1 /* 2 * Copyright Altera Corporation (C) 2012-2015 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <common.h> 8 #include <asm/io.h> 9 #include <asm/arch/sdram.h> 10 #include <errno.h> 11 #include "sequencer.h" 12 13 /* 14 * FIXME: This path is temporary until the SDRAM driver gets 15 * a proper thorough cleanup. 16 */ 17 #include "../../../board/altera/socfpga/qts/sequencer_auto.h" 18 #include "../../../board/altera/socfpga/qts/sequencer_defines.h" 19 20 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs = 21 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800); 22 23 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs = 24 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00); 25 26 static struct socfpga_sdr_reg_file *sdr_reg_file = 27 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS; 28 29 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr = 30 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00); 31 32 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd = 33 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS; 34 35 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg = 36 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40); 37 38 static struct socfpga_data_mgr *data_mgr = 39 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS; 40 41 static struct socfpga_sdr_ctrl *sdr_ctrl = 42 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS; 43 44 const struct socfpga_sdram_rw_mgr_config *rwcfg; 45 const struct socfpga_sdram_io_config *iocfg; 46 47 #define DELTA_D 1 48 49 /* 50 * In order to reduce ROM size, most of the selectable calibration steps are 51 * decided at compile time based on the user's calibration mode selection, 52 * as captured by the STATIC_CALIB_STEPS selection below. 53 * 54 * However, to support simulation-time selection of fast simulation mode, where 55 * we skip everything except the bare minimum, we need a few of the steps to 56 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the 57 * check, which is based on the rtl-supplied value, or we dynamically compute 58 * the value to use based on the dynamically-chosen calibration mode 59 */ 60 61 #define DLEVEL 0 62 #define STATIC_IN_RTL_SIM 0 63 #define STATIC_SKIP_DELAY_LOOPS 0 64 65 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \ 66 STATIC_SKIP_DELAY_LOOPS) 67 68 /* calibration steps requested by the rtl */ 69 uint16_t dyn_calib_steps; 70 71 /* 72 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option 73 * instead of static, we use boolean logic to select between 74 * non-skip and skip values 75 * 76 * The mask is set to include all bits when not-skipping, but is 77 * zero when skipping 78 */ 79 80 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */ 81 82 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \ 83 ((non_skip_value) & skip_delay_mask) 84 85 struct gbl_type *gbl; 86 struct param_type *param; 87 88 static void set_failing_group_stage(uint32_t group, uint32_t stage, 89 uint32_t substage) 90 { 91 /* 92 * Only set the global stage if there was not been any other 93 * failing group 94 */ 95 if (gbl->error_stage == CAL_STAGE_NIL) { 96 gbl->error_substage = substage; 97 gbl->error_stage = stage; 98 gbl->error_group = group; 99 } 100 } 101 102 static void reg_file_set_group(u16 set_group) 103 { 104 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16); 105 } 106 107 static void reg_file_set_stage(u8 set_stage) 108 { 109 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff); 110 } 111 112 static void reg_file_set_sub_stage(u8 set_sub_stage) 113 { 114 set_sub_stage &= 0xff; 115 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8); 116 } 117 118 /** 119 * phy_mgr_initialize() - Initialize PHY Manager 120 * 121 * Initialize PHY Manager. 122 */ 123 static void phy_mgr_initialize(void) 124 { 125 u32 ratio; 126 127 debug("%s:%d\n", __func__, __LINE__); 128 /* Calibration has control over path to memory */ 129 /* 130 * In Hard PHY this is a 2-bit control: 131 * 0: AFI Mux Select 132 * 1: DDIO Mux Select 133 */ 134 writel(0x3, &phy_mgr_cfg->mux_sel); 135 136 /* USER memory clock is not stable we begin initialization */ 137 writel(0, &phy_mgr_cfg->reset_mem_stbl); 138 139 /* USER calibration status all set to zero */ 140 writel(0, &phy_mgr_cfg->cal_status); 141 142 writel(0, &phy_mgr_cfg->cal_debug_info); 143 144 /* Init params only if we do NOT skip calibration. */ 145 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) 146 return; 147 148 ratio = rwcfg->mem_dq_per_read_dqs / 149 rwcfg->mem_virtual_groups_per_read_dqs; 150 param->read_correct_mask_vg = (1 << ratio) - 1; 151 param->write_correct_mask_vg = (1 << ratio) - 1; 152 param->read_correct_mask = (1 << rwcfg->mem_dq_per_read_dqs) - 1; 153 param->write_correct_mask = (1 << rwcfg->mem_dq_per_write_dqs) - 1; 154 } 155 156 /** 157 * set_rank_and_odt_mask() - Set Rank and ODT mask 158 * @rank: Rank mask 159 * @odt_mode: ODT mode, OFF or READ_WRITE 160 * 161 * Set Rank and ODT mask (On-Die Termination). 162 */ 163 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode) 164 { 165 u32 odt_mask_0 = 0; 166 u32 odt_mask_1 = 0; 167 u32 cs_and_odt_mask; 168 169 if (odt_mode == RW_MGR_ODT_MODE_OFF) { 170 odt_mask_0 = 0x0; 171 odt_mask_1 = 0x0; 172 } else { /* RW_MGR_ODT_MODE_READ_WRITE */ 173 switch (rwcfg->mem_number_of_ranks) { 174 case 1: /* 1 Rank */ 175 /* Read: ODT = 0 ; Write: ODT = 1 */ 176 odt_mask_0 = 0x0; 177 odt_mask_1 = 0x1; 178 break; 179 case 2: /* 2 Ranks */ 180 if (rwcfg->mem_number_of_cs_per_dimm == 1) { 181 /* 182 * - Dual-Slot , Single-Rank (1 CS per DIMM) 183 * OR 184 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM) 185 * 186 * Since MEM_NUMBER_OF_RANKS is 2, they 187 * are both single rank with 2 CS each 188 * (special for RDIMM). 189 * 190 * Read: Turn on ODT on the opposite rank 191 * Write: Turn on ODT on all ranks 192 */ 193 odt_mask_0 = 0x3 & ~(1 << rank); 194 odt_mask_1 = 0x3; 195 } else { 196 /* 197 * - Single-Slot , Dual-Rank (2 CS per DIMM) 198 * 199 * Read: Turn on ODT off on all ranks 200 * Write: Turn on ODT on active rank 201 */ 202 odt_mask_0 = 0x0; 203 odt_mask_1 = 0x3 & (1 << rank); 204 } 205 break; 206 case 4: /* 4 Ranks */ 207 /* Read: 208 * ----------+-----------------------+ 209 * | ODT | 210 * Read From +-----------------------+ 211 * Rank | 3 | 2 | 1 | 0 | 212 * ----------+-----+-----+-----+-----+ 213 * 0 | 0 | 1 | 0 | 0 | 214 * 1 | 1 | 0 | 0 | 0 | 215 * 2 | 0 | 0 | 0 | 1 | 216 * 3 | 0 | 0 | 1 | 0 | 217 * ----------+-----+-----+-----+-----+ 218 * 219 * Write: 220 * ----------+-----------------------+ 221 * | ODT | 222 * Write To +-----------------------+ 223 * Rank | 3 | 2 | 1 | 0 | 224 * ----------+-----+-----+-----+-----+ 225 * 0 | 0 | 1 | 0 | 1 | 226 * 1 | 1 | 0 | 1 | 0 | 227 * 2 | 0 | 1 | 0 | 1 | 228 * 3 | 1 | 0 | 1 | 0 | 229 * ----------+-----+-----+-----+-----+ 230 */ 231 switch (rank) { 232 case 0: 233 odt_mask_0 = 0x4; 234 odt_mask_1 = 0x5; 235 break; 236 case 1: 237 odt_mask_0 = 0x8; 238 odt_mask_1 = 0xA; 239 break; 240 case 2: 241 odt_mask_0 = 0x1; 242 odt_mask_1 = 0x5; 243 break; 244 case 3: 245 odt_mask_0 = 0x2; 246 odt_mask_1 = 0xA; 247 break; 248 } 249 break; 250 } 251 } 252 253 cs_and_odt_mask = (0xFF & ~(1 << rank)) | 254 ((0xFF & odt_mask_0) << 8) | 255 ((0xFF & odt_mask_1) << 16); 256 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS | 257 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 258 } 259 260 /** 261 * scc_mgr_set() - Set SCC Manager register 262 * @off: Base offset in SCC Manager space 263 * @grp: Read/Write group 264 * @val: Value to be set 265 * 266 * This function sets the SCC Manager (Scan Chain Control Manager) register. 267 */ 268 static void scc_mgr_set(u32 off, u32 grp, u32 val) 269 { 270 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2)); 271 } 272 273 /** 274 * scc_mgr_initialize() - Initialize SCC Manager registers 275 * 276 * Initialize SCC Manager registers. 277 */ 278 static void scc_mgr_initialize(void) 279 { 280 /* 281 * Clear register file for HPS. 16 (2^4) is the size of the 282 * full register file in the scc mgr: 283 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + 284 * MEM_IF_READ_DQS_WIDTH - 1); 285 */ 286 int i; 287 288 for (i = 0; i < 16; i++) { 289 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n", 290 __func__, __LINE__, i); 291 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i); 292 } 293 } 294 295 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase) 296 { 297 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase); 298 } 299 300 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay) 301 { 302 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay); 303 } 304 305 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase) 306 { 307 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase); 308 } 309 310 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay) 311 { 312 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay); 313 } 314 315 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay) 316 { 317 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, rwcfg->mem_dq_per_write_dqs, 318 delay); 319 } 320 321 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay) 322 { 323 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay); 324 } 325 326 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay) 327 { 328 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay); 329 } 330 331 static void scc_mgr_set_dqs_out1_delay(uint32_t delay) 332 { 333 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, rwcfg->mem_dq_per_write_dqs, 334 delay); 335 } 336 337 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay) 338 { 339 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, 340 rwcfg->mem_dq_per_write_dqs + 1 + dm, 341 delay); 342 } 343 344 /* load up dqs config settings */ 345 static void scc_mgr_load_dqs(uint32_t dqs) 346 { 347 writel(dqs, &sdr_scc_mgr->dqs_ena); 348 } 349 350 /* load up dqs io config settings */ 351 static void scc_mgr_load_dqs_io(void) 352 { 353 writel(0, &sdr_scc_mgr->dqs_io_ena); 354 } 355 356 /* load up dq config settings */ 357 static void scc_mgr_load_dq(uint32_t dq_in_group) 358 { 359 writel(dq_in_group, &sdr_scc_mgr->dq_ena); 360 } 361 362 /* load up dm config settings */ 363 static void scc_mgr_load_dm(uint32_t dm) 364 { 365 writel(dm, &sdr_scc_mgr->dm_ena); 366 } 367 368 /** 369 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks 370 * @off: Base offset in SCC Manager space 371 * @grp: Read/Write group 372 * @val: Value to be set 373 * @update: If non-zero, trigger SCC Manager update for all ranks 374 * 375 * This function sets the SCC Manager (Scan Chain Control Manager) register 376 * and optionally triggers the SCC update for all ranks. 