 	     r += NUM_RANKS_PER_SHADOW_REG) {
588 		/* Zero all DQ config settings. */
589 		for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
590 			scc_mgr_set_dq_out1_delay(i, 0);
591 			if (!out_only)
592 				scc_mgr_set_dq_in_delay(i, 0);
593 		}
594 
595 		/* Multicast to all DQ enables. */
596 		writel(0xff, &sdr_scc_mgr->dq_ena);
597 
598 		/* Zero all DM config settings. */
599 		for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
600 			scc_mgr_set_dm_out1_delay(i, 0);
601 
602 		/* Multicast to all DM enables. */
603 		writel(0xff, &sdr_scc_mgr->dm_ena);
604 
605 		/* Zero all DQS IO settings. */
606 		if (!out_only)
607 			scc_mgr_set_dqs_io_in_delay(0);
608 
609 		/* Arria V/Cyclone V don't have out2. */
610 		scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
611 		scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
612 		scc_mgr_load_dqs_for_write_group(write_group);
613 
614 		/* Multicast to all DQS IO enables (only 1 in total). */
615 		writel(0, &sdr_scc_mgr->dqs_io_ena);
616 
617 		/* Hit update to zero everything. */
618 		writel(0, &sdr_scc_mgr->update);
619 	}
620 }
621 
622 /*
623  * apply and load a particular input delay for the DQ pins in a group
624  * group_bgn is the index of the first dq pin (in the write group)
625  */
626 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
627 {
628 	uint32_t i, p;
629 
630 	for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
631 		scc_mgr_set_dq_in_delay(p, delay);
632 		scc_mgr_load_dq(p);
633 	}
634 }
635 
636 /**
637  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
638  * @delay:		Delay value
639  *
640  * Apply and load a particular output delay for the DQ pins in a group.
641  */
642 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
643 {
644 	int i;
645 
646 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
647 		scc_mgr_set_dq_out1_delay(i, delay);
648 		scc_mgr_load_dq(i);
649 	}
650 }
651 
652 /* apply and load a particular output delay for the DM pins in a group */
653 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
654 {
655 	uint32_t i;
656 
657 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
658 		scc_mgr_set_dm_out1_delay(i, delay1);
659 		scc_mgr_load_dm(i);
660 	}
661 }
662 
663 
664 /* apply and load delay on both DQS and OCT out1 */
665 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
666 						    uint32_t delay)
667 {
668 	scc_mgr_set_dqs_out1_delay(delay);
669 	scc_mgr_load_dqs_io();
670 
671 	scc_mgr_set_oct_out1_delay(write_group, delay);
672 	scc_mgr_load_dqs_for_write_group(write_group);
673 }
674 
675 /**
676  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
677  * @write_group:	Write group
678  * @delay:		Delay value
679  *
680  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
681  */
682 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
683 						  const u32 delay)
684 {
685 	u32 i, new_delay;
686 
687 	/* DQ shift */
688 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
689 		scc_mgr_load_dq(i);
690 
691 	/* DM shift */
692 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
693 		scc_mgr_load_dm(i);
694 
695 	/* DQS shift */
696 	new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
697 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
698 		debug_cond(DLEVEL == 1,
699 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
700 			   __func__, __LINE__, write_group, delay, new_delay,
701 			   IO_IO_OUT2_DELAY_MAX,
702 			   new_delay - IO_IO_OUT2_DELAY_MAX);
703 		new_delay -= IO_IO_OUT2_DELAY_MAX;
704 		scc_mgr_set_dqs_out1_delay(new_delay);
705 	}
706 
707 	scc_mgr_load_dqs_io();
708 
709 	/* OCT shift */
710 	new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
711 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
712 		debug_cond(DLEVEL == 1,
713 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
714 			   __func__, __LINE__, write_group, delay,
715 			   new_delay, IO_IO_OUT2_DELAY_MAX,
716 			   new_delay - IO_IO_OUT2_DELAY_MAX);
717 		new_delay -= IO_IO_OUT2_DELAY_MAX;
718 		scc_mgr_set_oct_out1_delay(write_group, new_delay);
719 	}
720 
721 	scc_mgr_load_dqs_for_write_group(write_group);
722 }
723 
724 /**
725  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
726  * @write_group:	Write group
727  * @delay:		Delay value
728  *
729  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
730  */
731 static void
732 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
733 						const u32 delay)
734 {
735 	int r;
736 
737 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
738 	     r += NUM_RANKS_PER_SHADOW_REG) {
739 		scc_mgr_apply_group_all_out_delay_add(write_group, delay);
740 		writel(0, &sdr_scc_mgr->update);
741 	}
742 }
743 
744 /**
745  * set_jump_as_return() - Return instruction optimization
746  *
747  * Optimization used to recover some slots in ddr3 inst_rom could be
748  * applied to other protocols if we wanted to
749  */
750 static void set_jump_as_return(void)
751 {
752 	/*
753 	 * To save space, we replace return with jump to special shared
754 	 * RETURN instruction so we set the counter to large value so that
755 	 * we always jump.
756 	 */
757 	writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
758 	writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
759 }
760 
761 /*
762  * should always use constants as argument to ensure all computations are
763  * performed at compile time
764  */
765 static void delay_for_n_mem_clocks(const uint32_t clocks)
766 {
767 	uint32_t afi_clocks;
768 	uint8_t inner = 0;
769 	uint8_t outer = 0;
770 	uint16_t c_loop = 0;
771 
772 	debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
773 
774 
775 	afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
776 	/* scale (rounding up) to get afi clocks */
777 
778 	/*
779 	 * Note, we don't bother accounting for being off a little bit
780 	 * because of a few extra instructions in outer loops
781 	 * Note, the loops have a test at the end, and do the test before
782 	 * the decrement, and so always perform the loop
783 	 * 1 time more than the counter value
784 	 */
785 	if (afi_clocks == 0) {
786 		;
787 	} else if (afi_clocks <= 0x100) {
788 		inner = afi_clocks-1;
789 		outer = 0;
790 		c_loop = 0;
791 	} else if (afi_clocks <= 0x10000) {
792 		inner = 0xff;
793 		outer = (afi_clocks-1) >> 8;
794 		c_loop = 0;
795 	} else {
796 		inner = 0xff;
797 		outer = 0xff;
798 		c_loop = (afi_clocks-1) >> 16;
799 	}
800 
801 	/*
802 	 * rom instructions are structured as follows:
803 	 *
804 	 *    IDLE_LOOP2: jnz cntr0, TARGET_A
805 	 *    IDLE_LOOP1: jnz cntr1, TARGET_B
806 	 *                return
807 	 *
808 	 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
809 	 * TARGET_B is set to IDLE_LOOP2 as well
810 	 *
811 	 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
812 	 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
813 	 *
814 	 * a little confusing, but it helps save precious space in the inst_rom
815 	 * and sequencer rom and keeps the delays more accurate and reduces
816 	 * overhead
817 	 */
818 	if (afi_clocks <= 0x100) {
819 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
820 			&sdr_rw_load_mgr_regs->load_cntr1);
821 
822 		writel(RW_MGR_IDLE_LOOP1,
823 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
824 
825 		writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
826 					  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
827 	} else {
828 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
829 			&sdr_rw_load_mgr_regs->load_cntr0);
830 
831 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
832 			&sdr_rw_load_mgr_regs->load_cntr1);
833 
834 		writel(RW_MGR_IDLE_LOOP2,
835 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
836 
837 		writel(RW_MGR_IDLE_LOOP2,
838 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
839 
840 		/* hack to get around compiler not being smart enough */
841 		if (afi_clocks <= 0x10000) {
842 			/* only need to run once */
843 			writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
844 						  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
845 		} else {
846 			do {
847 				writel(RW_MGR_IDLE_LOOP2,
848 					SDR_PHYGRP_RWMGRGRP_ADDRESS |
849 					RW_MGR_RUN_SINGLE_GROUP_OFFSET);
850 			} while (c_loop-- != 0);
851 		}
852 	}
853 	debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
854 }
855 
856 /**
857  * rw_mgr_mem_init_load_regs() - Load instruction registers
858  * @cntr0:	Counter 0 value
859  * @cntr1:	Counter 1 value
860  * @cntr2:	Counter 2 value
861  * @jump:	Jump instruction value
862  *
863  * Load instruction registers.
864  */
865 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
866 {
867 	uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
868 			   RW_MGR_RUN_SINGLE_GROUP_OFFSET;
869 
870 	/* Load counters */
871 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
872 	       &sdr_rw_load_mgr_regs->load_cntr0);
873 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
874 	       &sdr_rw_load_mgr_regs->load_cntr1);
875 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
876 	       &sdr_rw_load_mgr_regs->load_cntr2);
877 
878 	/* Load jump address */
879 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
880 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
881 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
882 
883 	/* Execute count instruction */
884 	writel(jump, grpaddr);
885 }
886 
887 /**
888  * rw_mgr_mem_load_user() - Load user calibration values
889  * @fin1:	Final instruction 1
890  * @fin2:	Final instruction 2
891  * @precharge:	If 1, precharge the banks at the end
892  *
893  * Load user calibration values and optionally precharge the banks.
894  */
895 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
896 				 const int precharge)
897 {
898 	u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
899 		      RW_MGR_RUN_SINGLE_GROUP_OFFSET;
900 	u32 r;
901 
902 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
903 		if (param->skip_ranks[r]) {
904 			/* request to skip the rank */
905 			continue;
906 		}
907 
908 		/* set rank */
909 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
910 
911 		/* precharge all banks ... */
912 		if (precharge)
913 			writel(RW_MGR_PRECHARGE_ALL, grpaddr);
914 
915 		/*
916 		 * USER Use Mirror-ed commands for odd ranks if address
917 		 * mirrorring is on
918 		 */
919 		if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
920 			set_jump_as_return();
921 			writel(RW_MGR_MRS2_MIRR, grpaddr);
922 			delay_for_n_mem_clocks(4);
923 			set_jump_as_return();
924 			writel(RW_MGR_MRS3_MIRR, grpaddr);
925 			delay_for_n_mem_clocks(4);
926 			set_jump_as_return();
927 			writel(RW_MGR_MRS1_MIRR, grpaddr);
928 			delay_for_n_mem_clocks(4);
929 			set_jump_as_return();
930 			writel(fin1, grpaddr);
931 		} else {
932 			set_jump_as_return();
933 			writel(RW_MGR_MRS2, grpaddr);
934 			delay_for_n_mem_clocks(4);
935 			set_jump_as_return();
936 			writel(RW_MGR_MRS3, grpaddr);
937 			delay_for_n_mem_clocks(4);
938 			set_jump_as_return();
939 			writel(RW_MGR_MRS1, grpaddr);
940 			set_jump_as_return();
941 			writel(fin2, grpaddr);
942 		}
943 
944 		if (precharge)
945 			continue;
946 
947 		set_jump_as_return();
948 		writel(RW_MGR_ZQCL, grpaddr);
949 
950 		/* tZQinit = tDLLK = 512 ck cycles */
951 		delay_for_n_mem_clocks(512);
952 	}
953 }
954 
955 /**
956  * rw_mgr_mem_initialize() - Initialize RW Manager
957  *
958  * Initialize RW Manager.
959  */
960 static void rw_mgr_mem_initialize(void)
961 {
962 	debug("%s:%d\n", __func__, __LINE__);
963 
964 	/* The reset / cke part of initialization is broadcasted to all ranks */
965 	writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
966 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
967 
968 	/*
969 	 * Here's how you load register for a loop
970 	 * Counters are located @ 0x800
971 	 * Jump address are located @ 0xC00
972 	 * For both, registers 0 to 3 are selected using bits 3 and 2, like
973 	 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
974 	 * I know this ain't pretty, but Avalon bus throws away the 2 least
975 	 * significant bits
976 	 */
977 
978 	/* Start with memory RESET activated */
979 
980 	/* tINIT = 200us */
981 
982 	/*
983 	 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
984 	 * If a and b are the number of iteration in 2 nested loops
985 	 * it takes the following number of cycles to complete the operation:
986 	 * number_of_cycles = ((2 + n) * a + 2) * b
987 	 * where n is the number of instruction in the inner loop
988 	 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
989 	 * b = 6A
990 	 */
991 	rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
992 				  SEQ_TINIT_CNTR2_VAL,
993 				  RW_MGR_INIT_RESET_0_CKE_0);
994 
995 	/* Indicate that memory is stable. */
996 	writel(1, &phy_mgr_cfg->reset_mem_stbl);
997 
998 	/*
999 	 * transition the RESET to high
1000 	 * Wait for 500us
1001 	 */
1002 
1003 	/*
1004 	 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
1005 	 * If a and b are the number of iteration in 2 nested loops
1006 	 * it takes the following number of cycles to complete the operation
1007 	 * number_of_cycles = ((2 + n) * a + 2) * b
1008 	 * where n is the number of instruction in the inner loop
1009 	 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
1010 	 * b = FF
1011 	 */
1012 	rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
1013 				  SEQ_TRESET_CNTR2_VAL,
1014 				  RW_MGR_INIT_RESET_1_CKE_0);
1015 
1016 	/* Bring up clock enable. */
1017 
1018 	/* tXRP < 250 ck cycles */
1019 	delay_for_n_mem_clocks(250);
1020 
1021 	rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
1022 			     0);
1023 }
1024 
1025 /*
1026  * At the end of calibration we have to program the user settings in, and
1027  * USER  hand off the memory to the user.
