1 /* 2 * Copyright Altera Corporation (C) 2012-2015 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <common.h> 8 #include <asm/io.h> 9 #include <asm/arch/sdram.h> 10 #include "sequencer.h" 11 #include "sequencer_auto.h" 12 #include "sequencer_auto_ac_init.h" 13 #include "sequencer_auto_inst_init.h" 14 #include "sequencer_defines.h" 15 16 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs = 17 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800); 18 19 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs = 20 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00); 21 22 static struct socfpga_sdr_reg_file *sdr_reg_file = 23 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS; 24 25 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr = 26 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00); 27 28 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd = 29 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS; 30 31 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg = 32 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40); 33 34 static struct socfpga_data_mgr *data_mgr = 35 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS; 36 37 static struct socfpga_sdr_ctrl *sdr_ctrl = 38 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS; 39 40 #define DELTA_D 1 41 42 /* 43 * In order to reduce ROM size, most of the selectable calibration steps are 44 * decided at compile time based on the user's calibration mode selection, 45 * as captured by the STATIC_CALIB_STEPS selection below. 46 * 47 * However, to support simulation-time selection of fast simulation mode, where 48 * we skip everything except the bare minimum, we need a few of the steps to 49 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the 50 * check, which is based on the rtl-supplied value, or we dynamically compute 51 * the value to use based on the dynamically-chosen calibration mode 52 */ 53 54 #define DLEVEL 0 55 #define STATIC_IN_RTL_SIM 0 56 #define STATIC_SKIP_DELAY_LOOPS 0 57 58 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \ 59 STATIC_SKIP_DELAY_LOOPS) 60 61 /* calibration steps requested by the rtl */ 62 uint16_t dyn_calib_steps; 63 64 /* 65 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option 66 * instead of static, we use boolean logic to select between 67 * non-skip and skip values 68 * 69 * The mask is set to include all bits when not-skipping, but is 70 * zero when skipping 71 */ 72 73 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */ 74 75 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \ 76 ((non_skip_value) & skip_delay_mask) 77 78 struct gbl_type *gbl; 79 struct param_type *param; 80 uint32_t curr_shadow_reg; 81 82 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 83 uint32_t write_group, uint32_t use_dm, 84 uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks); 85 86 static void set_failing_group_stage(uint32_t group, uint32_t stage, 87 uint32_t substage) 88 { 89 /* 90 * Only set the global stage if there was not been any other 91 * failing group 92 */ 93 if (gbl->error_stage == CAL_STAGE_NIL) { 94 gbl->error_substage = substage; 95 gbl->error_stage = stage; 96 gbl->error_group = group; 97 } 98 } 99 100 static void reg_file_set_group(u16 set_group) 101 { 102 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16); 103 } 104 105 static void reg_file_set_stage(u8 set_stage) 106 { 107 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff); 108 } 109 110 static void reg_file_set_sub_stage(u8 set_sub_stage) 111 { 112 set_sub_stage &= 0xff; 113 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8); 114 } 115 116 /** 117 * phy_mgr_initialize() - Initialize PHY Manager 118 * 119 * Initialize PHY Manager. 120 */ 121 static void phy_mgr_initialize(void) 122 { 123 u32 ratio; 124 125 debug("%s:%d\n", __func__, __LINE__); 126 /* Calibration has control over path to memory */ 127 /* 128 * In Hard PHY this is a 2-bit control: 129 * 0: AFI Mux Select 130 * 1: DDIO Mux Select 131 */ 132 writel(0x3, &phy_mgr_cfg->mux_sel); 133 134 /* USER memory clock is not stable we begin initialization */ 135 writel(0, &phy_mgr_cfg->reset_mem_stbl); 136 137 /* USER calibration status all set to zero */ 138 writel(0, &phy_mgr_cfg->cal_status); 139 140 writel(0, &phy_mgr_cfg->cal_debug_info); 141 142 /* Init params only if we do NOT skip calibration. */ 143 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) 144 return; 145 146 ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 147 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 148 param->read_correct_mask_vg = (1 << ratio) - 1; 149 param->write_correct_mask_vg = (1 << ratio) - 1; 150 param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1; 151 param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1; 152 ratio = RW_MGR_MEM_DATA_WIDTH / 153 RW_MGR_MEM_DATA_MASK_WIDTH; 154 param->dm_correct_mask = (1 << ratio) - 1; 155 } 156 157 static void set_rank_and_odt_mask(uint32_t rank, uint32_t odt_mode) 158 { 159 uint32_t odt_mask_0 = 0; 160 uint32_t odt_mask_1 = 0; 161 uint32_t cs_and_odt_mask; 162 163 if (odt_mode == RW_MGR_ODT_MODE_READ_WRITE) { 164 if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) { 165 /* 166 * 1 Rank 167 * Read: ODT = 0 168 * Write: ODT = 1 169 */ 170 odt_mask_0 = 0x0; 171 odt_mask_1 = 0x1; 172 } else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) { 173 /* 2 Ranks */ 174 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) { 175 /* - Dual-Slot , Single-Rank 176 * (1 chip-select per DIMM) 177 * OR 178 * - RDIMM, 4 total CS (2 CS per DIMM) 179 * means 2 DIMM 180 * Since MEM_NUMBER_OF_RANKS is 2 they are 181 * both single rank 182 * with 2 CS each (special for RDIMM) 183 * Read: Turn on ODT on the opposite rank 184 * Write: Turn on ODT on all ranks 185 */ 186 odt_mask_0 = 0x3 & ~(1 << rank); 187 odt_mask_1 = 0x3; 188 } else { 189 /* 190 * USER - Single-Slot , Dual-rank DIMMs 191 * (2 chip-selects per DIMM) 192 * USER Read: Turn on ODT off on all ranks 193 * USER Write: Turn on ODT on active rank 194 */ 195 odt_mask_0 = 0x0; 196 odt_mask_1 = 0x3 & (1 << rank); 197 } 198 } else { 199 /* 4 Ranks 200 * Read: 201 * ----------+-----------------------+ 202 * | | 203 * | ODT | 204 * Read From +-----------------------+ 205 * Rank | 3 | 2 | 1 | 0 | 206 * ----------+-----+-----+-----+-----+ 207 * 0 | 0 | 1 | 0 | 0 | 208 * 1 | 1 | 0 | 0 | 0 | 209 * 2 | 0 | 0 | 0 | 1 | 210 * 3 | 0 | 0 | 1 | 0 | 211 * ----------+-----+-----+-----+-----+ 212 * 213 * Write: 214 * ----------+-----------------------+ 215 * | | 216 * | ODT | 217 * Write To +-----------------------+ 218 * Rank | 3 | 2 | 1 | 0 | 219 * ----------+-----+-----+-----+-----+ 220 * 0 | 0 | 1 | 0 | 1 | 221 * 1 | 1 | 0 | 1 | 0 | 222 * 2 | 0 | 1 | 0 | 1 | 223 * 3 | 1 | 0 | 1 | 0 | 224 * ----------+-----+-----+-----+-----+ 225 */ 226 switch (rank) { 227 case 0: 228 odt_mask_0 = 0x4; 229 odt_mask_1 = 0x5; 230 break; 231 case 1: 232 odt_mask_0 = 0x8; 233 odt_mask_1 = 0xA; 234 break; 235 case 2: 236 odt_mask_0 = 0x1; 237 odt_mask_1 = 0x5; 238 break; 239 case 3: 240 odt_mask_0 = 0x2; 241 odt_mask_1 = 0xA; 242 break; 243 } 244 } 245 } else { 246 odt_mask_0 = 0x0; 247 odt_mask_1 = 0x0; 248 } 249 250 cs_and_odt_mask = 251 (0xFF & ~(1 << rank)) | 252 ((0xFF & odt_mask_0) << 8) | 253 ((0xFF & odt_mask_1) << 16); 254 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS | 255 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 256 } 257 258 /** 259 * scc_mgr_set() - Set SCC Manager register 260 * @off: Base offset in SCC Manager space 261 * @grp: Read/Write group 262 * @val: Value to be set 263 * 264 * This function sets the SCC Manager (Scan Chain Control Manager) register. 265 */ 266 static void scc_mgr_set(u32 off, u32 grp, u32 val) 267 { 268 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2)); 269 } 270 271 /** 272 * scc_mgr_initialize() - Initialize SCC Manager registers 273 * 274 * Initialize SCC Manager registers. 275 */ 276 static void scc_mgr_initialize(void) 277 { 278 /* 279 * Clear register file for HPS. 16 (2^4) is the size of the 280 * full register file in the scc mgr: 281 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + 282 * MEM_IF_READ_DQS_WIDTH - 1); 283 */ 284 int i; 285 286 for (i = 0; i < 16; i++) { 287 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n", 288 __func__, __LINE__, i); 289 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i); 290 } 291 } 292 293 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase) 294 { 295 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase); 296 } 297 298 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay) 299 { 300 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay); 301 } 302 303 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase) 304 { 305 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase); 306 } 307 308 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay) 309 { 310 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay); 311 } 312 313 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay) 314 { 315 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 316 delay); 317 } 318 319 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay) 320 { 321 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay); 322 } 323 324 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay) 325 { 326 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay); 327 } 328 329 static void scc_mgr_set_dqs_out1_delay(uint32_t delay) 330 { 331 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 332 delay); 333 } 334 335 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay) 336 { 337 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, 338 RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm, 339 delay); 340 } 341 342 /* load up dqs config settings */ 343 static void scc_mgr_load_dqs(uint32_t dqs) 344 { 345 writel(dqs, &sdr_scc_mgr->dqs_ena); 346 } 347 348 /* load up dqs io config settings */ 349 static void scc_mgr_load_dqs_io(void) 350 { 351 writel(0, &sdr_scc_mgr->dqs_io_ena); 352 } 353 354 /* load up dq config settings */ 355 static void scc_mgr_load_dq(uint32_t dq_in_group) 356 { 357 writel(dq_in_group, &sdr_scc_mgr->dq_ena); 358 } 359 360 /* load up dm config settings */ 361 static void scc_mgr_load_dm(uint32_t dm) 362 { 363 writel(dm, &sdr_scc_mgr->dm_ena); 364 } 365 366 /** 367 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks 368 * @off: Base offset in SCC Manager space 369 * @grp: Read/Write group 370 * @val: Value to be set 371 * @update: If non-zero, trigger SCC Manager update for all ranks 372 * 373 * This function sets the SCC Manager (Scan Chain Control Manager) register 374 * and optionally triggers the SCC update for all ranks. 375 */ 376 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val, 377 const int update) 378 { 379 u32 r; 380 381 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 382 r += NUM_RANKS_PER_SHADOW_REG) { 383 scc_mgr_set(off, grp, val); 384 385 if (update || (r == 0)) { 386 writel(grp, &sdr_scc_mgr->dqs_ena); 387 writel(0, &sdr_scc_mgr->update); 388 } 389 } 390 } 391 392 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase) 393 { 394 /* 395 * USER although the h/w doesn't support different phases per 396 * shadow register, for simplicity our scc manager modeling 397 * keeps different phase settings per shadow reg, and it's 398 * important for us to keep them in sync to match h/w. 399 * for efficiency, the scan chain update should occur only 400 * once to sr0. 401 */ 402 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET, 403 read_group, phase, 0); 404 } 405 406 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group, 407 uint32_t phase) 408 { 409 /* 410 * USER although the h/w doesn't support different phases per 411 * shadow register, for simplicity our scc manager modeling 412 * keeps different phase settings per shadow reg, and it's 413 * important for us to keep them in sync to match h/w. 414 * for efficiency, the scan chain update should occur only 415 * once to sr0. 416 */ 417 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, 418 write_group, phase, 0); 419 } 420 421 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group, 422 uint32_t delay) 423 { 424 /* 425 * In shadow register mode, the T11 settings are stored in 426 * registers in the core, which are updated by the DQS_ENA 427 * signals. Not issuing the SCC_MGR_UPD command allows us to 428 * save lots of rank switching overhead, by calling 429 * select_shadow_regs_for_update with update_scan_chains 430 * set to 0. 431 */ 432 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET, 433 read_group, delay, 1); 434 writel(0, &sdr_scc_mgr->update); 435 } 436 437 /** 438 * scc_mgr_set_oct_out1_delay() - Set OCT output delay 439 * @write_group: Write group 440 * @delay: Delay value 441 * 442 * This function sets the OCT output delay in SCC manager. 443 */ 444 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay) 445 { 446 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 447 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 448 const int base = write_group * ratio; 449 int i; 450 /* 451 * Load the setting in the SCC manager 452 * Although OCT affects only write data, the OCT delay is controlled 453 * by the DQS logic block which is instantiated once per read group. 454 * For protocols where a write group consists of multiple read groups, 455 * the setting must be set multiple times. 456 */ 457 for (i = 0; i < ratio; i++) 458 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay); 459 } 460 461 /** 462 * scc_mgr_set_hhp_extras() - Set HHP extras. 463 * 464 * Load the fixed setting in the SCC manager HHP extras. 465 */ 466 static void scc_mgr_set_hhp_extras(void) 467 { 468 /* 469 * Load the fixed setting in the SCC manager 470 * bits: 0:0 = 1'b1 - DQS bypass 471 * bits: 1:1 = 1'b1 - DQ bypass 472 * bits: 4:2 = 3'b001 - rfifo_mode 473 * bits: 6:5 = 2'b01 - rfifo clock_select 474 * bits: 7:7 = 1'b0 - separate gating from ungating setting 475 * bits: 8:8 = 1'b0 - separate OE from Output delay setting 476 */ 477 const u32 value = (0 << 8) | (0 << 7) | (1 << 5) | 478 (1 << 2) | (1 << 1) | (1 << 0); 479 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | 480 SCC_MGR_HHP_GLOBALS_OFFSET | 481 SCC_MGR_HHP_EXTRAS_OFFSET; 482 483 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", 484 __func__, __LINE__); 485 writel(value, addr); 486 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n", 487 __func__, __LINE__); 488 } 489 490 /** 491 * scc_mgr_zero_all() - Zero all DQS config 492 * 493 * Zero all DQS config. 