377 */ 378 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val, 379 const int update) 380 { 381 u32 r; 382 383 for (r = 0; r < rwcfg->mem_number_of_ranks; 384 r += NUM_RANKS_PER_SHADOW_REG) { 385 scc_mgr_set(off, grp, val); 386 387 if (update || (r == 0)) { 388 writel(grp, &sdr_scc_mgr->dqs_ena); 389 writel(0, &sdr_scc_mgr->update); 390 } 391 } 392 } 393 394 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase) 395 { 396 /* 397 * USER although the h/w doesn't support different phases per 398 * shadow register, for simplicity our scc manager modeling 399 * keeps different phase settings per shadow reg, and it's 400 * important for us to keep them in sync to match h/w. 401 * for efficiency, the scan chain update should occur only 402 * once to sr0. 403 */ 404 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET, 405 read_group, phase, 0); 406 } 407 408 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group, 409 uint32_t phase) 410 { 411 /* 412 * USER although the h/w doesn't support different phases per 413 * shadow register, for simplicity our scc manager modeling 414 * keeps different phase settings per shadow reg, and it's 415 * important for us to keep them in sync to match h/w. 416 * for efficiency, the scan chain update should occur only 417 * once to sr0. 418 */ 419 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, 420 write_group, phase, 0); 421 } 422 423 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group, 424 uint32_t delay) 425 { 426 /* 427 * In shadow register mode, the T11 settings are stored in 428 * registers in the core, which are updated by the DQS_ENA 429 * signals. Not issuing the SCC_MGR_UPD command allows us to 430 * save lots of rank switching overhead, by calling 431 * select_shadow_regs_for_update with update_scan_chains 432 * set to 0. 433 */ 434 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET, 435 read_group, delay, 1); 436 writel(0, &sdr_scc_mgr->update); 437 } 438 439 /** 440 * scc_mgr_set_oct_out1_delay() - Set OCT output delay 441 * @write_group: Write group 442 * @delay: Delay value 443 * 444 * This function sets the OCT output delay in SCC manager. 445 */ 446 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay) 447 { 448 const int ratio = rwcfg->mem_if_read_dqs_width / 449 rwcfg->mem_if_write_dqs_width; 450 const int base = write_group * ratio; 451 int i; 452 /* 453 * Load the setting in the SCC manager 454 * Although OCT affects only write data, the OCT delay is controlled 455 * by the DQS logic block which is instantiated once per read group. 456 * For protocols where a write group consists of multiple read groups, 457 * the setting must be set multiple times. 458 */ 459 for (i = 0; i < ratio; i++) 460 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay); 461 } 462 463 /** 464 * scc_mgr_set_hhp_extras() - Set HHP extras. 465 * 466 * Load the fixed setting in the SCC manager HHP extras. 467 */ 468 static void scc_mgr_set_hhp_extras(void) 469 { 470 /* 471 * Load the fixed setting in the SCC manager 472 * bits: 0:0 = 1'b1 - DQS bypass 473 * bits: 1:1 = 1'b1 - DQ bypass 474 * bits: 4:2 = 3'b001 - rfifo_mode 475 * bits: 6:5 = 2'b01 - rfifo clock_select 476 * bits: 7:7 = 1'b0 - separate gating from ungating setting 477 * bits: 8:8 = 1'b0 - separate OE from Output delay setting 478 */ 479 const u32 value = (0 << 8) | (0 << 7) | (1 << 5) | 480 (1 << 2) | (1 << 1) | (1 << 0); 481 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | 482 SCC_MGR_HHP_GLOBALS_OFFSET | 483 SCC_MGR_HHP_EXTRAS_OFFSET; 484 485 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", 486 __func__, __LINE__); 487 writel(value, addr); 488 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n", 489 __func__, __LINE__); 490 } 491 492 /** 493 * scc_mgr_zero_all() - Zero all DQS config 494 * 495 * Zero all DQS config. 496 */ 497 static void scc_mgr_zero_all(void) 498 { 499 int i, r; 500 501 /* 502 * USER Zero all DQS config settings, across all groups and all 503 * shadow registers 504 */ 505 for (r = 0; r < rwcfg->mem_number_of_ranks; 506 r += NUM_RANKS_PER_SHADOW_REG) { 507 for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) { 508 /* 509 * The phases actually don't exist on a per-rank basis, 510 * but there's no harm updating them several times, so 511 * let's keep the code simple. 512 */ 513 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE); 514 scc_mgr_set_dqs_en_phase(i, 0); 515 scc_mgr_set_dqs_en_delay(i, 0); 516 } 517 518 for (i = 0; i < rwcfg->mem_if_write_dqs_width; i++) { 519 scc_mgr_set_dqdqs_output_phase(i, 0); 520 /* Arria V/Cyclone V don't have out2. */ 521 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE); 522 } 523 } 524 525 /* Multicast to all DQS group enables. */ 526 writel(0xff, &sdr_scc_mgr->dqs_ena); 527 writel(0, &sdr_scc_mgr->update); 528 } 529 530 /** 531 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update 532 * @write_group: Write group 533 * 534 * Set bypass mode and trigger SCC update. 535 */ 536 static void scc_set_bypass_mode(const u32 write_group) 537 { 538 /* Multicast to all DQ enables. */ 539 writel(0xff, &sdr_scc_mgr->dq_ena); 540 writel(0xff, &sdr_scc_mgr->dm_ena); 541 542 /* Update current DQS IO enable. */ 543 writel(0, &sdr_scc_mgr->dqs_io_ena); 544 545 /* Update the DQS logic. */ 546 writel(write_group, &sdr_scc_mgr->dqs_ena); 547 548 /* Hit update. */ 549 writel(0, &sdr_scc_mgr->update); 550 } 551 552 /** 553 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group 554 * @write_group: Write group 555 * 556 * Load DQS settings for Write Group, do not trigger SCC update. 557 */ 558 static void scc_mgr_load_dqs_for_write_group(const u32 write_group) 559 { 560 const int ratio = rwcfg->mem_if_read_dqs_width / 561 rwcfg->mem_if_write_dqs_width; 562 const int base = write_group * ratio; 563 int i; 564 /* 565 * Load the setting in the SCC manager 566 * Although OCT affects only write data, the OCT delay is controlled 567 * by the DQS logic block which is instantiated once per read group. 568 * For protocols where a write group consists of multiple read groups, 569 * the setting must be set multiple times. 570 */ 571 for (i = 0; i < ratio; i++) 572 writel(base + i, &sdr_scc_mgr->dqs_ena); 573 } 574 575 /** 576 * scc_mgr_zero_group() - Zero all configs for a group 577 * 578 * Zero DQ, DM, DQS and OCT configs for a group. 579 */ 580 static void scc_mgr_zero_group(const u32 write_group, const int out_only) 581 { 582 int i, r; 583 584 for (r = 0; r < rwcfg->mem_number_of_ranks; 585 r += NUM_RANKS_PER_SHADOW_REG) { 586 /* Zero all DQ config settings. */ 587 for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) { 588 scc_mgr_set_dq_out1_delay(i, 0); 589 if (!out_only) 590 scc_mgr_set_dq_in_delay(i, 0); 591 } 592 593 /* Multicast to all DQ enables. */ 594 writel(0xff, &sdr_scc_mgr->dq_ena); 595 596 /* Zero all DM config settings. */ 597 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 598 scc_mgr_set_dm_out1_delay(i, 0); 599 600 /* Multicast to all DM enables. */ 601 writel(0xff, &sdr_scc_mgr->dm_ena); 602 603 /* Zero all DQS IO settings. */ 604 if (!out_only) 605 scc_mgr_set_dqs_io_in_delay(0); 606 607 /* Arria V/Cyclone V don't have out2. */ 608 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE); 609 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE); 610 scc_mgr_load_dqs_for_write_group(write_group); 611 612 /* Multicast to all DQS IO enables (only 1 in total). */ 613 writel(0, &sdr_scc_mgr->dqs_io_ena); 614 615 /* Hit update to zero everything. */ 616 writel(0, &sdr_scc_mgr->update); 617 } 618 } 619 620 /* 621 * apply and load a particular input delay for the DQ pins in a group 622 * group_bgn is the index of the first dq pin (in the write group) 623 */ 624 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay) 625 { 626 uint32_t i, p; 627 628 for (i = 0, p = group_bgn; i < rwcfg->mem_dq_per_read_dqs; i++, p++) { 629 scc_mgr_set_dq_in_delay(p, delay); 630 scc_mgr_load_dq(p); 631 } 632 } 633 634 /** 635 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group 636 * @delay: Delay value 637 * 638 * Apply and load a particular output delay for the DQ pins in a group. 639 */ 640 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay) 641 { 642 int i; 643 644 for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) { 645 scc_mgr_set_dq_out1_delay(i, delay); 646 scc_mgr_load_dq(i); 647 } 648 } 649 650 /* apply and load a particular output delay for the DM pins in a group */ 651 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1) 652 { 653 uint32_t i; 654 655 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 656 scc_mgr_set_dm_out1_delay(i, delay1); 657 scc_mgr_load_dm(i); 658 } 659 } 660 661 662 /* apply and load delay on both DQS and OCT out1 */ 663 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group, 664 uint32_t delay) 665 { 666 scc_mgr_set_dqs_out1_delay(delay); 667 scc_mgr_load_dqs_io(); 668 669 scc_mgr_set_oct_out1_delay(write_group, delay); 670 scc_mgr_load_dqs_for_write_group(write_group); 671 } 672 673 /** 674 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT 675 * @write_group: Write group 676 * @delay: Delay value 677 * 678 * Apply a delay to the entire output side: DQ, DM, DQS, OCT. 679 */ 680 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group, 681 const u32 delay) 682 { 683 u32 i, new_delay; 684 685 /* DQ shift */ 686 for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) 687 scc_mgr_load_dq(i); 688 689 /* DM shift */ 690 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 691 scc_mgr_load_dm(i); 692 693 /* DQS shift */ 694 new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay; 695 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 