1028  */
1029 static void rw_mgr_mem_handoff(void)
1030 {
1031 	rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
1032 	/*
1033 	 * USER  need to wait tMOD (12CK or 15ns) time before issuing
1034 	 * other commands, but we will have plenty of NIOS cycles before
1035 	 * actual handoff so its okay.
1036 	 */
1037 }
1038 
1039 /*
1040  * performs a guaranteed read on the patterns we are going to use during a
1041  * read test to ensure memory works
1042  */
1043 static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn,
1044 	uint32_t group, uint32_t num_tries, uint32_t *bit_chk,
1045 	uint32_t all_ranks)
1046 {
1047 	uint32_t r, vg;
1048 	uint32_t correct_mask_vg;
1049 	uint32_t tmp_bit_chk;
1050 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1051 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1052 	uint32_t addr;
1053 	uint32_t base_rw_mgr;
1054 
1055 	*bit_chk = param->read_correct_mask;
1056 	correct_mask_vg = param->read_correct_mask_vg;
1057 
1058 	for (r = rank_bgn; r < rank_end; r++) {
1059 		if (param->skip_ranks[r])
1060 			/* request to skip the rank */
1061 			continue;
1062 
1063 		/* set rank */
1064 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1065 
1066 		/* Load up a constant bursts of read commands */
1067 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1068 		writel(RW_MGR_GUARANTEED_READ,
1069 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1070 
1071 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1072 		writel(RW_MGR_GUARANTEED_READ_CONT,
1073 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1074 
1075 		tmp_bit_chk = 0;
1076 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1077 			/* reset the fifos to get pointers to known state */
1078 
1079 			writel(0, &phy_mgr_cmd->fifo_reset);
1080 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1081 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1082 
1083 			tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1084 				/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1085 
1086 			addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1087 			writel(RW_MGR_GUARANTEED_READ, addr +
1088 			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1089 				vg) << 2));
1090 
1091 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1092 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr));
1093 
1094 			if (vg == 0)
1095 				break;
1096 		}
1097 		*bit_chk &= tmp_bit_chk;
1098 	}
1099 
1100 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1101 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1102 
1103 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1104 	debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\
1105 		   %lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask,
1106 		   (long unsigned int)(*bit_chk == param->read_correct_mask));
1107 	return *bit_chk == param->read_correct_mask;
1108 }
1109 
1110 static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks
1111 	(uint32_t group, uint32_t num_tries, uint32_t *bit_chk)
1112 {
1113 	return rw_mgr_mem_calibrate_read_test_patterns(0, group,
1114 		num_tries, bit_chk, 1);
1115 }
1116 
1117 /* load up the patterns we are going to use during a read test */
1118 static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn,
1119 	uint32_t all_ranks)
1120 {
1121 	uint32_t r;
1122 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1123 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1124 
1125 	debug("%s:%d\n", __func__, __LINE__);
1126 	for (r = rank_bgn; r < rank_end; r++) {
1127 		if (param->skip_ranks[r])
1128 			/* request to skip the rank */
1129 			continue;
1130 
1131 		/* set rank */
1132 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1133 
1134 		/* Load up a constant bursts */
1135 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1136 
1137 		writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1138 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1139 
1140 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1141 
1142 		writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1143 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1144 
1145 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1146 
1147 		writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1148 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1149 
1150 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1151 
1152 		writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1153 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1154 
1155 		writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1156 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1157 	}
1158 
1159 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1160 }
1161 
1162 /*
1163  * try a read and see if it returns correct data back. has dummy reads
1164  * inserted into the mix used to align dqs enable. has more thorough checks
1165  * than the regular read test.
1166  */
1167 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
1168 	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1169 	uint32_t all_groups, uint32_t all_ranks)
1170 {
1171 	uint32_t r, vg;
1172 	uint32_t correct_mask_vg;
1173 	uint32_t tmp_bit_chk;
1174 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1175 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1176 	uint32_t addr;
1177 	uint32_t base_rw_mgr;
1178 
1179 	*bit_chk = param->read_correct_mask;
1180 	correct_mask_vg = param->read_correct_mask_vg;
1181 
1182 	uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
1183 		CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
1184 
1185 	for (r = rank_bgn; r < rank_end; r++) {
1186 		if (param->skip_ranks[r])
1187 			/* request to skip the rank */
1188 			continue;
1189 
1190 		/* set rank */
1191 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1192 
1193 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1194 
1195 		writel(RW_MGR_READ_B2B_WAIT1,
1196 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1197 
1198 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1199 		writel(RW_MGR_READ_B2B_WAIT2,
1200 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1201 
1202 		if (quick_read_mode)
1203 			writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1204 			/* need at least two (1+1) reads to capture failures */
1205 		else if (all_groups)
1206 			writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1207 		else
1208 			writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1209 
1210 		writel(RW_MGR_READ_B2B,
1211 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1212 		if (all_groups)
1213 			writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1214 			       RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1215 			       &sdr_rw_load_mgr_regs->load_cntr3);
1216 		else
1217 			writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1218 
1219 		writel(RW_MGR_READ_B2B,
1220 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1221 
1222 		tmp_bit_chk = 0;
1223 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1224 			/* reset the fifos to get pointers to known state */
1225 			writel(0, &phy_mgr_cmd->fifo_reset);
1226 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1227 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1228 
1229 			tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1230 				/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1231 
1232 			if (all_groups)
1233 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
1234 			else
1235 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1236 
1237 			writel(RW_MGR_READ_B2B, addr +
1238 			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1239 			       vg) << 2));
1240 
1241 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1242 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
1243 
1244 			if (vg == 0)
1245 				break;
1246 		}
1247 		*bit_chk &= tmp_bit_chk;
1248 	}
1249 
1250 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1251 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1252 
1253 	if (all_correct) {
1254 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1255 		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
1256 			   (%u == %u) => %lu", __func__, __LINE__, group,
1257 			   all_groups, *bit_chk, param->read_correct_mask,
1258 			   (long unsigned int)(*bit_chk ==
1259 			   param->read_correct_mask));
1260 		return *bit_chk == param->read_correct_mask;
1261 	} else	{
1262 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1263 		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
1264 			   (%u != %lu) => %lu\n", __func__, __LINE__,
1265 			   group, all_groups, *bit_chk, (long unsigned int)0,
1266 			   (long unsigned int)(*bit_chk != 0x00));
1267 		return *bit_chk != 0x00;
1268 	}
1269 }
1270 
1271 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
1272 	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1273 	uint32_t all_groups)
1274 {
1275 	return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
1276 					      bit_chk, all_groups, 1);
1277 }
1278 
1279 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
1280 {
1281 	writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1282 	(*v)++;
1283 }
1284 
1285 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v)
1286 {
1287 	uint32_t i;
1288 
1289 	for (i = 0; i < VFIFO_SIZE-1; i++)
1290 		rw_mgr_incr_vfifo(grp, v);
1291 }
1292 
1293 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk)
1294 {
1295 	uint32_t  v;
1296 	uint32_t fail_cnt = 0;
1297 	uint32_t test_status;
1298 
1299 	for (v = 0; v < VFIFO_SIZE; ) {
1300 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n",
1301 			   __func__, __LINE__, v);
1302 		test_status = rw_mgr_mem_calibrate_read_test_all_ranks
1303 			(grp, 1, PASS_ONE_BIT, bit_chk, 0);
1304 		if (!test_status) {
1305 			fail_cnt++;
1306 
1307 			if (fail_cnt == 2)
1308 				break;
1309 		}
1310 
1311 		/* fiddle with FIFO */
1312 		rw_mgr_incr_vfifo(grp, &v);
1313 	}
1314 
1315 	if (v >= VFIFO_SIZE) {
1316 		/* no failing read found!! Something must have gone wrong */
1317 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n",
1318 			   __func__, __LINE__);
1319 		return 0;
1320 	} else {
1321 		return v;
1322 	}
1323 }
1324 
1325 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk,
1326 			      uint32_t dtaps_per_ptap, uint32_t *work_bgn,
1327 			      uint32_t *v, uint32_t *d, uint32_t *p,
1328 			      uint32_t *i, uint32_t *max_working_cnt)
1329 {
1330 	uint32_t found_begin = 0;
1331 	uint32_t tmp_delay = 0;
1332 	uint32_t test_status;
1333 
1334 	for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay +=
1335 		IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1336 		*work_bgn = tmp_delay;
1337 		scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1338 
1339 		for (*i = 0; *i < VFIFO_SIZE; (*i)++) {
1340 			for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn +=
1341 				IO_DELAY_PER_OPA_TAP) {
1342 				scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1343 
1344 				test_status =
1345 				rw_mgr_mem_calibrate_read_test_all_ranks
1346 				(*grp, 1, PASS_ONE_BIT, bit_chk, 0);
1347 
1348 				if (test_status) {
1349 					*max_working_cnt = 1;
1350 					found_begin = 1;
1351 					break;
1352 				}
1353 			}
1354 
1355 			if (found_begin)
1356 				break;
1357 
1358 			if (*p > IO_DQS_EN_PHASE_MAX)
1359 				/* fiddle with FIFO */
1360 				rw_mgr_incr_vfifo(*grp, v);
1361 		}
1362 
1363 		if (found_begin)
1364 			break;
1365 	}
1366 
1367 	if (*i >= VFIFO_SIZE) {
1368 		/* cannot find working solution */
1369 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\
1370 			   ptap/dtap\n", __func__, __LINE__);
1371 		return 0;
1372 	} else {
1373 		return 1;
1374 	}
1375 }
1376 
1377 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk,
1378 			     uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1379 			     uint32_t *p, uint32_t *max_working_cnt)
1380 {
1381 	uint32_t found_begin = 0;
1382 	uint32_t tmp_delay;
1383 
1384 	/* Special case code for backing up a phase */
1385 	if (*p == 0) {
1386 		*p = IO_DQS_EN_PHASE_MAX;
1387 		rw_mgr_decr_vfifo(*grp, v);
1388 	} else {
1389 		(*p)--;
1390 	}
1391 	tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1392 	scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1393 
1394 	for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn;
1395 		(*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1396 		scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1397 
1398 		if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1399 							     PASS_ONE_BIT,
1400 							     bit_chk, 0)) {
1401 			found_begin = 1;
1402 			*work_bgn = tmp_delay;
1403 			break;
1404 		}
1405 	}
1406 
1407 	/* We have found a working dtap before the ptap found above */
1408 	if (found_begin == 1)
1409 		(*max_working_cnt)++;
1410 
1411 	/*
1412 	 * Restore VFIFO to old state before we decremented it
1413 	 * (if needed).