494 */ 495 static void scc_mgr_zero_all(void) 496 { 497 int i, r; 498 499 /* 500 * USER Zero all DQS config settings, across all groups and all 501 * shadow registers 502 */ 503 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 504 r += NUM_RANKS_PER_SHADOW_REG) { 505 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 506 /* 507 * The phases actually don't exist on a per-rank basis, 508 * but there's no harm updating them several times, so 509 * let's keep the code simple. 510 */ 511 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE); 512 scc_mgr_set_dqs_en_phase(i, 0); 513 scc_mgr_set_dqs_en_delay(i, 0); 514 } 515 516 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 517 scc_mgr_set_dqdqs_output_phase(i, 0); 518 /* Arria V/Cyclone V don't have out2. */ 519 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE); 520 } 521 } 522 523 /* Multicast to all DQS group enables. */ 524 writel(0xff, &sdr_scc_mgr->dqs_ena); 525 writel(0, &sdr_scc_mgr->update); 526 } 527 528 /** 529 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update 530 * @write_group: Write group 531 * 532 * Set bypass mode and trigger SCC update. 533 */ 534 static void scc_set_bypass_mode(const u32 write_group) 535 { 536 /* Multicast to all DQ enables. */ 537 writel(0xff, &sdr_scc_mgr->dq_ena); 538 writel(0xff, &sdr_scc_mgr->dm_ena); 539 540 /* Update current DQS IO enable. */ 541 writel(0, &sdr_scc_mgr->dqs_io_ena); 542 543 /* Update the DQS logic. */ 544 writel(write_group, &sdr_scc_mgr->dqs_ena); 545 546 /* Hit update. */ 547 writel(0, &sdr_scc_mgr->update); 548 } 549 550 /** 551 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group 552 * @write_group: Write group 553 * 554 * Load DQS settings for Write Group, do not trigger SCC update. 555 */ 556 static void scc_mgr_load_dqs_for_write_group(const u32 write_group) 557 { 558 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 559 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 560 const int base = write_group * ratio; 561 int i; 562 /* 563 * Load the setting in the SCC manager 564 * Although OCT affects only write data, the OCT delay is controlled 565 * by the DQS logic block which is instantiated once per read group. 566 * For protocols where a write group consists of multiple read groups, 567 * the setting must be set multiple times. 568 */ 569 for (i = 0; i < ratio; i++) 570 writel(base + i, &sdr_scc_mgr->dqs_ena); 571 } 572 573 /** 574 * scc_mgr_zero_group() - Zero all configs for a group 575 * 576 * Zero DQ, DM, DQS and OCT configs for a group. 577 */ 578 static void scc_mgr_zero_group(const u32 write_group, const int out_only) 579 { 580 int i, r; 581 582 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 583 r += NUM_RANKS_PER_SHADOW_REG) { 584 /* Zero all DQ config settings. */ 585 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 586 scc_mgr_set_dq_out1_delay(i, 0); 587 if (!out_only) 588 scc_mgr_set_dq_in_delay(i, 0); 589 } 590 591 /* Multicast to all DQ enables. */ 592 writel(0xff, &sdr_scc_mgr->dq_ena); 593 594 /* Zero all DM config settings. */ 595 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 596 scc_mgr_set_dm_out1_delay(i, 0); 597 598 /* Multicast to all DM enables. */ 599 writel(0xff, &sdr_scc_mgr->dm_ena); 600 601 /* Zero all DQS IO settings. */ 602 if (!out_only) 603 scc_mgr_set_dqs_io_in_delay(0); 604 605 /* Arria V/Cyclone V don't have out2. */ 606 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE); 607 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE); 608 scc_mgr_load_dqs_for_write_group(write_group); 609 610 /* Multicast to all DQS IO enables (only 1 in total). */ 611 writel(0, &sdr_scc_mgr->dqs_io_ena); 612 613 /* Hit update to zero everything. */ 614 writel(0, &sdr_scc_mgr->update); 615 } 616 } 617 618 /* 619 * apply and load a particular input delay for the DQ pins in a group 620 * group_bgn is the index of the first dq pin (in the write group) 621 */ 622 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay) 623 { 624 uint32_t i, p; 625 626 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 627 scc_mgr_set_dq_in_delay(p, delay); 628 scc_mgr_load_dq(p); 629 } 630 } 631 632 /** 633 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group 634 * @delay: Delay value 635 * 636 * Apply and load a particular output delay for the DQ pins in a group. 637 */ 638 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay) 639 { 640 int i; 641 642 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 643 scc_mgr_set_dq_out1_delay(i, delay); 644 scc_mgr_load_dq(i); 645 } 646 } 647 648 /* apply and load a particular output delay for the DM pins in a group */ 649 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1) 650 { 651 uint32_t i; 652 653 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 654 scc_mgr_set_dm_out1_delay(i, delay1); 655 scc_mgr_load_dm(i); 656 } 657 } 658 659 660 /* apply and load delay on both DQS and OCT out1 */ 661 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group, 662 uint32_t delay) 663 { 664 scc_mgr_set_dqs_out1_delay(delay); 665 scc_mgr_load_dqs_io(); 666 667 scc_mgr_set_oct_out1_delay(write_group, delay); 668 scc_mgr_load_dqs_for_write_group(write_group); 669 } 670 671 /** 672 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT 673 * @write_group: Write group 674 * @delay: Delay value 675 * 676 * Apply a delay to the entire output side: DQ, DM, DQS, OCT. 677 */ 678 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group, 679 const u32 delay) 680 { 681 u32 i, new_delay; 682 683 /* DQ shift */ 684 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) 685 scc_mgr_load_dq(i); 686 687 /* DM shift */ 688 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 689 scc_mgr_load_dm(i); 690 691 /* DQS shift */ 692 new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay; 693 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 694 debug_cond(DLEVEL == 1, 695 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 696 __func__, __LINE__, write_group, delay, new_delay, 697 IO_IO_OUT2_DELAY_MAX, 698 new_delay - IO_IO_OUT2_DELAY_MAX); 699 new_delay -= IO_IO_OUT2_DELAY_MAX; 700 scc_mgr_set_dqs_out1_delay(new_delay); 701 } 702 703 scc_mgr_load_dqs_io(); 704 705 /* OCT shift */ 706 new_delay = READ_SCC_OCT_OUT2_DELAY + delay; 707 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 708 debug_cond(DLEVEL == 1, 709 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 710 __func__, __LINE__, write_group, delay, 711 new_delay, IO_IO_OUT2_DELAY_MAX, 712 new_delay - IO_IO_OUT2_DELAY_MAX); 713 new_delay -= IO_IO_OUT2_DELAY_MAX; 714 scc_mgr_set_oct_out1_delay(write_group, new_delay); 715 } 716 717 scc_mgr_load_dqs_for_write_group(write_group); 718 } 719 720 /** 721 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks 722 * @write_group: Write group 723 * @delay: Delay value 724 * 725 * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks. 726 */ 727 static void 728 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group, 729 const u32 delay) 730 { 731 int r; 732 733 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 734 r += NUM_RANKS_PER_SHADOW_REG) { 735 scc_mgr_apply_group_all_out_delay_add(write_group, delay); 736 writel(0, &sdr_scc_mgr->update); 737 } 738 } 739 740 /** 741 * set_jump_as_return() - Return instruction optimization 742 * 743 * Optimization used to recover some slots in ddr3 inst_rom could be 744 * applied to other protocols if we wanted to 745 */ 746 static void set_jump_as_return(void) 747 { 748 /* 749 * To save space, we replace return with jump to special shared 750 * RETURN instruction so we set the counter to large value so that 751 * we always jump. 752 */ 753 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0); 754 writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 755 } 756 757 /* 758 * should always use constants as argument to ensure all computations are 759 * performed at compile time 760 */ 761 static void delay_for_n_mem_clocks(const uint32_t clocks) 762 { 763 uint32_t afi_clocks; 764 uint8_t inner = 0; 765 uint8_t outer = 0; 766 uint16_t c_loop = 0; 767 768 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks); 769 770 771 afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO; 772 /* scale (rounding up) to get afi clocks */ 773 774 /* 775 * Note, we don't bother accounting for being off a little bit 776 * because of a few extra instructions in outer loops 777 * Note, the loops have a test at the end, and do the test before 778 * the decrement, and so always perform the loop 779 * 1 time more than the counter value 780 */ 781 if (afi_clocks == 0) { 782 ; 783 } else if (afi_clocks <= 0x100) { 784 inner = afi_clocks-1; 785 outer = 0; 786 c_loop = 0; 787 } else if (afi_clocks <= 0x10000) { 788 inner = 0xff; 789 outer = (afi_clocks-1) >> 8; 790 c_loop = 0; 791 } else { 792 inner = 0xff; 793 outer = 0xff; 794 c_loop = (afi_clocks-1) >> 16; 795 } 796 797 /* 798 * rom instructions are structured as follows: 799 * 800 * IDLE_LOOP2: jnz cntr0, TARGET_A 801 * IDLE_LOOP1: jnz cntr1, TARGET_B 802 * return 803 * 804 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and 805 * TARGET_B is set to IDLE_LOOP2 as well 806 * 807 * if we have no outer loop, though, then we can use IDLE_LOOP1 only, 808 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely 809 * 810 * a little confusing, but it helps save precious space in the inst_rom 811 * and sequencer rom and keeps the delays more accurate and reduces 812 * overhead 813 */ 814 if (afi_clocks <= 0x100) { 815 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 816 &sdr_rw_load_mgr_regs->load_cntr1); 817 818 writel(RW_MGR_IDLE_LOOP1, 819 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 820 821 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 822 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 823 } else { 824 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 825 &sdr_rw_load_mgr_regs->load_cntr0); 826 827 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), 828 &sdr_rw_load_mgr_regs->load_cntr1); 829 830 writel(RW_MGR_IDLE_LOOP2, 831 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 832 833 writel(RW_MGR_IDLE_LOOP2, 834 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 835 836 /* hack to get around compiler not being smart enough */ 837 if (afi_clocks <= 0x10000) { 838 /* only need to run once */ 839 writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS | 840 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 841 } else { 842 do { 843 writel(RW_MGR_IDLE_LOOP2, 844 SDR_PHYGRP_RWMGRGRP_ADDRESS | 845 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 846 } while (c_loop-- != 0); 847 } 848 } 849 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks); 850 } 851 852 /** 853 * rw_mgr_mem_init_load_regs() - Load instruction registers 854 * @cntr0: Counter 0 value 855 * @cntr1: Counter 1 value 856 * @cntr2: Counter 2 value 857 * @jump: Jump instruction value 858 * 859 * Load instruction registers. 860 */ 861 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump) 862 { 863 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 864 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 865 866 /* Load counters */ 867 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0), 868 &sdr_rw_load_mgr_regs->load_cntr0); 869 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1), 870 &sdr_rw_load_mgr_regs->load_cntr1); 871 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2), 872 &sdr_rw_load_mgr_regs->load_cntr2); 873 874 /* Load jump address */ 875 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 876 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1); 877 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 878 879 /* Execute count instruction */ 880 writel(jump, grpaddr); 881 } 882 883 /** 884 * rw_mgr_mem_load_user() - Load user calibration values 885 * @fin1: Final instruction 1 886 * @fin2: Final instruction 2 887 * @precharge: If 1, precharge the banks at the end 888 * 889 * Load user calibration values and optionally precharge the banks. 890 */ 891 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2, 892 const int precharge) 893 { 894 u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 895 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 896 u32 r; 897 898 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 899 if (param->skip_ranks[r]) { 900 /* request to skip the rank */ 901 continue; 902 } 903 904 /* set rank */ 905 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 906 907 /* precharge all banks ... */ 908 if (precharge) 909 writel(RW_MGR_PRECHARGE_ALL, grpaddr); 910 911 /* 912 * USER Use Mirror-ed commands for odd ranks if address 913 * mirrorring is on 914 */ 915 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 916 set_jump_as_return(); 917 writel(RW_MGR_MRS2_MIRR, grpaddr); 918 delay_for_n_mem_clocks(4); 919 set_jump_as_return(); 920 writel(RW_MGR_MRS3_MIRR, grpaddr); 921 delay_for_n_mem_clocks(4); 922 set_jump_as_return(); 923 writel(RW_MGR_MRS1_MIRR, grpaddr); 924 delay_for_n_mem_clocks(4); 925 set_jump_as_return(); 926 writel(fin1, grpaddr); 927 } else { 928 set_jump_as_return(); 929 writel(RW_MGR_MRS2, grpaddr); 930 delay_for_n_mem_clocks(4); 931 set_jump_as_return(); 932 writel(RW_MGR_MRS3, grpaddr); 933 delay_for_n_mem_clocks(4); 934 set_jump_as_return(); 935 writel(RW_MGR_MRS1, grpaddr); 936 set_jump_as_return(); 937 writel(fin2, grpaddr); 938 } 939 940 if (precharge) 941 continue; 942 943 set_jump_as_return(); 944 writel(RW_MGR_ZQCL, grpaddr); 945 946 /* tZQinit = tDLLK = 512 ck cycles */ 947 delay_for_n_mem_clocks(512); 948 } 949 } 950 951 static void rw_mgr_mem_initialize(void) 952 { 953 debug("%s:%d\n", __func__, __LINE__); 954 955 /* The reset / cke part of initialization is broadcasted to all ranks */ 956 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 957 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 958 959 /* 960 * Here's how you load register for a loop 961 * Counters are located @ 0x800 962 * Jump address are located @ 0xC00 963 * For both, registers 0 to 3 are selected using bits 3 and 2, like 964 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C 965 * I know this ain't pretty, but Avalon bus throws away the 2 least 966 * significant bits 967 */ 968 969 /* start with memory RESET activated */ 970 971 /* tINIT = 200us */ 972 973 /* 974 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles 975 * If a and b are the number of iteration in 2 nested loops 976 * it takes the following number of cycles to complete the operation: 977 * number_of_cycles = ((2 + n) * a + 2) * b 978 * where n is the number of instruction in the inner loop 979 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF, 980 * b = 6A 981 */ 982 rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL, 983 SEQ_TINIT_CNTR2_VAL, 984 RW_MGR_INIT_RESET_0_CKE_0); 985 986 /* indicate that memory is