696 debug_cond(DLEVEL == 1, 697 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 698 __func__, __LINE__, write_group, delay, new_delay, 699 IO_IO_OUT2_DELAY_MAX, 700 new_delay - IO_IO_OUT2_DELAY_MAX); 701 new_delay -= IO_IO_OUT2_DELAY_MAX; 702 scc_mgr_set_dqs_out1_delay(new_delay); 703 } 704 705 scc_mgr_load_dqs_io(); 706 707 /* OCT shift */ 708 new_delay = READ_SCC_OCT_OUT2_DELAY + delay; 709 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 710 debug_cond(DLEVEL == 1, 711 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 712 __func__, __LINE__, write_group, delay, 713 new_delay, IO_IO_OUT2_DELAY_MAX, 714 new_delay - IO_IO_OUT2_DELAY_MAX); 715 new_delay -= IO_IO_OUT2_DELAY_MAX; 716 scc_mgr_set_oct_out1_delay(write_group, new_delay); 717 } 718 719 scc_mgr_load_dqs_for_write_group(write_group); 720 } 721 722 /** 723 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks 724 * @write_group: Write group 725 * @delay: Delay value 726 * 727 * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks. 728 */ 729 static void 730 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group, 731 const u32 delay) 732 { 733 int r; 734 735 for (r = 0; r < rwcfg->mem_number_of_ranks; 736 r += NUM_RANKS_PER_SHADOW_REG) { 737 scc_mgr_apply_group_all_out_delay_add(write_group, delay); 738 writel(0, &sdr_scc_mgr->update); 739 } 740 } 741 742 /** 743 * set_jump_as_return() - Return instruction optimization 744 * 745 * Optimization used to recover some slots in ddr3 inst_rom could be 746 * applied to other protocols if we wanted to 747 */ 748 static void set_jump_as_return(void) 749 { 750 /* 751 * To save space, we replace return with jump to special shared 752 * RETURN instruction so we set the counter to large value so that 753 * we always jump. 754 */ 755 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0); 756 writel(rwcfg->rreturn, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 757 } 758 759 /** 760 * delay_for_n_mem_clocks() - Delay for N memory clocks 761 * @clocks: Length of the delay 762 * 763 * Delay for N memory clocks. 764 */ 765 static void delay_for_n_mem_clocks(const u32 clocks) 766 { 767 u32 afi_clocks; 768 u16 c_loop; 769 u8 inner; 770 u8 outer; 771 772 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks); 773 774 /* Scale (rounding up) to get afi clocks. */ 775 afi_clocks = DIV_ROUND_UP(clocks, AFI_RATE_RATIO); 776 if (afi_clocks) /* Temporary underflow protection */ 777 afi_clocks--; 778 779 /* 780 * Note, we don't bother accounting for being off a little 781 * bit because of a few extra instructions in outer loops. 782 * Note, the loops have a test at the end, and do the test 783 * before the decrement, and so always perform the loop 784 * 1 time more than the counter value 785 */ 786 c_loop = afi_clocks >> 16; 787 outer = c_loop ? 0xff : (afi_clocks >> 8); 788 inner = outer ? 0xff : afi_clocks; 789 790 /* 791 * rom instructions are structured as follows: 792 * 793 * IDLE_LOOP2: jnz cntr0, TARGET_A 794 * IDLE_LOOP1: jnz cntr1, TARGET_B 795 * return 796 * 797 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and 798 * TARGET_B is set to IDLE_LOOP2 as well 799 * 800 * if we have no outer loop, though, then we can use IDLE_LOOP1 only, 801 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely 802 * 803 * a little confusing, but it helps save precious space in the inst_rom 804 * and sequencer rom and keeps the delays more accurate and reduces 805 * overhead 806 */ 807 if (afi_clocks < 0x100) { 808 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 809 &sdr_rw_load_mgr_regs->load_cntr1); 810 811 writel(rwcfg->idle_loop1, 812 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 813 814 writel(rwcfg->idle_loop1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 815 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 816 } else { 817 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 818 &sdr_rw_load_mgr_regs->load_cntr0); 819 820 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), 821 &sdr_rw_load_mgr_regs->load_cntr1); 822 823 writel(rwcfg->idle_loop2, 824 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 825 826 writel(rwcfg->idle_loop2, 827 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 828 829 do { 830 writel(rwcfg->idle_loop2, 831 SDR_PHYGRP_RWMGRGRP_ADDRESS | 832 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 833 } while (c_loop-- != 0); 834 } 835 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks); 836 } 837 838 /** 839 * rw_mgr_mem_init_load_regs() - Load instruction registers 840 * @cntr0: Counter 0 value 841 * @cntr1: Counter 1 value 842 * @cntr2: Counter 2 value 843 * @jump: Jump instruction value 844 * 845 * Load instruction registers. 846 */ 847 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump) 848 { 849 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 850 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 851 852 /* Load counters */ 853 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0), 854 &sdr_rw_load_mgr_regs->load_cntr0); 855 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1), 856 &sdr_rw_load_mgr_regs->load_cntr1); 857 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2), 858 &sdr_rw_load_mgr_regs->load_cntr2); 859 860 /* Load jump address */ 861 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 862 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1); 863 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 864 865 /* Execute count instruction */ 866 writel(jump, grpaddr); 867 } 868 869 /** 870 * rw_mgr_mem_load_user() - Load user calibration values 871 * @fin1: Final instruction 1 872 * @fin2: Final instruction 2 873 * @precharge: If 1, precharge the banks at the end 874 * 875 * Load user calibration values and optionally precharge the banks. 876 */ 877 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2, 878 const int precharge) 879 { 880 u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 881 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 882 u32 r; 883 884 for (r = 0; r < rwcfg->mem_number_of_ranks; r++) { 885 /* set rank */ 886 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 887 888 /* precharge all banks ... */ 889 if (precharge) 890 writel(rwcfg->precharge_all, grpaddr); 891 892 /* 893 * USER Use Mirror-ed commands for odd ranks if address 894 * mirrorring is on 895 */ 896 if ((rwcfg->mem_address_mirroring >> r) & 0x1) { 897 set_jump_as_return(); 898 writel(rwcfg->mrs2_mirr, grpaddr); 899 delay_for_n_mem_clocks(4); 900 set_jump_as_return(); 901 writel(rwcfg->mrs3_mirr, grpaddr); 902 delay_for_n_mem_clocks(4); 903 set_jump_as_return(); 904 writel(rwcfg->mrs1_mirr, grpaddr); 905 delay_for_n_mem_clocks(4); 906 set_jump_as_return(); 907 writel(fin1, grpaddr); 908 } else { 909 set_jump_as_return(); 910 writel(rwcfg->mrs2, grpaddr); 911 delay_for_n_mem_clocks(4); 912 set_jump_as_return(); 913 writel(rwcfg->mrs3, grpaddr); 914 delay_for_n_mem_clocks(4); 915 set_jump_as_return(); 916 writel(rwcfg->mrs1, grpaddr); 917 set_jump_as_return(); 918 writel(fin2, grpaddr); 919 } 920 921 if (precharge) 922 continue; 923 924 set_jump_as_return(); 925 writel(rwcfg->zqcl, grpaddr); 926 927 /* tZQinit = tDLLK = 512 ck cycles */ 928 delay_for_n_mem_clocks(512); 929 } 930 } 931 932 /** 933 * rw_mgr_mem_initialize() - Initialize RW Manager 934 * 935 * Initialize RW Manager. 936 */ 937 static void rw_mgr_mem_initialize(void) 938 { 939 debug("%s:%d\n", __func__, __LINE__); 940 941 /* The reset / cke part of initialization is broadcasted to all ranks */ 942 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 943 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 944 945 /* 946 * Here's how you load register for a loop 947 * Counters are located @ 0x800 948 * Jump address are located @ 0xC00 949 * For both, registers 0 to 3 are selected using bits 3 and 2, like 950 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C 951 * I know this ain't pretty, but Avalon bus throws away the 2 least 952 * significant bits 953 */ 954 955 /* Start with memory RESET activated */ 956 957 /* tINIT = 200us */ 958 959 /* 960 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles 961 * If a and b are the number of iteration in 2 nested loops 962 * it takes the following number of cycles to complete the operation: 963 * number_of_cycles = ((2 + n) * a + 2) * b 964 * where n is the number of instruction in the inner loop 965 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF, 966 * b = 6A 967 */ 968 rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL, 969 SEQ_TINIT_CNTR2_VAL, 970 rwcfg->init_reset_0_cke_0); 971 972 /* Indicate that memory is stable. */ 973 writel(1, &phy_mgr_cfg->reset_mem_stbl); 974 975 /* 976 * transition the RESET to high 977 * Wait for 500us 978 */ 979 980 /* 981 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles 982 * If a and b are the number of iteration in 2 nested loops 983 * it takes the following number of cycles to complete the operation 984 * number_of_cycles = ((2 + n) * a + 2) * b 985 * where n is the number of instruction in the inner loop 986 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83, 987 * b = FF 988 */ 989 rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL, 990 SEQ_TRESET_CNTR2_VAL, 991 rwcfg->init_reset_1_cke_0); 992 993 /* Bring up clock enable. */ 994 995 /* tXRP < 250 ck cycles */ 996 delay_for_n_mem_clocks(250); 997 998 rw_mgr_mem_load_user(rwcfg->mrs0_dll_reset_mirr, rwcfg->mrs0_dll_reset, 999 0); 1000 } 1001 1002 /** 1003 * rw_mgr_mem_handoff() - Hand off the memory to user 1004 * 1005 * At the end of calibration we have to program the user settings in 1006 * and hand off the memory to the user. 1007 */ 1008 static void rw_mgr_mem_handoff(void) 1009 { 1010 rw_mgr_mem_load_user(rwcfg->mrs0_user_mirr, rwcfg->mrs0_user, 1); 1011 /* 1012 * Need to wait tMOD (12CK or 15ns) time before issuing other 1013 * commands, but we will have plenty of NIOS cycles before actual 1014 * handoff so its okay. 1015 */ 1016 } 1017 1018 /** 1019 * rw_mgr_mem_calibrate_write_test_issue() - Issue write test command 1020 * @group: Write Group 1021 * @use_dm: Use DM 1022 * 1023 * Issue write test command. Two variants are provided, one that just tests 1024 * a write pattern and another that tests datamask functionality. 