1414 	 */
1415 	(*p)++;
1416 	if (*p > IO_DQS_EN_PHASE_MAX) {
1417 		*p = 0;
1418 		rw_mgr_incr_vfifo(*grp, v);
1419 	}
1420 
1421 	scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0);
1422 }
1423 
1424 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk,
1425 			     uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1426 			     uint32_t *p, uint32_t *i, uint32_t *max_working_cnt,
1427 			     uint32_t *work_end)
1428 {
1429 	uint32_t found_end = 0;
1430 
1431 	(*p)++;
1432 	*work_end += IO_DELAY_PER_OPA_TAP;
1433 	if (*p > IO_DQS_EN_PHASE_MAX) {
1434 		/* fiddle with FIFO */
1435 		*p = 0;
1436 		rw_mgr_incr_vfifo(*grp, v);
1437 	}
1438 
1439 	for (; *i < VFIFO_SIZE + 1; (*i)++) {
1440 		for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end
1441 			+= IO_DELAY_PER_OPA_TAP) {
1442 			scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1443 
1444 			if (!rw_mgr_mem_calibrate_read_test_all_ranks
1445 				(*grp, 1, PASS_ONE_BIT, bit_chk, 0)) {
1446 				found_end = 1;
1447 				break;
1448 			} else {
1449 				(*max_working_cnt)++;
1450 			}
1451 		}
1452 
1453 		if (found_end)
1454 			break;
1455 
1456 		if (*p > IO_DQS_EN_PHASE_MAX) {
1457 			/* fiddle with FIFO */
1458 			rw_mgr_incr_vfifo(*grp, v);
1459 			*p = 0;
1460 		}
1461 	}
1462 
1463 	if (*i >= VFIFO_SIZE + 1) {
1464 		/* cannot see edge of failing read */
1465 		debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\
1466 			   failed\n", __func__, __LINE__);
1467 		return 0;
1468 	} else {
1469 		return 1;
1470 	}
1471 }
1472 
1473 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk,
1474 				  uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1475 				  uint32_t *p, uint32_t *work_mid,
1476 				  uint32_t *work_end)
1477 {
1478 	int i;
1479 	int tmp_delay = 0;
1480 
1481 	*work_mid = (*work_bgn + *work_end) / 2;
1482 
1483 	debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1484 		   *work_bgn, *work_end, *work_mid);
1485 	/* Get the middle delay to be less than a VFIFO delay */
1486 	for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX;
1487 		(*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1488 		;
1489 	debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1490 	while (*work_mid > tmp_delay)
1491 		*work_mid -= tmp_delay;
1492 	debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid);
1493 
1494 	tmp_delay = 0;
1495 	for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid;
1496 		(*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1497 		;
1498 	tmp_delay -= IO_DELAY_PER_OPA_TAP;
1499 	debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay);
1500 	for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++,
1501 		tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP)
1502 		;
1503 	debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay);
1504 
1505 	scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1);
1506 	scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1507 
1508 	/*
1509 	 * push vfifo until we can successfully calibrate. We can do this
1510 	 * because the largest possible margin in 1 VFIFO cycle.
1511 	 */
1512 	for (i = 0; i < VFIFO_SIZE; i++) {
1513 		debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n",
1514 			   *v);
1515 		if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1516 							     PASS_ONE_BIT,
1517 							     bit_chk, 0)) {
1518 			break;
1519 		}
1520 
1521 		/* fiddle with FIFO */
1522 		rw_mgr_incr_vfifo(*grp, v);
1523 	}
1524 
1525 	if (i >= VFIFO_SIZE) {
1526 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \
1527 			   failed\n", __func__, __LINE__);
1528 		return 0;
1529 	} else {
1530 		return 1;
1531 	}
1532 }
1533 
1534 /* find a good dqs enable to use */
1535 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
1536 {
1537 	uint32_t v, d, p, i;
1538 	uint32_t max_working_cnt;
1539 	uint32_t bit_chk;
1540 	uint32_t dtaps_per_ptap;
1541 	uint32_t work_bgn, work_mid, work_end;
1542 	uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
1543 
1544 	debug("%s:%d %u\n", __func__, __LINE__, grp);
1545 
1546 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1547 
1548 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1549 	scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1550 
1551 	/* ************************************************************** */
1552 	/* * Step 0 : Determine number of delay taps for each phase tap * */
1553 	dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1554 
1555 	/* ********************************************************* */
1556 	/* * Step 1 : First push vfifo until we get a failing read * */
1557 	v = find_vfifo_read(grp, &bit_chk);
1558 
1559 	max_working_cnt = 0;
1560 
1561 	/* ******************************************************** */
1562 	/* * step 2: find first working phase, increment in ptaps * */
1563 	work_bgn = 0;
1564 	if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d,
1565 				&p, &i, &max_working_cnt) == 0)
1566 		return 0;
1567 
1568 	work_end = work_bgn;
1569 
1570 	/*
1571 	 * If d is 0 then the working window covers a phase tap and
1572 	 * we can follow the old procedure otherwise, we've found the beginning,
1573 	 * and we need to increment the dtaps until we find the end.
1574 	 */
1575 	if (d == 0) {
1576 		/* ********************************************************* */
1577 		/* * step 3a: if we have room, back off by one and
1578 		increment in dtaps * */
1579 
1580 		sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1581 				 &max_working_cnt);
1582 
1583 		/* ********************************************************* */
1584 		/* * step 4a: go forward from working phase to non working
1585 		phase, increment in ptaps * */
1586 		if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1587 					 &i, &max_working_cnt, &work_end) == 0)
1588 			return 0;
1589 
1590 		/* ********************************************************* */
1591 		/* * step 5a:  back off one from last, increment in dtaps  * */
1592 
1593 		/* Special case code for backing up a phase */
1594 		if (p == 0) {
1595 			p = IO_DQS_EN_PHASE_MAX;
1596 			rw_mgr_decr_vfifo(grp, &v);
1597 		} else {
1598 			p = p - 1;
1599 		}
1600 
1601 		work_end -= IO_DELAY_PER_OPA_TAP;
1602 		scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1603 
1604 		/* * The actual increment of dtaps is done outside of
1605 		the if/else loop to share code */
1606 		d = 0;
1607 
1608 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \
1609 			   vfifo=%u ptap=%u\n", __func__, __LINE__,
1610 			   v, p);
1611 	} else {
1612 		/* ******************************************************* */
1613 		/* * step 3-5b:  Find the right edge of the window using
1614 		delay taps   * */
1615 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \
1616 			   ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__,
1617 			   v, p, d, work_bgn);
1618 
1619 		work_end = work_bgn;
1620 
1621 		/* * The actual increment of dtaps is done outside of the
1622 		if/else loop to share code */
1623 
1624 		/* Only here to counterbalance a subtract later on which is
1625 		not needed if this branch of the algorithm is taken */
1626 		max_working_cnt++;
1627 	}
1628 
1629 	/* The dtap increment to find the failing edge is done here */
1630 	for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
1631 		IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1632 			debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1633 				   end-2: dtap=%u\n", __func__, __LINE__, d);
1634 			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1635 
1636 			if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1637 								      PASS_ONE_BIT,
1638 								      &bit_chk, 0)) {
1639 				break;
1640 			}
1641 	}
1642 
1643 	/* Go back to working dtap */
1644 	if (d != 0)
1645 		work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1646 
1647 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \
1648 		   ptap=%u dtap=%u end=%u\n", __func__, __LINE__,
1649 		   v, p, d-1, work_end);
1650 
1651 	if (work_end < work_bgn) {
1652 		/* nil range */
1653 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \
1654 			   failed\n", __func__, __LINE__);
1655 		return 0;
1656 	}
1657 
1658 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n",
1659 		   __func__, __LINE__, work_bgn, work_end);
1660 
1661 	/* *************************************************************** */
1662 	/*
1663 	 * * We need to calculate the number of dtaps that equal a ptap
1664 	 * * To do that we'll back up a ptap and re-find the edge of the
1665 	 * * window using dtaps
1666 	 */
1667 
1668 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \
1669 		   for tracking\n", __func__, __LINE__);
1670 
1671 	/* Special case code for backing up a phase */
1672 	if (p == 0) {
1673 		p = IO_DQS_EN_PHASE_MAX;
1674 		rw_mgr_decr_vfifo(grp, &v);
1675 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1676 			   cycle/phase: v=%u p=%u\n", __func__, __LINE__,
1677 			   v, p);
1678 	} else {
1679 		p = p - 1;
1680 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1681 			   phase only: v=%u p=%u", __func__, __LINE__,
1682 			   v, p);
1683 	}
1684 
1685 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1686 
1687 	/*
1688 	 * Increase dtap until we first see a passing read (in case the
1689 	 * window is smaller than a ptap),
1690 	 * and then a failing read to mark the edge of the window again
1691 	 */
1692 
1693 	/* Find a passing read */
1694 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n",
1695 		   __func__, __LINE__);
1696 	found_passing_read = 0;
1697 	found_failing_read = 0;
1698 	initial_failing_dtap = d;
1699 	for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
1700 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \
1701 			   read d=%u\n", __func__, __LINE__, d);
1702 		scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1703 
1704 		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1705 							     PASS_ONE_BIT,
1706 							     &bit_chk, 0)) {
1707 			found_passing_read = 1;
1708 			break;
1709 		}
1710 	}
1711 
1712 	if (found_passing_read) {
1713 		/* Find a failing read */
1714 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \
1715 			   read\n", __func__, __LINE__);
1716 		for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
1717 			debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1718 				   testing read d=%u\n", __func__, __LINE__, d);
1719 			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1720 
1721 			if (!rw_mgr_mem_calibrate_read_test_all_ranks
1722 				(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
1723 				found_failing_read = 1;
1724 				break;
1725 			}
1726 		}
1727 	} else {
1728 		debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \
1729 			   calculate dtaps", __func__, __LINE__);
1730 		debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n");
1731 	}
1732 
1733 	/*
1734 	 * The dynamically calculated dtaps_per_ptap is only valid if we
1735 	 * found a passing/failing read. If we didn't, it means d hit the max
1736 	 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1737 	 * statically calculated value.
1738 	 */
1739 	if (found_passing_read && found_failing_read)
1740 		dtaps_per_ptap = d - initial_failing_dtap;
1741 
1742 	writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1743 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \
1744 		   - %u = %u",  __func__, __LINE__, d,
1745 		   initial_failing_dtap, dtaps_per_ptap);
1746 
1747 	/* ******************************************** */
1748 	/* * step 6:  Find the centre of the window   * */
1749 	if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1750 				   &work_mid, &work_end) == 0)
1751 		return 0;
1752 
1753 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \
1754 		   vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__,
1755 		   v, p-1, d);
1756 	return 1;
1757 }
1758 
1759 /*
1760  * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
1761  * dq_in_delay values
1762  */
1763 static uint32_t
1764 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
1765 (uint32_t write_group, uint32_t read_group, uint32_t test_bgn)
1766 {
1767 	uint32_t found;
1768 	uint32_t i;
1769 	uint32_t p;
1770 	uint32_t d;
1771 	uint32_t r;
1772 
1773 	const uint32_t delay_step = IO_IO_IN_DELAY_MAX /
1774 		(RW_MGR_MEM_DQ_PER_READ_DQS-1);
1775 		/* we start at zero, so have one less dq to devide among */
1776 
1777 	debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group,
1778 	      test_bgn);
1779 
1780 	/* try different dq_in_delays since the dq path is shorter than dqs */
1781 
1782 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1783 	     r += NUM_RANKS_PER_SHADOW_REG) {
1784 		for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++, d += delay_step) {
1785 			debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\
1786 				   vfifo_find_dqs_", __func__, __LINE__);
1787 			debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ",
1788 			       write_group, read_group);
1789 			debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d);
1790 			scc_mgr_set_dq_in_delay(p, d);
1791 			scc_mgr_load_dq(p);
1792 		}
1793 		writel(0, &sdr_scc_mgr->update);
1794 	}
1795 
1796 	found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group);
1797 
1798 	debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\
1799 		   en_phase_sweep_dq", __func__, __LINE__);
1800 	debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \
1801 		   chain to zero\n", write_group, read_group, found);
1802 
1803 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1804 	     r += NUM_RANKS_PER_SHADOW_REG) {
1805 		for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS;
1806 			i++, p++) {
1807 			scc_mgr_set_dq_in_delay(p, 0);
1808 			scc_mgr_load_dq(p);
1809 		}
1810 		writel(0, &sdr_scc_mgr->update);
1811 	}
1812 
1813 	return found;
1814 }
1815 
1816 /* per-bit deskew DQ and center */
1817 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
1818 	uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
1819 	uint32_t use_read_test, uint32_t update_fom)
1820 {
1821 	uint32_t i, p, d, min_index;
1822 	/*
1823 	 * Store these as signed since there are comparisons with
1824 	 * signed numbers.