stable */ 987 writel(1, &phy_mgr_cfg->reset_mem_stbl); 988 989 /* 990 * transition the RESET to high 991 * Wait for 500us 992 */ 993 994 /* 995 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles 996 * If a and b are the number of iteration in 2 nested loops 997 * it takes the following number of cycles to complete the operation 998 * number_of_cycles = ((2 + n) * a + 2) * b 999 * where n is the number of instruction in the inner loop 1000 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83, 1001 * b = FF 1002 */ 1003 rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL, 1004 SEQ_TRESET_CNTR2_VAL, 1005 RW_MGR_INIT_RESET_1_CKE_0); 1006 1007 /* bring up clock enable */ 1008 1009 /* tXRP < 250 ck cycles */ 1010 delay_for_n_mem_clocks(250); 1011 1012 rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET, 1013 0); 1014 } 1015 1016 /* 1017 * At the end of calibration we have to program the user settings in, and 1018 * USER hand off the memory to the user. 1019 */ 1020 static void rw_mgr_mem_handoff(void) 1021 { 1022 rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1); 1023 /* 1024 * USER need to wait tMOD (12CK or 15ns) time before issuing 1025 * other commands, but we will have plenty of NIOS cycles before 1026 * actual handoff so its okay. 1027 */ 1028 } 1029 1030 /* 1031 * performs a guaranteed read on the patterns we are going to use during a 1032 * read test to ensure memory works 1033 */ 1034 static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn, 1035 uint32_t group, uint32_t num_tries, uint32_t *bit_chk, 1036 uint32_t all_ranks) 1037 { 1038 uint32_t r, vg; 1039 uint32_t correct_mask_vg; 1040 uint32_t tmp_bit_chk; 1041 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1042 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1043 uint32_t addr; 1044 uint32_t base_rw_mgr; 1045 1046 *bit_chk = param->read_correct_mask; 1047 correct_mask_vg = param->read_correct_mask_vg; 1048 1049 for (r = rank_bgn; r < rank_end; r++) { 1050 if (param->skip_ranks[r]) 1051 /* request to skip the rank */ 1052 continue; 1053 1054 /* set rank */ 1055 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1056 1057 /* Load up a constant bursts of read commands */ 1058 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1059 writel(RW_MGR_GUARANTEED_READ, 1060 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1061 1062 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1063 writel(RW_MGR_GUARANTEED_READ_CONT, 1064 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1065 1066 tmp_bit_chk = 0; 1067 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1068 /* reset the fifos to get pointers to known state */ 1069 1070 writel(0, &phy_mgr_cmd->fifo_reset); 1071 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1072 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1073 1074 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1075 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1076 1077 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1078 writel(RW_MGR_GUARANTEED_READ, addr + 1079 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1080 vg) << 2)); 1081 1082 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1083 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr)); 1084 1085 if (vg == 0) 1086 break; 1087 } 1088 *bit_chk &= tmp_bit_chk; 1089 } 1090 1091 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1092 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1093 1094 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1095 debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\ 1096 %lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask, 1097 (long unsigned int)(*bit_chk == param->read_correct_mask)); 1098 return *bit_chk == param->read_correct_mask; 1099 } 1100 1101 static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks 1102 (uint32_t group, uint32_t num_tries, uint32_t *bit_chk) 1103 { 1104 return rw_mgr_mem_calibrate_read_test_patterns(0, group, 1105 num_tries, bit_chk, 1); 1106 } 1107 1108 /* load up the patterns we are going to use during a read test */ 1109 static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn, 1110 uint32_t all_ranks) 1111 { 1112 uint32_t r; 1113 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1114 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1115 1116 debug("%s:%d\n", __func__, __LINE__); 1117 for (r = rank_bgn; r < rank_end; r++) { 1118 if (param->skip_ranks[r]) 1119 /* request to skip the rank */ 1120 continue; 1121 1122 /* set rank */ 1123 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1124 1125 /* Load up a constant bursts */ 1126 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1127 1128 writel(RW_MGR_GUARANTEED_WRITE_WAIT0, 1129 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1130 1131 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1132 1133 writel(RW_MGR_GUARANTEED_WRITE_WAIT1, 1134 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1135 1136 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2); 1137 1138 writel(RW_MGR_GUARANTEED_WRITE_WAIT2, 1139 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1140 1141 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3); 1142 1143 writel(RW_MGR_GUARANTEED_WRITE_WAIT3, 1144 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1145 1146 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1147 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 1148 } 1149 1150 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1151 } 1152 1153 /* 1154 * try a read and see if it returns correct data back. has dummy reads 1155 * inserted into the mix used to align dqs enable. has more thorough checks 1156 * than the regular read test. 1157 */ 1158 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group, 1159 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1160 uint32_t all_groups, uint32_t all_ranks) 1161 { 1162 uint32_t r, vg; 1163 uint32_t correct_mask_vg; 1164 uint32_t tmp_bit_chk; 1165 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1166 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1167 uint32_t addr; 1168 uint32_t base_rw_mgr; 1169 1170 *bit_chk = param->read_correct_mask; 1171 correct_mask_vg = param->read_correct_mask_vg; 1172 1173 uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) & 1174 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION); 1175 1176 for (r = rank_bgn; r < rank_end; r++) { 1177 if (param->skip_ranks[r]) 1178 /* request to skip the rank */ 1179 continue; 1180 1181 /* set rank */ 1182 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1183 1184 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1); 1185 1186 writel(RW_MGR_READ_B2B_WAIT1, 1187 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1188 1189 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2); 1190 writel(RW_MGR_READ_B2B_WAIT2, 1191 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1192 1193 if (quick_read_mode) 1194 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0); 1195 /* need at least two (1+1) reads to capture failures */ 1196 else if (all_groups) 1197 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0); 1198 else 1199 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0); 1200 1201 writel(RW_MGR_READ_B2B, 1202 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1203 if (all_groups) 1204 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH * 1205 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1, 1206 &sdr_rw_load_mgr_regs->load_cntr3); 1207 else 1208 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3); 1209 1210 writel(RW_MGR_READ_B2B, 1211 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1212 1213 tmp_bit_chk = 0; 1214 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1215 /* reset the fifos to get pointers to known state */ 1216 writel(0, &phy_mgr_cmd->fifo_reset); 1217 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1218 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1219 1220 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1221 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1222 1223 if (all_groups) 1224 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET; 1225 else 1226 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1227 1228 writel(RW_MGR_READ_B2B, addr + 1229 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1230 vg) << 2)); 1231 1232 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1233 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 1234 1235 if (vg == 0) 1236 break; 1237 } 1238 *bit_chk &= tmp_bit_chk; 1239 } 1240 1241 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1242 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1243 1244 if (all_correct) { 1245 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1246 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\ 1247 (%u == %u) => %lu", __func__, __LINE__, group, 1248 all_groups, *bit_chk, param->read_correct_mask, 1249 (long unsigned int)(*bit_chk == 1250 param->read_correct_mask)); 1251 return *bit_chk == param->read_correct_mask; 1252 } else { 1253 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1254 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\ 1255 (%u != %lu) => %lu\n", __func__, __LINE__, 1256 group, all_groups, *bit_chk, (long unsigned int)0, 1257 (long unsigned int)(*bit_chk != 0x00)); 1258 return *bit_chk != 0x00; 1259 } 1260 } 1261 1262 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group, 1263 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1264 uint32_t all_groups) 1265 { 1266 return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct, 1267 bit_chk, all_groups, 1); 1268 } 1269 1270 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v) 1271 { 1272 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy); 1273 (*v)++; 1274 } 1275 1276 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v) 1277 { 1278 uint32_t i; 1279 1280 for (i = 0; i < VFIFO_SIZE-1; i++) 1281 rw_mgr_incr_vfifo(grp, v); 1282 } 1283 1284 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk) 1285 { 1286 uint32_t v; 1287 uint32_t fail_cnt = 0; 1288 uint32_t test_status; 1289 1290 for (v = 0; v < VFIFO_SIZE; ) { 1291 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n", 1292 __func__, __LINE__, v); 1293 test_status = rw_mgr_mem_calibrate_read_test_all_ranks 1294 (grp, 1, PASS_ONE_BIT, bit_chk, 0); 1295 if (!test_status) { 1296 fail_cnt++; 1297 1298 if (fail_cnt == 2) 1299 break; 1300 } 1301 1302 /* fiddle with FIFO */ 1303 rw_mgr_incr_vfifo(grp, &v); 1304 } 1305 1306 if (v >= VFIFO_SIZE) { 1307 /* no failing read found!! Something must have gone wrong */ 1308 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n", 1309 __func__, __LINE__); 1310 return 0; 1311 } else { 1312 return v; 1313 } 1314 } 1315 1316 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk, 1317 uint32_t dtaps_per_ptap, uint32_t *work_bgn, 1318 uint32_t *v, uint32_t *d, uint32_t *p, 1319 uint32_t *i, uint32_t *max_working_cnt) 1320 { 1321 uint32_t found_begin = 0; 1322 uint32_t tmp_delay = 0; 1323 uint32_t test_status; 1324 1325 for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay += 1326 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1327 *work_bgn = tmp_delay; 1328 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1329 1330 for (*i = 0; *i < VFIFO_SIZE; (*i)++) { 1331 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn += 1332 IO_DELAY_PER_OPA_TAP) { 1333 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1334 1335 test_status = 1336 rw_mgr_mem_calibrate_read_test_all_ranks 1337 (*grp, 1, PASS_ONE_BIT, bit_chk, 0); 1338 1339 if (test_status) { 1340 *max_working_cnt = 1; 1341 found_begin = 1; 1342 break; 1343 } 1344 } 1345 1346 if (found_begin) 1347 break; 1348 1349 if (*p > IO_DQS_EN_PHASE_MAX) 1350 /* fiddle with FIFO */ 1351 rw_mgr_incr_vfifo(*grp, v); 1352 } 1353 1354 if (found_begin) 1355 break; 1356 } 1357 1358 if (*i >= VFIFO_SIZE) { 1359 /* cannot find working solution */ 1360 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\ 1361 ptap/dtap\n", __func__, __LINE__); 1362 return 0; 1363 } else { 1364 return 1; 1365 } 1366 } 1367 1368 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk, 1369 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1370 uint32_t *p, uint32_t *max_working_cnt) 1371 { 1372 uint32_t found_begin = 0; 1373 uint32_t tmp_delay; 1374 1375 /* Special case code for backing up a phase */ 1376 if (*p == 0) { 1377 *p = IO_DQS_EN_PHASE_MAX; 1378 rw_mgr_decr_vfifo(*grp, v); 1379 } else { 1380 (*p)--; 1381 } 1382 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP; 1383 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1384 1385 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; 1386 (*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1387 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1388 1389 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1, 1390 PASS_ONE_BIT, 1391 bit_chk, 0)) { 1392 found_begin = 1; 1393 *work_bgn = tmp_delay; 1394 break; 1395 } 1396 } 1397 1398 /* We have found a working dtap before the ptap found above */ 1399 if (found_begin == 1) 1400 (*max_working_cnt)++; 1401 1402 /* 1403 * Restore VFIFO to old state before we decremented it 1404 * (if needed). 1405 */ 1406 (*p)++; 1407 if (*p > IO_DQS_EN_PHASE_MAX) { 1408 *p = 0; 1409 rw_mgr_incr_vfifo(*grp, v); 1410 } 1411 1412 scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0); 1413 } 1414 1415 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk, 1416 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1417 uint32_t *p, uint32_t *i, uint32_t *max_working_cnt, 1418 uint32_t *work_end) 1419 { 1420 uint32_t found_end = 0; 1421 1422 (*p)++; 1423 *work_end += IO_DELAY_PER_OPA_TAP; 1424 if (*p > IO_DQS_EN_PHASE_MAX) { 1425 /* fiddle with FIFO */ 1426 *p = 0; 1427 rw_mgr_incr_vfifo(*grp, v); 1428 } 1429 1430 for (; *i < VFIFO_SIZE + 1; (*i)++) { 1431 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end 1432 += IO_DELAY_PER_OPA_TAP) { 1433 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1434 1435 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1436 (*grp, 1, PASS_ONE_BIT, bit_chk, 0)) { 1437 found_end = 1; 1438 break; 1439 } else { 1440 (*max_working_cnt)++; 1441 } 1442 } 1443 1444 if (found_end) 1445 break; 1446 1447 if (*p > IO_DQS_EN_PHASE_MAX) { 1448 /* fiddle with FIFO */ 1449 rw_mgr_incr_vfifo(*grp, v); 1450 *p = 0; 1451 } 1452 } 1453 1454 if (*i >= VFIFO_SIZE + 1) { 1455 /* cannot see edge of failing read */ 1456 debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\ 1457 failed\n", __func__, __LINE__); 1458 return 0; 1459 } else { 1460 return 1; 1461 } 1462 } 1463 1464 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk, 1465 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1466 uint32_t *p, uint32_t *work_mid, 1467 uint32_t *work_end) 1468 { 1469 int i; 1470 int tmp_delay = 0; 1471 1472 *work_mid = (*work_bgn + *work_end) / 2; 1473 1474 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n", 1475 *work_bgn, *work_end, *work_mid); 1476 /* Get the middle delay to be less than a VFIFO delay */ 1477 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; 1478 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP) 1479 ; 1480 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay); 1481 while (*work_mid > tmp_delay) 1482 *work_mid -= tmp_delay; 1483 debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid); 1484 1485 tmp_delay = 0; 1486 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid; 1487 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP) 1488 ; 1489 tmp_delay -= IO_DELAY_PER_OPA_TAP; 1490 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay); 1491 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++, 1492 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) 1493 ; 1494 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay); 1495 1496 scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1); 1497 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1498 1499 /* 1500 * push vfifo until we can successfully calibrate. We can do this 1501 * because the largest possible margin in 1 VFIFO cycle. 