1 /* 2 * Copyright Altera Corporation (C) 2012-2015 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <common.h> 8 #include <asm/io.h> 9 #include <asm/arch/sdram.h> 10 #include "sequencer.h" 11 #include "sequencer_auto.h" 12 #include "sequencer_auto_ac_init.h" 13 #include "sequencer_auto_inst_init.h" 14 #include "sequencer_defines.h" 15 16 static void scc_mgr_load_dqs_for_write_group(uint32_t write_group); 17 18 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs = 19 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800); 20 21 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs = 22 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00); 23 24 static struct socfpga_sdr_reg_file *sdr_reg_file = 25 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS; 26 27 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr = 28 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00); 29 30 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd = 31 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS; 32 33 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg = 34 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40); 35 36 static struct socfpga_data_mgr *data_mgr = 37 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS; 38 39 static struct socfpga_sdr_ctrl *sdr_ctrl = 40 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS; 41 42 #define DELTA_D 1 43 44 /* 45 * In order to reduce ROM size, most of the selectable calibration steps are 46 * decided at compile time based on the user's calibration mode selection, 47 * as captured by the STATIC_CALIB_STEPS selection below. 48 * 49 * However, to support simulation-time selection of fast simulation mode, where 50 * we skip everything except the bare minimum, we need a few of the steps to 51 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the 52 * check, which is based on the rtl-supplied value, or we dynamically compute 53 * the value to use based on the dynamically-chosen calibration mode 54 */ 55 56 #define DLEVEL 0 57 #define STATIC_IN_RTL_SIM 0 58 #define STATIC_SKIP_DELAY_LOOPS 0 59 60 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \ 61 STATIC_SKIP_DELAY_LOOPS) 62 63 /* calibration steps requested by the rtl */ 64 uint16_t dyn_calib_steps; 65 66 /* 67 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option 68 * instead of static, we use boolean logic to select between 69 * non-skip and skip values 70 * 71 * The mask is set to include all bits when not-skipping, but is 72 * zero when skipping 73 */ 74 75 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */ 76 77 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \ 78 ((non_skip_value) & skip_delay_mask) 79 80 struct gbl_type *gbl; 81 struct param_type *param; 82 uint32_t curr_shadow_reg; 83 84 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 85 uint32_t write_group, uint32_t use_dm, 86 uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks); 87 88 static void set_failing_group_stage(uint32_t group, uint32_t stage, 89 uint32_t substage) 90 { 91 /* 92 * Only set the global stage if there was not been any other 93 * failing group 94 */ 95 if (gbl->error_stage == CAL_STAGE_NIL) { 96 gbl->error_substage = substage; 97 gbl->error_stage = stage; 98 gbl->error_group = group; 99 } 100 } 101 102 static void reg_file_set_group(u16 set_group) 103 { 104 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16); 105 } 106 107 static void reg_file_set_stage(u8 set_stage) 108 { 109 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff); 110 } 111 112 static void reg_file_set_sub_stage(u8 set_sub_stage) 113 { 114 set_sub_stage &= 0xff; 115 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8); 116 } 117 118 static void initialize(void) 119 { 120 debug("%s:%d\n", __func__, __LINE__); 121 /* USER calibration has control over path to memory */ 122 /* 123 * In Hard PHY this is a 2-bit control: 124 * 0: AFI Mux Select 125 * 1: DDIO Mux Select 126 */ 127 writel(0x3, &phy_mgr_cfg->mux_sel); 128 129 /* USER memory clock is not stable we begin initialization */ 130 writel(0, &phy_mgr_cfg->reset_mem_stbl); 131 132 /* USER calibration status all set to zero */ 133 writel(0, &phy_mgr_cfg->cal_status); 134 135 writel(0, &phy_mgr_cfg->cal_debug_info); 136 137 if ((dyn_calib_steps & CALIB_SKIP_ALL) != CALIB_SKIP_ALL) { 138 param->read_correct_mask_vg = ((uint32_t)1 << 139 (RW_MGR_MEM_DQ_PER_READ_DQS / 140 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1; 141 param->write_correct_mask_vg = ((uint32_t)1 << 142 (RW_MGR_MEM_DQ_PER_READ_DQS / 143 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1; 144 param->read_correct_mask = ((uint32_t)1 << 145 RW_MGR_MEM_DQ_PER_READ_DQS) - 1; 146 param->write_correct_mask = ((uint32_t)1 << 147 RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1; 148 param->dm_correct_mask = ((uint32_t)1 << 149 (RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH)) 150 - 1; 151 } 152 } 153 154 static void set_rank_and_odt_mask(uint32_t rank, uint32_t odt_mode) 155 { 156 uint32_t odt_mask_0 = 0; 157 uint32_t odt_mask_1 = 0; 158 uint32_t cs_and_odt_mask; 159 160 if (odt_mode == RW_MGR_ODT_MODE_READ_WRITE) { 161 if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) { 162 /* 163 * 1 Rank 164 * Read: ODT = 0 165 * Write: ODT = 1 166 */ 167 odt_mask_0 = 0x0; 168 odt_mask_1 = 0x1; 169 } else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) { 170 /* 2 Ranks */ 171 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) { 172 /* - Dual-Slot , Single-Rank 173 * (1 chip-select per DIMM) 174 * OR 175 * - RDIMM, 4 total CS (2 CS per DIMM) 176 * means 2 DIMM 177 * Since MEM_NUMBER_OF_RANKS is 2 they are 178 * both single rank 179 * with 2 CS each (special for RDIMM) 180 * Read: Turn on ODT on the opposite rank 181 * Write: Turn on ODT on all ranks 182 */ 183 odt_mask_0 = 0x3 & ~(1 << rank); 184 odt_mask_1 = 0x3; 185 } else { 186 /* 187 * USER - Single-Slot , Dual-rank DIMMs 188 * (2 chip-selects per DIMM) 189 * USER Read: Turn on ODT off on all ranks 190 * USER Write: Turn on ODT on active rank 191 */ 192 odt_mask_0 = 0x0; 193 odt_mask_1 = 0x3 & (1 << rank); 194 } 195 } else { 196 /* 4 Ranks 197 * Read: 198 * ----------+-----------------------+ 199 * | | 200 * | ODT | 201 * Read From +-----------------------+ 202 * Rank | 3 | 2 | 1 | 0 | 203 * ----------+-----+-----+-----+-----+ 204 * 0 | 0 | 1 | 0 | 0 | 205 * 1 | 1 | 0 | 0 | 0 | 206 * 2 | 0 | 0 | 0 | 1 | 207 * 3 | 0 | 0 | 1 | 0 | 208 * ----------+-----+-----+-----+-----+ 209 * 210 * Write: 211 * ----------+-----------------------+ 212 * | | 213 * | ODT | 214 * Write To +-----------------------+ 215 * Rank | 3 | 2 | 1 | 0 | 216 * ----------+-----+-----+-----+-----+ 217 * 0 | 0 | 1 | 0 | 1 | 218 * 1 | 1 | 0 | 1 | 0 | 219 * 2 | 0 | 1 | 0 | 1 | 220 * 3 | 1 | 0 | 1 | 0 | 221 * ----------+-----+-----+-----+-----+ 222 */ 223 switch (rank) { 224 case 0: 225 odt_mask_0 = 0x4; 226 odt_mask_1 = 0x5; 227 break; 228 case 1: 229 odt_mask_0 = 0x8; 230 odt_mask_1 = 0xA; 231 break; 232 case 2: 233 odt_mask_0 = 0x1; 234 odt_mask_1 = 0x5; 235 break; 236 case 3: 237 odt_mask_0 = 0x2; 238 odt_mask_1 = 0xA; 239 break; 240 } 241 } 242 } else { 243 odt_mask_0 = 0x0; 244 odt_mask_1 = 0x0; 245 } 246 247 cs_and_odt_mask = 248 (0xFF & ~(1 << rank)) | 249 ((0xFF & odt_mask_0) << 8) | 250 ((0xFF & odt_mask_1) << 16); 251 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS | 252 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 253 } 254 255 /** 256 * scc_mgr_set() - Set SCC Manager register 257 * @off: Base offset in SCC Manager space 258 * @grp: Read/Write group 259 * @val: Value to be set 260 * 261 * This function sets the SCC Manager (Scan Chain Control Manager) register. 262 */ 263 static void scc_mgr_set(u32 off, u32 grp, u32 val) 264 { 265 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2)); 266 } 267 268 /** 269 * scc_mgr_initialize() - Initialize SCC Manager registers 270 * 271 * Initialize SCC Manager registers. 272 */ 273 static void scc_mgr_initialize(void) 274 { 275 /* 276 * Clear register file for HPS. 16 (2^4) is the size of the 277 * full register file in the scc mgr: 278 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + 279 * MEM_IF_READ_DQS_WIDTH - 1); 280 */ 281 int i; 282 283 for (i = 0; i < 16; i++) { 284 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n", 285 __func__, __LINE__, i); 286 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i); 287 } 288 } 289 290 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase) 291 { 292 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase); 293 } 294 295 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay) 296 { 297 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay); 298 } 299 300 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase) 301 { 302 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase); 303 } 304 305 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay) 306 { 307 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay); 308 } 309 310 static void scc_mgr_set_dqs_io_in_delay(uint32_t write_group, uint32_t delay) 311 { 312 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 313 delay); 314 } 315 316 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay) 317 { 318 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay); 319 } 320 321 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay) 322 { 323 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay); 324 } 325 326 static void scc_mgr_set_dqs_out1_delay(uint32_t write_group, 327 uint32_t delay) 328 { 329 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 330 delay); 331 } 332 333 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay) 334 { 335 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, 336 RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm, 337 delay); 338 } 339 340 /* load up dqs config settings */ 341 static void scc_mgr_load_dqs(uint32_t dqs) 342 { 343 writel(dqs, &sdr_scc_mgr->dqs_ena); 344 } 345 346 /* load up dqs io config settings */ 347 static void scc_mgr_load_dqs_io(void) 348 { 349 writel(0, &sdr_scc_mgr->dqs_io_ena); 350 } 351 352 /* load up dq config settings */ 353 static void scc_mgr_load_dq(uint32_t dq_in_group) 354 { 355 writel(dq_in_group, &sdr_scc_mgr->dq_ena); 356 } 357 358 /* load up dm config settings */ 359 static void scc_mgr_load_dm(uint32_t dm) 360 { 361 writel(dm, &sdr_scc_mgr->dm_ena); 362 } 363 364 static void scc_mgr_set_dqs_en_phase_all_ranks(uint32_t read_group, 365 uint32_t phase) 366 { 367 uint32_t r; 368 369 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 370 r += NUM_RANKS_PER_SHADOW_REG) { 371 scc_mgr_set_dqs_en_phase(read_group, phase); 372 373 /* 374 * USER although the h/w doesn't support different phases per 375 * shadow register, for simplicity our scc manager modeling 376 * keeps different phase settings per shadow reg, and it's 377 * important for us to keep them in sync to match h/w. 378 * for efficiency, the scan chain update should occur only 379 * once to sr0. 380 */ 381 382 if (r == 0) { 383 writel(read_group, &sdr_scc_mgr->dqs_ena); 384 writel(0, &sdr_scc_mgr->update); 385 } 386 } 387 } 388 389 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group, 390 uint32_t phase) 391 { 392 uint32_t r; 393 394 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 395 r += NUM_RANKS_PER_SHADOW_REG) { 396 scc_mgr_set_dqdqs_output_phase(write_group, phase); 397 398 /* 399 * USER although the h/w doesn't support different phases per 400 * shadow register, for simplicity our scc manager modeling 401 * keeps different phase settings per shadow reg, and it's 402 * important for us to keep them in sync to match h/w. 403 * for efficiency, the scan chain update should occur only 404 * once to sr0. 405 */ 406 407 if (r == 0) { 408 writel(write_group, &sdr_scc_mgr->dqs_ena); 409 writel(0, &sdr_scc_mgr->update); 410 } 411 } 412 } 413 414 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group, 415 uint32_t delay) 416 { 417 uint32_t r; 418 419 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 420 r += NUM_RANKS_PER_SHADOW_REG) { 421 scc_mgr_set_dqs_en_delay(read_group, delay); 422 423 /* 424 * In shadow register mode, the T11 settings are stored in 425 * registers in the core, which are updated by the DQS_ENA 426 * signals. Not issuing the SCC_MGR_UPD command allows us to 427 * save lots of rank switching overhead, by calling 428 * select_shadow_regs_for_update with update_scan_chains 429 * set to 0. 430 */ 431 432 writel(read_group, &sdr_scc_mgr->dqs_ena); 433 writel(0, &sdr_scc_mgr->update); 434 } 435 /* 436 * In shadow register mode, the T11 settings are stored in 437 * registers in the core, which are updated by the DQS_ENA 438 * signals. Not issuing the SCC_MGR_UPD command allows us to 439 * save lots of rank switching overhead, by calling 440 * select_shadow_regs_for_update with update_scan_chains 441 * set to 0. 442 */ 443 writel(0, &sdr_scc_mgr->update); 444 } 445 446 static void scc_mgr_set_oct_out1_delay(uint32_t write_group, uint32_t delay) 447 { 448 uint32_t read_group; 449 uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_OCT_OUT1_DELAY_OFFSET; 450 451 /* 452 * Load the setting in the SCC manager 453 * Although OCT affects only write data, the OCT delay is controlled 454 * by the DQS logic block which is instantiated once per read group. 455 * For protocols where a write group consists of multiple read groups, 456 * the setting must be set multiple times. 457 */ 458 for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH / 459 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 460 read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH / 461 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; ++read_group) 462 writel(delay, addr + (read_group << 2)); 463 } 464 465 static void scc_mgr_set_hhp_extras(void) 466 { 467 /* 468 * Load the fixed setting in the SCC manager 469 * bits: 0:0 = 1'b1 - dqs bypass 470 * bits: 1:1 = 1'b1 - dq bypass 471 * bits: 4:2 = 3'b001 - rfifo_mode 472 * bits: 6:5 = 2'b01 - rfifo clock_select 473 * bits: 7:7 = 1'b0 - separate gating from ungating setting 474 * bits: 8:8 = 1'b0 - separate OE from Output delay setting 475 */ 476 uint32_t value = (0<<8) | (0<<7) | (1<<5) | (1<<2) | (1<<1) | (1<<0); 477 uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_HHP_GLOBALS_OFFSET; 478 479 writel(value, addr + SCC_MGR_HHP_EXTRAS_OFFSET); 480 } 481 482 /* 483 * USER Zero all DQS config 484 * TODO: maybe rename to scc_mgr_zero_dqs_config (or something) 485 */ 486 static void scc_mgr_zero_all(void) 487 { 488 uint32_t i, r; 489 490 /* 491 * USER Zero all DQS config settings, across all groups and all 492 * shadow registers 493 */ 494 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += 495 NUM_RANKS_PER_SHADOW_REG) { 496 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 497 /* 498 * The phases actually don't exist on a per-rank basis, 499 * but there's no harm updating them several times, so 500 * let's keep the code simple. 