1825 	 */
1826 	uint32_t bit_chk;
1827 	uint32_t sticky_bit_chk;
1828 	int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1829 	int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1830 	int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
1831 	int32_t mid;
1832 	int32_t orig_mid_min, mid_min;
1833 	int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
1834 		final_dqs_en;
1835 	int32_t dq_margin, dqs_margin;
1836 	uint32_t stop;
1837 	uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
1838 	uint32_t addr;
1839 
1840 	debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
1841 
1842 	addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
1843 	start_dqs = readl(addr + (read_group << 2));
1844 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
1845 		start_dqs_en = readl(addr + ((read_group << 2)
1846 				     - IO_DQS_EN_DELAY_OFFSET));
1847 
1848 	/* set the left and right edge of each bit to an illegal value */
1849 	/* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
1850 	sticky_bit_chk = 0;
1851 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1852 		left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
1853 		right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1854 	}
1855 
1856 	/* Search for the left edge of the window for each bit */
1857 	for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
1858 		scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
1859 
1860 		writel(0, &sdr_scc_mgr->update);
1861 
1862 		/*
1863 		 * Stop searching when the read test doesn't pass AND when
1864 		 * we've seen a passing read on every bit.
1865 		 */
1866 		if (use_read_test) {
1867 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1868 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1869 				&bit_chk, 0, 0);
1870 		} else {
1871 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1872 							0, PASS_ONE_BIT,
1873 							&bit_chk, 0);
1874 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1875 				(read_group - (write_group *
1876 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
1877 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1878 			stop = (bit_chk == 0);
1879 		}
1880 		sticky_bit_chk = sticky_bit_chk | bit_chk;
1881 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
1882 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
1883 			   && %u", __func__, __LINE__, d,
1884 			   sticky_bit_chk,
1885 			param->read_correct_mask, stop);
1886 
1887 		if (stop == 1) {
1888 			break;
1889 		} else {
1890 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1891 				if (bit_chk & 1) {
1892 					/* Remember a passing test as the
1893 					left_edge */
1894 					left_edge[i] = d;
1895 				} else {
1896 					/* If a left edge has not been seen yet,
1897 					then a future passing test will mark
1898 					this edge as the right edge */
1899 					if (left_edge[i] ==
1900 						IO_IO_IN_DELAY_MAX + 1) {
1901 						right_edge[i] = -(d + 1);
1902 					}
1903 				}
1904 				bit_chk = bit_chk >> 1;
1905 			}
1906 		}
1907 	}
1908 
1909 	/* Reset DQ delay chains to 0 */
1910 	scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
1911 	sticky_bit_chk = 0;
1912 	for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
1913 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1914 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
1915 			   i, left_edge[i], i, right_edge[i]);
1916 
1917 		/*
1918 		 * Check for cases where we haven't found the left edge,
1919 		 * which makes our assignment of the the right edge invalid.
1920 		 * Reset it to the illegal value.
1921 		 */
1922 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
1923 			right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1924 			right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1925 			debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
1926 				   right_edge[%u]: %d\n", __func__, __LINE__,
1927 				   i, right_edge[i]);
1928 		}
1929 
1930 		/*
1931 		 * Reset sticky bit (except for bits where we have seen
1932 		 * both the left and right edge).
1933 		 */
1934 		sticky_bit_chk = sticky_bit_chk << 1;
1935 		if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
1936 		    (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1937 			sticky_bit_chk = sticky_bit_chk | 1;
1938 		}
1939 
1940 		if (i == 0)
1941 			break;
1942 	}
1943 
1944 	/* Search for the right edge of the window for each bit */
1945 	for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
1946 		scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
1947 		if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1948 			uint32_t delay = d + start_dqs_en;
1949 			if (delay > IO_DQS_EN_DELAY_MAX)
1950 				delay = IO_DQS_EN_DELAY_MAX;
1951 			scc_mgr_set_dqs_en_delay(read_group, delay);
1952 		}
1953 		scc_mgr_load_dqs(read_group);
1954 
1955 		writel(0, &sdr_scc_mgr->update);
1956 
1957 		/*
1958 		 * Stop searching when the read test doesn't pass AND when
1959 		 * we've seen a passing read on every bit.
1960 		 */
1961 		if (use_read_test) {
1962 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1963 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1964 				&bit_chk, 0, 0);
1965 		} else {
1966 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1967 							0, PASS_ONE_BIT,
1968 							&bit_chk, 0);
1969 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1970 				(read_group - (write_group *
1971 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
1972 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1973 			stop = (bit_chk == 0);
1974 		}
1975 		sticky_bit_chk = sticky_bit_chk | bit_chk;
1976 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
1977 
1978 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
1979 			   %u && %u", __func__, __LINE__, d,
1980 			   sticky_bit_chk, param->read_correct_mask, stop);
1981 
1982 		if (stop == 1) {
1983 			break;
1984 		} else {
1985 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1986 				if (bit_chk & 1) {
1987 					/* Remember a passing test as
1988 					the right_edge */
1989 					right_edge[i] = d;
1990 				} else {
1991 					if (d != 0) {
1992 						/* If a right edge has not been
1993 						seen yet, then a future passing
1994 						test will mark this edge as the
1995 						left edge */
1996 						if (right_edge[i] ==
1997 						IO_IO_IN_DELAY_MAX + 1) {
1998 							left_edge[i] = -(d + 1);
1999 						}
2000 					} else {
2001 						/* d = 0 failed, but it passed
2002 						when testing the left edge,
2003 						so it must be marginal,
2004 						set it to -1 */
2005 						if (right_edge[i] ==
2006 							IO_IO_IN_DELAY_MAX + 1 &&
2007 							left_edge[i] !=
2008 							IO_IO_IN_DELAY_MAX
2009 							+ 1) {
2010 							right_edge[i] = -1;
2011 						}
2012 						/* If a right edge has not been
2013 						seen yet, then a future passing
2014 						test will mark this edge as the
2015 						left edge */
2016 						else if (right_edge[i] ==
2017 							IO_IO_IN_DELAY_MAX +
2018 							1) {
2019 							left_edge[i] = -(d + 1);
2020 						}
2021 					}
2022 				}
2023 
2024 				debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
2025 					   d=%u]: ", __func__, __LINE__, d);
2026 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
2027 					   (int)(bit_chk & 1), i, left_edge[i]);
2028 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2029 					   right_edge[i]);
2030 				bit_chk = bit_chk >> 1;
2031 			}
2032 		}
2033 	}
2034 
2035 	/* Check that all bits have a window */
2036 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2037 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
2038 			   %d right_edge[%u]: %d", __func__, __LINE__,
2039 			   i, left_edge[i], i, right_edge[i]);
2040 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
2041 			== IO_IO_IN_DELAY_MAX + 1)) {
2042 			/*
2043 			 * Restore delay chain settings before letting the loop
2044 			 * in rw_mgr_mem_calibrate_vfifo to retry different
2045 			 * dqs/ck relationships.
2046 			 */
2047 			scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
2048 			if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2049 				scc_mgr_set_dqs_en_delay(read_group,
2050 							 start_dqs_en);
2051 			}
2052 			scc_mgr_load_dqs(read_group);
2053 			writel(0, &sdr_scc_mgr->update);
2054 
2055 			debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
2056 				   find edge [%u]: %d %d", __func__, __LINE__,
2057 				   i, left_edge[i], right_edge[i]);
2058 			if (use_read_test) {
2059 				set_failing_group_stage(read_group *
2060 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
2061 					CAL_STAGE_VFIFO,
2062 					CAL_SUBSTAGE_VFIFO_CENTER);
2063 			} else {
2064 				set_failing_group_stage(read_group *
2065 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
2066 					CAL_STAGE_VFIFO_AFTER_WRITES,
2067 					CAL_SUBSTAGE_VFIFO_CENTER);
2068 			}
2069 			return 0;
2070 		}
2071 	}
2072 
2073 	/* Find middle of window for each DQ bit */
2074 	mid_min = left_edge[0] - right_edge[0];
2075 	min_index = 0;
2076 	for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2077 		mid = left_edge[i] - right_edge[i];
2078 		if (mid < mid_min) {
2079 			mid_min = mid;
2080 			min_index = i;
2081 		}
2082 	}
2083 
2084 	/*
2085 	 * -mid_min/2 represents the amount that we need to move DQS.
2086 	 * If mid_min is odd and positive we'll need to add one to
2087 	 * make sure the rounding in further calculations is correct
2088 	 * (always bias to the right), so just add 1 for all positive values.
2089 	 */
2090 	if (mid_min > 0)
2091 		mid_min++;
2092 
2093 	mid_min = mid_min / 2;
2094 
2095 	debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2096 		   __func__, __LINE__, mid_min, min_index);
2097 
2098 	/* Determine the amount we can change DQS (which is -mid_min) */
2099 	orig_mid_min = mid_min;
2100 	new_dqs = start_dqs - mid_min;
2101 	if (new_dqs > IO_DQS_IN_DELAY_MAX)
2102 		new_dqs = IO_DQS_IN_DELAY_MAX;
2103 	else if (new_dqs < 0)
2104 		new_dqs = 0;
2105 
2106 	mid_min = start_dqs - new_dqs;
2107 	debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2108 		   mid_min, new_dqs);
2109 
2110 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2111 		if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2112 			mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2113 		else if (start_dqs_en - mid_min < 0)
2114 			mid_min += start_dqs_en - mid_min;
2115 	}
2116 	new_dqs = start_dqs - mid_min;
2117 
2118 	debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2119 		   new_dqs=%d mid_min=%d\n", start_dqs,
2120 		   IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2121 		   new_dqs, mid_min);
2122 
2123 	/* Initialize data for export structures */
2124 	dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2125 	dq_margin  = IO_IO_IN_DELAY_MAX + 1;
2126 
2127 	/* add delay to bring centre of all DQ windows to the same "level" */
2128 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2129 		/* Use values before divide by 2 to reduce round off error */
2130 		shift_dq = (left_edge[i] - right_edge[i] -
2131 			(left_edge[min_index] - right_edge[min_index]))/2  +
2132 			(orig_mid_min - mid_min);
2133 
2134 		debug_cond(DLEVEL == 2, "vfifo_center: before: \
2135 			   shift_dq[%u]=%d\n", i, shift_dq);
2136 
2137 		addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
2138 		temp_dq_in_delay1 = readl(addr + (p << 2));
2139 		temp_dq_in_delay2 = readl(addr + (i << 2));
2140 
2141 		if (shift_dq + (int32_t)temp_dq_in_delay1 >
2142 			(int32_t)IO_IO_IN_DELAY_MAX) {
2143 			shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2144 		} else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2145 			shift_dq = -(int32_t)temp_dq_in_delay1;
2146 		}
2147 		debug_cond(DLEVEL == 2, "vfifo_center: after: \
2148 			   shift_dq[%u]=%d\n", i, shift_dq);
2149 		final_dq[i] = temp_dq_in_delay1 + shift_dq;
2150 		scc_mgr_set_dq_in_delay(p, final_dq[i]);
2151 		scc_mgr_load_dq(p);
2152 
2153 		debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2154 			   left_edge[i] - shift_dq + (-mid_min),
2155 			   right_edge[i] + shift_dq - (-mid_min));
2156 		/* To determine values for export structures */
2157 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2158 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
2159 
2160 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2161 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2162 	}
2163 
2164 	final_dqs = new_dqs;
2165 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2166 		final_dqs_en = start_dqs_en - mid_min;
2167 
2168 	/* Move DQS-en */
2169 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2170 		scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2171 		scc_mgr_load_dqs(read_group);
2172 	}
2173 
2174 	/* Move DQS */
2175 	scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2176 	scc_mgr_load_dqs(read_group);
2177 	debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2178 		   dqs_margin=%d", __func__, __LINE__,
2179 		   dq_margin, dqs_margin);
2180 
2181 	/*
2182 	 * Do not remove this line as it makes sure all of our decisions
2183 	 * have been applied. Apply the update bit.
2184 	 */
2185 	writel(0, &sdr_scc_mgr->update);
2186 
2187 	return (dq_margin >= 0) && (dqs_margin >= 0);
2188 }
2189 
2190 /**
2191  * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2192  * @rw_group:	Read/Write Group
2193  * @phase:	DQ/DQS phase
2194  *
2195  * Because initially no communication ca be reliably performed with the memory
2196  * device, the sequencer uses a guaranteed write mechanism to write data into
2197  * the memory device.
2198  */
2199 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2200 						 const u32 phase)
2201 {
2202 	u32 bit_chk;
2203 	int ret;
2204 
2205 	/* Set a particular DQ/DQS phase. */
2206 	scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2207 
2208 	debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
2209 		   __func__, __LINE__, rw_group, phase);
2210 
2211 	/*
2212 	 * Altera EMI_RM 2015.05.04 :: Figure 1-25
2213 	 * Load up the patterns used by read calibration using the
2214 	 * current DQDQS phase.