1502 */ 1503 for (i = 0; i < VFIFO_SIZE; i++) { 1504 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n", 1505 *v); 1506 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1, 1507 PASS_ONE_BIT, 1508 bit_chk, 0)) { 1509 break; 1510 } 1511 1512 /* fiddle with FIFO */ 1513 rw_mgr_incr_vfifo(*grp, v); 1514 } 1515 1516 if (i >= VFIFO_SIZE) { 1517 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \ 1518 failed\n", __func__, __LINE__); 1519 return 0; 1520 } else { 1521 return 1; 1522 } 1523 } 1524 1525 /* find a good dqs enable to use */ 1526 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp) 1527 { 1528 uint32_t v, d, p, i; 1529 uint32_t max_working_cnt; 1530 uint32_t bit_chk; 1531 uint32_t dtaps_per_ptap; 1532 uint32_t work_bgn, work_mid, work_end; 1533 uint32_t found_passing_read, found_failing_read, initial_failing_dtap; 1534 1535 debug("%s:%d %u\n", __func__, __LINE__, grp); 1536 1537 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 1538 1539 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1540 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); 1541 1542 /* ************************************************************** */ 1543 /* * Step 0 : Determine number of delay taps for each phase tap * */ 1544 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1545 1546 /* ********************************************************* */ 1547 /* * Step 1 : First push vfifo until we get a failing read * */ 1548 v = find_vfifo_read(grp, &bit_chk); 1549 1550 max_working_cnt = 0; 1551 1552 /* ******************************************************** */ 1553 /* * step 2: find first working phase, increment in ptaps * */ 1554 work_bgn = 0; 1555 if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d, 1556 &p, &i, &max_working_cnt) == 0) 1557 return 0; 1558 1559 work_end = work_bgn; 1560 1561 /* 1562 * If d is 0 then the working window covers a phase tap and 1563 * we can follow the old procedure otherwise, we've found the beginning, 1564 * and we need to increment the dtaps until we find the end. 1565 */ 1566 if (d == 0) { 1567 /* ********************************************************* */ 1568 /* * step 3a: if we have room, back off by one and 1569 increment in dtaps * */ 1570 1571 sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1572 &max_working_cnt); 1573 1574 /* ********************************************************* */ 1575 /* * step 4a: go forward from working phase to non working 1576 phase, increment in ptaps * */ 1577 if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1578 &i, &max_working_cnt, &work_end) == 0) 1579 return 0; 1580 1581 /* ********************************************************* */ 1582 /* * step 5a: back off one from last, increment in dtaps * */ 1583 1584 /* Special case code for backing up a phase */ 1585 if (p == 0) { 1586 p = IO_DQS_EN_PHASE_MAX; 1587 rw_mgr_decr_vfifo(grp, &v); 1588 } else { 1589 p = p - 1; 1590 } 1591 1592 work_end -= IO_DELAY_PER_OPA_TAP; 1593 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1594 1595 /* * The actual increment of dtaps is done outside of 1596 the if/else loop to share code */ 1597 d = 0; 1598 1599 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \ 1600 vfifo=%u ptap=%u\n", __func__, __LINE__, 1601 v, p); 1602 } else { 1603 /* ******************************************************* */ 1604 /* * step 3-5b: Find the right edge of the window using 1605 delay taps * */ 1606 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \ 1607 ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__, 1608 v, p, d, work_bgn); 1609 1610 work_end = work_bgn; 1611 1612 /* * The actual increment of dtaps is done outside of the 1613 if/else loop to share code */ 1614 1615 /* Only here to counterbalance a subtract later on which is 1616 not needed if this branch of the algorithm is taken */ 1617 max_working_cnt++; 1618 } 1619 1620 /* The dtap increment to find the failing edge is done here */ 1621 for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end += 1622 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1623 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1624 end-2: dtap=%u\n", __func__, __LINE__, d); 1625 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1626 1627 if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1628 PASS_ONE_BIT, 1629 &bit_chk, 0)) { 1630 break; 1631 } 1632 } 1633 1634 /* Go back to working dtap */ 1635 if (d != 0) 1636 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1637 1638 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \ 1639 ptap=%u dtap=%u end=%u\n", __func__, __LINE__, 1640 v, p, d-1, work_end); 1641 1642 if (work_end < work_bgn) { 1643 /* nil range */ 1644 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \ 1645 failed\n", __func__, __LINE__); 1646 return 0; 1647 } 1648 1649 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n", 1650 __func__, __LINE__, work_bgn, work_end); 1651 1652 /* *************************************************************** */ 1653 /* 1654 * * We need to calculate the number of dtaps that equal a ptap 1655 * * To do that we'll back up a ptap and re-find the edge of the 1656 * * window using dtaps 1657 */ 1658 1659 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \ 1660 for tracking\n", __func__, __LINE__); 1661 1662 /* Special case code for backing up a phase */ 1663 if (p == 0) { 1664 p = IO_DQS_EN_PHASE_MAX; 1665 rw_mgr_decr_vfifo(grp, &v); 1666 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1667 cycle/phase: v=%u p=%u\n", __func__, __LINE__, 1668 v, p); 1669 } else { 1670 p = p - 1; 1671 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1672 phase only: v=%u p=%u", __func__, __LINE__, 1673 v, p); 1674 } 1675 1676 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1677 1678 /* 1679 * Increase dtap until we first see a passing read (in case the 1680 * window is smaller than a ptap), 1681 * and then a failing read to mark the edge of the window again 1682 */ 1683 1684 /* Find a passing read */ 1685 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n", 1686 __func__, __LINE__); 1687 found_passing_read = 0; 1688 found_failing_read = 0; 1689 initial_failing_dtap = d; 1690 for (; d <= IO_DQS_EN_DELAY_MAX; d++) { 1691 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \ 1692 read d=%u\n", __func__, __LINE__, d); 1693 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1694 1695 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1696 PASS_ONE_BIT, 1697 &bit_chk, 0)) { 1698 found_passing_read = 1; 1699 break; 1700 } 1701 } 1702 1703 if (found_passing_read) { 1704 /* Find a failing read */ 1705 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \ 1706 read\n", __func__, __LINE__); 1707 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) { 1708 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1709 testing read d=%u\n", __func__, __LINE__, d); 1710 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1711 1712 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1713 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { 1714 found_failing_read = 1; 1715 break; 1716 } 1717 } 1718 } else { 1719 debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \ 1720 calculate dtaps", __func__, __LINE__); 1721 debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n"); 1722 } 1723 1724 /* 1725 * The dynamically calculated dtaps_per_ptap is only valid if we 1726 * found a passing/failing read. If we didn't, it means d hit the max 1727 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its 1728 * statically calculated value. 1729 */ 1730 if (found_passing_read && found_failing_read) 1731 dtaps_per_ptap = d - initial_failing_dtap; 1732 1733 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 1734 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \ 1735 - %u = %u", __func__, __LINE__, d, 1736 initial_failing_dtap, dtaps_per_ptap); 1737 1738 /* ******************************************** */ 1739 /* * step 6: Find the centre of the window * */ 1740 if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1741 &work_mid, &work_end) == 0) 1742 return 0; 1743 1744 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \ 1745 vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__, 1746 v, p-1, d); 1747 return 1; 1748 } 1749 1750 /* 1751 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different 1752 * dq_in_delay values 1753 */ 1754 static uint32_t 1755 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay 1756 (uint32_t write_group, uint32_t read_group, uint32_t test_bgn) 1757 { 1758 uint32_t found; 1759 uint32_t i; 1760 uint32_t p; 1761 uint32_t d; 1762 uint32_t r; 1763 1764 const uint32_t delay_step = IO_IO_IN_DELAY_MAX / 1765 (RW_MGR_MEM_DQ_PER_READ_DQS-1); 1766 /* we start at zero, so have one less dq to devide among */ 1767 1768 debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group, 1769 test_bgn); 1770 1771 /* try different dq_in_delays since the dq path is shorter than dqs */ 1772 1773 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 1774 r += NUM_RANKS_PER_SHADOW_REG) { 1775 for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++, d += delay_step) { 1776 debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\ 1777 vfifo_find_dqs_", __func__, __LINE__); 1778 debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ", 1779 write_group, read_group); 1780 debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d); 1781 scc_mgr_set_dq_in_delay(p, d); 1782 scc_mgr_load_dq(p); 1783 } 1784 writel(0, &sdr_scc_mgr->update); 1785 } 1786 1787 found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group); 1788 1789 debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\ 1790 en_phase_sweep_dq", __func__, __LINE__); 1791 debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \ 1792 chain to zero\n", write_group, read_group, found); 1793 1794 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 1795 r += NUM_RANKS_PER_SHADOW_REG) { 1796 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; 1797 i++, p++) { 1798 scc_mgr_set_dq_in_delay(p, 0); 1799 scc_mgr_load_dq(p); 1800 } 1801 writel(0, &sdr_scc_mgr->update); 1802 } 1803 1804 return found; 1805 } 1806 1807 /* per-bit deskew DQ and center */ 1808 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn, 1809 uint32_t write_group, uint32_t read_group, uint32_t test_bgn, 1810 uint32_t use_read_test, uint32_t update_fom) 1811 { 1812 uint32_t i, p, d, min_index; 1813 /* 1814 * Store these as signed since there are comparisons with 1815 * signed numbers. 1816 */ 1817 uint32_t bit_chk; 1818 uint32_t sticky_bit_chk; 1819 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1820 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1821 int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS]; 1822 int32_t mid; 1823 int32_t orig_mid_min, mid_min; 1824 int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs, 1825 final_dqs_en; 1826 int32_t dq_margin, dqs_margin; 1827 uint32_t stop; 1828 uint32_t temp_dq_in_delay1, temp_dq_in_delay2; 1829 uint32_t addr; 1830 1831 debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn); 1832 1833 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET; 1834 start_dqs = readl(addr + (read_group << 2)); 1835 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 1836 start_dqs_en = readl(addr + ((read_group << 2) 1837 - IO_DQS_EN_DELAY_OFFSET)); 1838 1839 /* set the left and right edge of each bit to an illegal value */ 1840 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */ 1841 sticky_bit_chk = 0; 1842 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1843 left_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1844 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1845 } 1846 1847 /* Search for the left edge of the window for each bit */ 1848 for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) { 1849 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d); 1850 1851 writel(0, &sdr_scc_mgr->update); 1852 1853 /* 1854 * Stop searching when the read test doesn't pass AND when 1855 * we've seen a passing read on every bit. 1856 */ 1857 if (use_read_test) { 1858 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1859 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1860 &bit_chk, 0, 0); 1861 } else { 1862 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1863 0, PASS_ONE_BIT, 1864 &bit_chk, 0); 1865 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1866 (read_group - (write_group * 1867 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1868 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1869 stop = (bit_chk == 0); 1870 } 1871 sticky_bit_chk = sticky_bit_chk | bit_chk; 1872 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1873 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \ 1874 && %u", __func__, __LINE__, d, 1875 sticky_bit_chk, 1876 param->read_correct_mask, stop); 1877 1878 if (stop == 1) { 1879 break; 1880 } else { 1881 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1882 if (bit_chk & 1) { 1883 /* Remember a passing test as the 1884 left_edge */ 1885 left_edge[i] = d; 1886 } else { 1887 /* If a left edge has not been seen yet, 1888 then a future passing test will mark 1889 this edge as the right edge */ 1890 if (left_edge[i] == 1891 IO_IO_IN_DELAY_MAX + 1) { 1892 right_edge[i] = -(d + 1); 1893 } 1894 } 1895 bit_chk = bit_chk >> 1; 1896 } 1897 } 1898 } 1899 1900 /* Reset DQ delay chains to 0 */ 1901 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 1902 sticky_bit_chk = 0; 1903 for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) { 1904 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 1905 %d right_edge[%u]: %d\n", __func__, __LINE__, 1906 i, left_edge[i], i, right_edge[i]); 1907 1908 /* 1909 * Check for cases where we haven't found the left edge, 1910 * which makes our assignment of the the right edge invalid. 