1025 */ 1026 static void rw_mgr_mem_calibrate_write_test_issue(u32 group, 1027 u32 test_dm) 1028 { 1029 const u32 quick_write_mode = 1030 (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) && 1031 ENABLE_SUPER_QUICK_CALIBRATION; 1032 u32 mcc_instruction; 1033 u32 rw_wl_nop_cycles; 1034 1035 /* 1036 * Set counter and jump addresses for the right 1037 * number of NOP cycles. 1038 * The number of supported NOP cycles can range from -1 to infinity 1039 * Three different cases are handled: 1040 * 1041 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping 1042 * mechanism will be used to insert the right number of NOPs 1043 * 1044 * 2. For a number of NOP cycles equals to 0, the micro-instruction 1045 * issuing the write command will jump straight to the 1046 * micro-instruction that turns on DQS (for DDRx), or outputs write 1047 * data (for RLD), skipping 1048 * the NOP micro-instruction all together 1049 * 1050 * 3. A number of NOP cycles equal to -1 indicates that DQS must be 1051 * turned on in the same micro-instruction that issues the write 1052 * command. Then we need 1053 * to directly jump to the micro-instruction that sends out the data 1054 * 1055 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters 1056 * (2 and 3). One jump-counter (0) is used to perform multiple 1057 * write-read operations. 1058 * one counter left to issue this command in "multiple-group" mode 1059 */ 1060 1061 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles; 1062 1063 if (rw_wl_nop_cycles == -1) { 1064 /* 1065 * CNTR 2 - We want to execute the special write operation that 1066 * turns on DQS right away and then skip directly to the 1067 * instruction that sends out the data. We set the counter to a 1068 * large number so that the jump is always taken. 1069 */ 1070 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 1071 1072 /* CNTR 3 - Not used */ 1073 if (test_dm) { 1074 mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0_wl_1; 1075 writel(rwcfg->lfsr_wr_rd_dm_bank_0_data, 1076 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1077 writel(rwcfg->lfsr_wr_rd_dm_bank_0_nop, 1078 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1079 } else { 1080 mcc_instruction = rwcfg->lfsr_wr_rd_bank_0_wl_1; 1081 writel(rwcfg->lfsr_wr_rd_bank_0_data, 1082 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1083 writel(rwcfg->lfsr_wr_rd_bank_0_nop, 1084 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1085 } 1086 } else if (rw_wl_nop_cycles == 0) { 1087 /* 1088 * CNTR 2 - We want to skip the NOP operation and go straight 1089 * to the DQS enable instruction. We set the counter to a large 1090 * number so that the jump is always taken. 1091 */ 1092 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 1093 1094 /* CNTR 3 - Not used */ 1095 if (test_dm) { 1096 mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0; 1097 writel(rwcfg->lfsr_wr_rd_dm_bank_0_dqs, 1098 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1099 } else { 1100 mcc_instruction = rwcfg->lfsr_wr_rd_bank_0; 1101 writel(rwcfg->lfsr_wr_rd_bank_0_dqs, 1102 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1103 } 1104 } else { 1105 /* 1106 * CNTR 2 - In this case we want to execute the next instruction 1107 * and NOT take the jump. So we set the counter to 0. The jump 1108 * address doesn't count. 1109 */ 1110 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2); 1111 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1112 1113 /* 1114 * CNTR 3 - Set the nop counter to the number of cycles we 1115 * need to loop for, minus 1. 1116 */ 1117 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3); 1118 if (test_dm) { 1119 mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0; 1120 writel(rwcfg->lfsr_wr_rd_dm_bank_0_nop, 1121 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1122 } else { 1123 mcc_instruction = rwcfg->lfsr_wr_rd_bank_0; 1124 writel(rwcfg->lfsr_wr_rd_bank_0_nop, 1125 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1126 } 1127 } 1128 1129 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1130 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1131 1132 if (quick_write_mode) 1133 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0); 1134 else 1135 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0); 1136 1137 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1138 1139 /* 1140 * CNTR 1 - This is used to ensure enough time elapses 1141 * for read data to come back. 1142 */ 1143 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1); 1144 1145 if (test_dm) { 1146 writel(rwcfg->lfsr_wr_rd_dm_bank_0_wait, 1147 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1148 } else { 1149 writel(rwcfg->lfsr_wr_rd_bank_0_wait, 1150 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1151 } 1152 1153 writel(mcc_instruction, (SDR_PHYGRP_RWMGRGRP_ADDRESS | 1154 RW_MGR_RUN_SINGLE_GROUP_OFFSET) + 1155 (group << 2)); 1156 } 1157 1158 /** 1159 * rw_mgr_mem_calibrate_write_test() - Test writes, check for single/multiple pass 1160 * @rank_bgn: Rank number 1161 * @write_group: Write Group 1162 * @use_dm: Use DM 1163 * @all_correct: All bits must be correct in the mask 1164 * @bit_chk: Resulting bit mask after the test 1165 * @all_ranks: Test all ranks 1166 * 1167 * Test writes, can check for a single bit pass or multiple bit pass. 1168 */ 1169 static int 1170 rw_mgr_mem_calibrate_write_test(const u32 rank_bgn, const u32 write_group, 1171 const u32 use_dm, const u32 all_correct, 1172 u32 *bit_chk, const u32 all_ranks) 1173 { 1174 const u32 rank_end = all_ranks ? 1175 rwcfg->mem_number_of_ranks : 1176 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1177 const u32 shift_ratio = rwcfg->mem_dq_per_write_dqs / 1178 rwcfg->mem_virtual_groups_per_write_dqs; 1179 const u32 correct_mask_vg = param->write_correct_mask_vg; 1180 1181 u32 tmp_bit_chk, base_rw_mgr; 1182 int vg, r; 1183 1184 *bit_chk = param->write_correct_mask; 1185 1186 for (r = rank_bgn; r < rank_end; r++) { 1187 /* Set rank */ 1188 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1189 1190 tmp_bit_chk = 0; 1191 for (vg = rwcfg->mem_virtual_groups_per_write_dqs - 1; 1192 vg >= 0; vg--) { 1193 /* Reset the FIFOs to get pointers to known state. */ 1194 writel(0, &phy_mgr_cmd->fifo_reset); 1195 1196 rw_mgr_mem_calibrate_write_test_issue( 1197 write_group * 1198 rwcfg->mem_virtual_groups_per_write_dqs + vg, 1199 use_dm); 1200 1201 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1202 tmp_bit_chk <<= shift_ratio; 1203 tmp_bit_chk |= (correct_mask_vg & ~(base_rw_mgr)); 1204 } 1205 1206 *bit_chk &= tmp_bit_chk; 1207 } 1208 1209 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1210 if (all_correct) { 1211 debug_cond(DLEVEL == 2, 1212 "write_test(%u,%u,ALL) : %u == %u => %i\n", 1213 write_group, use_dm, *bit_chk, 1214 param->write_correct_mask, 1215 *bit_chk == param->write_correct_mask); 1216 return *bit_chk == param->write_correct_mask; 1217 } else { 1218 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1219 debug_cond(DLEVEL == 2, 1220 "write_test(%u,%u,ONE) : %u != %i => %i\n", 1221 write_group, use_dm, *bit_chk, 0, *bit_chk != 0); 1222 return *bit_chk != 0x00; 1223 } 1224 } 1225 1226 /** 1227 * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns 1228 * @rank_bgn: Rank number 1229 * @group: Read/Write Group 1230 * @all_ranks: Test all ranks 1231 * 1232 * Performs a guaranteed read on the patterns we are going to use during a 1233 * read test to ensure memory works. 1234 */ 1235 static int 1236 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group, 1237 const u32 all_ranks) 1238 { 1239 const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1240 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1241 const u32 addr_offset = 1242 (group * rwcfg->mem_virtual_groups_per_read_dqs) << 2; 1243 const u32 rank_end = all_ranks ? 1244 rwcfg->mem_number_of_ranks : 1245 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1246 const u32 shift_ratio = rwcfg->mem_dq_per_read_dqs / 1247 rwcfg->mem_virtual_groups_per_read_dqs; 1248 const u32 correct_mask_vg = param->read_correct_mask_vg; 1249 1250 u32 tmp_bit_chk, base_rw_mgr, bit_chk; 1251 int vg, r; 1252 int ret = 0; 1253 1254 bit_chk = param->read_correct_mask; 1255 1256 for (r = rank_bgn; r < rank_end; r++) { 1257 /* Set rank */ 1258 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1259 1260 /* Load up a constant bursts of read commands */ 1261 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1262 writel(rwcfg->guaranteed_read, 1263 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1264 1265 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1266 writel(rwcfg->guaranteed_read_cont, 1267 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1268 1269 tmp_bit_chk = 0; 1270 for (vg = rwcfg->mem_virtual_groups_per_read_dqs - 1; 1271 vg >= 0; vg--) { 1272 /* Reset the FIFOs to get pointers to known state. */ 1273 writel(0, &phy_mgr_cmd->fifo_reset); 1274 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1275 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1276 writel(rwcfg->guaranteed_read, 1277 addr + addr_offset + (vg << 2)); 1278 1279 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1280 tmp_bit_chk <<= shift_ratio; 1281 tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr; 1282 } 1283 1284 bit_chk &= tmp_bit_chk; 1285 } 1286 1287 writel(rwcfg->clear_dqs_enable, addr + (group << 2)); 1288 1289 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1290 1291 if (bit_chk != param->read_correct_mask) 1292 ret = -EIO; 1293 1294 debug_cond(DLEVEL == 1, 1295 "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n", 1296 __func__, __LINE__, group, bit_chk, 1297 param->read_correct_mask, ret); 1298 1299 return ret; 1300 } 1301 1302 /** 1303 * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test 1304 * @rank_bgn: Rank number 1305 * @all_ranks: Test all ranks 1306 * 1307 * Load up the patterns we are going to use during a read test. 1308 */ 1309 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn, 1310 const int all_ranks) 1311 { 1312 const u32 rank_end = all_ranks ? 