501 */ 502 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE); 503 scc_mgr_set_dqs_en_phase(i, 0); 504 scc_mgr_set_dqs_en_delay(i, 0); 505 } 506 507 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 508 scc_mgr_set_dqdqs_output_phase(i, 0); 509 /* av/cv don't have out2 */ 510 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE); 511 } 512 } 513 514 /* multicast to all DQS group enables */ 515 writel(0xff, &sdr_scc_mgr->dqs_ena); 516 writel(0, &sdr_scc_mgr->update); 517 } 518 519 static void scc_set_bypass_mode(uint32_t write_group, uint32_t mode) 520 { 521 /* mode = 0 : Do NOT bypass - Half Rate Mode */ 522 /* mode = 1 : Bypass - Full Rate Mode */ 523 524 /* only need to set once for all groups, pins, dq, dqs, dm */ 525 if (write_group == 0) { 526 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", __func__, 527 __LINE__); 528 scc_mgr_set_hhp_extras(); 529 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n", 530 __func__, __LINE__); 531 } 532 /* multicast to all DQ enables */ 533 writel(0xff, &sdr_scc_mgr->dq_ena); 534 writel(0xff, &sdr_scc_mgr->dm_ena); 535 536 /* update current DQS IO enable */ 537 writel(0, &sdr_scc_mgr->dqs_io_ena); 538 539 /* update the DQS logic */ 540 writel(write_group, &sdr_scc_mgr->dqs_ena); 541 542 /* hit update */ 543 writel(0, &sdr_scc_mgr->update); 544 } 545 546 static void scc_mgr_load_dqs_for_write_group(uint32_t write_group) 547 { 548 uint32_t read_group; 549 uint32_t addr = (u32)&sdr_scc_mgr->dqs_ena; 550 /* 551 * Although OCT affects only write data, the OCT delay is controlled 552 * by the DQS logic block which is instantiated once per read group. 553 * For protocols where a write group consists of multiple read groups, 554 * the setting must be scanned multiple times. 555 */ 556 for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH / 557 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 558 read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH / 559 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; ++read_group) 560 writel(read_group, addr); 561 } 562 563 static void scc_mgr_zero_group(uint32_t write_group, uint32_t test_begin, 564 int32_t out_only) 565 { 566 uint32_t i, r; 567 568 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += 569 NUM_RANKS_PER_SHADOW_REG) { 570 /* Zero all DQ config settings */ 571 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 572 scc_mgr_set_dq_out1_delay(i, 0); 573 if (!out_only) 574 scc_mgr_set_dq_in_delay(i, 0); 575 } 576 577 /* multicast to all DQ enables */ 578 writel(0xff, &sdr_scc_mgr->dq_ena); 579 580 /* Zero all DM config settings */ 581 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 582 scc_mgr_set_dm_out1_delay(i, 0); 583 } 584 585 /* multicast to all DM enables */ 586 writel(0xff, &sdr_scc_mgr->dm_ena); 587 588 /* zero all DQS io settings */ 589 if (!out_only) 590 scc_mgr_set_dqs_io_in_delay(write_group, 0); 591 /* av/cv don't have out2 */ 592 scc_mgr_set_dqs_out1_delay(write_group, IO_DQS_OUT_RESERVE); 593 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE); 594 scc_mgr_load_dqs_for_write_group(write_group); 595 596 /* multicast to all DQS IO enables (only 1) */ 597 writel(0, &sdr_scc_mgr->dqs_io_ena); 598 599 /* hit update to zero everything */ 600 writel(0, &sdr_scc_mgr->update); 601 } 602 } 603 604 /* 605 * apply and load a particular input delay for the DQ pins in a group 606 * group_bgn is the index of the first dq pin (in the write group) 607 */ 608 static void scc_mgr_apply_group_dq_in_delay(uint32_t write_group, 609 uint32_t group_bgn, uint32_t delay) 610 { 611 uint32_t i, p; 612 613 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 614 scc_mgr_set_dq_in_delay(p, delay); 615 scc_mgr_load_dq(p); 616 } 617 } 618 619 /* apply and load a particular output delay for the DQ pins in a group */ 620 static void scc_mgr_apply_group_dq_out1_delay(uint32_t write_group, 621 uint32_t group_bgn, 622 uint32_t delay1) 623 { 624 uint32_t i, p; 625 626 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 627 scc_mgr_set_dq_out1_delay(i, delay1); 628 scc_mgr_load_dq(i); 629 } 630 } 631 632 /* apply and load a particular output delay for the DM pins in a group */ 633 static void scc_mgr_apply_group_dm_out1_delay(uint32_t write_group, 634 uint32_t delay1) 635 { 636 uint32_t i; 637 638 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 639 scc_mgr_set_dm_out1_delay(i, delay1); 640 scc_mgr_load_dm(i); 641 } 642 } 643 644 645 /* apply and load delay on both DQS and OCT out1 */ 646 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group, 647 uint32_t delay) 648 { 649 scc_mgr_set_dqs_out1_delay(write_group, delay); 650 scc_mgr_load_dqs_io(); 651 652 scc_mgr_set_oct_out1_delay(write_group, delay); 653 scc_mgr_load_dqs_for_write_group(write_group); 654 } 655 656 /* apply a delay to the entire output side: DQ, DM, DQS, OCT */ 657 static void scc_mgr_apply_group_all_out_delay_add(uint32_t write_group, 658 uint32_t group_bgn, 659 uint32_t delay) 660 { 661 uint32_t i, p, new_delay; 662 663 /* dq shift */ 664 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 665 new_delay = READ_SCC_DQ_OUT2_DELAY; 666 new_delay += delay; 667 668 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 669 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQ[%u,%u]:\ 670 %u > %lu => %lu", __func__, __LINE__, 671 write_group, group_bgn, delay, i, p, new_delay, 672 (long unsigned int)IO_IO_OUT2_DELAY_MAX, 673 (long unsigned int)IO_IO_OUT2_DELAY_MAX); 674 new_delay = IO_IO_OUT2_DELAY_MAX; 675 } 676 677 scc_mgr_load_dq(i); 678 } 679 680 /* dm shift */ 681 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 682 new_delay = READ_SCC_DM_IO_OUT2_DELAY; 683 new_delay += delay; 684 685 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 686 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DM[%u]:\ 687 %u > %lu => %lu\n", __func__, __LINE__, 688 write_group, group_bgn, delay, i, new_delay, 689 (long unsigned int)IO_IO_OUT2_DELAY_MAX, 690 (long unsigned int)IO_IO_OUT2_DELAY_MAX); 691 new_delay = IO_IO_OUT2_DELAY_MAX; 692 } 693 694 scc_mgr_load_dm(i); 695 } 696 697 /* dqs shift */ 698 new_delay = READ_SCC_DQS_IO_OUT2_DELAY; 699 new_delay += delay; 700 701 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 702 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;" 703 " adding %u to OUT1\n", __func__, __LINE__, 704 write_group, group_bgn, delay, new_delay, 705 IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX, 706 new_delay - IO_IO_OUT2_DELAY_MAX); 707 scc_mgr_set_dqs_out1_delay(write_group, new_delay - 708 IO_IO_OUT2_DELAY_MAX); 709 new_delay = IO_IO_OUT2_DELAY_MAX; 710 } 711 712 scc_mgr_load_dqs_io(); 713 714 /* oct shift */ 715 new_delay = READ_SCC_OCT_OUT2_DELAY; 716 new_delay += delay; 717 718 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 719 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;" 720 " adding %u to OUT1\n", __func__, __LINE__, 721 write_group, group_bgn, delay, new_delay, 722 IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX, 723 new_delay - IO_IO_OUT2_DELAY_MAX); 724 scc_mgr_set_oct_out1_delay(write_group, new_delay - 725 IO_IO_OUT2_DELAY_MAX); 726 new_delay = IO_IO_OUT2_DELAY_MAX; 727 } 728 729 scc_mgr_load_dqs_for_write_group(write_group); 730 } 731 732 /* 733 * USER apply a delay to the entire output side (DQ, DM, DQS, OCT) 734 * and to all ranks 735 */ 736 static void scc_mgr_apply_group_all_out_delay_add_all_ranks( 737 uint32_t write_group, uint32_t group_bgn, uint32_t delay) 738 { 739 uint32_t r; 740 741 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 742 r += NUM_RANKS_PER_SHADOW_REG) { 743 scc_mgr_apply_group_all_out_delay_add(write_group, 744 group_bgn, delay); 745 writel(0, &sdr_scc_mgr->update); 746 } 747 } 748 749 /* optimization used to recover some slots in ddr3 inst_rom */ 750 /* could be applied to other protocols if we wanted to */ 751 static void set_jump_as_return(void) 752 { 753 /* 754 * to save space, we replace return with jump to special shared 755 * RETURN instruction so we set the counter to large value so that 756 * we always jump 757 */ 758 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0); 759 writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 760 } 761 762 /* 763 * should always use constants as argument to ensure all computations are 764 * performed at compile time 765 */ 766 static void delay_for_n_mem_clocks(const uint32_t clocks) 767 { 768 uint32_t afi_clocks; 769 uint8_t inner = 0; 770 uint8_t outer = 0; 771 uint16_t c_loop = 0; 772 773 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks); 774 775 776 afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO; 777 /* scale (rounding up) to get afi clocks */ 778 779 /* 780 * Note, we don't bother accounting for being off a little bit 781 * because of a few extra instructions in outer loops 782 * Note, the loops have a test at the end, and do the test before 783 * the decrement, and so always perform the loop 784 * 1 time more than the counter value 785 */ 786 if (afi_clocks == 0) { 787 ; 788 } else if (afi_clocks <= 0x100) { 789 inner = afi_clocks-1; 790 outer = 0; 791 c_loop = 0; 792 } else if (afi_clocks <= 0x10000) { 793 inner = 0xff; 794 outer = (afi_clocks-1) >> 8; 795 c_loop = 0; 796 } else { 797 inner = 0xff; 798 outer = 0xff; 799 c_loop = (afi_clocks-1) >> 16; 800 } 801 802 /* 803 * rom instructions are structured as follows: 804 * 805 * IDLE_LOOP2: jnz cntr0, TARGET_A 806 * IDLE_LOOP1: jnz cntr1, TARGET_B 807 * return 808 * 809 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and 810 * TARGET_B is set to IDLE_LOOP2 as well 811 * 812 * if we have no outer loop, though, then we can use IDLE_LOOP1 only, 813 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely 814 * 815 * a little confusing, but it helps save precious space in the inst_rom 816 * and sequencer rom and keeps the delays more accurate and reduces 817 * overhead 818 */ 819 if (afi_clocks <= 0x100) { 820 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 821 &sdr_rw_load_mgr_regs->load_cntr1); 822 823 writel(RW_MGR_IDLE_LOOP1, 824 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 825 826 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 827 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 828 } else { 829 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 830 &sdr_rw_load_mgr_regs->load_cntr0); 831 832 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), 833 &sdr_rw_load_mgr_regs->load_cntr1); 834 835 writel(RW_MGR_IDLE_LOOP2, 836 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 837 838 writel(RW_MGR_IDLE_LOOP2, 839 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 840 841 /* hack to get around compiler not being smart enough */ 842 if (afi_clocks <= 0x10000) { 843 /* only need to run once */ 844 writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS | 845 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 846 } else { 847 do { 848 writel(RW_MGR_IDLE_LOOP2, 849 SDR_PHYGRP_RWMGRGRP_ADDRESS | 850 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 851 } while (c_loop-- != 0); 852 } 853 } 854 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks); 855 } 856 857 static void rw_mgr_mem_initialize(void) 858 { 859 uint32_t r; 860 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 861 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 862 863 debug("%s:%d\n", __func__, __LINE__); 864 865 /* The reset / cke part of initialization is broadcasted to all ranks */ 866 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 867 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 868 869 /* 870 * Here's how you load register for a loop 871 * Counters are located @ 0x800 872 * Jump address are located @ 0xC00 873 * For both, registers 0 to 3 are selected using bits 3 and 2, like 874 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C 875 * I know this ain't pretty, but Avalon bus throws away the 2 least 876 * significant bits 877 */ 878 879 /* start with memory RESET activated */ 880 881 /* tINIT = 200us */ 882 883 /* 884 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles 885 * If a and b are the number of iteration in 2 nested loops 886 * it takes the following number of cycles to complete the operation: 887 * number_of_cycles = ((2 + n) * a + 2) * b 888 * where n is the number of instruction in the inner loop 889 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF, 890 * b = 6A 891 */ 892 893 /* Load counters */ 894 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR0_VAL), 895 &sdr_rw_load_mgr_regs->load_cntr0); 896 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR1_VAL), 897 &sdr_rw_load_mgr_regs->load_cntr1); 898 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR2_VAL), 899 &sdr_rw_load_mgr_regs->load_cntr2); 900 901 /* Load jump address */ 902 writel(RW_MGR_INIT_RESET_0_CKE_0, 903 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 904 writel(RW_MGR_INIT_RESET_0_CKE_0, 905 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 906 writel(RW_MGR_INIT_RESET_0_CKE_0, 907 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 908 909 /* Execute count instruction */ 910 writel(RW_MGR_INIT_RESET_0_CKE_0, grpaddr); 911 912 /* indicate that memory is stable */ 913 writel(1, &phy_mgr_cfg->reset_mem_stbl); 914 915 /* 916 * transition the RESET to high 917 * Wait for 500us 918 */ 919 920 /* 921 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles 922 * If a and b are the number of iteration in 2 nested loops 923 * it takes the following number of cycles to complete the operation 924 * number_of_cycles = ((2 + n) * a + 2) * b 925 * where n is the number of instruction in the inner loop 926 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83, 927 * b = FF 928 */ 929 930 /* Load counters */ 931 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR0_VAL), 932 &sdr_rw_load_mgr_regs->load_cntr0); 933 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR1_VAL), 934 &sdr_rw_load_mgr_regs->load_cntr1); 935 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR2_VAL), 936 &sdr_rw_load_mgr_regs->load_cntr2); 937 938 /* Load jump address */ 939 writel(RW_MGR_INIT_RESET_1_CKE_0, 940 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 941 writel(RW_MGR_INIT_RESET_1_CKE_0, 942 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 943 writel(RW_MGR_INIT_RESET_1_CKE_0, 944 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 945 946 writel(RW_MGR_INIT_RESET_1_CKE_0, grpaddr); 947 948 /* bring up clock enable */ 949 950 /* tXRP < 250 ck cycles */ 951 delay_for_n_mem_clocks(250); 952 953 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 954 if (param->skip_ranks[r]) { 955 /* request to skip the rank */ 956 continue; 957 } 958 959 /* set rank */ 960 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 961 962 /* 963 * USER Use Mirror-ed commands for odd ranks if address 964 * mirrorring is on 965 */ 966 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 967 set_jump_as_return(); 968 writel(RW_MGR_MRS2_MIRR, grpaddr); 969 delay_for_n_mem_clocks(4); 970 set_jump_as_return(); 971 writel(RW_MGR_MRS3_MIRR, grpaddr); 972 delay_for_n_mem_clocks(4); 973 set_jump_as_return(); 974 writel(RW_MGR_MRS1_MIRR, grpaddr); 975 delay_for_n_mem_clocks(4); 976 set_jump_as_return(); 977 writel(RW_MGR_MRS0_DLL_RESET_MIRR, grpaddr); 978 } else { 979 set_jump_as_return(); 