1911 * Reset it to the illegal value. 1912 */ 1913 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && ( 1914 right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1915 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1916 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \ 1917 right_edge[%u]: %d\n", __func__, __LINE__, 1918 i, right_edge[i]); 1919 } 1920 1921 /* 1922 * Reset sticky bit (except for bits where we have seen 1923 * both the left and right edge). 1924 */ 1925 sticky_bit_chk = sticky_bit_chk << 1; 1926 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) && 1927 (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1928 sticky_bit_chk = sticky_bit_chk | 1; 1929 } 1930 1931 if (i == 0) 1932 break; 1933 } 1934 1935 /* Search for the right edge of the window for each bit */ 1936 for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) { 1937 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs); 1938 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 1939 uint32_t delay = d + start_dqs_en; 1940 if (delay > IO_DQS_EN_DELAY_MAX) 1941 delay = IO_DQS_EN_DELAY_MAX; 1942 scc_mgr_set_dqs_en_delay(read_group, delay); 1943 } 1944 scc_mgr_load_dqs(read_group); 1945 1946 writel(0, &sdr_scc_mgr->update); 1947 1948 /* 1949 * Stop searching when the read test doesn't pass AND when 1950 * we've seen a passing read on every bit. 1951 */ 1952 if (use_read_test) { 1953 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1954 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1955 &bit_chk, 0, 0); 1956 } else { 1957 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1958 0, PASS_ONE_BIT, 1959 &bit_chk, 0); 1960 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1961 (read_group - (write_group * 1962 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1963 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1964 stop = (bit_chk == 0); 1965 } 1966 sticky_bit_chk = sticky_bit_chk | bit_chk; 1967 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1968 1969 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \ 1970 %u && %u", __func__, __LINE__, d, 1971 sticky_bit_chk, param->read_correct_mask, stop); 1972 1973 if (stop == 1) { 1974 break; 1975 } else { 1976 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1977 if (bit_chk & 1) { 1978 /* Remember a passing test as 1979 the right_edge */ 1980 right_edge[i] = d; 1981 } else { 1982 if (d != 0) { 1983 /* If a right edge has not been 1984 seen yet, then a future passing 1985 test will mark this edge as the 1986 left edge */ 1987 if (right_edge[i] == 1988 IO_IO_IN_DELAY_MAX + 1) { 1989 left_edge[i] = -(d + 1); 1990 } 1991 } else { 1992 /* d = 0 failed, but it passed 1993 when testing the left edge, 1994 so it must be marginal, 1995 set it to -1 */ 1996 if (right_edge[i] == 1997 IO_IO_IN_DELAY_MAX + 1 && 1998 left_edge[i] != 1999 IO_IO_IN_DELAY_MAX 2000 + 1) { 2001 right_edge[i] = -1; 2002 } 2003 /* If a right edge has not been 2004 seen yet, then a future passing 2005 test will mark this edge as the 2006 left edge */ 2007 else if (right_edge[i] == 2008 IO_IO_IN_DELAY_MAX + 2009 1) { 2010 left_edge[i] = -(d + 1); 2011 } 2012 } 2013 } 2014 2015 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\ 2016 d=%u]: ", __func__, __LINE__, d); 2017 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ", 2018 (int)(bit_chk & 1), i, left_edge[i]); 2019 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2020 right_edge[i]); 2021 bit_chk = bit_chk >> 1; 2022 } 2023 } 2024 } 2025 2026 /* Check that all bits have a window */ 2027 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2028 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 2029 %d right_edge[%u]: %d", __func__, __LINE__, 2030 i, left_edge[i], i, right_edge[i]); 2031 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i] 2032 == IO_IO_IN_DELAY_MAX + 1)) { 2033 /* 2034 * Restore delay chain settings before letting the loop 2035 * in rw_mgr_mem_calibrate_vfifo to retry different 2036 * dqs/ck relationships. 2037 */ 2038 scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs); 2039 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2040 scc_mgr_set_dqs_en_delay(read_group, 2041 start_dqs_en); 2042 } 2043 scc_mgr_load_dqs(read_group); 2044 writel(0, &sdr_scc_mgr->update); 2045 2046 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \ 2047 find edge [%u]: %d %d", __func__, __LINE__, 2048 i, left_edge[i], right_edge[i]); 2049 if (use_read_test) { 2050 set_failing_group_stage(read_group * 2051 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2052 CAL_STAGE_VFIFO, 2053 CAL_SUBSTAGE_VFIFO_CENTER); 2054 } else { 2055 set_failing_group_stage(read_group * 2056 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2057 CAL_STAGE_VFIFO_AFTER_WRITES, 2058 CAL_SUBSTAGE_VFIFO_CENTER); 2059 } 2060 return 0; 2061 } 2062 } 2063 2064 /* Find middle of window for each DQ bit */ 2065 mid_min = left_edge[0] - right_edge[0]; 2066 min_index = 0; 2067 for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2068 mid = left_edge[i] - right_edge[i]; 2069 if (mid < mid_min) { 2070 mid_min = mid; 2071 min_index = i; 2072 } 2073 } 2074 2075 /* 2076 * -mid_min/2 represents the amount that we need to move DQS. 2077 * If mid_min is odd and positive we'll need to add one to 2078 * make sure the rounding in further calculations is correct 2079 * (always bias to the right), so just add 1 for all positive values. 2080 */ 2081 if (mid_min > 0) 2082 mid_min++; 2083 2084 mid_min = mid_min / 2; 2085 2086 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n", 2087 __func__, __LINE__, mid_min, min_index); 2088 2089 /* Determine the amount we can change DQS (which is -mid_min) */ 2090 orig_mid_min = mid_min; 2091 new_dqs = start_dqs - mid_min; 2092 if (new_dqs > IO_DQS_IN_DELAY_MAX) 2093 new_dqs = IO_DQS_IN_DELAY_MAX; 2094 else if (new_dqs < 0) 2095 new_dqs = 0; 2096 2097 mid_min = start_dqs - new_dqs; 2098 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n", 2099 mid_min, new_dqs); 2100 2101 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2102 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX) 2103 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX; 2104 else if (start_dqs_en - mid_min < 0) 2105 mid_min += start_dqs_en - mid_min; 2106 } 2107 new_dqs = start_dqs - mid_min; 2108 2109 debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \ 2110 new_dqs=%d mid_min=%d\n", start_dqs, 2111 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1, 2112 new_dqs, mid_min); 2113 2114 /* Initialize data for export structures */ 2115 dqs_margin = IO_IO_IN_DELAY_MAX + 1; 2116 dq_margin = IO_IO_IN_DELAY_MAX + 1; 2117 2118 /* add delay to bring centre of all DQ windows to the same "level" */ 2119 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 2120 /* Use values before divide by 2 to reduce round off error */ 2121 shift_dq = (left_edge[i] - right_edge[i] - 2122 (left_edge[min_index] - right_edge[min_index]))/2 + 2123 (orig_mid_min - mid_min); 2124 2125 debug_cond(DLEVEL == 2, "vfifo_center: before: \ 2126 shift_dq[%u]=%d\n", i, shift_dq); 2127 2128 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET; 2129 temp_dq_in_delay1 = readl(addr + (p << 2)); 2130 temp_dq_in_delay2 = readl(addr + (i << 2)); 2131 2132 if (shift_dq + (int32_t)temp_dq_in_delay1 > 2133 (int32_t)IO_IO_IN_DELAY_MAX) { 2134 shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2; 2135 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) { 2136 shift_dq = -(int32_t)temp_dq_in_delay1; 2137 } 2138 debug_cond(DLEVEL == 2, "vfifo_center: after: \ 2139 shift_dq[%u]=%d\n", i, shift_dq); 2140 final_dq[i] = temp_dq_in_delay1 + shift_dq; 2141 scc_mgr_set_dq_in_delay(p, final_dq[i]); 2142 scc_mgr_load_dq(p); 2143 2144 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i, 2145 left_edge[i] - shift_dq + (-mid_min), 2146 right_edge[i] + shift_dq - (-mid_min)); 2147 /* To determine values for export structures */ 2148 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2149 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2150 2151 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2152 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2153 } 2154 2155 final_dqs = new_dqs; 2156 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2157 final_dqs_en = start_dqs_en - mid_min; 2158 2159 /* Move DQS-en */ 2160 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2161 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en); 2162 scc_mgr_load_dqs(read_group); 2163 } 2164 2165 /* Move DQS */ 2166 scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs); 2167 scc_mgr_load_dqs(read_group); 2168 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \ 2169 dqs_margin=%d", __func__, __LINE__, 2170 dq_margin, dqs_margin); 2171 2172 /* 2173 * Do not remove this line as it makes sure all of our decisions 2174 * have been applied. Apply the update bit. 2175 */ 2176 writel(0, &sdr_scc_mgr->update); 2177 2178 return (dq_margin >= 0) && (dqs_margin >= 0); 2179 } 2180 2181 /* 2182 * calibrate the read valid prediction FIFO. 2183 * 2184 * - read valid prediction will consist of finding a good DQS enable phase, 2185 * DQS enable delay, DQS input phase, and DQS input delay. 2186 * - we also do a per-bit deskew on the DQ lines. 2187 */ 2188 static uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t read_group, 2189 uint32_t test_bgn) 2190 { 2191 uint32_t p, d, rank_bgn, sr; 2192 uint32_t dtaps_per_ptap; 2193 uint32_t bit_chk; 2194 uint32_t grp_calibrated; 2195 uint32_t write_group, write_test_bgn; 2196 uint32_t failed_substage; 2197 2198 debug("%s:%d: %u %u\n", __func__, __LINE__, read_group, test_bgn); 2199 2200 /* update info for sims */ 2201 reg_file_set_stage(CAL_STAGE_VFIFO); 2202 2203 write_group = read_group; 2204 write_test_bgn = test_bgn; 2205 2206 /* USER Determine number of delay taps for each phase tap */ 2207 dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, 2208 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1; 2209 2210 /* update info for sims */ 2211 reg_file_set_group(read_group); 2212 2213 grp_calibrated = 0; 2214 2215 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ); 2216 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ; 2217 2218 for (d = 0; d <= dtaps_per_ptap && grp_calibrated == 0; d += 2) { 2219 /* 2220 * In RLDRAMX we may be messing the delay of pins in 2221 * the same write group but outside of the current read 2222 * the group, but that's ok because we haven't 2223 * calibrated output side yet. 2224 */ 2225 if (d > 0) { 2226 scc_mgr_apply_group_all_out_delay_add_all_ranks( 2227 write_group, d); 2228 } 2229 2230 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0; 2231 p++) { 2232 /* set a particular dqdqs phase */ 2233 scc_mgr_set_dqdqs_output_phase_all_ranks(read_group, p); 2234 2235 debug_cond(DLEVEL == 1, "%s:%d calibrate_vfifo: g=%u \ 2236 p=%u d=%u\n", __func__, __LINE__, 2237 read_group, p, d); 2238 2239 /* 2240 * Load up the patterns used by read calibration 2241 * using current DQDQS phase. 2242 */ 2243 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2244 if (!(gbl->phy_debug_mode_flags & 2245 PHY_DEBUG_DISABLE_GUARANTEED_READ)) { 2246 if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks 2247 (read_group, 1, &bit_chk)) { 2248 debug_cond(DLEVEL == 1, "%s:%d Guaranteed read test failed:", 2249 __func__, __LINE__); 2250 debug_cond(DLEVEL == 1, " g=%u p=%u d=%u\n", 2251 read_group, p, d); 2252 break; 2253 } 2254 } 2255 2256 /* case:56390 */ 2257 grp_calibrated = 1; 2258 if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay 2259 (write_group, read_group, test_bgn)) { 2260 /* 2261 * USER Read per-bit deskew can be done on a 2262 * per shadow register basis. 2263 */ 2264 for (rank_bgn = 0, sr = 0; 2265 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2266 rank_bgn += NUM_RANKS_PER_SHADOW_REG, 2267 ++sr) { 2268 /* 2269 * Determine if this set of ranks 2270 * should be skipped entirely. 2271 */ 2272 if (!param->skip_shadow_regs[sr]) { 2273 /* 2274 * If doing read after write 2275 * calibration, do not update 2276 * FOM, now - do it then. 2277 */ 2278 if (!rw_mgr_mem_calibrate_vfifo_center 2279 (rank_bgn, write_group, 2280 read_group, test_bgn, 1, 0)) { 2281 grp_calibrated = 0; 2282 failed_substage = 2283 CAL_SUBSTAGE_VFIFO_CENTER; 2284 } 2285 } 2286 } 2287 } else { 2288 grp_calibrated = 0; 2289 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE; 2290 } 2291 } 2292 } 2293 2294 if (grp_calibrated == 0) { 2295 set_failing_group_stage(write_group, CAL_STAGE_VFIFO, 2296 failed_substage); 2297 return 0; 2298 } 2299 2300 /* 2301 * Reset the delay chains back to zero if they have moved > 1 2302 * (check for > 1 because loop will increase d even when pass in 2303 * first case). 