1313 rwcfg->mem_number_of_ranks : 1314 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1315 u32 r; 1316 1317 debug("%s:%d\n", __func__, __LINE__); 1318 1319 for (r = rank_bgn; r < rank_end; r++) { 1320 /* set rank */ 1321 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1322 1323 /* Load up a constant bursts */ 1324 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1325 1326 writel(rwcfg->guaranteed_write_wait0, 1327 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1328 1329 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1330 1331 writel(rwcfg->guaranteed_write_wait1, 1332 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1333 1334 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2); 1335 1336 writel(rwcfg->guaranteed_write_wait2, 1337 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1338 1339 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3); 1340 1341 writel(rwcfg->guaranteed_write_wait3, 1342 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1343 1344 writel(rwcfg->guaranteed_write, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1345 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 1346 } 1347 1348 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1349 } 1350 1351 /** 1352 * rw_mgr_mem_calibrate_read_test() - Perform READ test on single rank 1353 * @rank_bgn: Rank number 1354 * @group: Read/Write group 1355 * @num_tries: Number of retries of the test 1356 * @all_correct: All bits must be correct in the mask 1357 * @bit_chk: Resulting bit mask after the test 1358 * @all_groups: Test all R/W groups 1359 * @all_ranks: Test all ranks 1360 * 1361 * Try a read and see if it returns correct data back. Test has dummy reads 1362 * inserted into the mix used to align DQS enable. Test has more thorough 1363 * checks than the regular read test. 1364 */ 1365 static int 1366 rw_mgr_mem_calibrate_read_test(const u32 rank_bgn, const u32 group, 1367 const u32 num_tries, const u32 all_correct, 1368 u32 *bit_chk, 1369 const u32 all_groups, const u32 all_ranks) 1370 { 1371 const u32 rank_end = all_ranks ? rwcfg->mem_number_of_ranks : 1372 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1373 const u32 quick_read_mode = 1374 ((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) && 1375 ENABLE_SUPER_QUICK_CALIBRATION); 1376 u32 correct_mask_vg = param->read_correct_mask_vg; 1377 u32 tmp_bit_chk; 1378 u32 base_rw_mgr; 1379 u32 addr; 1380 1381 int r, vg, ret; 1382 1383 *bit_chk = param->read_correct_mask; 1384 1385 for (r = rank_bgn; r < rank_end; r++) { 1386 /* set rank */ 1387 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1388 1389 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1); 1390 1391 writel(rwcfg->read_b2b_wait1, 1392 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1393 1394 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2); 1395 writel(rwcfg->read_b2b_wait2, 1396 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1397 1398 if (quick_read_mode) 1399 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0); 1400 /* need at least two (1+1) reads to capture failures */ 1401 else if (all_groups) 1402 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0); 1403 else 1404 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0); 1405 1406 writel(rwcfg->read_b2b, 1407 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1408 if (all_groups) 1409 writel(rwcfg->mem_if_read_dqs_width * 1410 rwcfg->mem_virtual_groups_per_read_dqs - 1, 1411 &sdr_rw_load_mgr_regs->load_cntr3); 1412 else 1413 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3); 1414 1415 writel(rwcfg->read_b2b, 1416 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1417 1418 tmp_bit_chk = 0; 1419 for (vg = rwcfg->mem_virtual_groups_per_read_dqs - 1; vg >= 0; 1420 vg--) { 1421 /* Reset the FIFOs to get pointers to known state. */ 1422 writel(0, &phy_mgr_cmd->fifo_reset); 1423 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1424 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1425 1426 if (all_groups) { 1427 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1428 RW_MGR_RUN_ALL_GROUPS_OFFSET; 1429 } else { 1430 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1431 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1432 } 1433 1434 writel(rwcfg->read_b2b, addr + 1435 ((group * rwcfg->mem_virtual_groups_per_read_dqs + 1436 vg) << 2)); 1437 1438 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1439 tmp_bit_chk <<= rwcfg->mem_dq_per_read_dqs / 1440 rwcfg->mem_virtual_groups_per_read_dqs; 1441 tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr); 1442 } 1443 1444 *bit_chk &= tmp_bit_chk; 1445 } 1446 1447 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1448 writel(rwcfg->clear_dqs_enable, addr + (group << 2)); 1449 1450 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1451 1452 if (all_correct) { 1453 ret = (*bit_chk == param->read_correct_mask); 1454 debug_cond(DLEVEL == 2, 1455 "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n", 1456 __func__, __LINE__, group, all_groups, *bit_chk, 1457 param->read_correct_mask, ret); 1458 } else { 1459 ret = (*bit_chk != 0x00); 1460 debug_cond(DLEVEL == 2, 1461 "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n", 1462 __func__, __LINE__, group, all_groups, *bit_chk, 1463 0, ret); 1464 } 1465 1466 return ret; 1467 } 1468 1469 /** 1470 * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks 1471 * @grp: Read/Write group 1472 * @num_tries: Number of retries of the test 1473 * @all_correct: All bits must be correct in the mask 1474 * @all_groups: Test all R/W groups 1475 * 1476 * Perform a READ test across all memory ranks. 1477 */ 1478 static int 1479 rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries, 1480 const u32 all_correct, 1481 const u32 all_groups) 1482 { 1483 u32 bit_chk; 1484 return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct, 1485 &bit_chk, all_groups, 1); 1486 } 1487 1488 /** 1489 * rw_mgr_incr_vfifo() - Increase VFIFO value 1490 * @grp: Read/Write group 1491 * 1492 * Increase VFIFO value. 1493 */ 1494 static void rw_mgr_incr_vfifo(const u32 grp) 1495 { 1496 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy); 1497 } 1498 1499 /** 1500 * rw_mgr_decr_vfifo() - Decrease VFIFO value 1501 * @grp: Read/Write group 1502 * 1503 * Decrease VFIFO value. 1504 */ 1505 static void rw_mgr_decr_vfifo(const u32 grp) 1506 { 1507 u32 i; 1508 1509 for (i = 0; i < VFIFO_SIZE - 1; i++) 1510 rw_mgr_incr_vfifo(grp); 1511 } 1512 1513 /** 1514 * find_vfifo_failing_read() - Push VFIFO to get a failing read 1515 * @grp: Read/Write group 1516 * 1517 * Push VFIFO until a failing read happens. 1518 */ 1519 static int find_vfifo_failing_read(const u32 grp) 1520 { 1521 u32 v, ret, fail_cnt = 0; 1522 1523 for (v = 0; v < VFIFO_SIZE; v++) { 1524 debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n", 1525 __func__, __LINE__, v); 1526 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1527 PASS_ONE_BIT, 0); 1528 if (!ret) { 1529 fail_cnt++; 1530 1531 if (fail_cnt == 2) 1532 return v; 1533 } 1534 1535 /* Fiddle with FIFO. */ 1536 rw_mgr_incr_vfifo(grp); 1537 } 1538 1539 /* No failing read found! Something must have gone wrong. */ 1540 debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__); 1541 return 0; 1542 } 1543 1544 /** 1545 * sdr_find_phase_delay() - Find DQS enable phase or delay 1546 * @working: If 1, look for working phase/delay, if 0, look for non-working 1547 * @delay: If 1, look for delay, if 0, look for phase 1548 * @grp: Read/Write group 1549 * @work: Working window position 1550 * @work_inc: Working window increment 1551 * @pd: DQS Phase/Delay Iterator 1552 * 1553 * Find working or non-working DQS enable phase setting. 1554 */ 1555 static int sdr_find_phase_delay(int working, int delay, const u32 grp, 1556 u32 *work, const u32 work_inc, u32 *pd) 1557 { 1558 const u32 max = delay ? IO_DQS_EN_DELAY_MAX : IO_DQS_EN_PHASE_MAX; 1559 u32 ret; 1560 1561 for (; *pd <= max; (*pd)++) { 1562 if (delay) 1563 scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd); 1564 else 1565 scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd); 1566 1567 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1568 PASS_ONE_BIT, 0); 1569 if (!working) 1570 ret = !ret; 1571 1572 if (ret) 1573 return 0; 1574 1575 if (work) 1576 *work += work_inc; 1577 } 1578 1579 return -EINVAL; 1580 } 1581 /** 1582 * sdr_find_phase() - Find DQS enable phase 1583 * @working: If 1, look for working phase, if 0, look for non-working phase 1584 * @grp: Read/Write group 1585 * @work: Working window position 1586 * @i: Iterator 1587 * @p: DQS Phase Iterator 1588 * 1589 * Find working or non-working DQS enable phase setting. 1590 */ 1591 static int sdr_find_phase(int working, const u32 grp, u32 *work, 1592 u32 *i, u32 *p) 1593 { 1594 const u32 end = VFIFO_SIZE + (working ? 0 : 1); 1595 int ret; 1596 1597 for (; *i < end; (*i)++) { 1598 if (working) 1599 *p = 0; 1600 1601 ret = sdr_find_phase_delay(working, 0, grp, work, 1602 IO_DELAY_PER_OPA_TAP, p); 1603 if (!ret) 1604 return 0; 1605 1606 if (*p > IO_DQS_EN_PHASE_MAX) { 1607 /* Fiddle with FIFO. */ 1608 rw_mgr_incr_vfifo(grp); 1609 if (!working) 1610 *p = 0; 1611 } 1612 } 1613 1614 return -EINVAL; 1615 } 1616 1617 /** 1618 * sdr_working_phase() - Find working DQS enable phase 1619 * @grp: Read/Write group 1620 * @work_bgn: Working window start position 1621 * @d: dtaps output value 1622 * @p: DQS Phase Iterator 1623 * @i: Iterator 1624 * 1625 * Find working DQS enable phase setting. 1626 */ 1627 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d, 1628 u32 *p, u32 *i) 1629 { 1630 const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / 1631 IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1632 int ret; 1633 1634 *work_bgn = 0; 1635 1636 for (*d = 0; *d <= dtaps_per_ptap; (*d)++) { 1637 *i = 0; 1638 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d); 1639 ret = sdr_find_phase(1, grp, work_bgn, i, p); 1640 if (!ret) 1641 return 0; 1642 *work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1643 } 1644 1645 /* Cannot find working solution */ 1646 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n", 1647 __func__, __LINE__); 1648 return -EINVAL; 1649 } 1650 1651 /** 1652 * sdr_backup_phase() - Find DQS enable backup phase 1653 * @grp: Read/Write group 1654 * @work_bgn: Working window start position 1655 * @p: DQS Phase Iterator 1656 * 1657 * Find DQS enable backup phase setting. 