980 writel(RW_MGR_MRS2, grpaddr); 981 delay_for_n_mem_clocks(4); 982 set_jump_as_return(); 983 writel(RW_MGR_MRS3, grpaddr); 984 delay_for_n_mem_clocks(4); 985 set_jump_as_return(); 986 writel(RW_MGR_MRS1, grpaddr); 987 set_jump_as_return(); 988 writel(RW_MGR_MRS0_DLL_RESET, grpaddr); 989 } 990 set_jump_as_return(); 991 writel(RW_MGR_ZQCL, grpaddr); 992 993 /* tZQinit = tDLLK = 512 ck cycles */ 994 delay_for_n_mem_clocks(512); 995 } 996 } 997 998 /* 999 * At the end of calibration we have to program the user settings in, and 1000 * USER hand off the memory to the user. 1001 */ 1002 static void rw_mgr_mem_handoff(void) 1003 { 1004 uint32_t r; 1005 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1006 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1007 1008 debug("%s:%d\n", __func__, __LINE__); 1009 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 1010 if (param->skip_ranks[r]) 1011 /* request to skip the rank */ 1012 continue; 1013 /* set rank */ 1014 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 1015 1016 /* precharge all banks ... */ 1017 writel(RW_MGR_PRECHARGE_ALL, grpaddr); 1018 1019 /* load up MR settings specified by user */ 1020 1021 /* 1022 * Use Mirror-ed commands for odd ranks if address 1023 * mirrorring is on 1024 */ 1025 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 1026 set_jump_as_return(); 1027 writel(RW_MGR_MRS2_MIRR, grpaddr); 1028 delay_for_n_mem_clocks(4); 1029 set_jump_as_return(); 1030 writel(RW_MGR_MRS3_MIRR, grpaddr); 1031 delay_for_n_mem_clocks(4); 1032 set_jump_as_return(); 1033 writel(RW_MGR_MRS1_MIRR, grpaddr); 1034 delay_for_n_mem_clocks(4); 1035 set_jump_as_return(); 1036 writel(RW_MGR_MRS0_USER_MIRR, grpaddr); 1037 } else { 1038 set_jump_as_return(); 1039 writel(RW_MGR_MRS2, grpaddr); 1040 delay_for_n_mem_clocks(4); 1041 set_jump_as_return(); 1042 writel(RW_MGR_MRS3, grpaddr); 1043 delay_for_n_mem_clocks(4); 1044 set_jump_as_return(); 1045 writel(RW_MGR_MRS1, grpaddr); 1046 delay_for_n_mem_clocks(4); 1047 set_jump_as_return(); 1048 writel(RW_MGR_MRS0_USER, grpaddr); 1049 } 1050 /* 1051 * USER need to wait tMOD (12CK or 15ns) time before issuing 1052 * other commands, but we will have plenty of NIOS cycles before 1053 * actual handoff so its okay. 1054 */ 1055 } 1056 } 1057 1058 /* 1059 * performs a guaranteed read on the patterns we are going to use during a 1060 * read test to ensure memory works 1061 */ 1062 static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn, 1063 uint32_t group, uint32_t num_tries, uint32_t *bit_chk, 1064 uint32_t all_ranks) 1065 { 1066 uint32_t r, vg; 1067 uint32_t correct_mask_vg; 1068 uint32_t tmp_bit_chk; 1069 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1070 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1071 uint32_t addr; 1072 uint32_t base_rw_mgr; 1073 1074 *bit_chk = param->read_correct_mask; 1075 correct_mask_vg = param->read_correct_mask_vg; 1076 1077 for (r = rank_bgn; r < rank_end; r++) { 1078 if (param->skip_ranks[r]) 1079 /* request to skip the rank */ 1080 continue; 1081 1082 /* set rank */ 1083 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1084 1085 /* Load up a constant bursts of read commands */ 1086 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1087 writel(RW_MGR_GUARANTEED_READ, 1088 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1089 1090 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1091 writel(RW_MGR_GUARANTEED_READ_CONT, 1092 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1093 1094 tmp_bit_chk = 0; 1095 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1096 /* reset the fifos to get pointers to known state */ 1097 1098 writel(0, &phy_mgr_cmd->fifo_reset); 1099 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1100 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1101 1102 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1103 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1104 1105 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1106 writel(RW_MGR_GUARANTEED_READ, addr + 1107 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1108 vg) << 2)); 1109 1110 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1111 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr)); 1112 1113 if (vg == 0) 1114 break; 1115 } 1116 *bit_chk &= tmp_bit_chk; 1117 } 1118 1119 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1120 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1121 1122 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1123 debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\ 1124 %lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask, 1125 (long unsigned int)(*bit_chk == param->read_correct_mask)); 1126 return *bit_chk == param->read_correct_mask; 1127 } 1128 1129 static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks 1130 (uint32_t group, uint32_t num_tries, uint32_t *bit_chk) 1131 { 1132 return rw_mgr_mem_calibrate_read_test_patterns(0, group, 1133 num_tries, bit_chk, 1); 1134 } 1135 1136 /* load up the patterns we are going to use during a read test */ 1137 static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn, 1138 uint32_t all_ranks) 1139 { 1140 uint32_t r; 1141 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1142 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1143 1144 debug("%s:%d\n", __func__, __LINE__); 1145 for (r = rank_bgn; r < rank_end; r++) { 1146 if (param->skip_ranks[r]) 1147 /* request to skip the rank */ 1148 continue; 1149 1150 /* set rank */ 1151 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1152 1153 /* Load up a constant bursts */ 1154 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1155 1156 writel(RW_MGR_GUARANTEED_WRITE_WAIT0, 1157 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1158 1159 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1160 1161 writel(RW_MGR_GUARANTEED_WRITE_WAIT1, 1162 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1163 1164 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2); 1165 1166 writel(RW_MGR_GUARANTEED_WRITE_WAIT2, 1167 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1168 1169 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3); 1170 1171 writel(RW_MGR_GUARANTEED_WRITE_WAIT3, 1172 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1173 1174 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1175 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 1176 } 1177 1178 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1179 } 1180 1181 /* 1182 * try a read and see if it returns correct data back. has dummy reads 1183 * inserted into the mix used to align dqs enable. has more thorough checks 1184 * than the regular read test. 1185 */ 1186 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group, 1187 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1188 uint32_t all_groups, uint32_t all_ranks) 1189 { 1190 uint32_t r, vg; 1191 uint32_t correct_mask_vg; 1192 uint32_t tmp_bit_chk; 1193 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1194 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1195 uint32_t addr; 1196 uint32_t base_rw_mgr; 1197 1198 *bit_chk = param->read_correct_mask; 1199 correct_mask_vg = param->read_correct_mask_vg; 1200 1201 uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) & 1202 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION); 1203 1204 for (r = rank_bgn; r < rank_end; r++) { 1205 if (param->skip_ranks[r]) 1206 /* request to skip the rank */ 1207 continue; 1208 1209 /* set rank */ 1210 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1211 1212 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1); 1213 1214 writel(RW_MGR_READ_B2B_WAIT1, 1215 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1216 1217 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2); 1218 writel(RW_MGR_READ_B2B_WAIT2, 1219 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1220 1221 if (quick_read_mode) 1222 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0); 1223 /* need at least two (1+1) reads to capture failures */ 1224 else if (all_groups) 1225 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0); 1226 else 1227 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0); 1228 1229 writel(RW_MGR_READ_B2B, 1230 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1231 if (all_groups) 1232 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH * 1233 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1, 1234 &sdr_rw_load_mgr_regs->load_cntr3); 1235 else 1236 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3); 1237 1238 writel(RW_MGR_READ_B2B, 1239 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1240 1241 tmp_bit_chk = 0; 1242 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1243 /* reset the fifos to get pointers to known state */ 1244 writel(0, &phy_mgr_cmd->fifo_reset); 1245 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1246 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1247 1248 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1249 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1250 1251 if (all_groups) 1252 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET; 1253 else 1254 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1255 1256 writel(RW_MGR_READ_B2B, addr + 1257 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1258 vg) << 2)); 1259 1260 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1261 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 1262 1263 if (vg == 0) 1264 break; 1265 } 1266 *bit_chk &= tmp_bit_chk; 1267 } 1268 1269 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1270 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1271 1272 if (all_correct) { 1273 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1274 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\ 1275 (%u == %u) => %lu", __func__, __LINE__, group, 1276 all_groups, *bit_chk, param->read_correct_mask, 1277 (long unsigned int)(*bit_chk == 1278 param->read_correct_mask)); 1279 return *bit_chk == param->read_correct_mask; 1280 } else { 1281 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1282 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\ 1283 (%u != %lu) => %lu\n", __func__, __LINE__, 1284 group, all_groups, *bit_chk, (long unsigned int)0, 1285 (long unsigned int)(*bit_chk != 0x00)); 1286 return *bit_chk != 0x00; 1287 } 1288 } 1289 1290 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group, 1291 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1292 uint32_t all_groups) 1293 { 1294 return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct, 1295 bit_chk, all_groups, 1); 1296 } 1297 1298 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v) 1299 { 1300 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy); 1301 (*v)++; 1302 } 1303 1304 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v) 1305 { 1306 uint32_t i; 1307 1308 for (i = 0; i < VFIFO_SIZE-1; i++) 1309 rw_mgr_incr_vfifo(grp, v); 1310 } 1311 1312 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk) 1313 { 1314 uint32_t v; 1315 uint32_t fail_cnt = 0; 1316 uint32_t test_status; 1317 1318 for (v = 0; v < VFIFO_SIZE; ) { 1319 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n", 1320 __func__, __LINE__, v); 1321 test_status = rw_mgr_mem_calibrate_read_test_all_ranks 1322 (grp, 1, PASS_ONE_BIT, bit_chk, 0); 1323 if (!test_status) { 1324 fail_cnt++; 1325 1326 if (fail_cnt == 2) 1327 break; 1328 } 1329 1330 /* fiddle with FIFO */ 1331 rw_mgr_incr_vfifo(grp, &v); 1332 } 1333 1334 if (v >= VFIFO_SIZE) { 1335 /* no failing read found!! Something must have gone wrong */ 1336 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n", 1337 __func__, __LINE__); 1338 return 0; 1339 } else { 1340 return v; 1341 } 1342 } 1343 1344 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk, 1345 uint32_t dtaps_per_ptap, uint32_t *work_bgn, 1346 uint32_t *v, uint32_t *d, uint32_t *p, 1347 uint32_t *i, uint32_t *max_working_cnt) 1348 { 1349 uint32_t found_begin = 0; 1350 uint32_t tmp_delay = 0; 1351 uint32_t test_status; 1352 1353 for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay += 1354 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1355 *work_bgn = tmp_delay; 1356 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1357 1358 for (*i = 0; *i < VFIFO_SIZE; (*i)++) { 1359 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn += 1360 IO_DELAY_PER_OPA_TAP) { 1361 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1362 1363 test_status = 1364 rw_mgr_mem_calibrate_read_test_all_ranks 1365 (*grp, 1, PASS_ONE_BIT, bit_chk, 0); 1366 1367 if (test_status) { 1368 *max_working_cnt = 1; 1369 found_begin = 1; 1370 break; 1371 } 1372 } 1373 1374 if (found_begin) 1375 break; 1376 1377 if (*p > IO_DQS_EN_PHASE_MAX) 1378 /* fiddle with FIFO */ 1379 rw_mgr_incr_vfifo(*grp, v); 1380 } 1381 1382 if (found_begin) 1383 break; 1384 } 1385 1386 if (*i >= VFIFO_SIZE) { 1387 /* cannot find working solution */ 1388 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\ 1389 ptap/dtap\n", __func__, __LINE__); 1390 return 0; 1391 } else { 1392 return 1; 1393 } 1394 } 1395 1396 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk, 1397 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1398 uint32_t *p, uint32_t *max_working_cnt) 1399 { 1400 uint32_t found_begin = 0; 1401 uint32_t tmp_delay; 1402 1403 /* Special case code for backing up a phase */ 1404 if (*p == 0) { 1405 *p = IO_DQS_EN_PHASE_MAX; 1406 rw_mgr_decr_vfifo(*grp, v); 1407 } else { 1408 (*p)--; 1409 } 1410 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP; 1411 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1412 1413 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; 1414 (*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1415 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1416 1417 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1, 1418 PASS_ONE_BIT, 1419 bit_chk, 0)) { 1420 found_begin = 1; 1421 *work_bgn = tmp_delay; 1422 break; 1423 } 1424 } 1425 1426 /* We have found a working dtap before the ptap found above */ 1427 if (found_begin == 1) 1428 (*max_working_cnt)++; 1429 1430 /* 1431 * Restore VFIFO to old state before we decremented it 1432 * (if needed). 