2304 */ 2305 if (d > 2) 2306 scc_mgr_zero_group(write_group, 1); 2307 2308 return 1; 2309 } 2310 2311 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */ 2312 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group, 2313 uint32_t test_bgn) 2314 { 2315 uint32_t rank_bgn, sr; 2316 uint32_t grp_calibrated; 2317 uint32_t write_group; 2318 2319 debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn); 2320 2321 /* update info for sims */ 2322 2323 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES); 2324 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 2325 2326 write_group = read_group; 2327 2328 /* update info for sims */ 2329 reg_file_set_group(read_group); 2330 2331 grp_calibrated = 1; 2332 /* Read per-bit deskew can be done on a per shadow register basis */ 2333 for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2334 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) { 2335 /* Determine if this set of ranks should be skipped entirely */ 2336 if (!param->skip_shadow_regs[sr]) { 2337 /* This is the last calibration round, update FOM here */ 2338 if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn, 2339 write_group, 2340 read_group, 2341 test_bgn, 0, 2342 1)) { 2343 grp_calibrated = 0; 2344 } 2345 } 2346 } 2347 2348 2349 if (grp_calibrated == 0) { 2350 set_failing_group_stage(write_group, 2351 CAL_STAGE_VFIFO_AFTER_WRITES, 2352 CAL_SUBSTAGE_VFIFO_CENTER); 2353 return 0; 2354 } 2355 2356 return 1; 2357 } 2358 2359 /* Calibrate LFIFO to find smallest read latency */ 2360 static uint32_t rw_mgr_mem_calibrate_lfifo(void) 2361 { 2362 uint32_t found_one; 2363 uint32_t bit_chk; 2364 2365 debug("%s:%d\n", __func__, __LINE__); 2366 2367 /* update info for sims */ 2368 reg_file_set_stage(CAL_STAGE_LFIFO); 2369 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY); 2370 2371 /* Load up the patterns used by read calibration for all ranks */ 2372 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2373 found_one = 0; 2374 2375 do { 2376 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2377 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u", 2378 __func__, __LINE__, gbl->curr_read_lat); 2379 2380 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, 2381 NUM_READ_TESTS, 2382 PASS_ALL_BITS, 2383 &bit_chk, 1)) { 2384 break; 2385 } 2386 2387 found_one = 1; 2388 /* reduce read latency and see if things are working */ 2389 /* correctly */ 2390 gbl->curr_read_lat--; 2391 } while (gbl->curr_read_lat > 0); 2392 2393 /* reset the fifos to get pointers to known state */ 2394 2395 writel(0, &phy_mgr_cmd->fifo_reset); 2396 2397 if (found_one) { 2398 /* add a fudge factor to the read latency that was determined */ 2399 gbl->curr_read_lat += 2; 2400 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2401 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \ 2402 read_lat=%u\n", __func__, __LINE__, 2403 gbl->curr_read_lat); 2404 return 1; 2405 } else { 2406 set_failing_group_stage(0xff, CAL_STAGE_LFIFO, 2407 CAL_SUBSTAGE_READ_LATENCY); 2408 2409 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \ 2410 read_lat=%u\n", __func__, __LINE__, 2411 gbl->curr_read_lat); 2412 return 0; 2413 } 2414 } 2415 2416 /* 2417 * issue write test command. 2418 * two variants are provided. one that just tests a write pattern and 2419 * another that tests datamask functionality. 2420 */ 2421 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group, 2422 uint32_t test_dm) 2423 { 2424 uint32_t mcc_instruction; 2425 uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) && 2426 ENABLE_SUPER_QUICK_CALIBRATION); 2427 uint32_t rw_wl_nop_cycles; 2428 uint32_t addr; 2429 2430 /* 2431 * Set counter and jump addresses for the right 2432 * number of NOP cycles. 2433 * The number of supported NOP cycles can range from -1 to infinity 2434 * Three different cases are handled: 2435 * 2436 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping 2437 * mechanism will be used to insert the right number of NOPs 2438 * 2439 * 2. For a number of NOP cycles equals to 0, the micro-instruction 2440 * issuing the write command will jump straight to the 2441 * micro-instruction that turns on DQS (for DDRx), or outputs write 2442 * data (for RLD), skipping 2443 * the NOP micro-instruction all together 2444 * 2445 * 3. A number of NOP cycles equal to -1 indicates that DQS must be 2446 * turned on in the same micro-instruction that issues the write 2447 * command. Then we need 2448 * to directly jump to the micro-instruction that sends out the data 2449 * 2450 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters 2451 * (2 and 3). One jump-counter (0) is used to perform multiple 2452 * write-read operations. 2453 * one counter left to issue this command in "multiple-group" mode 2454 */ 2455 2456 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles; 2457 2458 if (rw_wl_nop_cycles == -1) { 2459 /* 2460 * CNTR 2 - We want to execute the special write operation that 2461 * turns on DQS right away and then skip directly to the 2462 * instruction that sends out the data. We set the counter to a 2463 * large number so that the jump is always taken. 2464 */ 2465 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2466 2467 /* CNTR 3 - Not used */ 2468 if (test_dm) { 2469 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1; 2470 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA, 2471 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2472 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2473 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2474 } else { 2475 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1; 2476 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA, 2477 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2478 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2479 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2480 } 2481 } else if (rw_wl_nop_cycles == 0) { 2482 /* 2483 * CNTR 2 - We want to skip the NOP operation and go straight 2484 * to the DQS enable instruction. We set the counter to a large 2485 * number so that the jump is always taken. 2486 */ 2487 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2488 2489 /* CNTR 3 - Not used */ 2490 if (test_dm) { 2491 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2492 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS, 2493 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2494 } else { 2495 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2496 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS, 2497 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2498 } 2499 } else { 2500 /* 2501 * CNTR 2 - In this case we want to execute the next instruction 2502 * and NOT take the jump. So we set the counter to 0. The jump 2503 * address doesn't count. 2504 */ 2505 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2); 2506 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2507 2508 /* 2509 * CNTR 3 - Set the nop counter to the number of cycles we 2510 * need to loop for, minus 1. 2511 */ 2512 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3); 2513 if (test_dm) { 2514 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2515 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2516 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2517 } else { 2518 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2519 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2520 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2521 } 2522 } 2523 2524 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 2525 RW_MGR_RESET_READ_DATAPATH_OFFSET); 2526 2527 if (quick_write_mode) 2528 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0); 2529 else 2530 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0); 2531 2532 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 2533 2534 /* 2535 * CNTR 1 - This is used to ensure enough time elapses 2536 * for read data to come back. 2537 */ 2538 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1); 2539 2540 if (test_dm) { 2541 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT, 2542 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2543 } else { 2544 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT, 2545 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2546 } 2547 2548 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 2549 writel(mcc_instruction, addr + (group << 2)); 2550 } 2551 2552 /* Test writes, can check for a single bit pass or multiple bit pass */ 2553 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 2554 uint32_t write_group, uint32_t use_dm, uint32_t all_correct, 2555 uint32_t *bit_chk, uint32_t all_ranks) 2556 { 2557 uint32_t r; 2558 uint32_t correct_mask_vg; 2559 uint32_t tmp_bit_chk; 2560 uint32_t vg; 2561 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 2562 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 2563 uint32_t addr_rw_mgr; 2564 uint32_t base_rw_mgr; 2565 2566 *bit_chk = param->write_correct_mask; 2567 correct_mask_vg = param->write_correct_mask_vg; 2568 2569 for (r = rank_bgn; r < rank_end; r++) { 2570 if (param->skip_ranks[r]) { 2571 /* request to skip the rank */ 2572 continue; 2573 } 2574 2575 /* set rank */ 2576 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 2577 2578 tmp_bit_chk = 0; 2579 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS; 2580 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) { 2581 /* reset the fifos to get pointers to known state */ 2582 writel(0, &phy_mgr_cmd->fifo_reset); 2583 2584 tmp_bit_chk = tmp_bit_chk << 2585 (RW_MGR_MEM_DQ_PER_WRITE_DQS / 2586 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 2587 rw_mgr_mem_calibrate_write_test_issue(write_group * 2588 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg, 2589 use_dm); 2590 2591 base_rw_mgr = readl(addr_rw_mgr); 2592 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 2593 if (vg == 0) 2594 break; 2595 } 2596 *bit_chk &= tmp_bit_chk; 2597 } 2598 2599 if (all_correct) { 2600 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2601 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \ 2602 %u => %lu", write_group, use_dm, 2603 *bit_chk, param->write_correct_mask, 2604 (long unsigned int)(*bit_chk == 2605 param->write_correct_mask)); 2606 return *bit_chk == param->write_correct_mask; 2607 } else { 2608 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2609 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ", 2610 write_group, use_dm, *bit_chk); 2611 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0, 2612 (long unsigned int)(*bit_chk != 0)); 2613 return *bit_chk != 0x00; 2614 } 2615 } 2616 2617 /* 2618 * center all windows. do per-bit-deskew to possibly increase size of 2619 * certain windows. 2620 */ 2621 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn, 2622 uint32_t write_group, uint32_t test_bgn) 2623 { 2624 uint32_t i, p, min_index; 2625 int32_t d; 2626 /* 2627 * Store these as signed since there are comparisons with 2628 * signed numbers. 2629 */ 2630 uint32_t bit_chk; 2631 uint32_t sticky_bit_chk; 2632 int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2633 int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2634 int32_t mid; 2635 int32_t mid_min, orig_mid_min; 2636 int32_t new_dqs, start_dqs, shift_dq; 2637 int32_t dq_margin, dqs_margin, dm_margin; 2638 uint32_t stop; 2639 uint32_t temp_dq_out1_delay; 2640 uint32_t addr; 2641 2642 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn); 2643 2644 dm_margin = 0; 2645 2646 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2647 start_dqs = readl(addr + 2648 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 2649 2650 /* per-bit deskew */ 2651 2652 /* 2653 * set the left and right edge of each bit to an illegal value 2654 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 2655 */ 2656 sticky_bit_chk = 0; 2657 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2658 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2659 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2660 } 2661 2662 /* Search for the left edge of the window for each bit */ 2663 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) { 2664 scc_mgr_apply_group_dq_out1_delay(write_group, d); 2665 2666 writel(0, &sdr_scc_mgr->update); 2667 2668 /* 2669 * Stop searching when the read test doesn't pass AND when 2670 * we've seen a passing read on every bit. 2671 */ 2672 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2673 0, PASS_ONE_BIT, &bit_chk, 0); 2674 sticky_bit_chk = sticky_bit_chk | bit_chk; 2675 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2676 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \ 2677 == %u && %u [bit_chk= %u ]\n", 2678 d, sticky_bit_chk, param->write_correct_mask, 2679 stop, bit_chk); 2680 2681 if (stop == 1) { 2682 break; 2683 } else { 2684 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2685 if (bit_chk & 1) { 2686 /* 2687 * Remember a passing test as the 2688 * left_edge. 2689 */ 2690 left_edge[i] = d; 2691 } else { 2692 /* 2693 * If a left edge has not been seen 2694 * yet, then a future passing test will 2695 * mark this edge as the right edge. 2696 */ 2697 if (left_edge[i] == 2698 IO_IO_OUT1_DELAY_MAX + 1) { 2699 right_edge[i] = -(d + 1); 2700 } 2701 } 2702 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d); 2703 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2704 (int)(bit_chk & 1), i, left_edge[i]); 2705 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2706 right_edge[i]); 2707 bit_chk = bit_chk >> 1; 2708 } 2709 } 2710 } 2711 2712 /* Reset DQ delay chains to 0 */ 2713 scc_mgr_apply_group_dq_out1_delay(0); 2714 sticky_bit_chk = 0; 2715 for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) { 2716 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2717 %d right_edge[%u]: %d\n", __func__, __LINE__, 2718 i, left_edge[i], i, right_edge[i]); 2719 2720 /* 2721 * Check for cases where we haven't found the left edge, 2722 * which makes our assignment of the the right edge invalid. 2723 * Reset it to the illegal value. 2724 */ 2725 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) && 2726 (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) { 2727 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2728 debug_cond(DLEVEL == 2, "%s:%d write_center: reset \ 2729 right_edge[%u]: %d\n", __func__, __LINE__, 2730 i, right_edge[i]); 2731 } 2732 2733 /* 2734 * Reset sticky bit (except for bits where we have 2735 * seen the left edge). 2736 */ 2737 sticky_bit_chk = sticky_bit_chk << 1; 2738 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) 2739 sticky_bit_chk = sticky_bit_chk | 1; 2740 2741 if (i == 0) 2742 break; 2743 } 2744 2745 /* Search for the right edge of the window for each bit */ 2746 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) { 2747 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2748 d + start_dqs); 2749 2750 writel(0, &sdr_scc_mgr->update); 2751 2752 /* 2753 * Stop searching when the read test doesn't pass AND when 2754 * we've seen a passing read on every bit. 2755 */ 2756 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2757 0, PASS_ONE_BIT, &bit_chk, 0); 2758 2759 sticky_bit_chk = sticky_bit_chk | bit_chk; 2760 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2761 2762 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \ 2763 %u && %u\n", d, sticky_bit_chk, 2764 param->write_correct_mask, stop); 2765 2766 if (stop == 1) { 2767 if (d == 0) { 2768 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; 2769 i++) { 2770 /* d = 0 failed, but it passed when 2771 testing the left edge, so it must be 2772 marginal, set it to -1 */ 2773 if (right_edge[i] == 2774 IO_IO_OUT1_DELAY_MAX + 1 && 2775 left_edge[i] != 2776 IO_IO_OUT1_DELAY_MAX + 1) { 2777 right_edge[i] = -1; 2778 } 2779 } 2780 } 2781 break; 2782 } else { 2783 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2784 if (bit_chk & 1) { 2785 /* 2786 * Remember a passing test as 2787 * the right_edge. 2788 */ 2789 right_edge[i] = d; 2790 } else { 2791 if (d != 0) { 2792 /* 2793 * If a right edge has not 2794 * been seen yet, then a future 2795 * passing test will mark this 2796 * edge as the left edge. 2797 */ 2798 if (right_edge[i] == 2799 IO_IO_OUT1_DELAY_MAX + 1) 2800 left_edge[i] = -(d + 1); 2801 } else { 2802 /* 2803 * d = 0 failed, but it passed 2804 * when testing the left edge, 2805 * so it must be marginal, set 2806 * it to -1. 