1658 */ 1659 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p) 1660 { 1661 u32 tmp_delay, d; 1662 int ret; 1663 1664 /* Special case code for backing up a phase */ 1665 if (*p == 0) { 1666 *p = IO_DQS_EN_PHASE_MAX; 1667 rw_mgr_decr_vfifo(grp); 1668 } else { 1669 (*p)--; 1670 } 1671 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP; 1672 scc_mgr_set_dqs_en_phase_all_ranks(grp, *p); 1673 1674 for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; d++) { 1675 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1676 1677 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1678 PASS_ONE_BIT, 0); 1679 if (ret) { 1680 *work_bgn = tmp_delay; 1681 break; 1682 } 1683 1684 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1685 } 1686 1687 /* Restore VFIFO to old state before we decremented it (if needed). */ 1688 (*p)++; 1689 if (*p > IO_DQS_EN_PHASE_MAX) { 1690 *p = 0; 1691 rw_mgr_incr_vfifo(grp); 1692 } 1693 1694 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1695 } 1696 1697 /** 1698 * sdr_nonworking_phase() - Find non-working DQS enable phase 1699 * @grp: Read/Write group 1700 * @work_end: Working window end position 1701 * @p: DQS Phase Iterator 1702 * @i: Iterator 1703 * 1704 * Find non-working DQS enable phase setting. 1705 */ 1706 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i) 1707 { 1708 int ret; 1709 1710 (*p)++; 1711 *work_end += IO_DELAY_PER_OPA_TAP; 1712 if (*p > IO_DQS_EN_PHASE_MAX) { 1713 /* Fiddle with FIFO. */ 1714 *p = 0; 1715 rw_mgr_incr_vfifo(grp); 1716 } 1717 1718 ret = sdr_find_phase(0, grp, work_end, i, p); 1719 if (ret) { 1720 /* Cannot see edge of failing read. */ 1721 debug_cond(DLEVEL == 2, "%s:%d: end: failed\n", 1722 __func__, __LINE__); 1723 } 1724 1725 return ret; 1726 } 1727 1728 /** 1729 * sdr_find_window_center() - Find center of the working DQS window. 1730 * @grp: Read/Write group 1731 * @work_bgn: First working settings 1732 * @work_end: Last working settings 1733 * 1734 * Find center of the working DQS enable window. 1735 */ 1736 static int sdr_find_window_center(const u32 grp, const u32 work_bgn, 1737 const u32 work_end) 1738 { 1739 u32 work_mid; 1740 int tmp_delay = 0; 1741 int i, p, d; 1742 1743 work_mid = (work_bgn + work_end) / 2; 1744 1745 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n", 1746 work_bgn, work_end, work_mid); 1747 /* Get the middle delay to be less than a VFIFO delay */ 1748 tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP; 1749 1750 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay); 1751 work_mid %= tmp_delay; 1752 debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid); 1753 1754 tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP); 1755 if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP) 1756 tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP; 1757 p = tmp_delay / IO_DELAY_PER_OPA_TAP; 1758 1759 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay); 1760 1761 d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP); 1762 if (d > IO_DQS_EN_DELAY_MAX) 1763 d = IO_DQS_EN_DELAY_MAX; 1764 tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1765 1766 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay); 1767 1768 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1769 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1770 1771 /* 1772 * push vfifo until we can successfully calibrate. We can do this 1773 * because the largest possible margin in 1 VFIFO cycle. 1774 */ 1775 for (i = 0; i < VFIFO_SIZE; i++) { 1776 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n"); 1777 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1778 PASS_ONE_BIT, 1779 0)) { 1780 debug_cond(DLEVEL == 2, 1781 "%s:%d center: found: ptap=%u dtap=%u\n", 1782 __func__, __LINE__, p, d); 1783 return 0; 1784 } 1785 1786 /* Fiddle with FIFO. */ 1787 rw_mgr_incr_vfifo(grp); 1788 } 1789 1790 debug_cond(DLEVEL == 2, "%s:%d center: failed.\n", 1791 __func__, __LINE__); 1792 return -EINVAL; 1793 } 1794 1795 /** 1796 * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use 1797 * @grp: Read/Write Group 1798 * 1799 * Find a good DQS enable to use. 1800 */ 1801 static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp) 1802 { 1803 u32 d, p, i; 1804 u32 dtaps_per_ptap; 1805 u32 work_bgn, work_end; 1806 u32 found_passing_read, found_failing_read, initial_failing_dtap; 1807 int ret; 1808 1809 debug("%s:%d %u\n", __func__, __LINE__, grp); 1810 1811 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 1812 1813 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1814 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); 1815 1816 /* Step 0: Determine number of delay taps for each phase tap. */ 1817 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1818 1819 /* Step 1: First push vfifo until we get a failing read. */ 1820 find_vfifo_failing_read(grp); 1821 1822 /* Step 2: Find first working phase, increment in ptaps. */ 1823 work_bgn = 0; 1824 ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i); 1825 if (ret) 1826 return ret; 1827 1828 work_end = work_bgn; 1829 1830 /* 1831 * If d is 0 then the working window covers a phase tap and we can 1832 * follow the old procedure. Otherwise, we've found the beginning 1833 * and we need to increment the dtaps until we find the end. 1834 */ 1835 if (d == 0) { 1836 /* 1837 * Step 3a: If we have room, back off by one and 1838 * increment in dtaps. 1839 */ 1840 sdr_backup_phase(grp, &work_bgn, &p); 1841 1842 /* 1843 * Step 4a: go forward from working phase to non working 1844 * phase, increment in ptaps. 1845 */ 1846 ret = sdr_nonworking_phase(grp, &work_end, &p, &i); 1847 if (ret) 1848 return ret; 1849 1850 /* Step 5a: Back off one from last, increment in dtaps. */ 1851 1852 /* Special case code for backing up a phase */ 1853 if (p == 0) { 1854 p = IO_DQS_EN_PHASE_MAX; 1855 rw_mgr_decr_vfifo(grp); 1856 } else { 1857 p = p - 1; 1858 } 1859 1860 work_end -= IO_DELAY_PER_OPA_TAP; 1861 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1862 1863 d = 0; 1864 1865 debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n", 1866 __func__, __LINE__, p); 1867 } 1868 1869 /* The dtap increment to find the failing edge is done here. */ 1870 sdr_find_phase_delay(0, 1, grp, &work_end, 1871 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, &d); 1872 1873 /* Go back to working dtap */ 1874 if (d != 0) 1875 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1876 1877 debug_cond(DLEVEL == 2, 1878 "%s:%d p/d: ptap=%u dtap=%u end=%u\n", 1879 __func__, __LINE__, p, d - 1, work_end); 1880 1881 if (work_end < work_bgn) { 1882 /* nil range */ 1883 debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n", 1884 __func__, __LINE__); 1885 return -EINVAL; 1886 } 1887 1888 debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n", 1889 __func__, __LINE__, work_bgn, work_end); 1890 1891 /* 1892 * We need to calculate the number of dtaps that equal a ptap. 1893 * To do that we'll back up a ptap and re-find the edge of the 1894 * window using dtaps 1895 */ 1896 debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n", 1897 __func__, __LINE__); 1898 1899 /* Special case code for backing up a phase */ 1900 if (p == 0) { 1901 p = IO_DQS_EN_PHASE_MAX; 1902 rw_mgr_decr_vfifo(grp); 1903 debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n", 1904 __func__, __LINE__, p); 1905 } else { 1906 p = p - 1; 1907 debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u", 1908 __func__, __LINE__, p); 1909 } 1910 1911 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1912 1913 /* 1914 * Increase dtap until we first see a passing read (in case the 1915 * window is smaller than a ptap), and then a failing read to 1916 * mark the edge of the window again. 1917 */ 1918 1919 /* Find a passing read. */ 1920 debug_cond(DLEVEL == 2, "%s:%d find passing read\n", 1921 __func__, __LINE__); 1922 1923 initial_failing_dtap = d; 1924 1925 found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d); 1926 if (found_passing_read) { 1927 /* Find a failing read. */ 1928 debug_cond(DLEVEL == 2, "%s:%d find failing read\n", 1929 __func__, __LINE__); 1930 d++; 1931 found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0, 1932 &d); 1933 } else { 1934 debug_cond(DLEVEL == 1, 1935 "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n", 1936 __func__, __LINE__); 1937 } 1938 1939 /* 1940 * The dynamically calculated dtaps_per_ptap is only valid if we 1941 * found a passing/failing read. If we didn't, it means d hit the max 1942 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its 1943 * statically calculated value. 1944 */ 1945 if (found_passing_read && found_failing_read) 1946 dtaps_per_ptap = d - initial_failing_dtap; 1947 1948 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 1949 debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u", 1950 __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap); 1951 1952 /* Step 6: Find the centre of the window. */ 1953 ret = sdr_find_window_center(grp, work_bgn, work_end); 1954 1955 return ret; 1956 } 1957 1958 /** 1959 * search_stop_check() - Check if the detected edge is valid 1960 * @write: Perform read (Stage 2) or write (Stage 3) calibration 1961 * @d: DQS delay 1962 * @rank_bgn: Rank number 1963 * @write_group: Write Group 1964 * @read_group: Read Group 1965 * @bit_chk: Resulting bit mask after the test 1966 * @sticky_bit_chk: Resulting sticky bit mask after the test 1967 * @use_read_test: Perform read test 1968 * 1969 * Test if the found edge is valid. 1970 */ 1971 static u32 search_stop_check(const int write, const int d, const int rank_bgn, 1972 const u32 write_group, const u32 read_group, 1973 u32 *bit_chk, u32 *sticky_bit_chk, 1974 const u32 use_read_test) 1975 { 1976 const u32 ratio = rwcfg->mem_if_read_dqs_width / 1977 rwcfg->mem_if_write_dqs_width; 1978 const u32 correct_mask = write ? param->write_correct_mask : 1979 param->read_correct_mask; 1980 const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs : 1981 rwcfg->mem_dq_per_read_dqs; 1982 u32 ret; 1983 /* 1984 * Stop searching when the read test doesn't pass AND when 1985 * we've seen a passing read on every bit. 1986 */ 1987 if (write) { /* WRITE-ONLY */ 1988 ret = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1989 0, PASS_ONE_BIT, 1990 bit_chk, 0); 1991 } else if (use_read_test) { /* READ-ONLY */ 1992 ret = !