2215 	 */
2216 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2217 
2218 	if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2219 		return 0;
2220 
2221 	/*
2222 	 * Altera EMI_RM 2015.05.04 :: Figure 1-26
2223 	 * Back-to-Back reads of the patterns used for calibration.
2224 	 */
2225 	ret = rw_mgr_mem_calibrate_read_test_patterns_all_ranks(rw_group, 1,
2226 								&bit_chk);
2227 	if (!ret) {	/* FIXME: 0 means failure in this old code :-( */
2228 		debug_cond(DLEVEL == 1,
2229 			   "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2230 			   __func__, __LINE__, rw_group, phase);
2231 		return -EIO;
2232 	}
2233 
2234 	return 0;
2235 }
2236 
2237 /**
2238  * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2239  * @rw_group:	Read/Write Group
2240  * @test_bgn:	Rank at which the test begins
2241  *
2242  * DQS enable calibration ensures reliable capture of the DQ signal without
2243  * glitches on the DQS line.
2244  */
2245 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2246 						       const u32 test_bgn)
2247 {
2248 	int ret;
2249 
2250 	/*
2251 	 * Altera EMI_RM 2015.05.04 :: Figure 1-27
2252 	 * DQS and DQS Eanble Signal Relationships.
2253 	 */
2254 	ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay(
2255 						rw_group, rw_group, test_bgn);
2256 	if (!ret)	/* FIXME: 0 means failure in this old code :-( */
2257 		return -EIO;
2258 
2259 	return 0;
2260 }
2261 
2262 /**
2263  * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2264  * @rw_group:		Read/Write Group
2265  * @test_bgn:		Rank at which the test begins
2266  * @use_read_test:	Perform a read test
2267  * @update_fom:		Update FOM
2268  *
2269  * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2270  * within a group.
2271  */
2272 static int
2273 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2274 				      const int use_read_test,
2275 				      const int update_fom)
2276 
2277 {
2278 	int ret, grp_calibrated;
2279 	u32 rank_bgn, sr;
2280 
2281 	/*
2282 	 * Altera EMI_RM 2015.05.04 :: Figure 1-28
2283 	 * Read per-bit deskew can be done on a per shadow register basis.
2284 	 */
2285 	grp_calibrated = 1;
2286 	for (rank_bgn = 0, sr = 0;
2287 	     rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2288 	     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2289 		/* Check if this set of ranks should be skipped entirely. */
2290 		if (param->skip_shadow_regs[sr])
2291 			continue;
2292 
2293 		ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2294 							rw_group, test_bgn,
2295 							use_read_test,
2296 							update_fom);
2297 		if (ret)
2298 			continue;
2299 
2300 		grp_calibrated = 0;
2301 	}
2302 
2303 	if (!grp_calibrated)
2304 		return -EIO;
2305 
2306 	return 0;
2307 }
2308 
2309 /**
2310  * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2311  * @rw_group:		Read/Write Group
2312  * @test_bgn:		Rank at which the test begins
2313  *
2314  * Stage 1: Calibrate the read valid prediction FIFO.
2315  *
2316  * This function implements UniPHY calibration Stage 1, as explained in
2317  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2318  *
2319  * - read valid prediction will consist of finding:
2320  *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2321  *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
2322  *  - we also do a per-bit deskew on the DQ lines.
2323  */
2324 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2325 {
2326 	uint32_t p, d;
2327 	uint32_t dtaps_per_ptap;
2328 	uint32_t failed_substage;
2329 
2330 	int ret;
2331 
2332 	debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2333 
2334 	/* Update info for sims */
2335 	reg_file_set_group(rw_group);
2336 	reg_file_set_stage(CAL_STAGE_VFIFO);
2337 	reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2338 
2339 	failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2340 
2341 	/* USER Determine number of delay taps for each phase tap. */
2342 	dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2343 				      IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
2344 
2345 	for (d = 0; d <= dtaps_per_ptap; d += 2) {
2346 		/*
2347 		 * In RLDRAMX we may be messing the delay of pins in
2348 		 * the same write rw_group but outside of the current read
2349 		 * the rw_group, but that's ok because we haven't calibrated
2350 		 * output side yet.
2351 		 */
2352 		if (d > 0) {
2353 			scc_mgr_apply_group_all_out_delay_add_all_ranks(
2354 								rw_group, d);
2355 		}
2356 
2357 		for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
2358 			/* 1) Guaranteed Write */
2359 			ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2360 			if (ret)
2361 				break;
2362 
2363 			/* 2) DQS Enable Calibration */
2364 			ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2365 									  test_bgn);
2366 			if (ret) {
2367 				failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2368 				continue;
2369 			}
2370 
2371 			/* 3) Centering DQ/DQS */
2372 			/*
2373 			 * If doing read after write calibration, do not update
2374 			 * FOM now. Do it then.
2375 			 */
2376 			ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2377 								test_bgn, 1, 0);
2378 			if (ret) {
2379 				failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2380 				continue;
2381 			}
2382 
2383 			/* All done. */
2384 			goto cal_done_ok;
2385 		}
2386 	}
2387 
2388 	/* Calibration Stage 1 failed. */
2389 	set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2390 	return 0;
2391 
2392 	/* Calibration Stage 1 completed OK. */
2393 cal_done_ok:
2394 	/*
2395 	 * Reset the delay chains back to zero if they have moved > 1
2396 	 * (check for > 1 because loop will increase d even when pass in
2397 	 * first case).
2398 	 */
2399 	if (d > 2)
2400 		scc_mgr_zero_group(rw_group, 1);
2401 
2402 	return 1;
2403 }
2404 
2405 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2406 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2407 					       uint32_t test_bgn)
2408 {
2409 	uint32_t rank_bgn, sr;
2410 	uint32_t grp_calibrated;
2411 	uint32_t write_group;
2412 
2413 	debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2414 
2415 	/* update info for sims */
2416 
2417 	reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2418 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2419 
2420 	write_group = read_group;
2421 
2422 	/* update info for sims */
2423 	reg_file_set_group(read_group);
2424 
2425 	grp_calibrated = 1;
2426 	/* Read per-bit deskew can be done on a per shadow register basis */
2427 	for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2428 		rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2429 		/* Determine if this set of ranks should be skipped entirely */
2430 		if (!param->skip_shadow_regs[sr]) {
2431 		/* This is the last calibration round, update FOM here */
2432 			if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2433 								write_group,
2434 								read_group,
2435 								test_bgn, 0,
2436 								1)) {
2437 				grp_calibrated = 0;
2438 			}
2439 		}
2440 	}
2441 
2442 
2443 	if (grp_calibrated == 0) {
2444 		set_failing_group_stage(write_group,
2445 					CAL_STAGE_VFIFO_AFTER_WRITES,
2446 					CAL_SUBSTAGE_VFIFO_CENTER);
2447 		return 0;
2448 	}
2449 
2450 	return 1;
2451 }
2452 
2453 /* Calibrate LFIFO to find smallest read latency */
2454 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2455 {
2456 	uint32_t found_one;
2457 	uint32_t bit_chk;
2458 
2459 	debug("%s:%d\n", __func__, __LINE__);
2460 
2461 	/* update info for sims */
2462 	reg_file_set_stage(CAL_STAGE_LFIFO);
2463 	reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2464 
2465 	/* Load up the patterns used by read calibration for all ranks */
2466 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2467 	found_one = 0;
2468 
2469 	do {
2470 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2471 		debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2472 			   __func__, __LINE__, gbl->curr_read_lat);
2473 
2474 		if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2475 							      NUM_READ_TESTS,
2476 							      PASS_ALL_BITS,
2477 							      &bit_chk, 1)) {
2478 			break;
2479 		}
2480 
2481 		found_one = 1;
2482 		/* reduce read latency and see if things are working */
2483 		/* correctly */
2484 		gbl->curr_read_lat--;
2485 	} while (gbl->curr_read_lat > 0);
2486 
2487 	/* reset the fifos to get pointers to known state */
2488 
2489 	writel(0, &phy_mgr_cmd->fifo_reset);
2490 
2491 	if (found_one) {
2492 		/* add a fudge factor to the read latency that was determined */
2493 		gbl->curr_read_lat += 2;
2494 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2495 		debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2496 			   read_lat=%u\n", __func__, __LINE__,
2497 			   gbl->curr_read_lat);
2498 		return 1;
2499 	} else {
2500 		set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2501 					CAL_SUBSTAGE_READ_LATENCY);
2502 
2503 		debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2504 			   read_lat=%u\n", __func__, __LINE__,
2505 			   gbl->curr_read_lat);
2506 		return 0;
2507 	}
2508 }
2509 
2510 /*
2511  * issue write test command.
2512  * two variants are provided. one that just tests a write pattern and
2513  * another that tests datamask functionality.
2514  */
2515 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2516 						  uint32_t test_dm)
2517 {
2518 	uint32_t mcc_instruction;
2519 	uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2520 		ENABLE_SUPER_QUICK_CALIBRATION);
2521 	uint32_t rw_wl_nop_cycles;
2522 	uint32_t addr;
2523 
2524 	/*
2525 	 * Set counter and jump addresses for the right
2526 	 * number of NOP cycles.
2527 	 * The number of supported NOP cycles can range from -1 to infinity
2528 	 * Three different cases are handled:
2529 	 *
2530 	 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2531 	 *    mechanism will be used to insert the right number of NOPs
2532 	 *
2533 	 * 2. For a number of NOP cycles equals to 0, the micro-instruction
2534 	 *    issuing the write command will jump straight to the
2535 	 *    micro-instruction that turns on DQS (for DDRx), or outputs write
2536 	 *    data (for RLD), skipping
2537 	 *    the NOP micro-instruction all together
2538 	 *
2539 	 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2540 	 *    turned on in the same micro-instruction that issues the write
2541 	 *    command. Then we need
2542 	 *    to directly jump to the micro-instruction that sends out the data
2543 	 *
2544 	 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2545 	 *       (2 and 3). One jump-counter (0) is used to perform multiple
2546 	 *       write-read operations.
2547 	 *       one counter left to issue this command in "multiple-group" mode
2548 	 */
2549 
2550 	rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2551 
2552 	if (rw_wl_nop_cycles == -1) {
2553 		/*
2554 		 * CNTR 2 - We want to execute the special write operation that
2555 		 * turns on DQS right away and then skip directly to the
2556 		 * instruction that sends out the data. We set the counter to a
2557 		 * large number so that the jump is always taken.
2558 		 */
2559 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2560 
2561 		/* CNTR 3 - Not used */
2562 		if (test_dm) {
2563 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
2564 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
2565 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2566 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2567 			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2568 		} else {
2569 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
2570 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
2571 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2572 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2573 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2574 		}
2575 	} else if (rw_wl_nop_cycles == 0) {
2576 		/*
2577 		 * CNTR 2 - We want to skip the NOP operation and go straight
2578 		 * to the DQS enable instruction. We set the counter to a large
2579 		 * number so that the jump is always taken.
2580 		 */
2581 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2582 
2583 		/* CNTR 3 - Not used */
2584 		if (test_dm) {
2585 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2586 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
2587 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2588 		} else {
2589 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2590 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
2591 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2592 		}
2593 	} else {
2594 		/*
2595 		 * CNTR 2 - In this case we want to execute the next instruction
2596 		 * and NOT take the jump. So we set the counter to 0. The jump
2597 		 * address doesn't count.
2598 		 */
2599 		writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
2600 		writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2601 
2602 		/*
2603 		 * CNTR 3 - Set the nop counter to the number of cycles we
2604 		 * need to loop for, minus 1.
2605 		 */
2606 		writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
2607 		if (test_dm) {
2608 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2609 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2610 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2611 		} else {
2612 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2613 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2614 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2615 		}
2616 	}
2617 
2618 	writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
2619 		  RW_MGR_RESET_READ_DATAPATH_OFFSET);
2620 
2621 	if (quick_write_mode)
2622 		writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
2623 	else
2624 		writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
2625 
2626 	writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
2627 
2628 	/*
2629 	 * CNTR 1 - This is used to ensure enough time elapses
2630 	 * for read data to come back.