2807 */ 2808 if (right_edge[i] == 2809 IO_IO_OUT1_DELAY_MAX + 1 && 2810 left_edge[i] != 2811 IO_IO_OUT1_DELAY_MAX + 1) 2812 right_edge[i] = -1; 2813 /* 2814 * If a right edge has not been 2815 * seen yet, then a future 2816 * passing test will mark this 2817 * edge as the left edge. 2818 */ 2819 else if (right_edge[i] == 2820 IO_IO_OUT1_DELAY_MAX + 2821 1) 2822 left_edge[i] = -(d + 1); 2823 } 2824 } 2825 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d); 2826 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2827 (int)(bit_chk & 1), i, left_edge[i]); 2828 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2829 right_edge[i]); 2830 bit_chk = bit_chk >> 1; 2831 } 2832 } 2833 } 2834 2835 /* Check that all bits have a window */ 2836 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2837 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2838 %d right_edge[%u]: %d", __func__, __LINE__, 2839 i, left_edge[i], i, right_edge[i]); 2840 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) || 2841 (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) { 2842 set_failing_group_stage(test_bgn + i, 2843 CAL_STAGE_WRITES, 2844 CAL_SUBSTAGE_WRITES_CENTER); 2845 return 0; 2846 } 2847 } 2848 2849 /* Find middle of window for each DQ bit */ 2850 mid_min = left_edge[0] - right_edge[0]; 2851 min_index = 0; 2852 for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2853 mid = left_edge[i] - right_edge[i]; 2854 if (mid < mid_min) { 2855 mid_min = mid; 2856 min_index = i; 2857 } 2858 } 2859 2860 /* 2861 * -mid_min/2 represents the amount that we need to move DQS. 2862 * If mid_min is odd and positive we'll need to add one to 2863 * make sure the rounding in further calculations is correct 2864 * (always bias to the right), so just add 1 for all positive values. 2865 */ 2866 if (mid_min > 0) 2867 mid_min++; 2868 mid_min = mid_min / 2; 2869 debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__, 2870 __LINE__, mid_min); 2871 2872 /* Determine the amount we can change DQS (which is -mid_min) */ 2873 orig_mid_min = mid_min; 2874 new_dqs = start_dqs; 2875 mid_min = 0; 2876 debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \ 2877 mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min); 2878 /* Initialize data for export structures */ 2879 dqs_margin = IO_IO_OUT1_DELAY_MAX + 1; 2880 dq_margin = IO_IO_OUT1_DELAY_MAX + 1; 2881 2882 /* add delay to bring centre of all DQ windows to the same "level" */ 2883 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 2884 /* Use values before divide by 2 to reduce round off error */ 2885 shift_dq = (left_edge[i] - right_edge[i] - 2886 (left_edge[min_index] - right_edge[min_index]))/2 + 2887 (orig_mid_min - mid_min); 2888 2889 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \ 2890 [%u]=%d\n", __func__, __LINE__, i, shift_dq); 2891 2892 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2893 temp_dq_out1_delay = readl(addr + (i << 2)); 2894 if (shift_dq + (int32_t)temp_dq_out1_delay > 2895 (int32_t)IO_IO_OUT1_DELAY_MAX) { 2896 shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay; 2897 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) { 2898 shift_dq = -(int32_t)temp_dq_out1_delay; 2899 } 2900 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n", 2901 i, shift_dq); 2902 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq); 2903 scc_mgr_load_dq(i); 2904 2905 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i, 2906 left_edge[i] - shift_dq + (-mid_min), 2907 right_edge[i] + shift_dq - (-mid_min)); 2908 /* To determine values for export structures */ 2909 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2910 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2911 2912 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2913 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2914 } 2915 2916 /* Move DQS */ 2917 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 2918 writel(0, &sdr_scc_mgr->update); 2919 2920 /* Centre DM */ 2921 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__); 2922 2923 /* 2924 * set the left and right edge of each bit to an illegal value, 2925 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value, 2926 */ 2927 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 2928 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 2929 int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2930 int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2931 int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1; 2932 int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1; 2933 int32_t win_best = 0; 2934 2935 /* Search for the/part of the window with DM shift */ 2936 for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) { 2937 scc_mgr_apply_group_dm_out1_delay(d); 2938 writel(0, &sdr_scc_mgr->update); 2939 2940 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 2941 PASS_ALL_BITS, &bit_chk, 2942 0)) { 2943 /* USE Set current end of the window */ 2944 end_curr = -d; 2945 /* 2946 * If a starting edge of our window has not been seen 2947 * this is our current start of the DM window. 2948 */ 2949 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 2950 bgn_curr = -d; 2951 2952 /* 2953 * If current window is bigger than best seen. 2954 * Set best seen to be current window. 2955 */ 2956 if ((end_curr-bgn_curr+1) > win_best) { 2957 win_best = end_curr-bgn_curr+1; 2958 bgn_best = bgn_curr; 2959 end_best = end_curr; 2960 } 2961 } else { 2962 /* We just saw a failing test. Reset temp edge */ 2963 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2964 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2965 } 2966 } 2967 2968 2969 /* Reset DM delay chains to 0 */ 2970 scc_mgr_apply_group_dm_out1_delay(0); 2971 2972 /* 2973 * Check to see if the current window nudges up aganist 0 delay. 2974 * If so we need to continue the search by shifting DQS otherwise DQS 2975 * search begins as a new search. */ 2976 if (end_curr != 0) { 2977 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2978 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2979 } 2980 2981 /* Search for the/part of the window with DQS shifts */ 2982 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) { 2983 /* 2984 * Note: This only shifts DQS, so are we limiting ourselve to 2985 * width of DQ unnecessarily. 2986 */ 2987 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2988 d + new_dqs); 2989 2990 writel(0, &sdr_scc_mgr->update); 2991 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 2992 PASS_ALL_BITS, &bit_chk, 2993 0)) { 2994 /* USE Set current end of the window */ 2995 end_curr = d; 2996 /* 2997 * If a beginning edge of our window has not been seen 2998 * this is our current begin of the DM window. 2999 */ 3000 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3001 bgn_curr = d; 3002 3003 /* 3004 * If current window is bigger than best seen. Set best 3005 * seen to be current window. 3006 */ 3007 if ((end_curr-bgn_curr+1) > win_best) { 3008 win_best = end_curr-bgn_curr+1; 3009 bgn_best = bgn_curr; 3010 end_best = end_curr; 3011 } 3012 } else { 3013 /* We just saw a failing test. Reset temp edge */ 3014 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3015 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3016 3017 /* Early exit optimization: if ther remaining delay 3018 chain space is less than already seen largest window 3019 we can exit */ 3020 if ((win_best-1) > 3021 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) { 3022 break; 3023 } 3024 } 3025 } 3026 3027 /* assign left and right edge for cal and reporting; */ 3028 left_edge[0] = -1*bgn_best; 3029 right_edge[0] = end_best; 3030 3031 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__, 3032 __LINE__, left_edge[0], right_edge[0]); 3033 3034 /* Move DQS (back to orig) */ 3035 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3036 3037 /* Move DM */ 3038 3039 /* Find middle of window for the DM bit */ 3040 mid = (left_edge[0] - right_edge[0]) / 2; 3041 3042 /* only move right, since we are not moving DQS/DQ */ 3043 if (mid < 0) 3044 mid = 0; 3045 3046 /* dm_marign should fail if we never find a window */ 3047 if (win_best == 0) 3048 dm_margin = -1; 3049 else 3050 dm_margin = left_edge[0] - mid; 3051 3052 scc_mgr_apply_group_dm_out1_delay(mid); 3053 writel(0, &sdr_scc_mgr->update); 3054 3055 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \ 3056 dm_margin=%d\n", __func__, __LINE__, left_edge[0], 3057 right_edge[0], mid, dm_margin); 3058 /* Export values */ 3059 gbl->fom_out += dq_margin + dqs_margin; 3060 3061 debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \ 3062 dqs_margin=%d dm_margin=%d\n", __func__, __LINE__, 3063 dq_margin, dqs_margin, dm_margin); 3064 3065 /* 3066 * Do not remove this line as it makes sure all of our 3067 * decisions have been applied. 3068 */ 3069 writel(0, &sdr_scc_mgr->update); 3070 return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0); 3071 } 3072 3073 /* calibrate the write operations */ 3074 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g, 3075 uint32_t test_bgn) 3076 { 3077 /* update info for sims */ 3078 debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn); 3079 3080 reg_file_set_stage(CAL_STAGE_WRITES); 3081 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER); 3082 3083 reg_file_set_group(g); 3084 3085 if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) { 3086 set_failing_group_stage(g, CAL_STAGE_WRITES, 3087 CAL_SUBSTAGE_WRITES_CENTER); 3088 return 0; 3089 } 3090 3091 return 1; 3092 } 3093 3094 /* precharge all banks and activate row 0 in bank "000..." and bank "111..." */ 3095 static void mem_precharge_and_activate(void) 3096 { 3097 uint32_t r; 3098 3099 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 3100 if (param->skip_ranks[r]) { 3101 /* request to skip the rank */ 3102 continue; 3103 } 3104 3105 /* set rank */ 3106 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 3107 3108 /* precharge all banks ... */ 3109 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3110 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3111 3112 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0); 3113 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1, 3114 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 3115 3116 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1); 3117 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2, 3118 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 3119 3120 /* activate rows */ 3121 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3122 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3123 } 3124 } 3125 3126 /** 3127 * mem_init_latency() - Configure memory RLAT and WLAT settings 3128 * 3129 * Configure memory RLAT and WLAT parameters. 3130 */ 3131 static void mem_init_latency(void) 3132 { 3133 /* 3134 * For AV/CV, LFIFO is hardened and always runs at full rate 3135 * so max latency in AFI clocks, used here, is correspondingly 3136 * smaller. 3137 */ 3138 const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1; 3139 u32 rlat, wlat; 3140 3141 debug("%s:%d\n", __func__, __LINE__); 3142 3143 /* 3144 * Read in write latency. 3145 * WL for Hard PHY does not include additive latency. 3146 */ 3147 wlat = readl(&data_mgr->t_wl_add); 3148 wlat += readl(&data_mgr->mem_t_add); 3149 3150 gbl->rw_wl_nop_cycles = wlat - 1; 3151 3152 /* Read in readl latency. */ 3153 rlat = readl(&data_mgr->t_rl_add); 3154 3155 /* Set a pretty high read latency initially. */ 3156 gbl->curr_read_lat = rlat + 16; 3157 if (gbl->curr_read_lat > max_latency) 3158 gbl->curr_read_lat = max_latency; 3159 3160 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3161 3162 /* Advertise write latency. */ 3163 writel(wlat, &phy_mgr_cfg->afi_wlat); 3164 } 3165 3166 /* Set VFIFO and LFIFO to instant-on settings in skip calibration mode */ 3167 static void mem_skip_calibrate(void) 3168 { 3169 uint32_t vfifo_offset; 3170 uint32_t i, j, r; 3171 3172 debug("%s:%d\n", __func__, __LINE__); 3173 /* Need to update every shadow register set used by the interface */ 3174 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 3175 r += NUM_RANKS_PER_SHADOW_REG) { 3176 /* 3177 * Set output phase alignment settings appropriate for 3178 * skip calibration. 3179 */ 3180 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3181 scc_mgr_set_dqs_en_phase(i, 0); 3182 #if IO_DLL_CHAIN_LENGTH == 6 3183 scc_mgr_set_dqdqs_output_phase(i, 6); 3184 #else 3185 scc_mgr_set_dqdqs_output_phase(i, 7); 3186 #endif 3187 /* 3188 * Case:33398 3189 * 3190 * Write data arrives to the I/O two cycles before write 3191 * latency is reached (720 deg). 3192 * -> due to bit-slip in a/c bus 3193 * -> to allow board skew where dqs is longer than ck 3194 * -> how often can this happen!? 3195 * -> can claim back some ptaps for high freq 3196 * support if we can relax this, but i digress... 3197 * 3198 * The write_clk leads mem_ck by 90 deg 3199 * The minimum ptap of the OPA is 180 deg 3200 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay 3201 * The write_clk is always delayed by 2 ptaps 3202 * 3203 * Hence, to make DQS aligned to CK, we need to delay 3204 * DQS by: 3205 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH)) 3206 * 3207 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH) 3208 * gives us the number of ptaps, which simplies to: 3209 * 3210 * (1.25 * IO_DLL_CHAIN_LENGTH - 2) 3211 */ 3212 scc_mgr_set_dqdqs_output_phase(i, (1.25 * 3213 IO_DLL_CHAIN_LENGTH - 2)); 3214 } 3215 writel(0xff, &sdr_scc_mgr->dqs_ena); 3216 writel(0xff, &sdr_scc_mgr->dqs_io_ena); 3217 3218 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 3219 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3220 SCC_MGR_GROUP_COUNTER_OFFSET); 3221 } 3222 writel(0xff, &sdr_scc_mgr->dq_ena); 3223 writel(0xff, &sdr_scc_mgr->dm_ena); 3224 writel(0, &sdr_scc_mgr->update); 3225 } 3226 3227 /* Compensate for simulation model behaviour */ 3228 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3229 scc_mgr_set_dqs_bus_in_delay(i, 10); 3230 scc_mgr_load_dqs(i); 3231 } 3232 writel(0, &sdr_scc_mgr->update); 3233 3234 /* 3235 * ArriaV has hard FIFOs that can only be initialized by incrementing 3236 * in sequencer. 3237 */ 3238 vfifo_offset = CALIB_VFIFO_OFFSET; 3239 for (j = 0; j < vfifo_offset; j++) { 3240 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy); 3241 } 3242 writel(0, &phy_mgr_cmd->fifo_reset); 3243 3244 /* 3245 * For ACV with hard lfifo, we get the skip-cal setting from 3246 * generation-time constant. 