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group, 1993 NUM_READ_PB_TESTS, 1994 PASS_ONE_BIT, bit_chk, 1995 0, 0); 1996 } else { /* READ-ONLY */ 1997 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0, 1998 PASS_ONE_BIT, bit_chk, 0); 1999 *bit_chk = *bit_chk >> (per_dqs * 2000 (read_group - (write_group * ratio))); 2001 ret = (*bit_chk == 0); 2002 } 2003 *sticky_bit_chk = *sticky_bit_chk | *bit_chk; 2004 ret = ret && (*sticky_bit_chk == correct_mask); 2005 debug_cond(DLEVEL == 2, 2006 "%s:%d center(left): dtap=%u => %u == %u && %u", 2007 __func__, __LINE__, d, 2008 *sticky_bit_chk, correct_mask, ret); 2009 return ret; 2010 } 2011 2012 /** 2013 * search_left_edge() - Find left edge of DQ/DQS working phase 2014 * @write: Perform read (Stage 2) or write (Stage 3) calibration 2015 * @rank_bgn: Rank number 2016 * @write_group: Write Group 2017 * @read_group: Read Group 2018 * @test_bgn: Rank number to begin the test 2019 * @sticky_bit_chk: Resulting sticky bit mask after the test 2020 * @left_edge: Left edge of the DQ/DQS phase 2021 * @right_edge: Right edge of the DQ/DQS phase 2022 * @use_read_test: Perform read test 2023 * 2024 * Find left edge of DQ/DQS working phase. 2025 */ 2026 static void search_left_edge(const int write, const int rank_bgn, 2027 const u32 write_group, const u32 read_group, const u32 test_bgn, 2028 u32 *sticky_bit_chk, 2029 int *left_edge, int *right_edge, const u32 use_read_test) 2030 { 2031 const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX; 2032 const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX; 2033 const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs : 2034 rwcfg->mem_dq_per_read_dqs; 2035 u32 stop, bit_chk; 2036 int i, d; 2037 2038 for (d = 0; d <= dqs_max; d++) { 2039 if (write) 2040 scc_mgr_apply_group_dq_out1_delay(d); 2041 else 2042 scc_mgr_apply_group_dq_in_delay(test_bgn, d); 2043 2044 writel(0, &sdr_scc_mgr->update); 2045 2046 stop = search_stop_check(write, d, rank_bgn, write_group, 2047 read_group, &bit_chk, sticky_bit_chk, 2048 use_read_test); 2049 if (stop == 1) 2050 break; 2051 2052 /* stop != 1 */ 2053 for (i = 0; i < per_dqs; i++) { 2054 if (bit_chk & 1) { 2055 /* 2056 * Remember a passing test as 2057 * the left_edge. 2058 */ 2059 left_edge[i] = d; 2060 } else { 2061 /* 2062 * If a left edge has not been seen 2063 * yet, then a future passing test 2064 * will mark this edge as the right 2065 * edge. 2066 */ 2067 if (left_edge[i] == delay_max + 1) 2068 right_edge[i] = -(d + 1); 2069 } 2070 bit_chk >>= 1; 2071 } 2072 } 2073 2074 /* Reset DQ delay chains to 0 */ 2075 if (write) 2076 scc_mgr_apply_group_dq_out1_delay(0); 2077 else 2078 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 2079 2080 *sticky_bit_chk = 0; 2081 for (i = per_dqs - 1; i >= 0; i--) { 2082 debug_cond(DLEVEL == 2, 2083 "%s:%d vfifo_center: left_edge[%u]: %d right_edge[%u]: %d\n", 2084 __func__, __LINE__, i, left_edge[i], 2085 i, right_edge[i]); 2086 2087 /* 2088 * Check for cases where we haven't found the left edge, 2089 * which makes our assignment of the the right edge invalid. 2090 * Reset it to the illegal value. 2091 */ 2092 if ((left_edge[i] == delay_max + 1) && 2093 (right_edge[i] != delay_max + 1)) { 2094 right_edge[i] = delay_max + 1; 2095 debug_cond(DLEVEL == 2, 2096 "%s:%d vfifo_center: reset right_edge[%u]: %d\n", 2097 __func__, __LINE__, i, right_edge[i]); 2098 } 2099 2100 /* 2101 * Reset sticky bit 2102 * READ: except for bits where we have seen both 2103 * the left and right edge. 2104 * WRITE: except for bits where we have seen the 2105 * left edge. 2106 */ 2107 *sticky_bit_chk <<= 1; 2108 if (write) { 2109 if (left_edge[i] != delay_max + 1) 2110 *sticky_bit_chk |= 1; 2111 } else { 2112 if ((left_edge[i] != delay_max + 1) && 2113 (right_edge[i] != delay_max + 1)) 2114 *sticky_bit_chk |= 1; 2115 } 2116 } 2117 2118 2119 } 2120 2121 /** 2122 * search_right_edge() - Find right edge of DQ/DQS working phase 2123 * @write: Perform read (Stage 2) or write (Stage 3) calibration 2124 * @rank_bgn: Rank number 2125 * @write_group: Write Group 2126 * @read_group: Read Group 2127 * @start_dqs: DQS start phase 2128 * @start_dqs_en: DQS enable start phase 2129 * @sticky_bit_chk: Resulting sticky bit mask after the test 2130 * @left_edge: Left edge of the DQ/DQS phase 2131 * @right_edge: Right edge of the DQ/DQS phase 2132 * @use_read_test: Perform read test 2133 * 2134 * Find right edge of DQ/DQS working phase. 2135 */ 2136 static int search_right_edge(const int write, const int rank_bgn, 2137 const u32 write_group, const u32 read_group, 2138 const int start_dqs, const int start_dqs_en, 2139 u32 *sticky_bit_chk, 2140 int *left_edge, int *right_edge, const u32 use_read_test) 2141 { 2142 const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX; 2143 const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX; 2144 const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs : 2145 rwcfg->mem_dq_per_read_dqs; 2146 u32 stop, bit_chk; 2147 int i, d; 2148 2149 for (d = 0; d <= dqs_max - start_dqs; d++) { 2150 if (write) { /* WRITE-ONLY */ 2151 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2152 d + start_dqs); 2153 } else { /* READ-ONLY */ 2154 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs); 2155 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2156 uint32_t delay = d + start_dqs_en; 2157 if (delay > IO_DQS_EN_DELAY_MAX) 2158 delay = IO_DQS_EN_DELAY_MAX; 2159 scc_mgr_set_dqs_en_delay(read_group, delay); 2160 } 2161 scc_mgr_load_dqs(read_group); 2162 } 2163 2164 writel(0, &sdr_scc_mgr->update); 2165 2166 stop = search_stop_check(write, d, rank_bgn, write_group, 2167 read_group, &bit_chk, sticky_bit_chk, 2168 use_read_test); 2169 if (stop == 1) { 2170 if (write && (d == 0)) { /* WRITE-ONLY */ 2171 for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) { 2172 /* 2173 * d = 0 failed, but it passed when 2174 * testing the left edge, so it must be 2175 * marginal, set it to -1 2176 */ 2177 if (right_edge[i] == delay_max + 1 && 2178 left_edge[i] != delay_max + 1) 2179 right_edge[i] = -1; 2180 } 2181 } 2182 break; 2183 } 2184 2185 /* stop != 1 */ 2186 for (i = 0; i < per_dqs; i++) { 2187 if (bit_chk & 1) { 2188 /* 2189 * Remember a passing test as 2190 * the right_edge. 2191 */ 2192 right_edge[i] = d; 2193 } else { 2194 if (d != 0) { 2195 /* 2196 * If a right edge has not 2197 * been seen yet, then a future 2198 * passing test will mark this 2199 * edge as the left edge. 2200 */ 2201 if (right_edge[i] == delay_max + 1) 2202 left_edge[i] = -(d + 1); 2203 } else { 2204 /* 2205 * d = 0 failed, but it passed 2206 * when testing the left edge, 2207 * so it must be marginal, set 2208 * it to -1 2209 */ 2210 if (right_edge[i] == delay_max + 1 && 2211 left_edge[i] != delay_max + 1) 2212 right_edge[i] = -1; 2213 /* 2214 * If a right edge has not been 2215 * seen yet, then a future 2216 * passing test will mark this 2217 * edge as the left edge. 2218 */ 2219 else if (right_edge[i] == delay_max + 1) 2220 left_edge[i] = -(d + 1); 2221 } 2222 } 2223 2224 debug_cond(DLEVEL == 2, "%s:%d center[r,d=%u]: ", 2225 __func__, __LINE__, d); 2226 debug_cond(DLEVEL == 2, 2227 "bit_chk_test=%i left_edge[%u]: %d ", 2228 bit_chk & 1, i, left_edge[i]); 2229 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2230 right_edge[i]); 2231 bit_chk >>= 1; 2232 } 2233 } 2234 2235 /* Check that all bits have a window */ 2236 for (i = 0; i < per_dqs; i++) { 2237 debug_cond(DLEVEL == 2, 2238 "%s:%d write_center: left_edge[%u]: %d right_edge[%u]: %d", 2239 __func__, __LINE__, i, left_edge[i], 2240 i, right_edge[i]); 2241 if ((left_edge[i] == dqs_max + 1) || 2242 (right_edge[i] == dqs_max + 1)) 2243 return i + 1; /* FIXME: If we fail, retval > 0 */ 2244 } 2245 2246 return 0; 2247 } 2248 2249 /** 2250 * get_window_mid_index() - Find the best middle setting of DQ/DQS phase 2251 * @write: Perform read (Stage 2) or write (Stage 3) calibration 2252 * @left_edge: Left edge of the DQ/DQS phase 2253 * @right_edge: Right edge of the DQ/DQS phase 2254 * @mid_min: Best DQ/DQS phase middle setting 2255 * 2256 * Find index and value of the middle of the DQ/DQS working phase. 2257 */ 2258 static int get_window_mid_index(const int write, int *left_edge, 2259 int *right_edge, int *mid_min) 2260 { 2261 const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs : 2262 rwcfg->mem_dq_per_read_dqs; 2263 int i, mid, min_index; 2264 2265 /* Find middle of window for each DQ bit */ 2266 *mid_min = left_edge[0] - right_edge[0]; 2267 min_index = 0; 2268 for (i = 1; i < per_dqs; i++) { 2269 mid = left_edge[i] - right_edge[i]; 2270 if (mid < *mid_min) { 2271 *mid_min = mid; 2272 min_index = i; 2273 } 2274 } 2275 2276 /* 2277 * -mid_min/2 represents the amount that we need to move DQS. 2278 * If mid_min is odd and positive we'll need to add one to make 2279 * sure the rounding in further calculations is correct (always 2280 * bias to the right), so just add 1 for all positive values. 2281 */ 2282 if (*mid_min > 0) 2283 (*mid_min)++; 2284 *mid_min = *mid_min / 2; 2285 2286 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: *mid_min=%d (index=%u)\n", 2287 __func__, __LINE__, *mid_min, min_index); 2288 return min_index; 2289 } 2290 2291 /** 2292 * center_dq_windows() - Center the DQ/DQS windows 2293 * @write: Perform read (Stage 2) or write (Stage 3) calibration 2294 * @left_edge: Left edge of the DQ/DQS phase 2295 * @right_edge: Right edge of the DQ/DQS phase 2296 * @mid_min: Adjusted DQ/DQS phase middle setting 2297 * @orig_mid_min: Original DQ/DQS phase middle setting 2298 * @min_index: DQ/DQS phase middle setting index 2299 * @test_bgn: Rank number to begin the test 2300 * @dq_margin: Amount of shift for the DQ 2301 * @dqs_margin: Amount of shift for the DQS 2302 * 2303 * Align the DQ/DQS windows in each group. 