1433 */ 1434 (*p)++; 1435 if (*p > IO_DQS_EN_PHASE_MAX) { 1436 *p = 0; 1437 rw_mgr_incr_vfifo(*grp, v); 1438 } 1439 1440 scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0); 1441 } 1442 1443 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk, 1444 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1445 uint32_t *p, uint32_t *i, uint32_t *max_working_cnt, 1446 uint32_t *work_end) 1447 { 1448 uint32_t found_end = 0; 1449 1450 (*p)++; 1451 *work_end += IO_DELAY_PER_OPA_TAP; 1452 if (*p > IO_DQS_EN_PHASE_MAX) { 1453 /* fiddle with FIFO */ 1454 *p = 0; 1455 rw_mgr_incr_vfifo(*grp, v); 1456 } 1457 1458 for (; *i < VFIFO_SIZE + 1; (*i)++) { 1459 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end 1460 += IO_DELAY_PER_OPA_TAP) { 1461 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1462 1463 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1464 (*grp, 1, PASS_ONE_BIT, bit_chk, 0)) { 1465 found_end = 1; 1466 break; 1467 } else { 1468 (*max_working_cnt)++; 1469 } 1470 } 1471 1472 if (found_end) 1473 break; 1474 1475 if (*p > IO_DQS_EN_PHASE_MAX) { 1476 /* fiddle with FIFO */ 1477 rw_mgr_incr_vfifo(*grp, v); 1478 *p = 0; 1479 } 1480 } 1481 1482 if (*i >= VFIFO_SIZE + 1) { 1483 /* cannot see edge of failing read */ 1484 debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\ 1485 failed\n", __func__, __LINE__); 1486 return 0; 1487 } else { 1488 return 1; 1489 } 1490 } 1491 1492 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk, 1493 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1494 uint32_t *p, uint32_t *work_mid, 1495 uint32_t *work_end) 1496 { 1497 int i; 1498 int tmp_delay = 0; 1499 1500 *work_mid = (*work_bgn + *work_end) / 2; 1501 1502 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n", 1503 *work_bgn, *work_end, *work_mid); 1504 /* Get the middle delay to be less than a VFIFO delay */ 1505 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; 1506 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP) 1507 ; 1508 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay); 1509 while (*work_mid > tmp_delay) 1510 *work_mid -= tmp_delay; 1511 debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid); 1512 1513 tmp_delay = 0; 1514 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid; 1515 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP) 1516 ; 1517 tmp_delay -= IO_DELAY_PER_OPA_TAP; 1518 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay); 1519 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++, 1520 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) 1521 ; 1522 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay); 1523 1524 scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1); 1525 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1526 1527 /* 1528 * push vfifo until we can successfully calibrate. We can do this 1529 * because the largest possible margin in 1 VFIFO cycle. 1530 */ 1531 for (i = 0; i < VFIFO_SIZE; i++) { 1532 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n", 1533 *v); 1534 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1, 1535 PASS_ONE_BIT, 1536 bit_chk, 0)) { 1537 break; 1538 } 1539 1540 /* fiddle with FIFO */ 1541 rw_mgr_incr_vfifo(*grp, v); 1542 } 1543 1544 if (i >= VFIFO_SIZE) { 1545 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \ 1546 failed\n", __func__, __LINE__); 1547 return 0; 1548 } else { 1549 return 1; 1550 } 1551 } 1552 1553 /* find a good dqs enable to use */ 1554 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp) 1555 { 1556 uint32_t v, d, p, i; 1557 uint32_t max_working_cnt; 1558 uint32_t bit_chk; 1559 uint32_t dtaps_per_ptap; 1560 uint32_t work_bgn, work_mid, work_end; 1561 uint32_t found_passing_read, found_failing_read, initial_failing_dtap; 1562 1563 debug("%s:%d %u\n", __func__, __LINE__, grp); 1564 1565 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 1566 1567 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1568 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); 1569 1570 /* ************************************************************** */ 1571 /* * Step 0 : Determine number of delay taps for each phase tap * */ 1572 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1573 1574 /* ********************************************************* */ 1575 /* * Step 1 : First push vfifo until we get a failing read * */ 1576 v = find_vfifo_read(grp, &bit_chk); 1577 1578 max_working_cnt = 0; 1579 1580 /* ******************************************************** */ 1581 /* * step 2: find first working phase, increment in ptaps * */ 1582 work_bgn = 0; 1583 if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d, 1584 &p, &i, &max_working_cnt) == 0) 1585 return 0; 1586 1587 work_end = work_bgn; 1588 1589 /* 1590 * If d is 0 then the working window covers a phase tap and 1591 * we can follow the old procedure otherwise, we've found the beginning, 1592 * and we need to increment the dtaps until we find the end. 1593 */ 1594 if (d == 0) { 1595 /* ********************************************************* */ 1596 /* * step 3a: if we have room, back off by one and 1597 increment in dtaps * */ 1598 1599 sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1600 &max_working_cnt); 1601 1602 /* ********************************************************* */ 1603 /* * step 4a: go forward from working phase to non working 1604 phase, increment in ptaps * */ 1605 if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1606 &i, &max_working_cnt, &work_end) == 0) 1607 return 0; 1608 1609 /* ********************************************************* */ 1610 /* * step 5a: back off one from last, increment in dtaps * */ 1611 1612 /* Special case code for backing up a phase */ 1613 if (p == 0) { 1614 p = IO_DQS_EN_PHASE_MAX; 1615 rw_mgr_decr_vfifo(grp, &v); 1616 } else { 1617 p = p - 1; 1618 } 1619 1620 work_end -= IO_DELAY_PER_OPA_TAP; 1621 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1622 1623 /* * The actual increment of dtaps is done outside of 1624 the if/else loop to share code */ 1625 d = 0; 1626 1627 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \ 1628 vfifo=%u ptap=%u\n", __func__, __LINE__, 1629 v, p); 1630 } else { 1631 /* ******************************************************* */ 1632 /* * step 3-5b: Find the right edge of the window using 1633 delay taps * */ 1634 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \ 1635 ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__, 1636 v, p, d, work_bgn); 1637 1638 work_end = work_bgn; 1639 1640 /* * The actual increment of dtaps is done outside of the 1641 if/else loop to share code */ 1642 1643 /* Only here to counterbalance a subtract later on which is 1644 not needed if this branch of the algorithm is taken */ 1645 max_working_cnt++; 1646 } 1647 1648 /* The dtap increment to find the failing edge is done here */ 1649 for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end += 1650 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1651 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1652 end-2: dtap=%u\n", __func__, __LINE__, d); 1653 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1654 1655 if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1656 PASS_ONE_BIT, 1657 &bit_chk, 0)) { 1658 break; 1659 } 1660 } 1661 1662 /* Go back to working dtap */ 1663 if (d != 0) 1664 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1665 1666 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \ 1667 ptap=%u dtap=%u end=%u\n", __func__, __LINE__, 1668 v, p, d-1, work_end); 1669 1670 if (work_end < work_bgn) { 1671 /* nil range */ 1672 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \ 1673 failed\n", __func__, __LINE__); 1674 return 0; 1675 } 1676 1677 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n", 1678 __func__, __LINE__, work_bgn, work_end); 1679 1680 /* *************************************************************** */ 1681 /* 1682 * * We need to calculate the number of dtaps that equal a ptap 1683 * * To do that we'll back up a ptap and re-find the edge of the 1684 * * window using dtaps 1685 */ 1686 1687 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \ 1688 for tracking\n", __func__, __LINE__); 1689 1690 /* Special case code for backing up a phase */ 1691 if (p == 0) { 1692 p = IO_DQS_EN_PHASE_MAX; 1693 rw_mgr_decr_vfifo(grp, &v); 1694 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1695 cycle/phase: v=%u p=%u\n", __func__, __LINE__, 1696 v, p); 1697 } else { 1698 p = p - 1; 1699 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1700 phase only: v=%u p=%u", __func__, __LINE__, 1701 v, p); 1702 } 1703 1704 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1705 1706 /* 1707 * Increase dtap until we first see a passing read (in case the 1708 * window is smaller than a ptap), 1709 * and then a failing read to mark the edge of the window again 1710 */ 1711 1712 /* Find a passing read */ 1713 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n", 1714 __func__, __LINE__); 1715 found_passing_read = 0; 1716 found_failing_read = 0; 1717 initial_failing_dtap = d; 1718 for (; d <= IO_DQS_EN_DELAY_MAX; d++) { 1719 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \ 1720 read d=%u\n", __func__, __LINE__, d); 1721 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1722 1723 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1724 PASS_ONE_BIT, 1725 &bit_chk, 0)) { 1726 found_passing_read = 1; 1727 break; 1728 } 1729 } 1730 1731 if (found_passing_read) { 1732 /* Find a failing read */ 1733 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \ 1734 read\n", __func__, __LINE__); 1735 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) { 1736 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1737 testing read d=%u\n", __func__, __LINE__, d); 1738 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1739 1740 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1741 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { 1742 found_failing_read = 1; 1743 break; 1744 } 1745 } 1746 } else { 1747 debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \ 1748 calculate dtaps", __func__, __LINE__); 1749 debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n"); 1750 } 1751 1752 /* 1753 * The dynamically calculated dtaps_per_ptap is only valid if we 1754 * found a passing/failing read. If we didn't, it means d hit the max 1755 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its 1756 * statically calculated value. 1757 */ 1758 if (found_passing_read && found_failing_read) 1759 dtaps_per_ptap = d - initial_failing_dtap; 1760 1761 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 1762 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \ 1763 - %u = %u", __func__, __LINE__, d, 1764 initial_failing_dtap, dtaps_per_ptap); 1765 1766 /* ******************************************** */ 1767 /* * step 6: Find the centre of the window * */ 1768 if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1769 &work_mid, &work_end) == 0) 1770 return 0; 1771 1772 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \ 1773 vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__, 1774 v, p-1, d); 1775 return 1; 1776 } 1777 1778 /* 1779 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different 1780 * dq_in_delay values 1781 */ 1782 static uint32_t 1783 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay 1784 (uint32_t write_group, uint32_t read_group, uint32_t test_bgn) 1785 { 1786 uint32_t found; 1787 uint32_t i; 1788 uint32_t p; 1789 uint32_t d; 1790 uint32_t r; 1791 1792 const uint32_t delay_step = IO_IO_IN_DELAY_MAX / 1793 (RW_MGR_MEM_DQ_PER_READ_DQS-1); 1794 /* we start at zero, so have one less dq to devide among */ 1795 1796 debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group, 1797 test_bgn); 1798 1799 /* try different dq_in_delays since the dq path is shorter than dqs */ 1800 1801 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 1802 r += NUM_RANKS_PER_SHADOW_REG) { 1803 for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; 1804 i++, p++, d += delay_step) { 1805 debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\ 1806 vfifo_find_dqs_", __func__, __LINE__); 1807 debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ", 1808 write_group, read_group); 1809 debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d); 1810 scc_mgr_set_dq_in_delay(p, d); 1811 scc_mgr_load_dq(p); 1812 } 1813 writel(0, &sdr_scc_mgr->update); 1814 } 1815 1816 found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group); 1817 1818 debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\ 1819 en_phase_sweep_dq", __func__, __LINE__); 1820 debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \ 1821 chain to zero\n", write_group, read_group, found); 1822 1823 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 1824 r += NUM_RANKS_PER_SHADOW_REG) { 1825 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; 1826 i++, p++) { 1827 scc_mgr_set_dq_in_delay(p, 0); 1828 scc_mgr_load_dq(p); 1829 } 1830 writel(0, &sdr_scc_mgr->update); 1831 } 1832 1833 return found; 1834 } 1835 1836 /* per-bit deskew DQ and center */ 1837 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn, 1838 uint32_t write_group, uint32_t read_group, uint32_t test_bgn, 1839 uint32_t use_read_test, uint32_t update_fom) 1840 { 1841 uint32_t i, p, d, min_index; 1842 /* 1843 * Store these as signed since there are comparisons with 1844 * signed numbers. 1845 */ 1846 uint32_t bit_chk; 1847 uint32_t sticky_bit_chk; 1848 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1849 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1850 int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS]; 1851 int32_t mid; 1852 int32_t orig_mid_min, mid_min; 1853 int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs, 1854 final_dqs_en; 1855 int32_t dq_margin, dqs_margin; 1856 uint32_t stop; 1857 uint32_t temp_dq_in_delay1, temp_dq_in_delay2; 1858 uint32_t addr; 1859 1860 debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn); 1861 1862 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET; 1863 start_dqs = readl(addr + (read_group << 2)); 1864 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 1865 start_dqs_en = readl(addr + ((read_group << 2) 1866 - IO_DQS_EN_DELAY_OFFSET)); 1867 1868 /* set the left and right edge of each bit to an illegal value */ 1869 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */ 1870 sticky_bit_chk = 0; 1871 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1872 left_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1873 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1874 } 1875 1876 /* Search for the left edge of the window for each bit */ 1877 for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) { 1878 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d); 1879 1880 writel(0, &sdr_scc_mgr->update); 1881 1882 /* 1883 * Stop searching when the read test doesn't pass AND when 1884 * we've seen a passing read on every bit. 1885 */ 1886 if (use_read_test) { 1887 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1888 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1889 &bit_chk, 0, 0); 1890 } else { 1891 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1892 0, PASS_ONE_BIT, 1893 &bit_chk, 0); 1894 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1895 (read_group - (write_group * 1896 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1897 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1898 stop = (bit_chk == 0); 1899 } 1900 sticky_bit_chk = sticky_bit_chk | bit_chk; 1901 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1902 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \ 1903 && %u", __func__, __LINE__, d, 1904 sticky_bit_chk, 1905 param->read_correct_mask, stop); 1906 1907 if (stop == 1) { 1908 break; 1909 } else { 1910 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1911 if (bit_chk & 1) { 1912 /* Remember a passing test as the 1913 left_edge */ 1914 left_edge[i] = d; 1915 } else { 1916 /* If a left edge has not been seen yet, 1917 then a future passing test will mark 1918 this edge as the right edge */ 1919 if (left_edge[i] == 1920 IO_IO_IN_DELAY_MAX + 1) { 1921 right_edge[i] = -(d + 1); 1922 } 1923 } 1924 bit_chk = bit_chk >> 1; 1925 } 1926 } 1927 } 1928 1929 /* Reset DQ delay chains to 0 */ 1930 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, 0); 1931 sticky_bit_chk = 0; 1932 for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) { 1933 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 1934 %d right_edge[%u]: %d\n", __func__, __LINE__, 1935 i, left_edge[i], i, right_edge[i]); 1936 1937 /* 1938 * Check for cases where we haven't found the left edge, 1939 * which makes our assignment of the the right edge invalid. 