2631 	 */
2632 	writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
2633 
2634 	if (test_dm) {
2635 		writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
2636 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2637 	} else {
2638 		writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
2639 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2640 	}
2641 
2642 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
2643 	writel(mcc_instruction, addr + (group << 2));
2644 }
2645 
2646 /* Test writes, can check for a single bit pass or multiple bit pass */
2647 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2648 	uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2649 	uint32_t *bit_chk, uint32_t all_ranks)
2650 {
2651 	uint32_t r;
2652 	uint32_t correct_mask_vg;
2653 	uint32_t tmp_bit_chk;
2654 	uint32_t vg;
2655 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2656 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2657 	uint32_t addr_rw_mgr;
2658 	uint32_t base_rw_mgr;
2659 
2660 	*bit_chk = param->write_correct_mask;
2661 	correct_mask_vg = param->write_correct_mask_vg;
2662 
2663 	for (r = rank_bgn; r < rank_end; r++) {
2664 		if (param->skip_ranks[r]) {
2665 			/* request to skip the rank */
2666 			continue;
2667 		}
2668 
2669 		/* set rank */
2670 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2671 
2672 		tmp_bit_chk = 0;
2673 		addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
2674 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2675 			/* reset the fifos to get pointers to known state */
2676 			writel(0, &phy_mgr_cmd->fifo_reset);
2677 
2678 			tmp_bit_chk = tmp_bit_chk <<
2679 				(RW_MGR_MEM_DQ_PER_WRITE_DQS /
2680 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2681 			rw_mgr_mem_calibrate_write_test_issue(write_group *
2682 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2683 				use_dm);
2684 
2685 			base_rw_mgr = readl(addr_rw_mgr);
2686 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2687 			if (vg == 0)
2688 				break;
2689 		}
2690 		*bit_chk &= tmp_bit_chk;
2691 	}
2692 
2693 	if (all_correct) {
2694 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2695 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2696 			   %u => %lu", write_group, use_dm,
2697 			   *bit_chk, param->write_correct_mask,
2698 			   (long unsigned int)(*bit_chk ==
2699 			   param->write_correct_mask));
2700 		return *bit_chk == param->write_correct_mask;
2701 	} else {
2702 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2703 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2704 		       write_group, use_dm, *bit_chk);
2705 		debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2706 			(long unsigned int)(*bit_chk != 0));
2707 		return *bit_chk != 0x00;
2708 	}
2709 }
2710 
2711 /*
2712  * center all windows. do per-bit-deskew to possibly increase size of
2713  * certain windows.
2714  */
2715 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2716 	uint32_t write_group, uint32_t test_bgn)
2717 {
2718 	uint32_t i, p, min_index;
2719 	int32_t d;
2720 	/*
2721 	 * Store these as signed since there are comparisons with
2722 	 * signed numbers.
2723 	 */
2724 	uint32_t bit_chk;
2725 	uint32_t sticky_bit_chk;
2726 	int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2727 	int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2728 	int32_t mid;
2729 	int32_t mid_min, orig_mid_min;
2730 	int32_t new_dqs, start_dqs, shift_dq;
2731 	int32_t dq_margin, dqs_margin, dm_margin;
2732 	uint32_t stop;
2733 	uint32_t temp_dq_out1_delay;
2734 	uint32_t addr;
2735 
2736 	debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2737 
2738 	dm_margin = 0;
2739 
2740 	addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2741 	start_dqs = readl(addr +
2742 			  (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2743 
2744 	/* per-bit deskew */
2745 
2746 	/*
2747 	 * set the left and right edge of each bit to an illegal value
2748 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2749 	 */
2750 	sticky_bit_chk = 0;
2751 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2752 		left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2753 		right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2754 	}
2755 
2756 	/* Search for the left edge of the window for each bit */
2757 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
2758 		scc_mgr_apply_group_dq_out1_delay(write_group, d);
2759 
2760 		writel(0, &sdr_scc_mgr->update);
2761 
2762 		/*
2763 		 * Stop searching when the read test doesn't pass AND when
2764 		 * we've seen a passing read on every bit.
2765 		 */
2766 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2767 			0, PASS_ONE_BIT, &bit_chk, 0);
2768 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2769 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2770 		debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
2771 			   == %u && %u [bit_chk= %u ]\n",
2772 			d, sticky_bit_chk, param->write_correct_mask,
2773 			stop, bit_chk);
2774 
2775 		if (stop == 1) {
2776 			break;
2777 		} else {
2778 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2779 				if (bit_chk & 1) {
2780 					/*
2781 					 * Remember a passing test as the
2782 					 * left_edge.
2783 					 */
2784 					left_edge[i] = d;
2785 				} else {
2786 					/*
2787 					 * If a left edge has not been seen
2788 					 * yet, then a future passing test will
2789 					 * mark this edge as the right edge.
2790 					 */
2791 					if (left_edge[i] ==
2792 						IO_IO_OUT1_DELAY_MAX + 1) {
2793 						right_edge[i] = -(d + 1);
2794 					}
2795 				}
2796 				debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
2797 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2798 					   (int)(bit_chk & 1), i, left_edge[i]);
2799 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2800 				       right_edge[i]);
2801 				bit_chk = bit_chk >> 1;
2802 			}
2803 		}
2804 	}
2805 
2806 	/* Reset DQ delay chains to 0 */
2807 	scc_mgr_apply_group_dq_out1_delay(0);
2808 	sticky_bit_chk = 0;
2809 	for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
2810 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2811 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
2812 			   i, left_edge[i], i, right_edge[i]);
2813 
2814 		/*
2815 		 * Check for cases where we haven't found the left edge,
2816 		 * which makes our assignment of the the right edge invalid.
2817 		 * Reset it to the illegal value.
2818 		 */
2819 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
2820 		    (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
2821 			right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2822 			debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
2823 				   right_edge[%u]: %d\n", __func__, __LINE__,
2824 				   i, right_edge[i]);
2825 		}
2826 
2827 		/*
2828 		 * Reset sticky bit (except for bits where we have
2829 		 * seen the left edge).
2830 		 */
2831 		sticky_bit_chk = sticky_bit_chk << 1;
2832 		if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
2833 			sticky_bit_chk = sticky_bit_chk | 1;
2834 
2835 		if (i == 0)
2836 			break;
2837 	}
2838 
2839 	/* Search for the right edge of the window for each bit */
2840 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
2841 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2842 							d + start_dqs);
2843 
2844 		writel(0, &sdr_scc_mgr->update);
2845 
2846 		/*
2847 		 * Stop searching when the read test doesn't pass AND when
2848 		 * we've seen a passing read on every bit.
2849 		 */
2850 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2851 			0, PASS_ONE_BIT, &bit_chk, 0);
2852 
2853 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2854 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2855 
2856 		debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
2857 			   %u && %u\n", d, sticky_bit_chk,
2858 			   param->write_correct_mask, stop);
2859 
2860 		if (stop == 1) {
2861 			if (d == 0) {
2862 				for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
2863 					i++) {
2864 					/* d = 0 failed, but it passed when
2865 					testing the left edge, so it must be
2866 					marginal, set it to -1 */
2867 					if (right_edge[i] ==
2868 						IO_IO_OUT1_DELAY_MAX + 1 &&
2869 						left_edge[i] !=
2870 						IO_IO_OUT1_DELAY_MAX + 1) {
2871 						right_edge[i] = -1;
2872 					}
2873 				}
2874 			}
2875 			break;
2876 		} else {
2877 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2878 				if (bit_chk & 1) {
2879 					/*
2880 					 * Remember a passing test as
2881 					 * the right_edge.
2882 					 */
2883 					right_edge[i] = d;
2884 				} else {
2885 					if (d != 0) {
2886 						/*
2887 						 * If a right edge has not
2888 						 * been seen yet, then a future
2889 						 * passing test will mark this
2890 						 * edge as the left edge.
2891 						 */
2892 						if (right_edge[i] ==
2893 						    IO_IO_OUT1_DELAY_MAX + 1)
2894 							left_edge[i] = -(d + 1);
2895 					} else {
2896 						/*
2897 						 * d = 0 failed, but it passed
2898 						 * when testing the left edge,
2899 						 * so it must be marginal, set
2900 						 * it to -1.
2901 						 */
2902 						if (right_edge[i] ==
2903 						    IO_IO_OUT1_DELAY_MAX + 1 &&
2904 						    left_edge[i] !=
2905 						    IO_IO_OUT1_DELAY_MAX + 1)
2906 							right_edge[i] = -1;
2907 						/*
2908 						 * If a right edge has not been
2909 						 * seen yet, then a future
2910 						 * passing test will mark this
2911 						 * edge as the left edge.
2912 						 */
2913 						else if (right_edge[i] ==
2914 							IO_IO_OUT1_DELAY_MAX +
2915 							1)
2916 							left_edge[i] = -(d + 1);
2917 					}
2918 				}
2919 				debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
2920 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2921 					   (int)(bit_chk & 1), i, left_edge[i]);
2922 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2923 					   right_edge[i]);
2924 				bit_chk = bit_chk >> 1;
2925 			}
2926 		}
2927 	}
2928 
2929 	/* Check that all bits have a window */
2930 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2931 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2932 			   %d right_edge[%u]: %d", __func__, __LINE__,
2933 			   i, left_edge[i], i, right_edge[i]);
2934 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
2935 		    (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
2936 			set_failing_group_stage(test_bgn + i,
2937 						CAL_STAGE_WRITES,
2938 						CAL_SUBSTAGE_WRITES_CENTER);
2939 			return 0;
2940 		}
2941 	}
2942 
2943 	/* Find middle of window for each DQ bit */
2944 	mid_min = left_edge[0] - right_edge[0];
2945 	min_index = 0;
2946 	for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2947 		mid = left_edge[i] - right_edge[i];
2948 		if (mid < mid_min) {
2949 			mid_min = mid;
2950 			min_index = i;
2951 		}
2952 	}
2953 
2954 	/*
2955 	 * -mid_min/2 represents the amount that we need to move DQS.
2956 	 * If mid_min is odd and positive we'll need to add one to
2957 	 * make sure the rounding in further calculations is correct
2958 	 * (always bias to the right), so just add 1 for all positive values.
2959 	 */
2960 	if (mid_min > 0)
2961 		mid_min++;
2962 	mid_min = mid_min / 2;
2963 	debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
2964 		   __LINE__, mid_min);
2965 
2966 	/* Determine the amount we can change DQS (which is -mid_min) */
2967 	orig_mid_min = mid_min;
2968 	new_dqs = start_dqs;
2969 	mid_min = 0;
2970 	debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
2971 		   mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
2972 	/* Initialize data for export structures */
2973 	dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
2974 	dq_margin  = IO_IO_OUT1_DELAY_MAX + 1;
2975 
2976 	/* add delay to bring centre of all DQ windows to the same "level" */
2977 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
2978 		/* Use values before divide by 2 to reduce round off error */
2979 		shift_dq = (left_edge[i] - right_edge[i] -
2980 			(left_edge[min_index] - right_edge[min_index]))/2  +
2981 		(orig_mid_min - mid_min);
2982 
2983 		debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
2984 			   [%u]=%d\n", __func__, __LINE__, i, shift_dq);
2985 
2986 		addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2987 		temp_dq_out1_delay = readl(addr + (i << 2));
2988 		if (shift_dq + (int32_t)temp_dq_out1_delay >
2989 			(int32_t)IO_IO_OUT1_DELAY_MAX) {
2990 			shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
2991 		} else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
2992 			shift_dq = -(int32_t)temp_dq_out1_delay;
2993 		}
2994 		debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
2995 			   i, shift_dq);
2996 		scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq);
2997 		scc_mgr_load_dq(i);
2998 
2999 		debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
3000 			   left_edge[i] - shift_dq + (-mid_min),
3001 			   right_edge[i] + shift_dq - (-mid_min));
3002 		/* To determine values for export structures */
3003 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
3004 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
3005 
3006 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
3007 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
3008 	}
3009 
3010 	/* Move DQS */
3011 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3012 	writel(0, &sdr_scc_mgr->update);
3013 
3014 	/* Centre DM */
3015 	debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3016 
3017 	/*
3018 	 * set the left and right edge of each bit to an illegal value,
3019 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
3020 	 */
3021 	left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
3022 	right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
3023 	int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3024 	int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3025 	int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
3026 	int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
3027 	int32_t win_best = 0;
3028 
3029 	/* Search for the/part of the window with DM shift */
3030 	for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
3031 		scc_mgr_apply_group_dm_out1_delay(d);
3032 		writel(0, &sdr_scc_mgr->update);
3033 
3034 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3035 						    PASS_ALL_BITS, &bit_chk,
3036 						    0)) {
3037 			/* USE Set current end of the window */
3038 			end_curr = -d;
3039 			/*
3040 			 * If a starting edge of our window has not been seen
3041 			 * this is our current start of the DM window.