3247 */ 3248 gbl->curr_read_lat = CALIB_LFIFO_OFFSET; 3249 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3250 } 3251 3252 /* Memory calibration entry point */ 3253 static uint32_t mem_calibrate(void) 3254 { 3255 uint32_t i; 3256 uint32_t rank_bgn, sr; 3257 uint32_t write_group, write_test_bgn; 3258 uint32_t read_group, read_test_bgn; 3259 uint32_t run_groups, current_run; 3260 uint32_t failing_groups = 0; 3261 uint32_t group_failed = 0; 3262 uint32_t sr_failed = 0; 3263 3264 debug("%s:%d\n", __func__, __LINE__); 3265 3266 /* Initialize the data settings */ 3267 gbl->error_substage = CAL_SUBSTAGE_NIL; 3268 gbl->error_stage = CAL_STAGE_NIL; 3269 gbl->error_group = 0xff; 3270 gbl->fom_in = 0; 3271 gbl->fom_out = 0; 3272 3273 /* Initialize WLAT and RLAT. */ 3274 mem_init_latency(); 3275 3276 /* Initialize bit slips. */ 3277 mem_precharge_and_activate(); 3278 3279 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3280 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3281 SCC_MGR_GROUP_COUNTER_OFFSET); 3282 /* Only needed once to set all groups, pins, DQ, DQS, DM. */ 3283 if (i == 0) 3284 scc_mgr_set_hhp_extras(); 3285 3286 scc_set_bypass_mode(i); 3287 } 3288 3289 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) { 3290 /* 3291 * Set VFIFO and LFIFO to instant-on settings in skip 3292 * calibration mode. 3293 */ 3294 mem_skip_calibrate(); 3295 } else { 3296 for (i = 0; i < NUM_CALIB_REPEAT; i++) { 3297 /* 3298 * Zero all delay chain/phase settings for all 3299 * groups and all shadow register sets. 3300 */ 3301 scc_mgr_zero_all(); 3302 3303 run_groups = ~param->skip_groups; 3304 3305 for (write_group = 0, write_test_bgn = 0; write_group 3306 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++, 3307 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) { 3308 /* Initialized the group failure */ 3309 group_failed = 0; 3310 3311 current_run = run_groups & ((1 << 3312 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1); 3313 run_groups = run_groups >> 3314 RW_MGR_NUM_DQS_PER_WRITE_GROUP; 3315 3316 if (current_run == 0) 3317 continue; 3318 3319 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS | 3320 SCC_MGR_GROUP_COUNTER_OFFSET); 3321 scc_mgr_zero_group(write_group, 0); 3322 3323 for (read_group = write_group * 3324 RW_MGR_MEM_IF_READ_DQS_WIDTH / 3325 RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3326 read_test_bgn = 0; 3327 read_group < (write_group + 1) * 3328 RW_MGR_MEM_IF_READ_DQS_WIDTH / 3329 RW_MGR_MEM_IF_WRITE_DQS_WIDTH && 3330 group_failed == 0; 3331 read_group++, read_test_bgn += 3332 RW_MGR_MEM_DQ_PER_READ_DQS) { 3333 /* Calibrate the VFIFO */ 3334 if (!((STATIC_CALIB_STEPS) & 3335 CALIB_SKIP_VFIFO)) { 3336 if (!rw_mgr_mem_calibrate_vfifo 3337 (read_group, 3338 read_test_bgn)) { 3339 group_failed = 1; 3340 3341 if (!(gbl-> 3342 phy_debug_mode_flags & 3343 PHY_DEBUG_SWEEP_ALL_GROUPS)) { 3344 return 0; 3345 } 3346 } 3347 } 3348 } 3349 3350 /* Calibrate the output side */ 3351 if (group_failed == 0) { 3352 for (rank_bgn = 0, sr = 0; rank_bgn 3353 < RW_MGR_MEM_NUMBER_OF_RANKS; 3354 rank_bgn += 3355 NUM_RANKS_PER_SHADOW_REG, 3356 ++sr) { 3357 sr_failed = 0; 3358 if (!((STATIC_CALIB_STEPS) & 3359 CALIB_SKIP_WRITES)) { 3360 if ((STATIC_CALIB_STEPS) 3361 & CALIB_SKIP_DELAY_SWEEPS) { 3362 /* not needed in quick mode! */ 3363 } else { 3364 /* 3365 * Determine if this set of 3366 * ranks should be skipped 3367 * entirely. 3368 */ 3369 if (!param->skip_shadow_regs[sr]) { 3370 if (!rw_mgr_mem_calibrate_writes 3371 (rank_bgn, write_group, 3372 write_test_bgn)) { 3373 sr_failed = 1; 3374 if (!(gbl-> 3375 phy_debug_mode_flags & 3376 PHY_DEBUG_SWEEP_ALL_GROUPS)) { 3377 return 0; 3378 } 3379 } 3380 } 3381 } 3382 } 3383 if (sr_failed != 0) 3384 group_failed = 1; 3385 } 3386 } 3387 3388 if (group_failed == 0) { 3389 for (read_group = write_group * 3390 RW_MGR_MEM_IF_READ_DQS_WIDTH / 3391 RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3392 read_test_bgn = 0; 3393 read_group < (write_group + 1) 3394 * RW_MGR_MEM_IF_READ_DQS_WIDTH 3395 / RW_MGR_MEM_IF_WRITE_DQS_WIDTH && 3396 group_failed == 0; 3397 read_group++, read_test_bgn += 3398 RW_MGR_MEM_DQ_PER_READ_DQS) { 3399 if (!((STATIC_CALIB_STEPS) & 3400 CALIB_SKIP_WRITES)) { 3401 if (!rw_mgr_mem_calibrate_vfifo_end 3402 (read_group, read_test_bgn)) { 3403 group_failed = 1; 3404 3405 if (!(gbl->phy_debug_mode_flags 3406 & PHY_DEBUG_SWEEP_ALL_GROUPS)) { 3407 return 0; 3408 } 3409 } 3410 } 3411 } 3412 } 3413 3414 if (group_failed != 0) 3415 failing_groups++; 3416 } 3417 3418 /* 3419 * USER If there are any failing groups then report 3420 * the failure. 3421 */ 3422 if (failing_groups != 0) 3423 return 0; 3424 3425 /* Calibrate the LFIFO */ 3426 if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_LFIFO)) { 3427 /* 3428 * If we're skipping groups as part of debug, 3429 * don't calibrate LFIFO. 3430 */ 3431 if (param->skip_groups == 0) { 3432 if (!rw_mgr_mem_calibrate_lfifo()) 3433 return 0; 3434 } 3435 } 3436 } 3437 } 3438 3439 /* 3440 * Do not remove this line as it makes sure all of our decisions 3441 * have been applied. 3442 */ 3443 writel(0, &sdr_scc_mgr->update); 3444 return 1; 3445 } 3446 3447 /** 3448 * run_mem_calibrate() - Perform memory calibration 3449 * 3450 * This function triggers the entire memory calibration procedure. 3451 */ 3452 static int run_mem_calibrate(void) 3453 { 3454 int pass; 3455 3456 debug("%s:%d\n", __func__, __LINE__); 3457 3458 /* Reset pass/fail status shown on afi_cal_success/fail */ 3459 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status); 3460 3461 /* Stop tracking manager. */ 3462 clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3463 3464 phy_mgr_initialize(); 3465 rw_mgr_mem_initialize(); 3466 3467 /* Perform the actual memory calibration. */ 3468 pass = mem_calibrate(); 3469 3470 mem_precharge_and_activate(); 3471 writel(0, &phy_mgr_cmd->fifo_reset); 3472 3473 /* Handoff. */ 3474 rw_mgr_mem_handoff(); 3475 /* 3476 * In Hard PHY this is a 2-bit control: 3477 * 0: AFI Mux Select 3478 * 1: DDIO Mux Select 3479 */ 3480 writel(0x2, &phy_mgr_cfg->mux_sel); 3481 3482 /* Start tracking manager. */ 3483 setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3484 3485 return pass; 3486 } 3487 3488 /** 3489 * debug_mem_calibrate() - Report result of memory calibration 3490 * @pass: Value indicating whether calibration passed or failed 3491 * 3492 * This function reports the results of the memory calibration 3493 * and writes debug information into the register file. 3494 */ 3495 static void debug_mem_calibrate(int pass) 3496 { 3497 uint32_t debug_info; 3498 3499 if (pass) { 3500 printf("%s: CALIBRATION PASSED\n", __FILE__); 3501 3502 gbl->fom_in /= 2; 3503 gbl->fom_out /= 2; 3504 3505 if (gbl->fom_in > 0xff) 3506 gbl->fom_in = 0xff; 3507 3508 if (gbl->fom_out > 0xff) 3509 gbl->fom_out = 0xff; 3510 3511 /* Update the FOM in the register file */ 3512 debug_info = gbl->fom_in; 3513 debug_info |= gbl->fom_out << 8; 3514 writel(debug_info, &sdr_reg_file->fom); 3515 3516 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3517 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status); 3518 } else { 3519 printf("%s: CALIBRATION FAILED\n", __FILE__); 3520 3521 debug_info = gbl->error_stage; 3522 debug_info |= gbl->error_substage << 8; 3523 debug_info |= gbl->error_group << 16; 3524 3525 writel(debug_info, &sdr_reg_file->failing_stage); 3526 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3527 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status); 3528 3529 /* Update the failing group/stage in the register file */ 3530 debug_info = gbl->error_stage; 3531 debug_info |= gbl->error_substage << 8; 3532 debug_info |= gbl->error_group << 16; 3533 writel(debug_info, &sdr_reg_file->failing_stage); 3534 } 3535 3536 printf("%s: Calibration complete\n", __FILE__); 3537 } 3538 3539 /** 3540 * hc_initialize_rom_data() - Initialize ROM data 3541 * 3542 * Initialize ROM data. 3543 */ 3544 static void hc_initialize_rom_data(void) 3545 { 3546 u32 i, addr; 3547 3548 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET; 3549 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++) 3550 writel(inst_rom_init[i], addr + (i << 2)); 3551 3552 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET; 3553 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++) 3554 writel(ac_rom_init[i], addr + (i << 2)); 3555 } 3556 3557 /** 3558 * initialize_reg_file() - Initialize SDR register file 3559 * 3560 * Initialize SDR register file. 3561 */ 3562 static void initialize_reg_file(void) 3563 { 3564 /* Initialize the register file with the correct data */ 3565 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature); 3566 writel(0, &sdr_reg_file->debug_data_addr); 3567 writel(0, &sdr_reg_file->cur_stage); 3568 writel(0, &sdr_reg_file->fom); 3569 writel(0, &sdr_reg_file->failing_stage); 3570 writel(0, &sdr_reg_file->debug1); 3571 writel(0, &sdr_reg_file->debug2); 3572 } 3573 3574 /** 3575 * initialize_hps_phy() - Initialize HPS PHY 3576 * 3577 * Initialize HPS PHY. 3578 */ 3579 static void initialize_hps_phy(void) 3580 { 3581 uint32_t reg; 3582 /* 3583 * Tracking also gets configured here because it's in the 3584 * same register. 3585 */ 3586 uint32_t trk_sample_count = 7500; 3587 uint32_t trk_long_idle_sample_count = (10 << 16) | 100; 3588 /* 3589 * Format is number of outer loops in the 16 MSB, sample 3590 * count in 16 LSB. 3591 */ 3592 3593 reg = 0; 3594 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2); 3595 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1); 3596 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1); 3597 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1); 3598 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0); 3599 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1); 3600 /* 3601 * This field selects the intrinsic latency to RDATA_EN/FULL path. 3602 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles. 3603 */ 3604 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0); 3605 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET( 3606 trk_sample_count); 3607 writel(reg, &sdr_ctrl->phy_ctrl0); 3608 3609 reg = 0; 3610 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET( 3611 trk_sample_count >> 3612 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH); 3613 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET( 3614 trk_long_idle_sample_count); 3615 writel(reg, &sdr_ctrl->phy_ctrl1); 3616 3617 reg = 0; 3618 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET( 3619 trk_long_idle_sample_count >> 3620 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH); 3621 writel(reg, &sdr_ctrl->phy_ctrl2); 3622 } 3623 3624 /** 3625 * initialize_tracking() - Initialize tracking 3626 * 3627 * Initialize the register file with usable initial data. 3628 */ 3629 static void initialize_tracking(void) 3630 { 3631 /* 3632 * Initialize the register file with the correct data. 3633 * Compute usable version of value in case we skip full 3634 * computation later. 3635 */ 3636 writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1, 3637 &sdr_reg_file->dtaps_per_ptap); 3638 3639 /* trk_sample_count */ 3640 writel(7500, &sdr_reg_file->trk_sample_count); 3641 3642 /* longidle outer loop [15:0] */ 3643 writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle); 3644 3645 /* 3646 * longidle sample count [31:24] 3647 * trfc, worst case of 933Mhz 4Gb [23:16] 3648 * trcd, worst case [15:8] 3649 * vfifo wait [7:0] 3650 */ 3651 writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0), 3652 &sdr_reg_file->delays); 3653 3654 /* mux delay */ 3655 writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) | 3656 (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0), 3657 &sdr_reg_file->trk_rw_mgr_addr); 3658 3659 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, 3660 &sdr_reg_file->trk_read_dqs_width); 3661 3662 /* trefi [7:0] */ 3663 writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0), 3664 &sdr_reg_file->trk_rfsh); 3665 } 3666 3667 int sdram_calibration_full(void) 3668 { 3669 struct param_type my_param; 3670 struct gbl_type my_gbl; 3671 uint32_t pass; 3672 3673 memset(&my_param, 0, sizeof(my_param)); 3674 memset(&my_gbl, 0, sizeof(my_gbl)); 3675 3676 param = &my_param; 3677 gbl = &my_gbl; 3678 3679 /* Set the calibration enabled by default */ 3680 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT; 3681 /* 3682 * Only sweep all groups (regardless of fail state) by default 3683 * Set enabled read test by default. 3684 */ 3685 #if DISABLE_GUARANTEED_READ 3686 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ; 3687 #endif 3688 /* Initialize the register file */ 3689 initialize_reg_file(); 3690 3691 /* Initialize any PHY CSR */ 3692 initialize_hps_phy(); 3693 3694 scc_mgr_initialize(); 3695 3696 initialize_tracking(); 3697 3698 printf("%s: Preparing to start memory calibration\n", __FILE__); 3699 3700 debug("%s:%d\n", __func__, __LINE__); 3701 debug_cond(DLEVEL == 1, 3702 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ", 3703 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM, 3704 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS, 3705 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS, 3706 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 3707 debug_cond(DLEVEL == 1, 3708 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ", 3709 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3710 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH, 3711 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP); 3712 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u", 3713 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH); 3714 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ", 3715 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX, 3716 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX); 3717 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ", 3718 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX, 3719 IO_IO_OUT2_DELAY_MAX); 3720 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n", 3721 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE); 3722 3723 hc_initialize_rom_data(); 3724 3725 /* update info for sims */ 3726 reg_file_set_stage(CAL_STAGE_NIL); 3727 reg_file_set_group(0); 3728 3729 /* 3730 * Load global needed for those actions that require 3731 * some dynamic calibration support. 3732 */ 3733 dyn_calib_steps = STATIC_CALIB_STEPS; 3734 /* 3735 * Load global to allow dynamic selection of delay loop settings 3736 * based on calibration mode. 3737 */ 3738 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS)) 3739 skip_delay_mask = 0xff; 3740 else 3741 skip_delay_mask = 0x0; 3742 3743 pass = run_mem_calibrate(); 3744 debug_mem_calibrate(pass); 3745 return pass; 3746 } 3747