1940 * Reset it to the illegal value. 1941 */ 1942 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && ( 1943 right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1944 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1945 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \ 1946 right_edge[%u]: %d\n", __func__, __LINE__, 1947 i, right_edge[i]); 1948 } 1949 1950 /* 1951 * Reset sticky bit (except for bits where we have seen 1952 * both the left and right edge). 1953 */ 1954 sticky_bit_chk = sticky_bit_chk << 1; 1955 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) && 1956 (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1957 sticky_bit_chk = sticky_bit_chk | 1; 1958 } 1959 1960 if (i == 0) 1961 break; 1962 } 1963 1964 /* Search for the right edge of the window for each bit */ 1965 for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) { 1966 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs); 1967 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 1968 uint32_t delay = d + start_dqs_en; 1969 if (delay > IO_DQS_EN_DELAY_MAX) 1970 delay = IO_DQS_EN_DELAY_MAX; 1971 scc_mgr_set_dqs_en_delay(read_group, delay); 1972 } 1973 scc_mgr_load_dqs(read_group); 1974 1975 writel(0, &sdr_scc_mgr->update); 1976 1977 /* 1978 * Stop searching when the read test doesn't pass AND when 1979 * we've seen a passing read on every bit. 1980 */ 1981 if (use_read_test) { 1982 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1983 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1984 &bit_chk, 0, 0); 1985 } else { 1986 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1987 0, PASS_ONE_BIT, 1988 &bit_chk, 0); 1989 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1990 (read_group - (write_group * 1991 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1992 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1993 stop = (bit_chk == 0); 1994 } 1995 sticky_bit_chk = sticky_bit_chk | bit_chk; 1996 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1997 1998 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \ 1999 %u && %u", __func__, __LINE__, d, 2000 sticky_bit_chk, param->read_correct_mask, stop); 2001 2002 if (stop == 1) { 2003 break; 2004 } else { 2005 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2006 if (bit_chk & 1) { 2007 /* Remember a passing test as 2008 the right_edge */ 2009 right_edge[i] = d; 2010 } else { 2011 if (d != 0) { 2012 /* If a right edge has not been 2013 seen yet, then a future passing 2014 test will mark this edge as the 2015 left edge */ 2016 if (right_edge[i] == 2017 IO_IO_IN_DELAY_MAX + 1) { 2018 left_edge[i] = -(d + 1); 2019 } 2020 } else { 2021 /* d = 0 failed, but it passed 2022 when testing the left edge, 2023 so it must be marginal, 2024 set it to -1 */ 2025 if (right_edge[i] == 2026 IO_IO_IN_DELAY_MAX + 1 && 2027 left_edge[i] != 2028 IO_IO_IN_DELAY_MAX 2029 + 1) { 2030 right_edge[i] = -1; 2031 } 2032 /* If a right edge has not been 2033 seen yet, then a future passing 2034 test will mark this edge as the 2035 left edge */ 2036 else if (right_edge[i] == 2037 IO_IO_IN_DELAY_MAX + 2038 1) { 2039 left_edge[i] = -(d + 1); 2040 } 2041 } 2042 } 2043 2044 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\ 2045 d=%u]: ", __func__, __LINE__, d); 2046 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ", 2047 (int)(bit_chk & 1), i, left_edge[i]); 2048 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2049 right_edge[i]); 2050 bit_chk = bit_chk >> 1; 2051 } 2052 } 2053 } 2054 2055 /* Check that all bits have a window */ 2056 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2057 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 2058 %d right_edge[%u]: %d", __func__, __LINE__, 2059 i, left_edge[i], i, right_edge[i]); 2060 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i] 2061 == IO_IO_IN_DELAY_MAX + 1)) { 2062 /* 2063 * Restore delay chain settings before letting the loop 2064 * in rw_mgr_mem_calibrate_vfifo to retry different 2065 * dqs/ck relationships. 2066 */ 2067 scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs); 2068 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2069 scc_mgr_set_dqs_en_delay(read_group, 2070 start_dqs_en); 2071 } 2072 scc_mgr_load_dqs(read_group); 2073 writel(0, &sdr_scc_mgr->update); 2074 2075 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \ 2076 find edge [%u]: %d %d", __func__, __LINE__, 2077 i, left_edge[i], right_edge[i]); 2078 if (use_read_test) { 2079 set_failing_group_stage(read_group * 2080 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2081 CAL_STAGE_VFIFO, 2082 CAL_SUBSTAGE_VFIFO_CENTER); 2083 } else { 2084 set_failing_group_stage(read_group * 2085 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2086 CAL_STAGE_VFIFO_AFTER_WRITES, 2087 CAL_SUBSTAGE_VFIFO_CENTER); 2088 } 2089 return 0; 2090 } 2091 } 2092 2093 /* Find middle of window for each DQ bit */ 2094 mid_min = left_edge[0] - right_edge[0]; 2095 min_index = 0; 2096 for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2097 mid = left_edge[i] - right_edge[i]; 2098 if (mid < mid_min) { 2099 mid_min = mid; 2100 min_index = i; 2101 } 2102 } 2103 2104 /* 2105 * -mid_min/2 represents the amount that we need to move DQS. 2106 * If mid_min is odd and positive we'll need to add one to 2107 * make sure the rounding in further calculations is correct 2108 * (always bias to the right), so just add 1 for all positive values. 2109 */ 2110 if (mid_min > 0) 2111 mid_min++; 2112 2113 mid_min = mid_min / 2; 2114 2115 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n", 2116 __func__, __LINE__, mid_min, min_index); 2117 2118 /* Determine the amount we can change DQS (which is -mid_min) */ 2119 orig_mid_min = mid_min; 2120 new_dqs = start_dqs - mid_min; 2121 if (new_dqs > IO_DQS_IN_DELAY_MAX) 2122 new_dqs = IO_DQS_IN_DELAY_MAX; 2123 else if (new_dqs < 0) 2124 new_dqs = 0; 2125 2126 mid_min = start_dqs - new_dqs; 2127 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n", 2128 mid_min, new_dqs); 2129 2130 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2131 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX) 2132 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX; 2133 else if (start_dqs_en - mid_min < 0) 2134 mid_min += start_dqs_en - mid_min; 2135 } 2136 new_dqs = start_dqs - mid_min; 2137 2138 debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \ 2139 new_dqs=%d mid_min=%d\n", start_dqs, 2140 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1, 2141 new_dqs, mid_min); 2142 2143 /* Initialize data for export structures */ 2144 dqs_margin = IO_IO_IN_DELAY_MAX + 1; 2145 dq_margin = IO_IO_IN_DELAY_MAX + 1; 2146 2147 /* add delay to bring centre of all DQ windows to the same "level" */ 2148 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 2149 /* Use values before divide by 2 to reduce round off error */ 2150 shift_dq = (left_edge[i] - right_edge[i] - 2151 (left_edge[min_index] - right_edge[min_index]))/2 + 2152 (orig_mid_min - mid_min); 2153 2154 debug_cond(DLEVEL == 2, "vfifo_center: before: \ 2155 shift_dq[%u]=%d\n", i, shift_dq); 2156 2157 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET; 2158 temp_dq_in_delay1 = readl(addr + (p << 2)); 2159 temp_dq_in_delay2 = readl(addr + (i << 2)); 2160 2161 if (shift_dq + (int32_t)temp_dq_in_delay1 > 2162 (int32_t)IO_IO_IN_DELAY_MAX) { 2163 shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2; 2164 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) { 2165 shift_dq = -(int32_t)temp_dq_in_delay1; 2166 } 2167 debug_cond(DLEVEL == 2, "vfifo_center: after: \ 2168 shift_dq[%u]=%d\n", i, shift_dq); 2169 final_dq[i] = temp_dq_in_delay1 + shift_dq; 2170 scc_mgr_set_dq_in_delay(p, final_dq[i]); 2171 scc_mgr_load_dq(p); 2172 2173 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i, 2174 left_edge[i] - shift_dq + (-mid_min), 2175 right_edge[i] + shift_dq - (-mid_min)); 2176 /* To determine values for export structures */ 2177 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2178 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2179 2180 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2181 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2182 } 2183 2184 final_dqs = new_dqs; 2185 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2186 final_dqs_en = start_dqs_en - mid_min; 2187 2188 /* Move DQS-en */ 2189 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2190 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en); 2191 scc_mgr_load_dqs(read_group); 2192 } 2193 2194 /* Move DQS */ 2195 scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs); 2196 scc_mgr_load_dqs(read_group); 2197 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \ 2198 dqs_margin=%d", __func__, __LINE__, 2199 dq_margin, dqs_margin); 2200 2201 /* 2202 * Do not remove this line as it makes sure all of our decisions 2203 * have been applied. Apply the update bit. 2204 */ 2205 writel(0, &sdr_scc_mgr->update); 2206 2207 return (dq_margin >= 0) && (dqs_margin >= 0); 2208 } 2209 2210 /* 2211 * calibrate the read valid prediction FIFO. 2212 * 2213 * - read valid prediction will consist of finding a good DQS enable phase, 2214 * DQS enable delay, DQS input phase, and DQS input delay. 2215 * - we also do a per-bit deskew on the DQ lines. 2216 */ 2217 static uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t read_group, 2218 uint32_t test_bgn) 2219 { 2220 uint32_t p, d, rank_bgn, sr; 2221 uint32_t dtaps_per_ptap; 2222 uint32_t tmp_delay; 2223 uint32_t bit_chk; 2224 uint32_t grp_calibrated; 2225 uint32_t write_group, write_test_bgn; 2226 uint32_t failed_substage; 2227 2228 debug("%s:%d: %u %u\n", __func__, __LINE__, read_group, test_bgn); 2229 2230 /* update info for sims */ 2231 reg_file_set_stage(CAL_STAGE_VFIFO); 2232 2233 write_group = read_group; 2234 write_test_bgn = test_bgn; 2235 2236 /* USER Determine number of delay taps for each phase tap */ 2237 dtaps_per_ptap = 0; 2238 tmp_delay = 0; 2239 while (tmp_delay < IO_DELAY_PER_OPA_TAP) { 2240 dtaps_per_ptap++; 2241 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 2242 } 2243 dtaps_per_ptap--; 2244 tmp_delay = 0; 2245 2246 /* update info for sims */ 2247 reg_file_set_group(read_group); 2248 2249 grp_calibrated = 0; 2250 2251 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ); 2252 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ; 2253 2254 for (d = 0; d <= dtaps_per_ptap && grp_calibrated == 0; d += 2) { 2255 /* 2256 * In RLDRAMX we may be messing the delay of pins in 2257 * the same write group but outside of the current read 2258 * the group, but that's ok because we haven't 2259 * calibrated output side yet. 2260 */ 2261 if (d > 0) { 2262 scc_mgr_apply_group_all_out_delay_add_all_ranks 2263 (write_group, write_test_bgn, d); 2264 } 2265 2266 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0; 2267 p++) { 2268 /* set a particular dqdqs phase */ 2269 scc_mgr_set_dqdqs_output_phase_all_ranks(read_group, p); 2270 2271 debug_cond(DLEVEL == 1, "%s:%d calibrate_vfifo: g=%u \ 2272 p=%u d=%u\n", __func__, __LINE__, 2273 read_group, p, d); 2274 2275 /* 2276 * Load up the patterns used by read calibration 2277 * using current DQDQS phase. 2278 */ 2279 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2280 if (!(gbl->phy_debug_mode_flags & 2281 PHY_DEBUG_DISABLE_GUARANTEED_READ)) { 2282 if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks 2283 (read_group, 1, &bit_chk)) { 2284 debug_cond(DLEVEL == 1, "%s:%d Guaranteed read test failed:", 2285 __func__, __LINE__); 2286 debug_cond(DLEVEL == 1, " g=%u p=%u d=%u\n", 2287 read_group, p, d); 2288 break; 2289 } 2290 } 2291 2292 /* case:56390 */ 2293 grp_calibrated = 1; 2294 if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay 2295 (write_group, read_group, test_bgn)) { 2296 /* 2297 * USER Read per-bit deskew can be done on a 2298 * per shadow register basis. 2299 */ 2300 for (rank_bgn = 0, sr = 0; 2301 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2302 rank_bgn += NUM_RANKS_PER_SHADOW_REG, 2303 ++sr) { 2304 /* 2305 * Determine if this set of ranks 2306 * should be skipped entirely. 2307 */ 2308 if (!param->skip_shadow_regs[sr]) { 2309 /* 2310 * If doing read after write 2311 * calibration, do not update 2312 * FOM, now - do it then. 2313 */ 2314 if (!rw_mgr_mem_calibrate_vfifo_center 2315 (rank_bgn, write_group, 2316 read_group, test_bgn, 1, 0)) { 2317 grp_calibrated = 0; 2318 failed_substage = 2319 CAL_SUBSTAGE_VFIFO_CENTER; 2320 } 2321 } 2322 } 2323 } else { 2324 grp_calibrated = 0; 2325 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE; 2326 } 2327 } 2328 } 2329 2330 if (grp_calibrated == 0) { 2331 set_failing_group_stage(write_group, CAL_STAGE_VFIFO, 2332 failed_substage); 2333 return 0; 2334 } 2335 2336 /* 2337 * Reset the delay chains back to zero if they have moved > 1 2338 * (check for > 1 because loop will increase d even when pass in 2339 * first case). 