3042 			 */
3043 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3044 				bgn_curr = -d;
3045 
3046 			/*
3047 			 * If current window is bigger than best seen.
3048 			 * Set best seen to be current window.
3049 			 */
3050 			if ((end_curr-bgn_curr+1) > win_best) {
3051 				win_best = end_curr-bgn_curr+1;
3052 				bgn_best = bgn_curr;
3053 				end_best = end_curr;
3054 			}
3055 		} else {
3056 			/* We just saw a failing test. Reset temp edge */
3057 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3058 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3059 			}
3060 		}
3061 
3062 
3063 	/* Reset DM delay chains to 0 */
3064 	scc_mgr_apply_group_dm_out1_delay(0);
3065 
3066 	/*
3067 	 * Check to see if the current window nudges up aganist 0 delay.
3068 	 * If so we need to continue the search by shifting DQS otherwise DQS
3069 	 * search begins as a new search. */
3070 	if (end_curr != 0) {
3071 		bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3072 		end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3073 	}
3074 
3075 	/* Search for the/part of the window with DQS shifts */
3076 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
3077 		/*
3078 		 * Note: This only shifts DQS, so are we limiting ourselve to
3079 		 * width of DQ unnecessarily.
3080 		 */
3081 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
3082 							d + new_dqs);
3083 
3084 		writel(0, &sdr_scc_mgr->update);
3085 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3086 						    PASS_ALL_BITS, &bit_chk,
3087 						    0)) {
3088 			/* USE Set current end of the window */
3089 			end_curr = d;
3090 			/*
3091 			 * If a beginning edge of our window has not been seen
3092 			 * this is our current begin of the DM window.
3093 			 */
3094 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3095 				bgn_curr = d;
3096 
3097 			/*
3098 			 * If current window is bigger than best seen. Set best
3099 			 * seen to be current window.
3100 			 */
3101 			if ((end_curr-bgn_curr+1) > win_best) {
3102 				win_best = end_curr-bgn_curr+1;
3103 				bgn_best = bgn_curr;
3104 				end_best = end_curr;
3105 			}
3106 		} else {
3107 			/* We just saw a failing test. Reset temp edge */
3108 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3109 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3110 
3111 			/* Early exit optimization: if ther remaining delay
3112 			chain space is less than already seen largest window
3113 			we can exit */
3114 			if ((win_best-1) >
3115 				(IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3116 					break;
3117 				}
3118 			}
3119 		}
3120 
3121 	/* assign left and right edge for cal and reporting; */
3122 	left_edge[0] = -1*bgn_best;
3123 	right_edge[0] = end_best;
3124 
3125 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3126 		   __LINE__, left_edge[0], right_edge[0]);
3127 
3128 	/* Move DQS (back to orig) */
3129 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3130 
3131 	/* Move DM */
3132 
3133 	/* Find middle of window for the DM bit */
3134 	mid = (left_edge[0] - right_edge[0]) / 2;
3135 
3136 	/* only move right, since we are not moving DQS/DQ */
3137 	if (mid < 0)
3138 		mid = 0;
3139 
3140 	/* dm_marign should fail if we never find a window */
3141 	if (win_best == 0)
3142 		dm_margin = -1;
3143 	else
3144 		dm_margin = left_edge[0] - mid;
3145 
3146 	scc_mgr_apply_group_dm_out1_delay(mid);
3147 	writel(0, &sdr_scc_mgr->update);
3148 
3149 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3150 		   dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3151 		   right_edge[0], mid, dm_margin);
3152 	/* Export values */
3153 	gbl->fom_out += dq_margin + dqs_margin;
3154 
3155 	debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3156 		   dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3157 		   dq_margin, dqs_margin, dm_margin);
3158 
3159 	/*
3160 	 * Do not remove this line as it makes sure all of our
3161 	 * decisions have been applied.
3162 	 */
3163 	writel(0, &sdr_scc_mgr->update);
3164 	return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3165 }
3166 
3167 /* calibrate the write operations */
3168 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
3169 	uint32_t test_bgn)
3170 {
3171 	/* update info for sims */
3172 	debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
3173 
3174 	reg_file_set_stage(CAL_STAGE_WRITES);
3175 	reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3176 
3177 	reg_file_set_group(g);
3178 
3179 	if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
3180 		set_failing_group_stage(g, CAL_STAGE_WRITES,
3181 					CAL_SUBSTAGE_WRITES_CENTER);
3182 		return 0;
3183 	}
3184 
3185 	return 1;
3186 }
3187 
3188 /**
3189  * mem_precharge_and_activate() - Precharge all banks and activate
3190  *
3191  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3192  */
3193 static void mem_precharge_and_activate(void)
3194 {
3195 	int r;
3196 
3197 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3198 		/* Test if the rank should be skipped. */
3199 		if (param->skip_ranks[r])
3200 			continue;
3201 
3202 		/* Set rank. */
3203 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3204 
3205 		/* Precharge all banks. */
3206 		writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3207 					     RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3208 
3209 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3210 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3211 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
3212 
3213 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3214 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3215 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
3216 
3217 		/* Activate rows. */
3218 		writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3219 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3220 	}
3221 }
3222 
3223 /**
3224  * mem_init_latency() - Configure memory RLAT and WLAT settings
3225  *
3226  * Configure memory RLAT and WLAT parameters.
3227  */
3228 static void mem_init_latency(void)
3229 {
3230 	/*
3231 	 * For AV/CV, LFIFO is hardened and always runs at full rate
3232 	 * so max latency in AFI clocks, used here, is correspondingly
3233 	 * smaller.
3234 	 */
3235 	const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3236 	u32 rlat, wlat;
3237 
3238 	debug("%s:%d\n", __func__, __LINE__);
3239 
3240 	/*
3241 	 * Read in write latency.
3242 	 * WL for Hard PHY does not include additive latency.
3243 	 */
3244 	wlat = readl(&data_mgr->t_wl_add);
3245 	wlat += readl(&data_mgr->mem_t_add);
3246 
3247 	gbl->rw_wl_nop_cycles = wlat - 1;
3248 
3249 	/* Read in readl latency. */
3250 	rlat = readl(&data_mgr->t_rl_add);
3251 
3252 	/* Set a pretty high read latency initially. */
3253 	gbl->curr_read_lat = rlat + 16;
3254 	if (gbl->curr_read_lat > max_latency)
3255 		gbl->curr_read_lat = max_latency;
3256 
3257 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3258 
3259 	/* Advertise write latency. */
3260 	writel(wlat, &phy_mgr_cfg->afi_wlat);
3261 }
3262 
3263 /**
3264  * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3265  *
3266  * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3267  */
3268 static void mem_skip_calibrate(void)
3269 {
3270 	uint32_t vfifo_offset;
3271 	uint32_t i, j, r;
3272 
3273 	debug("%s:%d\n", __func__, __LINE__);
3274 	/* Need to update every shadow register set used by the interface */
3275 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3276 	     r += NUM_RANKS_PER_SHADOW_REG) {
3277 		/*
3278 		 * Set output phase alignment settings appropriate for
3279 		 * skip calibration.
3280 		 */
3281 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3282 			scc_mgr_set_dqs_en_phase(i, 0);
3283 #if IO_DLL_CHAIN_LENGTH == 6
3284 			scc_mgr_set_dqdqs_output_phase(i, 6);
3285 #else
3286 			scc_mgr_set_dqdqs_output_phase(i, 7);
3287 #endif
3288 			/*
3289 			 * Case:33398
3290 			 *
3291 			 * Write data arrives to the I/O two cycles before write
3292 			 * latency is reached (720 deg).
3293 			 *   -> due to bit-slip in a/c bus
3294 			 *   -> to allow board skew where dqs is longer than ck
3295 			 *      -> how often can this happen!?
3296 			 *      -> can claim back some ptaps for high freq
3297 			 *       support if we can relax this, but i digress...
3298 			 *
3299 			 * The write_clk leads mem_ck by 90 deg
3300 			 * The minimum ptap of the OPA is 180 deg
3301 			 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3302 			 * The write_clk is always delayed by 2 ptaps
3303 			 *
3304 			 * Hence, to make DQS aligned to CK, we need to delay
3305 			 * DQS by:
3306 			 *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3307 			 *
3308 			 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3309 			 * gives us the number of ptaps, which simplies to:
3310 			 *
3311 			 *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3312 			 */
3313 			scc_mgr_set_dqdqs_output_phase(i,
3314 					1.25 * IO_DLL_CHAIN_LENGTH - 2);
3315 		}
3316 		writel(0xff, &sdr_scc_mgr->dqs_ena);
3317 		writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3318 
3319 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3320 			writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3321 				  SCC_MGR_GROUP_COUNTER_OFFSET);
3322 		}
3323 		writel(0xff, &sdr_scc_mgr->dq_ena);
3324 		writel(0xff, &sdr_scc_mgr->dm_ena);
3325 		writel(0, &sdr_scc_mgr->update);
3326 	}
3327 
3328 	/* Compensate for simulation model behaviour */
3329 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3330 		scc_mgr_set_dqs_bus_in_delay(i, 10);
3331 		scc_mgr_load_dqs(i);
3332 	}
3333 	writel(0, &sdr_scc_mgr->update);
3334 
3335 	/*
3336 	 * ArriaV has hard FIFOs that can only be initialized by incrementing
3337 	 * in sequencer.
3338 	 */
3339 	vfifo_offset = CALIB_VFIFO_OFFSET;
3340 	for (j = 0; j < vfifo_offset; j++)
3341 		writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3342 	writel(0, &phy_mgr_cmd->fifo_reset);
3343 
3344 	/*
3345 	 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3346 	 * setting from generation-time constant.
3347 	 */
3348 	gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3349 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3350 }
3351 
3352 /**
3353  * mem_calibrate() - Memory calibration entry point.
3354  *
3355  * Perform memory calibration.
3356  */
3357 static uint32_t mem_calibrate(void)
3358 {
3359 	uint32_t i;
3360 	uint32_t rank_bgn, sr;
3361 	uint32_t write_group, write_test_bgn;
3362 	uint32_t read_group, read_test_bgn;
3363 	uint32_t run_groups, current_run;
3364 	uint32_t failing_groups = 0;
3365 	uint32_t group_failed = 0;
3366 
3367 	const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
3368 				RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
3369 
3370 	debug("%s:%d\n", __func__, __LINE__);
3371 
3372 	/* Initialize the data settings */
3373 	gbl->error_substage = CAL_SUBSTAGE_NIL;
3374 	gbl->error_stage = CAL_STAGE_NIL;
3375 	gbl->error_group = 0xff;
3376 	gbl->fom_in = 0;
3377 	gbl->fom_out = 0;
3378 
3379 	/* Initialize WLAT and RLAT. */
3380 	mem_init_latency();
3381 
3382 	/* Initialize bit slips. */
3383 	mem_precharge_and_activate();
3384 
3385 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3386 		writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3387 			  SCC_MGR_GROUP_COUNTER_OFFSET);
3388 		/* Only needed once to set all groups, pins, DQ, DQS, DM. */
3389 		if (i == 0)
3390 			scc_mgr_set_hhp_extras();
3391 
3392 		scc_set_bypass_mode(i);
3393 	}
3394 
3395 	/* Calibration is skipped. */
3396 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3397 		/*
3398 		 * Set VFIFO and LFIFO to instant-on settings in skip
3399 		 * calibration mode.
3400 		 */
3401 		mem_skip_calibrate();
3402 
3403 		/*
3404 		 * Do not remove this line as it makes sure all of our
3405 		 * decisions have been applied.
3406 		 */
3407 		writel(0, &sdr_scc_mgr->update);
3408 		return 1;
3409 	}
3410 
3411 	/* Calibration is not skipped. */
3412 	for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3413 		/*
3414 		 * Zero all delay chain/phase settings for all
3415 		 * groups and all shadow register sets.