2340 */ 2341 if (d > 2) 2342 scc_mgr_zero_group(write_group, write_test_bgn, 1); 2343 2344 return 1; 2345 } 2346 2347 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */ 2348 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group, 2349 uint32_t test_bgn) 2350 { 2351 uint32_t rank_bgn, sr; 2352 uint32_t grp_calibrated; 2353 uint32_t write_group; 2354 2355 debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn); 2356 2357 /* update info for sims */ 2358 2359 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES); 2360 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 2361 2362 write_group = read_group; 2363 2364 /* update info for sims */ 2365 reg_file_set_group(read_group); 2366 2367 grp_calibrated = 1; 2368 /* Read per-bit deskew can be done on a per shadow register basis */ 2369 for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2370 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) { 2371 /* Determine if this set of ranks should be skipped entirely */ 2372 if (!param->skip_shadow_regs[sr]) { 2373 /* This is the last calibration round, update FOM here */ 2374 if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn, 2375 write_group, 2376 read_group, 2377 test_bgn, 0, 2378 1)) { 2379 grp_calibrated = 0; 2380 } 2381 } 2382 } 2383 2384 2385 if (grp_calibrated == 0) { 2386 set_failing_group_stage(write_group, 2387 CAL_STAGE_VFIFO_AFTER_WRITES, 2388 CAL_SUBSTAGE_VFIFO_CENTER); 2389 return 0; 2390 } 2391 2392 return 1; 2393 } 2394 2395 /* Calibrate LFIFO to find smallest read latency */ 2396 static uint32_t rw_mgr_mem_calibrate_lfifo(void) 2397 { 2398 uint32_t found_one; 2399 uint32_t bit_chk; 2400 2401 debug("%s:%d\n", __func__, __LINE__); 2402 2403 /* update info for sims */ 2404 reg_file_set_stage(CAL_STAGE_LFIFO); 2405 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY); 2406 2407 /* Load up the patterns used by read calibration for all ranks */ 2408 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2409 found_one = 0; 2410 2411 do { 2412 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2413 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u", 2414 __func__, __LINE__, gbl->curr_read_lat); 2415 2416 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, 2417 NUM_READ_TESTS, 2418 PASS_ALL_BITS, 2419 &bit_chk, 1)) { 2420 break; 2421 } 2422 2423 found_one = 1; 2424 /* reduce read latency and see if things are working */ 2425 /* correctly */ 2426 gbl->curr_read_lat--; 2427 } while (gbl->curr_read_lat > 0); 2428 2429 /* reset the fifos to get pointers to known state */ 2430 2431 writel(0, &phy_mgr_cmd->fifo_reset); 2432 2433 if (found_one) { 2434 /* add a fudge factor to the read latency that was determined */ 2435 gbl->curr_read_lat += 2; 2436 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2437 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \ 2438 read_lat=%u\n", __func__, __LINE__, 2439 gbl->curr_read_lat); 2440 return 1; 2441 } else { 2442 set_failing_group_stage(0xff, CAL_STAGE_LFIFO, 2443 CAL_SUBSTAGE_READ_LATENCY); 2444 2445 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \ 2446 read_lat=%u\n", __func__, __LINE__, 2447 gbl->curr_read_lat); 2448 return 0; 2449 } 2450 } 2451 2452 /* 2453 * issue write test command. 2454 * two variants are provided. one that just tests a write pattern and 2455 * another that tests datamask functionality. 2456 */ 2457 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group, 2458 uint32_t test_dm) 2459 { 2460 uint32_t mcc_instruction; 2461 uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) && 2462 ENABLE_SUPER_QUICK_CALIBRATION); 2463 uint32_t rw_wl_nop_cycles; 2464 uint32_t addr; 2465 2466 /* 2467 * Set counter and jump addresses for the right 2468 * number of NOP cycles. 2469 * The number of supported NOP cycles can range from -1 to infinity 2470 * Three different cases are handled: 2471 * 2472 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping 2473 * mechanism will be used to insert the right number of NOPs 2474 * 2475 * 2. For a number of NOP cycles equals to 0, the micro-instruction 2476 * issuing the write command will jump straight to the 2477 * micro-instruction that turns on DQS (for DDRx), or outputs write 2478 * data (for RLD), skipping 2479 * the NOP micro-instruction all together 2480 * 2481 * 3. A number of NOP cycles equal to -1 indicates that DQS must be 2482 * turned on in the same micro-instruction that issues the write 2483 * command. Then we need 2484 * to directly jump to the micro-instruction that sends out the data 2485 * 2486 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters 2487 * (2 and 3). One jump-counter (0) is used to perform multiple 2488 * write-read operations. 2489 * one counter left to issue this command in "multiple-group" mode 2490 */ 2491 2492 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles; 2493 2494 if (rw_wl_nop_cycles == -1) { 2495 /* 2496 * CNTR 2 - We want to execute the special write operation that 2497 * turns on DQS right away and then skip directly to the 2498 * instruction that sends out the data. We set the counter to a 2499 * large number so that the jump is always taken. 2500 */ 2501 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2502 2503 /* CNTR 3 - Not used */ 2504 if (test_dm) { 2505 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1; 2506 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA, 2507 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2508 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2509 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2510 } else { 2511 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1; 2512 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA, 2513 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2514 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2515 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2516 } 2517 } else if (rw_wl_nop_cycles == 0) { 2518 /* 2519 * CNTR 2 - We want to skip the NOP operation and go straight 2520 * to the DQS enable instruction. We set the counter to a large 2521 * number so that the jump is always taken. 2522 */ 2523 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2524 2525 /* CNTR 3 - Not used */ 2526 if (test_dm) { 2527 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2528 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS, 2529 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2530 } else { 2531 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2532 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS, 2533 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2534 } 2535 } else { 2536 /* 2537 * CNTR 2 - In this case we want to execute the next instruction 2538 * and NOT take the jump. So we set the counter to 0. The jump 2539 * address doesn't count. 2540 */ 2541 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2); 2542 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2543 2544 /* 2545 * CNTR 3 - Set the nop counter to the number of cycles we 2546 * need to loop for, minus 1. 2547 */ 2548 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3); 2549 if (test_dm) { 2550 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2551 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2552 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2553 } else { 2554 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2555 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2556 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2557 } 2558 } 2559 2560 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 2561 RW_MGR_RESET_READ_DATAPATH_OFFSET); 2562 2563 if (quick_write_mode) 2564 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0); 2565 else 2566 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0); 2567 2568 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 2569 2570 /* 2571 * CNTR 1 - This is used to ensure enough time elapses 2572 * for read data to come back. 2573 */ 2574 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1); 2575 2576 if (test_dm) { 2577 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT, 2578 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2579 } else { 2580 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT, 2581 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2582 } 2583 2584 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 2585 writel(mcc_instruction, addr + (group << 2)); 2586 } 2587 2588 /* Test writes, can check for a single bit pass or multiple bit pass */ 2589 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 2590 uint32_t write_group, uint32_t use_dm, uint32_t all_correct, 2591 uint32_t *bit_chk, uint32_t all_ranks) 2592 { 2593 uint32_t r; 2594 uint32_t correct_mask_vg; 2595 uint32_t tmp_bit_chk; 2596 uint32_t vg; 2597 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 2598 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 2599 uint32_t addr_rw_mgr; 2600 uint32_t base_rw_mgr; 2601 2602 *bit_chk = param->write_correct_mask; 2603 correct_mask_vg = param->write_correct_mask_vg; 2604 2605 for (r = rank_bgn; r < rank_end; r++) { 2606 if (param->skip_ranks[r]) { 2607 /* request to skip the rank */ 2608 continue; 2609 } 2610 2611 /* set rank */ 2612 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 2613 2614 tmp_bit_chk = 0; 2615 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS; 2616 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) { 2617 /* reset the fifos to get pointers to known state */ 2618 writel(0, &phy_mgr_cmd->fifo_reset); 2619 2620 tmp_bit_chk = tmp_bit_chk << 2621 (RW_MGR_MEM_DQ_PER_WRITE_DQS / 2622 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 2623 rw_mgr_mem_calibrate_write_test_issue(write_group * 2624 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg, 2625 use_dm); 2626 2627 base_rw_mgr = readl(addr_rw_mgr); 2628 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 2629 if (vg == 0) 2630 break; 2631 } 2632 *bit_chk &= tmp_bit_chk; 2633 } 2634 2635 if (all_correct) { 2636 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2637 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \ 2638 %u => %lu", write_group, use_dm, 2639 *bit_chk, param->write_correct_mask, 2640 (long unsigned int)(*bit_chk == 2641 param->write_correct_mask)); 2642 return *bit_chk == param->write_correct_mask; 2643 } else { 2644 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2645 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ", 2646 write_group, use_dm, *bit_chk); 2647 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0, 2648 (long unsigned int)(*bit_chk != 0)); 2649 return *bit_chk != 0x00; 2650 } 2651 } 2652 2653 /* 2654 * center all windows. do per-bit-deskew to possibly increase size of 2655 * certain windows. 2656 */ 2657 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn, 2658 uint32_t write_group, uint32_t test_bgn) 2659 { 2660 uint32_t i, p, min_index; 2661 int32_t d; 2662 /* 2663 * Store these as signed since there are comparisons with 2664 * signed numbers. 2665 */ 2666 uint32_t bit_chk; 2667 uint32_t sticky_bit_chk; 2668 int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2669 int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2670 int32_t mid; 2671 int32_t mid_min, orig_mid_min; 2672 int32_t new_dqs, start_dqs, shift_dq; 2673 int32_t dq_margin, dqs_margin, dm_margin; 2674 uint32_t stop; 2675 uint32_t temp_dq_out1_delay; 2676 uint32_t addr; 2677 2678 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn); 2679 2680 dm_margin = 0; 2681 2682 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2683 start_dqs = readl(addr + 2684 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 2685 2686 /* per-bit deskew */ 2687 2688 /* 2689 * set the left and right edge of each bit to an illegal value 2690 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 2691 */ 2692 sticky_bit_chk = 0; 2693 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2694 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2695 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2696 } 2697 2698 /* Search for the left edge of the window for each bit */ 2699 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) { 2700 scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, d); 2701 2702 writel(0, &sdr_scc_mgr->update); 2703 2704 /* 2705 * Stop searching when the read test doesn't pass AND when 2706 * we've seen a passing read on every bit. 2707 */ 2708 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2709 0, PASS_ONE_BIT, &bit_chk, 0); 2710 sticky_bit_chk = sticky_bit_chk | bit_chk; 2711 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2712 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \ 2713 == %u && %u [bit_chk= %u ]\n", 2714 d, sticky_bit_chk, param->write_correct_mask, 2715 stop, bit_chk); 2716 2717 if (stop == 1) { 2718 break; 2719 } else { 2720 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2721 if (bit_chk & 1) { 2722 /* 2723 * Remember a passing test as the 2724 * left_edge. 2725 */ 2726 left_edge[i] = d; 2727 } else { 2728 /* 2729 * If a left edge has not been seen 2730 * yet, then a future passing test will 2731 * mark this edge as the right edge. 2732 */ 2733 if (left_edge[i] == 2734 IO_IO_OUT1_DELAY_MAX + 1) { 2735 right_edge[i] = -(d + 1); 2736 } 2737 } 2738 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d); 2739 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2740 (int)(bit_chk & 1), i, left_edge[i]); 2741 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2742 right_edge[i]); 2743 bit_chk = bit_chk >> 1; 2744 } 2745 } 2746 } 2747 2748 /* Reset DQ delay chains to 0 */ 2749 scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, 0); 2750 sticky_bit_chk = 0; 2751 for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) { 2752 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2753 %d right_edge[%u]: %d\n", __func__, __LINE__, 2754 i, left_edge[i], i, right_edge[i]); 2755 2756 /* 2757 * Check for cases where we haven't found the left edge, 2758 * which makes our assignment of the the right edge invalid. 2759 * Reset it to the illegal value. 2760 */ 2761 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) && 2762 (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) { 2763 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2764 debug_cond(DLEVEL == 2, "%s:%d write_center: reset \ 2765 right_edge[%u]: %d\n", __func__, __LINE__, 2766 i, right_edge[i]); 2767 } 2768 2769 /* 2770 * Reset sticky bit (except for bits where we have 2771 * seen the left edge). 2772 */ 2773 sticky_bit_chk = sticky_bit_chk << 1; 2774 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) 2775 sticky_bit_chk = sticky_bit_chk | 1; 2776 2777 if (i == 0) 2778 break; 2779 } 2780 2781 /* Search for the right edge of the window for each bit */ 2782 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) { 2783 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2784 d + start_dqs); 2785 2786 writel(0, &sdr_scc_mgr->update); 2787 2788 /* 2789 * Stop searching when the read test doesn't pass AND when 2790 * we've seen a passing read on every bit. 2791 */ 2792 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2793 0, PASS_ONE_BIT, &bit_chk, 0); 2794 2795 sticky_bit_chk = sticky_bit_chk | bit_chk; 2796 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2797 2798 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \ 2799 %u && %u\n", d, sticky_bit_chk, 2800 param->write_correct_mask, stop); 2801 2802 if (stop == 1) { 2803 if (d == 0) { 2804 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; 2805 i++) { 2806 /* d = 0 failed, but it passed when 2807 testing the left edge, so it must be 2808 marginal, set it to -1 */ 2809 if (right_edge[i] == 2810 IO_IO_OUT1_DELAY_MAX + 1 && 2811 left_edge[i] != 2812 IO_IO_OUT1_DELAY_MAX + 1) { 2813 right_edge[i] = -1; 2814 } 2815 } 2816 } 2817 break; 2818 } else { 2819 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2820 if (bit_chk & 1) { 2821 /* 2822 * Remember a passing test as 2823 * the right_edge. 2824 */ 2825 right_edge[i] = d; 2826 } else { 2827 if (d != 0) { 2828 /* 2829 * If a right edge has not 2830 * been seen yet, then a future 2831 * passing test will mark this 2832 * edge as the left edge. 2833 */ 2834 if (right_edge[i] == 2835 IO_IO_OUT1_DELAY_MAX + 1) 2836 left_edge[i] = -(d + 1); 2837 } else { 2838 /* 2839 * d = 0 failed, but it passed 2840 * when testing the left edge, 2841 * so it must be marginal, set 2842 * it to -1. 