3416 		 */
3417 		scc_mgr_zero_all();
3418 
3419 		run_groups = ~param->skip_groups;
3420 
3421 		for (write_group = 0, write_test_bgn = 0; write_group
3422 			< RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3423 			write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3424 
3425 			/* Initialize the group failure */
3426 			group_failed = 0;
3427 
3428 			current_run = run_groups & ((1 <<
3429 				RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3430 			run_groups = run_groups >>
3431 				RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3432 
3433 			if (current_run == 0)
3434 				continue;
3435 
3436 			writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3437 					    SCC_MGR_GROUP_COUNTER_OFFSET);
3438 			scc_mgr_zero_group(write_group, 0);
3439 
3440 			for (read_group = write_group * rwdqs_ratio,
3441 			     read_test_bgn = 0;
3442 			     read_group < (write_group + 1) * rwdqs_ratio;
3443 			     read_group++,
3444 			     read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3445 				if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3446 					continue;
3447 
3448 				/* Calibrate the VFIFO */
3449 				if (rw_mgr_mem_calibrate_vfifo(read_group,
3450 							       read_test_bgn))
3451 					continue;
3452 
3453 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3454 					return 0;
3455 
3456 				/* The group failed, we're done. */
3457 				goto grp_failed;
3458 			}
3459 
3460 			/* Calibrate the output side */
3461 			for (rank_bgn = 0, sr = 0;
3462 			     rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
3463 			     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3464 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3465 					continue;
3466 
3467 				/* Not needed in quick mode! */
3468 				if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
3469 					continue;
3470 
3471 				/*
3472 				 * Determine if this set of ranks
3473 				 * should be skipped entirely.
3474 				 */
3475 				if (param->skip_shadow_regs[sr])
3476 					continue;
3477 
3478 				/* Calibrate WRITEs */
3479 				if (rw_mgr_mem_calibrate_writes(rank_bgn,
3480 						write_group, write_test_bgn))
3481 					continue;
3482 
3483 				group_failed = 1;
3484 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3485 					return 0;
3486 			}
3487 
3488 			/* Some group failed, we're done. */
3489 			if (group_failed)
3490 				goto grp_failed;
3491 
3492 			for (read_group = write_group * rwdqs_ratio,
3493 			     read_test_bgn = 0;
3494 			     read_group < (write_group + 1) * rwdqs_ratio;
3495 			     read_group++,
3496 			     read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3497 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3498 					continue;
3499 
3500 				if (rw_mgr_mem_calibrate_vfifo_end(read_group,
3501 								read_test_bgn))
3502 					continue;
3503 
3504 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3505 					return 0;
3506 
3507 				/* The group failed, we're done. */
3508 				goto grp_failed;
3509 			}
3510 
3511 			/* No group failed, continue as usual. */
3512 			continue;
3513 
3514 grp_failed:		/* A group failed, increment the counter. */
3515 			failing_groups++;
3516 		}
3517 
3518 		/*
3519 		 * USER If there are any failing groups then report
3520 		 * the failure.
3521 		 */
3522 		if (failing_groups != 0)
3523 			return 0;
3524 
3525 		if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3526 			continue;
3527 
3528 		/*
3529 		 * If we're skipping groups as part of debug,
3530 		 * don't calibrate LFIFO.
3531 		 */
3532 		if (param->skip_groups != 0)
3533 			continue;
3534 
3535 		/* Calibrate the LFIFO */
3536 		if (!rw_mgr_mem_calibrate_lfifo())
3537 			return 0;
3538 	}
3539 
3540 	/*
3541 	 * Do not remove this line as it makes sure all of our decisions
3542 	 * have been applied.
3543 	 */
3544 	writel(0, &sdr_scc_mgr->update);
3545 	return 1;
3546 }
3547 
3548 /**
3549  * run_mem_calibrate() - Perform memory calibration
3550  *
3551  * This function triggers the entire memory calibration procedure.
3552  */
3553 static int run_mem_calibrate(void)
3554 {
3555 	int pass;
3556 
3557 	debug("%s:%d\n", __func__, __LINE__);
3558 
3559 	/* Reset pass/fail status shown on afi_cal_success/fail */
3560 	writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3561 
3562 	/* Stop tracking manager. */
3563 	clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3564 
3565 	phy_mgr_initialize();
3566 	rw_mgr_mem_initialize();
3567 
3568 	/* Perform the actual memory calibration. */
3569 	pass = mem_calibrate();
3570 
3571 	mem_precharge_and_activate();
3572 	writel(0, &phy_mgr_cmd->fifo_reset);
3573 
3574 	/* Handoff. */
3575 	rw_mgr_mem_handoff();
3576 	/*
3577 	 * In Hard PHY this is a 2-bit control:
3578 	 * 0: AFI Mux Select
3579 	 * 1: DDIO Mux Select
3580 	 */
3581 	writel(0x2, &phy_mgr_cfg->mux_sel);
3582 
3583 	/* Start tracking manager. */
3584 	setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3585 
3586 	return pass;
3587 }
3588 
3589 /**
3590  * debug_mem_calibrate() - Report result of memory calibration
3591  * @pass:	Value indicating whether calibration passed or failed
3592  *
3593  * This function reports the results of the memory calibration
3594  * and writes debug information into the register file.
3595  */
3596 static void debug_mem_calibrate(int pass)
3597 {
3598 	uint32_t debug_info;
3599 
3600 	if (pass) {
3601 		printf("%s: CALIBRATION PASSED\n", __FILE__);
3602 
3603 		gbl->fom_in /= 2;
3604 		gbl->fom_out /= 2;
3605 
3606 		if (gbl->fom_in > 0xff)
3607 			gbl->fom_in = 0xff;
3608 
3609 		if (gbl->fom_out > 0xff)
3610 			gbl->fom_out = 0xff;
3611 
3612 		/* Update the FOM in the register file */
3613 		debug_info = gbl->fom_in;
3614 		debug_info |= gbl->fom_out << 8;
3615 		writel(debug_info, &sdr_reg_file->fom);
3616 
3617 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3618 		writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3619 	} else {
3620 		printf("%s: CALIBRATION FAILED\n", __FILE__);
3621 
3622 		debug_info = gbl->error_stage;
3623 		debug_info |= gbl->error_substage << 8;
3624 		debug_info |= gbl->error_group << 16;
3625 
3626 		writel(debug_info, &sdr_reg_file->failing_stage);
3627 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3628 		writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3629 
3630 		/* Update the failing group/stage in the register file */
3631 		debug_info = gbl->error_stage;
3632 		debug_info |= gbl->error_substage << 8;
3633 		debug_info |= gbl->error_group << 16;
3634 		writel(debug_info, &sdr_reg_file->failing_stage);
3635 	}
3636 
3637 	printf("%s: Calibration complete\n", __FILE__);
3638 }
3639 
3640 /**
3641  * hc_initialize_rom_data() - Initialize ROM data
3642  *
3643  * Initialize ROM data.
3644  */
3645 static void hc_initialize_rom_data(void)
3646 {
3647 	u32 i, addr;
3648 
3649 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3650 	for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3651 		writel(inst_rom_init[i], addr + (i << 2));
3652 
3653 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3654 	for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3655 		writel(ac_rom_init[i], addr + (i << 2));
3656 }
3657 
3658 /**
3659  * initialize_reg_file() - Initialize SDR register file
3660  *
3661  * Initialize SDR register file.
3662  */
3663 static void initialize_reg_file(void)
3664 {
3665 	/* Initialize the register file with the correct data */
3666 	writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3667 	writel(0, &sdr_reg_file->debug_data_addr);
3668 	writel(0, &sdr_reg_file->cur_stage);
3669 	writel(0, &sdr_reg_file->fom);
3670 	writel(0, &sdr_reg_file->failing_stage);
3671 	writel(0, &sdr_reg_file->debug1);
3672 	writel(0, &sdr_reg_file->debug2);
3673 }
3674 
3675 /**
3676  * initialize_hps_phy() - Initialize HPS PHY
3677  *
3678  * Initialize HPS PHY.
3679  */
3680 static void initialize_hps_phy(void)
3681 {
3682 	uint32_t reg;
3683 	/*
3684 	 * Tracking also gets configured here because it's in the
3685 	 * same register.
3686 	 */
3687 	uint32_t trk_sample_count = 7500;
3688 	uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3689 	/*
3690 	 * Format is number of outer loops in the 16 MSB, sample
3691 	 * count in 16 LSB.
3692 	 */
3693 
3694 	reg = 0;
3695 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3696 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3697 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3698 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3699 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3700 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3701 	/*
3702 	 * This field selects the intrinsic latency to RDATA_EN/FULL path.
3703 	 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3704 	 */
3705 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3706 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3707 		trk_sample_count);
3708 	writel(reg, &sdr_ctrl->phy_ctrl0);
3709 
3710 	reg = 0;
3711 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3712 		trk_sample_count >>
3713 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3714 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3715 		trk_long_idle_sample_count);
3716 	writel(reg, &sdr_ctrl->phy_ctrl1);
3717 
3718 	reg = 0;
3719 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3720 		trk_long_idle_sample_count >>
3721 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3722 	writel(reg, &sdr_ctrl->phy_ctrl2);
3723 }
3724 
3725 /**
3726  * initialize_tracking() - Initialize tracking
3727  *
3728  * Initialize the register file with usable initial data.
3729  */
3730 static void initialize_tracking(void)
3731 {
3732 	/*
3733 	 * Initialize the register file with the correct data.
3734 	 * Compute usable version of value in case we skip full
3735 	 * computation later.
3736 	 */
3737 	writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3738 	       &sdr_reg_file->dtaps_per_ptap);
3739 
3740 	/* trk_sample_count */
3741 	writel(7500, &sdr_reg_file->trk_sample_count);
3742 
3743 	/* longidle outer loop [15:0] */
3744 	writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3745 
3746 	/*
3747 	 * longidle sample count [31:24]
3748 	 * trfc, worst case of 933Mhz 4Gb [23:16]
3749 	 * trcd, worst case [15:8]
3750 	 * vfifo wait [7:0]
3751 	 */
3752 	writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3753 	       &sdr_reg_file->delays);
3754 
3755 	/* mux delay */
3756 	writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
3757 	       (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
3758 	       &sdr_reg_file->trk_rw_mgr_addr);
3759 
3760 	writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
3761 	       &sdr_reg_file->trk_read_dqs_width);
3762 
3763 	/* trefi [7:0] */
3764 	writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
3765 	       &sdr_reg_file->trk_rfsh);
3766 }
3767 
3768 int sdram_calibration_full(void)
3769 {
3770 	struct param_type my_param;
3771 	struct gbl_type my_gbl;
3772 	uint32_t pass;
3773 
3774 	memset(&my_param, 0, sizeof(my_param));
3775 	memset(&my_gbl, 0, sizeof(my_gbl));
3776 
3777 	param = &my_param;
3778 	gbl = &my_gbl;
3779 
3780 	/* Set the calibration enabled by default */
3781 	gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3782 	/*
3783 	 * Only sweep all groups (regardless of fail state) by default
3784 	 * Set enabled read test by default.
3785 	 */
3786 #if DISABLE_GUARANTEED_READ
3787 	gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3788 #endif
3789 	/* Initialize the register file */
3790 	initialize_reg_file();
3791 
3792 	/* Initialize any PHY CSR */
3793 	initialize_hps_phy();
3794 
3795 	scc_mgr_initialize();
3796 
3797 	initialize_tracking();
3798 
3799 	printf("%s: Preparing to start memory calibration\n", __FILE__);
3800 
3801 	debug("%s:%d\n", __func__, __LINE__);
3802 	debug_cond(DLEVEL == 1,
3803 		   "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3804 		   RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3805 		   RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3806 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3807 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3808 	debug_cond(DLEVEL == 1,
3809 		   "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3810 		   RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3811 		   RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3812 		   IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3813 	debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3814 		   IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3815 	debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3816 		   IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3817 		   IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3818 	debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3819 		   IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3820 		   IO_IO_OUT2_DELAY_MAX);
3821 	debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3822 		   IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3823 
3824 	hc_initialize_rom_data();
3825 
3826 	/* update info for sims */
3827 	reg_file_set_stage(CAL_STAGE_NIL);
3828 	reg_file_set_group(0);
3829 
3830 	/*
3831 	 * Load global needed for those actions that require
3832 	 * some dynamic calibration support.
3833 	 */
3834 	dyn_calib_steps = STATIC_CALIB_STEPS;
3835 	/*
3836 	 * Load global to allow dynamic selection of delay loop settings
3837 	 * based on calibration mode.
3838 	 */
3839 	if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3840 		skip_delay_mask = 0xff;
3841 	else
3842 		skip_delay_mask = 0x0;
3843 
3844 	pass = run_mem_calibrate();
3845 	debug_mem_calibrate(pass);
3846 	return pass;
3847 }
3848