2843 */ 2844 if (right_edge[i] == 2845 IO_IO_OUT1_DELAY_MAX + 1 && 2846 left_edge[i] != 2847 IO_IO_OUT1_DELAY_MAX + 1) 2848 right_edge[i] = -1; 2849 /* 2850 * If a right edge has not been 2851 * seen yet, then a future 2852 * passing test will mark this 2853 * edge as the left edge. 2854 */ 2855 else if (right_edge[i] == 2856 IO_IO_OUT1_DELAY_MAX + 2857 1) 2858 left_edge[i] = -(d + 1); 2859 } 2860 } 2861 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d); 2862 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2863 (int)(bit_chk & 1), i, left_edge[i]); 2864 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2865 right_edge[i]); 2866 bit_chk = bit_chk >> 1; 2867 } 2868 } 2869 } 2870 2871 /* Check that all bits have a window */ 2872 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2873 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2874 %d right_edge[%u]: %d", __func__, __LINE__, 2875 i, left_edge[i], i, right_edge[i]); 2876 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) || 2877 (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) { 2878 set_failing_group_stage(test_bgn + i, 2879 CAL_STAGE_WRITES, 2880 CAL_SUBSTAGE_WRITES_CENTER); 2881 return 0; 2882 } 2883 } 2884 2885 /* Find middle of window for each DQ bit */ 2886 mid_min = left_edge[0] - right_edge[0]; 2887 min_index = 0; 2888 for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2889 mid = left_edge[i] - right_edge[i]; 2890 if (mid < mid_min) { 2891 mid_min = mid; 2892 min_index = i; 2893 } 2894 } 2895 2896 /* 2897 * -mid_min/2 represents the amount that we need to move DQS. 2898 * If mid_min is odd and positive we'll need to add one to 2899 * make sure the rounding in further calculations is correct 2900 * (always bias to the right), so just add 1 for all positive values. 2901 */ 2902 if (mid_min > 0) 2903 mid_min++; 2904 mid_min = mid_min / 2; 2905 debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__, 2906 __LINE__, mid_min); 2907 2908 /* Determine the amount we can change DQS (which is -mid_min) */ 2909 orig_mid_min = mid_min; 2910 new_dqs = start_dqs; 2911 mid_min = 0; 2912 debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \ 2913 mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min); 2914 /* Initialize data for export structures */ 2915 dqs_margin = IO_IO_OUT1_DELAY_MAX + 1; 2916 dq_margin = IO_IO_OUT1_DELAY_MAX + 1; 2917 2918 /* add delay to bring centre of all DQ windows to the same "level" */ 2919 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 2920 /* Use values before divide by 2 to reduce round off error */ 2921 shift_dq = (left_edge[i] - right_edge[i] - 2922 (left_edge[min_index] - right_edge[min_index]))/2 + 2923 (orig_mid_min - mid_min); 2924 2925 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \ 2926 [%u]=%d\n", __func__, __LINE__, i, shift_dq); 2927 2928 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2929 temp_dq_out1_delay = readl(addr + (i << 2)); 2930 if (shift_dq + (int32_t)temp_dq_out1_delay > 2931 (int32_t)IO_IO_OUT1_DELAY_MAX) { 2932 shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay; 2933 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) { 2934 shift_dq = -(int32_t)temp_dq_out1_delay; 2935 } 2936 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n", 2937 i, shift_dq); 2938 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq); 2939 scc_mgr_load_dq(i); 2940 2941 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i, 2942 left_edge[i] - shift_dq + (-mid_min), 2943 right_edge[i] + shift_dq - (-mid_min)); 2944 /* To determine values for export structures */ 2945 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2946 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2947 2948 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2949 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2950 } 2951 2952 /* Move DQS */ 2953 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 2954 writel(0, &sdr_scc_mgr->update); 2955 2956 /* Centre DM */ 2957 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__); 2958 2959 /* 2960 * set the left and right edge of each bit to an illegal value, 2961 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value, 2962 */ 2963 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 2964 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 2965 int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2966 int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2967 int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1; 2968 int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1; 2969 int32_t win_best = 0; 2970 2971 /* Search for the/part of the window with DM shift */ 2972 for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) { 2973 scc_mgr_apply_group_dm_out1_delay(write_group, d); 2974 writel(0, &sdr_scc_mgr->update); 2975 2976 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 2977 PASS_ALL_BITS, &bit_chk, 2978 0)) { 2979 /* USE Set current end of the window */ 2980 end_curr = -d; 2981 /* 2982 * If a starting edge of our window has not been seen 2983 * this is our current start of the DM window. 2984 */ 2985 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 2986 bgn_curr = -d; 2987 2988 /* 2989 * If current window is bigger than best seen. 2990 * Set best seen to be current window. 2991 */ 2992 if ((end_curr-bgn_curr+1) > win_best) { 2993 win_best = end_curr-bgn_curr+1; 2994 bgn_best = bgn_curr; 2995 end_best = end_curr; 2996 } 2997 } else { 2998 /* We just saw a failing test. Reset temp edge */ 2999 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3000 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3001 } 3002 } 3003 3004 3005 /* Reset DM delay chains to 0 */ 3006 scc_mgr_apply_group_dm_out1_delay(write_group, 0); 3007 3008 /* 3009 * Check to see if the current window nudges up aganist 0 delay. 3010 * If so we need to continue the search by shifting DQS otherwise DQS 3011 * search begins as a new search. */ 3012 if (end_curr != 0) { 3013 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3014 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3015 } 3016 3017 /* Search for the/part of the window with DQS shifts */ 3018 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) { 3019 /* 3020 * Note: This only shifts DQS, so are we limiting ourselve to 3021 * width of DQ unnecessarily. 3022 */ 3023 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 3024 d + new_dqs); 3025 3026 writel(0, &sdr_scc_mgr->update); 3027 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3028 PASS_ALL_BITS, &bit_chk, 3029 0)) { 3030 /* USE Set current end of the window */ 3031 end_curr = d; 3032 /* 3033 * If a beginning edge of our window has not been seen 3034 * this is our current begin of the DM window. 3035 */ 3036 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3037 bgn_curr = d; 3038 3039 /* 3040 * If current window is bigger than best seen. Set best 3041 * seen to be current window. 3042 */ 3043 if ((end_curr-bgn_curr+1) > win_best) { 3044 win_best = end_curr-bgn_curr+1; 3045 bgn_best = bgn_curr; 3046 end_best = end_curr; 3047 } 3048 } else { 3049 /* We just saw a failing test. Reset temp edge */ 3050 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3051 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3052 3053 /* Early exit optimization: if ther remaining delay 3054 chain space is less than already seen largest window 3055 we can exit */ 3056 if ((win_best-1) > 3057 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) { 3058 break; 3059 } 3060 } 3061 } 3062 3063 /* assign left and right edge for cal and reporting; */ 3064 left_edge[0] = -1*bgn_best; 3065 right_edge[0] = end_best; 3066 3067 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__, 3068 __LINE__, left_edge[0], right_edge[0]); 3069 3070 /* Move DQS (back to orig) */ 3071 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3072 3073 /* Move DM */ 3074 3075 /* Find middle of window for the DM bit */ 3076 mid = (left_edge[0] - right_edge[0]) / 2; 3077 3078 /* only move right, since we are not moving DQS/DQ */ 3079 if (mid < 0) 3080 mid = 0; 3081 3082 /* dm_marign should fail if we never find a window */ 3083 if (win_best == 0) 3084 dm_margin = -1; 3085 else 3086 dm_margin = left_edge[0] - mid; 3087 3088 scc_mgr_apply_group_dm_out1_delay(write_group, mid); 3089 writel(0, &sdr_scc_mgr->update); 3090 3091 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \ 3092 dm_margin=%d\n", __func__, __LINE__, left_edge[0], 3093 right_edge[0], mid, dm_margin); 3094 /* Export values */ 3095 gbl->fom_out += dq_margin + dqs_margin; 3096 3097 debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \ 3098 dqs_margin=%d dm_margin=%d\n", __func__, __LINE__, 3099 dq_margin, dqs_margin, dm_margin); 3100 3101 /* 3102 * Do not remove this line as it makes sure all of our 3103 * decisions have been applied. 3104 */ 3105 writel(0, &sdr_scc_mgr->update); 3106 return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0); 3107 } 3108 3109 /* calibrate the write operations */ 3110 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g, 3111 uint32_t test_bgn) 3112 { 3113 /* update info for sims */ 3114 debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn); 3115 3116 reg_file_set_stage(CAL_STAGE_WRITES); 3117 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER); 3118 3119 reg_file_set_group(g); 3120 3121 if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) { 3122 set_failing_group_stage(g, CAL_STAGE_WRITES, 3123 CAL_SUBSTAGE_WRITES_CENTER); 3124 return 0; 3125 } 3126 3127 return 1; 3128 } 3129 3130 /* precharge all banks and activate row 0 in bank "000..." and bank "111..." */ 3131 static void mem_precharge_and_activate(void) 3132 { 3133 uint32_t r; 3134 3135 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 3136 if (param->skip_ranks[r]) { 3137 /* request to skip the rank */ 3138 continue; 3139 } 3140 3141 /* set rank */ 3142 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 3143 3144 /* precharge all banks ... */ 3145 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3146 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3147 3148 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0); 3149 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1, 3150 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 3151 3152 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1); 3153 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2, 3154 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 3155 3156 /* activate rows */ 3157 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3158 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3159 } 3160 } 3161 3162 /* Configure various memory related parameters. */ 3163 static void mem_config(void) 3164 { 3165 uint32_t rlat, wlat; 3166 uint32_t rw_wl_nop_cycles; 3167 uint32_t max_latency; 3168 3169 debug("%s:%d\n", __func__, __LINE__); 3170 /* read in write and read latency */ 3171 wlat = readl(&data_mgr->t_wl_add); 3172 wlat += readl(&data_mgr->mem_t_add); 3173 3174 /* WL for hard phy does not include additive latency */ 3175 3176 /* 3177 * add addtional write latency to offset the address/command extra 3178 * clock cycle. We change the AC mux setting causing AC to be delayed 3179 * by one mem clock cycle. Only do this for DDR3 3180 */ 3181 wlat = wlat + 1; 3182 3183 rlat = readl(&data_mgr->t_rl_add); 3184 3185 rw_wl_nop_cycles = wlat - 2; 3186 gbl->rw_wl_nop_cycles = rw_wl_nop_cycles; 3187 3188 /* 3189 * For AV/CV, lfifo is hardened and always runs at full rate so 3190 * max latency in AFI clocks, used here, is correspondingly smaller. 3191 */ 3192 max_latency = (1<<MAX_LATENCY_COUNT_WIDTH)/1 - 1; 3193 /* configure for a burst length of 8 */ 3194 3195 /* write latency */ 3196 /* Adjust Write Latency for Hard PHY */ 3197 wlat = wlat + 1; 3198 3199 /* set a pretty high read latency initially */ 3200 gbl->curr_read_lat = rlat + 16; 3201 3202 if (gbl->curr_read_lat > max_latency) 3203 gbl->curr_read_lat = max_latency; 3204 3205 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3206 3207 /* advertise write latency */ 3208 gbl->curr_write_lat = wlat; 3209 writel(wlat - 2, &phy_mgr_cfg->afi_wlat); 3210 3211 /* initialize bit slips */ 3212 mem_precharge_and_activate(); 3213 } 3214 3215 /* Set VFIFO and LFIFO to instant-on settings in skip calibration mode */ 3216 static void mem_skip_calibrate(void) 3217 { 3218 uint32_t vfifo_offset; 3219 uint32_t i, j, r; 3220 3221 debug("%s:%d\n", __func__, __LINE__); 3222 /* Need to update every shadow register set used by the interface */ 3223 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 3224 r += NUM_RANKS_PER_SHADOW_REG) { 3225 /* 3226 * Set output phase alignment settings appropriate for 3227 * skip calibration. 3228 */ 3229 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3230 scc_mgr_set_dqs_en_phase(i, 0); 3231 #if IO_DLL_CHAIN_LENGTH == 6 3232 scc_mgr_set_dqdqs_output_phase(i, 6); 3233 #else 3234 scc_mgr_set_dqdqs_output_phase(i, 7); 3235 #endif 3236 /* 3237 * Case:33398 3238 * 3239 * Write data arrives to the I/O two cycles before write 3240 * latency is reached (720 deg). 3241 * -> due to bit-slip in a/c bus 3242 * -> to allow board skew where dqs is longer than ck 3243 * -> how often can this happen!? 3244 * -> can claim back some ptaps for high freq 3245 * support if we can relax this, but i digress... 3246 * 3247 * The write_clk leads mem_ck by 90 deg 3248 * The minimum ptap of the OPA is 180 deg 3249 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay 3250 * The write_clk is always delayed by 2 ptaps 3251 * 3252 * Hence, to make DQS aligned to CK, we need to delay 3253 * DQS by: 3254 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH)) 3255 * 3256 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH) 3257 * gives us the number of ptaps, which simplies to: 3258 * 3259 * (1.25 * IO_DLL_CHAIN_LENGTH - 2) 3260 */ 3261 scc_mgr_set_dqdqs_output_phase(i, (1.25 * 3262 IO_DLL_CHAIN_LENGTH - 2)); 3263 } 3264 writel(0xff, &sdr_scc_mgr->dqs_ena); 3265 writel(0xff, &sdr_scc_mgr->dqs_io_ena); 3266 3267 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 3268 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3269 SCC_MGR_GROUP_COUNTER_OFFSET); 3270 } 3271 writel(0xff, &sdr_scc_mgr->dq_ena); 3272 writel(0xff, &sdr_scc_mgr->dm_ena); 3273 writel(0, &sdr_scc_mgr->update); 3274 } 3275 3276 /* Compensate for simulation model behaviour */ 3277 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3278 scc_mgr_set_dqs_bus_in_delay(i, 10); 3279 scc_mgr_load_dqs(i); 3280 } 3281 writel(0, &sdr_scc_mgr->update); 3282 3283 /* 3284 * ArriaV has hard FIFOs that can only be initialized by incrementing 3285 * in sequencer. 3286 */ 3287 vfifo_offset = CALIB_VFIFO_OFFSET; 3288 for (j = 0; j < vfifo_offset; j++) { 3289 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy); 3290 } 3291 writel(0, &phy_mgr_cmd->fifo_reset); 3292 3293 /* 3294 * For ACV with hard lfifo, we get the skip-cal setting from 3295 * generation-time constant. 3296 */ 3297 gbl->curr_read_lat = CALIB_LFIFO_OFFSET; 3298 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3299 } 3300 3301 /* Memory calibration entry point */ 3302 static uint32_t mem_calibrate(void) 3303 { 3304 uint32_t i; 3305 uint32_t rank_bgn, sr; 3306 uint32_t write_group, write_test_bgn; 3307 uint32_t read_group, read_test_bgn; 3308 uint32_t run_groups, current_run; 3309 uint32_t failing_groups = 0; 3310 uint32_t group_failed = 0; 3311 uint32_t sr_failed = 0; 3312 3313 debug("%s:%d\n", __func__, __LINE__); 3314 /* Initialize the data settings */ 3315 3316 gbl->error_substage = CAL_SUBSTAGE_NIL; 3317 gbl->error_stage = CAL_STAGE_NIL; 3318 gbl->error_group = 0xff; 3319 gbl->fom_in = 0; 3320 gbl->fom_out = 0; 3321 3322 mem_config(); 3323 3324 uint32_t bypass_mode = 0x1; 3325 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3326 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3327 SCC_MGR_GROUP_COUNTER_OFFSET); 3328 scc_set_bypass_mode(i, bypass_mode); 3329 } 3330 3331 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) { 3332 /* 3333 * Set VFIFO and LFIFO to instant-on settings in skip 3334 * calibration mode. 3335 */ 3336 mem_skip_calibrate(); 3337 } else { 3338 for (i = 0; i < NUM_CALIB_REPEAT; i++) { 3339 /* 3340 * Zero all delay chain/phase settings for all 3341 * groups and all shadow register sets. 3342 */ 3343 scc_mgr_zero_all(); 3344 3345 run_groups = ~param->skip_groups; 3346 3347 for (write_group = 0, write_test_bgn = 0; write_group 3348 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++, 3349 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) { 3350 /* Initialized the group failure */ 3351 group_failed = 0; 3352 3353 current_run = run_groups & ((1 << 3354 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1); 3355 run_groups = run_groups >> 3356 RW_MGR_NUM_DQS_PER_WRITE_GROUP; 3357 3358 if (current_run == 0) 3359 continue; 3360 3361 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS | 3362 SCC_MGR_GROUP_COUNTER_OFFSET); 3363 scc_mgr_zero_group(write_group, write_test_bgn, 3364 0); 3365 3366 for (read_group = write_group * 3367 RW_MGR_MEM_IF_READ_DQS_WIDTH / 3368 RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3369 read_test_bgn = 0; 3370 read_group < (write_group + 1) * 3371 RW_MGR_MEM_IF_READ_DQS_WIDTH / 3372 RW_MGR_MEM_IF_WRITE_DQS_WIDTH && 3373 group_failed == 0; 3374 read_group++, read_test_bgn += 3375 RW_MGR_MEM_DQ_PER_READ_DQS) { 3376 /* Calibrate the VFIFO */ 3377 if (!((STATIC_CALIB_STEPS) & 3378 CALIB_SKIP_VFIFO)) { 3379 if (!rw_mgr_mem_calibrate_vfifo 3380 (read_group, 3381 read_test_bgn)) { 3382 group_failed = 1; 3383 3384 if (!(gbl-> 3385 phy_debug_mode_flags & 3386 PHY_DEBUG_SWEEP_ALL_GROUPS)) { 3387 return 0; 3388 } 3389 } 3390 } 3391 } 3392 3393 /* Calibrate the output side */ 3394 if (group_failed == 0) { 3395 for (rank_bgn = 0, sr = 0; rank_bgn 3396 < RW_MGR_MEM_NUMBER_OF_RANKS; 3397 rank_bgn += 3398 NUM_RANKS_PER_SHADOW_REG, 3399 ++sr) { 3400 sr_failed = 0; 3401 if (!((STATIC_CALIB_STEPS) & 3402 CALIB_SKIP_WRITES)) { 3403 if ((STATIC_CALIB_STEPS) 3404 & CALIB_SKIP_DELAY_SWEEPS) { 3405 /* not needed in quick mode! */ 3406 } else { 3407 /* 3408 * Determine if this set of 3409 * ranks should be skipped 3410 * entirely. 3411 */ 3412 if (!param->skip_shadow_regs[sr]) { 3413 if (!rw_mgr_mem_calibrate_writes 3414 (rank_bgn, write_group, 3415 write_test_bgn)) { 3416 sr_failed = 1; 3417 if (!(gbl-> 3418 phy_debug_mode_flags & 3419 PHY_DEBUG_SWEEP_ALL_GROUPS)) { 3420 return 0; 3421 } 3422 } 3423 } 3424 } 3425 } 3426 if (sr_failed != 0) 3427 group_failed = 1; 3428 } 3429 } 3430 3431 if (group_failed == 0) { 3432 for (read_group = write_group * 3433 RW_MGR_MEM_IF_READ_DQS_WIDTH / 3434 RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3435 read_test_bgn = 0; 3436 read_group < (write_group + 1) 3437 * RW_MGR_MEM_IF_READ_DQS_WIDTH 3438 / RW_MGR_MEM_IF_WRITE_DQS_WIDTH && 3439 group_failed == 0; 3440 read_group++, read_test_bgn += 3441 RW_MGR_MEM_DQ_PER_READ_DQS) { 3442 if (!((STATIC_CALIB_STEPS) & 3443 CALIB_SKIP_WRITES)) { 3444 if (!rw_mgr_mem_calibrate_vfifo_end 3445 (read_group, read_test_bgn)) { 3446 group_failed = 1; 3447 3448 if (!(gbl->phy_debug_mode_flags 3449 & PHY_DEBUG_SWEEP_ALL_GROUPS)) { 3450 return 0; 3451 } 3452 } 3453 } 3454 } 3455 } 3456 3457 if (group_failed != 0) 3458 failing_groups++; 3459 } 3460 3461 /* 3462 * USER If there are any failing groups then report 3463 * the failure. 3464 */ 3465 if (failing_groups != 0) 3466 return 0; 3467 3468 /* Calibrate the LFIFO */ 3469 if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_LFIFO)) { 3470 /* 3471 * If we're skipping groups as part of debug, 3472 * don't calibrate LFIFO. 3473 */ 3474 if (param->skip_groups == 0) { 3475 if (!rw_mgr_mem_calibrate_lfifo()) 3476 return 0; 3477 } 3478 } 3479 } 3480 } 3481 3482 /* 3483 * Do not remove this line as it makes sure all of our decisions 3484 * have been applied. 3485 */ 3486 writel(0, &sdr_scc_mgr->update); 3487 return 1; 3488 } 3489 3490 static uint32_t run_mem_calibrate(void) 3491 { 3492 uint32_t pass; 3493 uint32_t debug_info; 3494 3495 debug("%s:%d\n", __func__, __LINE__); 3496 3497 /* Reset pass/fail status shown on afi_cal_success/fail */ 3498 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status); 3499 3500 /* stop tracking manger */ 3501 uint32_t ctrlcfg = readl(&sdr_ctrl->ctrl_cfg); 3502 3503 writel(ctrlcfg & 0xFFBFFFFF, &sdr_ctrl->ctrl_cfg); 3504 3505 initialize(); 3506 rw_mgr_mem_initialize(); 3507 3508 pass = mem_calibrate(); 3509 3510 mem_precharge_and_activate(); 3511 writel(0, &phy_mgr_cmd->fifo_reset); 3512 3513 /* 3514 * Handoff: 3515 * Don't return control of the PHY back to AFI when in debug mode. 3516 */ 3517 if ((gbl->phy_debug_mode_flags & PHY_DEBUG_IN_DEBUG_MODE) == 0) { 3518 rw_mgr_mem_handoff(); 3519 /* 3520 * In Hard PHY this is a 2-bit control: 3521 * 0: AFI Mux Select 3522 * 1: DDIO Mux Select 3523 */ 3524 writel(0x2, &phy_mgr_cfg->mux_sel); 3525 } 3526 3527 writel(ctrlcfg, &sdr_ctrl->ctrl_cfg); 3528 3529 if (pass) { 3530 printf("%s: CALIBRATION PASSED\n", __FILE__); 3531 3532 gbl->fom_in /= 2; 3533 gbl->fom_out /= 2; 3534 3535 if (gbl->fom_in > 0xff) 3536 gbl->fom_in = 0xff; 3537 3538 if (gbl->fom_out > 0xff) 3539 gbl->fom_out = 0xff; 3540 3541 /* Update the FOM in the register file */ 3542 debug_info = gbl->fom_in; 3543 debug_info |= gbl->fom_out << 8; 3544 writel(debug_info, &sdr_reg_file->fom); 3545 3546 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3547 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status); 3548 } else { 3549 printf("%s: CALIBRATION FAILED\n", __FILE__); 3550 3551 debug_info = gbl->error_stage; 3552 debug_info |= gbl->error_substage << 8; 3553 debug_info |= gbl->error_group << 16; 3554 3555 writel(debug_info, &sdr_reg_file->failing_stage); 3556 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3557 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status); 3558 3559 /* Update the failing group/stage in the register file */ 3560 debug_info = gbl->error_stage; 3561 debug_info |= gbl->error_substage << 8; 3562 debug_info |= gbl->error_group << 16; 3563 writel(debug_info, &sdr_reg_file->failing_stage); 3564 } 3565 3566 return pass; 3567 } 3568 3569 /** 3570 * hc_initialize_rom_data() - Initialize ROM data 3571 * 3572 * Initialize ROM data. 3573 */ 3574 static void hc_initialize_rom_data(void) 3575 { 3576 u32 i, addr; 3577 3578 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET; 3579 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++) 3580 writel(inst_rom_init[i], addr + (i << 2)); 3581 3582 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET; 3583 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++) 3584 writel(ac_rom_init[i], addr + (i << 2)); 3585 } 3586 3587 /** 3588 * initialize_reg_file() - Initialize SDR register file 3589 * 3590 * Initialize SDR register file. 3591 */ 3592 static void initialize_reg_file(void) 3593 { 3594 /* Initialize the register file with the correct data */ 3595 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature); 3596 writel(0, &sdr_reg_file->debug_data_addr); 3597 writel(0, &sdr_reg_file->cur_stage); 3598 writel(0, &sdr_reg_file->fom); 3599 writel(0, &sdr_reg_file->failing_stage); 3600 writel(0, &sdr_reg_file->debug1); 3601 writel(0, &sdr_reg_file->debug2); 3602 } 3603 3604 /** 3605 * initialize_hps_phy() - Initialize HPS PHY 3606 * 3607 * Initialize HPS PHY. 3608 */ 3609 static void initialize_hps_phy(void) 3610 { 3611 uint32_t reg; 3612 /* 3613 * Tracking also gets configured here because it's in the 3614 * same register. 3615 */ 3616 uint32_t trk_sample_count = 7500; 3617 uint32_t trk_long_idle_sample_count = (10 << 16) | 100; 3618 /* 3619 * Format is number of outer loops in the 16 MSB, sample 3620 * count in 16 LSB. 3621 */ 3622 3623 reg = 0; 3624 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2); 3625 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1); 3626 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1); 3627 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1); 3628 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0); 3629 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1); 3630 /* 3631 * This field selects the intrinsic latency to RDATA_EN/FULL path. 3632 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles. 3633 */ 3634 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0); 3635 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET( 3636 trk_sample_count); 3637 writel(reg, &sdr_ctrl->phy_ctrl0); 3638 3639 reg = 0; 3640 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET( 3641 trk_sample_count >> 3642 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH); 3643 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET( 3644 trk_long_idle_sample_count); 3645 writel(reg, &sdr_ctrl->phy_ctrl1); 3646 3647 reg = 0; 3648 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET( 3649 trk_long_idle_sample_count >> 3650 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH); 3651 writel(reg, &sdr_ctrl->phy_ctrl2); 3652 } 3653 3654 static void initialize_tracking(void) 3655 { 3656 uint32_t concatenated_longidle = 0x0; 3657 uint32_t concatenated_delays = 0x0; 3658 uint32_t concatenated_rw_addr = 0x0; 3659 uint32_t concatenated_refresh = 0x0; 3660 uint32_t trk_sample_count = 7500; 3661 uint32_t dtaps_per_ptap; 3662 uint32_t tmp_delay; 3663 3664 /* 3665 * compute usable version of value in case we skip full 3666 * computation later 3667 */ 3668 dtaps_per_ptap = 0; 3669 tmp_delay = 0; 3670 while (tmp_delay < IO_DELAY_PER_OPA_TAP) { 3671 dtaps_per_ptap++; 3672 tmp_delay += IO_DELAY_PER_DCHAIN_TAP; 3673 } 3674 dtaps_per_ptap--; 3675 3676 concatenated_longidle = concatenated_longidle ^ 10; 3677 /*longidle outer loop */ 3678 concatenated_longidle = concatenated_longidle << 16; 3679 concatenated_longidle = concatenated_longidle ^ 100; 3680 /*longidle sample count */ 3681 concatenated_delays = concatenated_delays ^ 243; 3682 /* trfc, worst case of 933Mhz 4Gb */ 3683 concatenated_delays = concatenated_delays << 8; 3684 concatenated_delays = concatenated_delays ^ 14; 3685 /* trcd, worst case */ 3686 concatenated_delays = concatenated_delays << 8; 3687 concatenated_delays = concatenated_delays ^ 10; 3688 /* vfifo wait */ 3689 concatenated_delays = concatenated_delays << 8; 3690 concatenated_delays = concatenated_delays ^ 4; 3691 /* mux delay */ 3692 3693 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_IDLE; 3694 concatenated_rw_addr = concatenated_rw_addr << 8; 3695 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_ACTIVATE_1; 3696 concatenated_rw_addr = concatenated_rw_addr << 8; 3697 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_SGLE_READ; 3698 concatenated_rw_addr = concatenated_rw_addr << 8; 3699 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_PRECHARGE_ALL; 3700 3701 concatenated_refresh = concatenated_refresh ^ RW_MGR_REFRESH_ALL; 3702 concatenated_refresh = concatenated_refresh << 24; 3703 concatenated_refresh = concatenated_refresh ^ 1000; /* trefi */ 3704 3705 /* Initialize the register file with the correct data */ 3706 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 3707 writel(trk_sample_count, &sdr_reg_file->trk_sample_count); 3708 writel(concatenated_longidle, &sdr_reg_file->trk_longidle); 3709 writel(concatenated_delays, &sdr_reg_file->delays); 3710 writel(concatenated_rw_addr, &sdr_reg_file->trk_rw_mgr_addr); 3711 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, &sdr_reg_file->trk_read_dqs_width); 3712 writel(concatenated_refresh, &sdr_reg_file->trk_rfsh); 3713 } 3714 3715 int sdram_calibration_full(void) 3716 { 3717 struct param_type my_param; 3718 struct gbl_type my_gbl; 3719 uint32_t pass; 3720 uint32_t i; 3721 3722 param = &my_param; 3723 gbl = &my_gbl; 3724 3725 /* Initialize the debug mode flags */ 3726 gbl->phy_debug_mode_flags = 0; 3727 /* Set the calibration enabled by default */ 3728 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT; 3729 /* 3730 * Only sweep all groups (regardless of fail state) by default 3731 * Set enabled read test by default. 3732 */ 3733 #if DISABLE_GUARANTEED_READ 3734 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ; 3735 #endif 3736 /* Initialize the register file */ 3737 initialize_reg_file(); 3738 3739 /* Initialize any PHY CSR */ 3740 initialize_hps_phy(); 3741 3742 scc_mgr_initialize(); 3743 3744 initialize_tracking(); 3745 3746 /* USER Enable all ranks, groups */ 3747 for (i = 0; i < RW_MGR_MEM_NUMBER_OF_RANKS; i++) 3748 param->skip_ranks[i] = 0; 3749 for (i = 0; i < NUM_SHADOW_REGS; ++i) 3750 param->skip_shadow_regs[i] = 0; 3751 param->skip_groups = 0; 3752 3753 printf("%s: Preparing to start memory calibration\n", __FILE__); 3754 3755 debug("%s:%d\n", __func__, __LINE__); 3756 debug_cond(DLEVEL == 1, 3757 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ", 3758 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM, 3759 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS, 3760 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS, 3761 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 3762 debug_cond(DLEVEL == 1, 3763 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ", 3764 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3765 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH, 3766 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP); 3767 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u", 3768 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH); 3769 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ", 3770 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX, 3771 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX); 3772 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ", 3773 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX, 3774 IO_IO_OUT2_DELAY_MAX); 3775 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n", 3776 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE); 3777 3778 hc_initialize_rom_data(); 3779 3780 /* update info for sims */ 3781 reg_file_set_stage(CAL_STAGE_NIL); 3782 reg_file_set_group(0); 3783 3784 /* 3785 * Load global needed for those actions that require 3786 * some dynamic calibration support. 3787 */ 3788 dyn_calib_steps = STATIC_CALIB_STEPS; 3789 /* 3790 * Load global to allow dynamic selection of delay loop settings 3791 * based on calibration mode. 3792 */ 3793 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS)) 3794 skip_delay_mask = 0xff; 3795 else 3796 skip_delay_mask = 0x0; 3797 3798 pass = run_mem_calibrate(); 3799 3800 printf("%s: Calibration complete\n", __FILE__); 3801 return pass; 3802 } 3803