2304 */ 2305 static void center_dq_windows(const int write, int *left_edge, int *right_edge, 2306 const int mid_min, const int orig_mid_min, 2307 const int min_index, const int test_bgn, 2308 int *dq_margin, int *dqs_margin) 2309 { 2310 const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX; 2311 const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs : 2312 rwcfg->mem_dq_per_read_dqs; 2313 const u32 delay_off = write ? SCC_MGR_IO_OUT1_DELAY_OFFSET : 2314 SCC_MGR_IO_IN_DELAY_OFFSET; 2315 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | delay_off; 2316 2317 u32 temp_dq_io_delay1, temp_dq_io_delay2; 2318 int shift_dq, i, p; 2319 2320 /* Initialize data for export structures */ 2321 *dqs_margin = delay_max + 1; 2322 *dq_margin = delay_max + 1; 2323 2324 /* add delay to bring centre of all DQ windows to the same "level" */ 2325 for (i = 0, p = test_bgn; i < per_dqs; i++, p++) { 2326 /* Use values before divide by 2 to reduce round off error */ 2327 shift_dq = (left_edge[i] - right_edge[i] - 2328 (left_edge[min_index] - right_edge[min_index]))/2 + 2329 (orig_mid_min - mid_min); 2330 2331 debug_cond(DLEVEL == 2, 2332 "vfifo_center: before: shift_dq[%u]=%d\n", 2333 i, shift_dq); 2334 2335 temp_dq_io_delay1 = readl(addr + (p << 2)); 2336 temp_dq_io_delay2 = readl(addr + (i << 2)); 2337 2338 if (shift_dq + temp_dq_io_delay1 > delay_max) 2339 shift_dq = delay_max - temp_dq_io_delay2; 2340 else if (shift_dq + temp_dq_io_delay1 < 0) 2341 shift_dq = -temp_dq_io_delay1; 2342 2343 debug_cond(DLEVEL == 2, 2344 "vfifo_center: after: shift_dq[%u]=%d\n", 2345 i, shift_dq); 2346 2347 if (write) 2348 scc_mgr_set_dq_out1_delay(i, temp_dq_io_delay1 + shift_dq); 2349 else 2350 scc_mgr_set_dq_in_delay(p, temp_dq_io_delay1 + shift_dq); 2351 2352 scc_mgr_load_dq(p); 2353 2354 debug_cond(DLEVEL == 2, 2355 "vfifo_center: margin[%u]=[%d,%d]\n", i, 2356 left_edge[i] - shift_dq + (-mid_min), 2357 right_edge[i] + shift_dq - (-mid_min)); 2358 2359 /* To determine values for export structures */ 2360 if (left_edge[i] - shift_dq + (-mid_min) < *dq_margin) 2361 *dq_margin = left_edge[i] - shift_dq + (-mid_min); 2362 2363 if (right_edge[i] + shift_dq - (-mid_min) < *dqs_margin) 2364 *dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2365 } 2366 2367 } 2368 2369 /** 2370 * rw_mgr_mem_calibrate_vfifo_center() - Per-bit deskew DQ and centering 2371 * @rank_bgn: Rank number 2372 * @rw_group: Read/Write Group 2373 * @test_bgn: Rank at which the test begins 2374 * @use_read_test: Perform a read test 2375 * @update_fom: Update FOM 2376 * 2377 * Per-bit deskew DQ and centering. 2378 */ 2379 static int rw_mgr_mem_calibrate_vfifo_center(const u32 rank_bgn, 2380 const u32 rw_group, const u32 test_bgn, 2381 const int use_read_test, const int update_fom) 2382 { 2383 const u32 addr = 2384 SDR_PHYGRP_SCCGRP_ADDRESS + SCC_MGR_DQS_IN_DELAY_OFFSET + 2385 (rw_group << 2); 2386 /* 2387 * Store these as signed since there are comparisons with 2388 * signed numbers. 2389 */ 2390 uint32_t sticky_bit_chk; 2391 int32_t left_edge[rwcfg->mem_dq_per_read_dqs]; 2392 int32_t right_edge[rwcfg->mem_dq_per_read_dqs]; 2393 int32_t orig_mid_min, mid_min; 2394 int32_t new_dqs, start_dqs, start_dqs_en, final_dqs_en; 2395 int32_t dq_margin, dqs_margin; 2396 int i, min_index; 2397 int ret; 2398 2399 debug("%s:%d: %u %u", __func__, __LINE__, rw_group, test_bgn); 2400 2401 start_dqs = readl(addr); 2402 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2403 start_dqs_en = readl(addr - IO_DQS_EN_DELAY_OFFSET); 2404 2405 /* set the left and right edge of each bit to an illegal value */ 2406 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */ 2407 sticky_bit_chk = 0; 2408 for (i = 0; i < rwcfg->mem_dq_per_read_dqs; i++) { 2409 left_edge[i] = IO_IO_IN_DELAY_MAX + 1; 2410 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 2411 } 2412 2413 /* Search for the left edge of the window for each bit */ 2414 search_left_edge(0, rank_bgn, rw_group, rw_group, test_bgn, 2415 &sticky_bit_chk, 2416 left_edge, right_edge, use_read_test); 2417 2418 2419 /* Search for the right edge of the window for each bit */ 2420 ret = search_right_edge(0, rank_bgn, rw_group, rw_group, 2421 start_dqs, start_dqs_en, 2422 &sticky_bit_chk, 2423 left_edge, right_edge, use_read_test); 2424 if (ret) { 2425 /* 2426 * Restore delay chain settings before letting the loop 2427 * in rw_mgr_mem_calibrate_vfifo to retry different 2428 * dqs/ck relationships. 2429 */ 2430 scc_mgr_set_dqs_bus_in_delay(rw_group, start_dqs); 2431 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2432 scc_mgr_set_dqs_en_delay(rw_group, start_dqs_en); 2433 2434 scc_mgr_load_dqs(rw_group); 2435 writel(0, &sdr_scc_mgr->update); 2436 2437 debug_cond(DLEVEL == 1, 2438 "%s:%d vfifo_center: failed to find edge [%u]: %d %d", 2439 __func__, __LINE__, i, left_edge[i], right_edge[i]); 2440 if (use_read_test) { 2441 set_failing_group_stage(rw_group * 2442 rwcfg->mem_dq_per_read_dqs + i, 2443 CAL_STAGE_VFIFO, 2444 CAL_SUBSTAGE_VFIFO_CENTER); 2445 } else { 2446 set_failing_group_stage(rw_group * 2447 rwcfg->mem_dq_per_read_dqs + i, 2448 CAL_STAGE_VFIFO_AFTER_WRITES, 2449 CAL_SUBSTAGE_VFIFO_CENTER); 2450 } 2451 return -EIO; 2452 } 2453 2454 min_index = get_window_mid_index(0, left_edge, right_edge, &mid_min); 2455 2456 /* Determine the amount we can change DQS (which is -mid_min) */ 2457 orig_mid_min = mid_min; 2458 new_dqs = start_dqs - mid_min; 2459 if (new_dqs > IO_DQS_IN_DELAY_MAX) 2460 new_dqs = IO_DQS_IN_DELAY_MAX; 2461 else if (new_dqs < 0) 2462 new_dqs = 0; 2463 2464 mid_min = start_dqs - new_dqs; 2465 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n", 2466 mid_min, new_dqs); 2467 2468 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2469 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX) 2470 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX; 2471 else if (start_dqs_en - mid_min < 0) 2472 mid_min += start_dqs_en - mid_min; 2473 } 2474 new_dqs = start_dqs - mid_min; 2475 2476 debug_cond(DLEVEL == 1, 2477 "vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d\n", 2478 start_dqs, 2479 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1, 2480 new_dqs, mid_min); 2481 2482 /* Add delay to bring centre of all DQ windows to the same "level". */ 2483 center_dq_windows(0, left_edge, right_edge, mid_min, orig_mid_min, 2484 min_index, test_bgn, &dq_margin, &dqs_margin); 2485 2486 /* Move DQS-en */ 2487 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2488 final_dqs_en = start_dqs_en - mid_min; 2489 scc_mgr_set_dqs_en_delay(rw_group, final_dqs_en); 2490 scc_mgr_load_dqs(rw_group); 2491 } 2492 2493 /* Move DQS */ 2494 scc_mgr_set_dqs_bus_in_delay(rw_group, new_dqs); 2495 scc_mgr_load_dqs(rw_group); 2496 debug_cond(DLEVEL == 2, 2497 "%s:%d vfifo_center: dq_margin=%d dqs_margin=%d", 2498 __func__, __LINE__, dq_margin, dqs_margin); 2499 2500 /* 2501 * Do not remove this line as it makes sure all of our decisions 2502 * have been applied. Apply the update bit. 2503 */ 2504 writel(0, &sdr_scc_mgr->update); 2505 2506 if ((dq_margin < 0) || (dqs_margin < 0)) 2507 return -EINVAL; 2508 2509 return 0; 2510 } 2511 2512 /** 2513 * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device 2514 * @rw_group: Read/Write Group 2515 * @phase: DQ/DQS phase 2516 * 2517 * Because initially no communication ca be reliably performed with the memory 2518 * device, the sequencer uses a guaranteed write mechanism to write data into 2519 * the memory device. 2520 */ 2521 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group, 2522 const u32 phase) 2523 { 2524 int ret; 2525 2526 /* Set a particular DQ/DQS phase. */ 2527 scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase); 2528 2529 debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n", 2530 __func__, __LINE__, rw_group, phase); 2531 2532 /* 2533 * Altera EMI_RM 2015.05.04 :: Figure 1-25 2534 * Load up the patterns used by read calibration using the 2535 * current DQDQS phase. 2536 */ 2537 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2538 2539 if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ) 2540 return 0; 2541 2542 /* 2543 * Altera EMI_RM 2015.05.04 :: Figure 1-26 2544 * Back-to-Back reads of the patterns used for calibration. 2545 */ 2546 ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1); 2547 if (ret) 2548 debug_cond(DLEVEL == 1, 2549 "%s:%d Guaranteed read test failed: g=%u p=%u\n", 2550 __func__, __LINE__, rw_group, phase); 2551 return ret; 2552 } 2553 2554 /** 2555 * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration 2556 * @rw_group: Read/Write Group 2557 * @test_bgn: Rank at which the test begins 2558 * 2559 * DQS enable calibration ensures reliable capture of the DQ signal without 2560 * glitches on the DQS line. 2561 */ 2562 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group, 2563 const u32 test_bgn) 2564 { 2565 /* 2566 * Altera EMI_RM 2015.05.04 :: Figure 1-27 2567 * DQS and DQS Eanble Signal Relationships. 2568 */ 2569 2570 /* We start at zero, so have one less dq to devide among */ 2571 const u32 delay_step = IO_IO_IN_DELAY_MAX / 2572 (rwcfg->mem_dq_per_read_dqs - 1); 2573 int ret; 2574 u32 i, p, d, r; 2575 2576 debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn); 2577 2578 /* Try different dq_in_delays since the DQ path is shorter than DQS. */ 2579 for (r = 0; r < rwcfg->mem_number_of_ranks; 2580 r += NUM_RANKS_PER_SHADOW_REG) { 2581 for (i = 0, p = test_bgn, d = 0; 2582 i < rwcfg->mem_dq_per_read_dqs; 2583 i++, p++, d += delay_step) { 2584 debug_cond(DLEVEL == 1, 2585 "%s:%d: g=%u r=%u i=%u p=%u d=%u\n", 2586 __func__, __LINE__, rw_group, r, i, p, d); 2587 2588 scc_mgr_set_dq_in_delay(p, d); 2589 scc_mgr_load_dq(p); 2590 } 2591 2592 writel(0, &sdr_scc_mgr->update); 2593 } 2594 2595 /* 2596 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different 2597 * dq_in_delay values 2598 */ 2599 ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group); 2600 2601 debug_cond(DLEVEL == 1, 2602 "%s:%d: g=%u found=%u; Reseting delay chain to zero\n", 2603 __func__, __LINE__, rw_group, !ret); 2604 2605 for (r = 0; r < rwcfg->mem_number_of_ranks; 2606 r += NUM_RANKS_PER_SHADOW_REG) { 2607 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 2608 writel(0, &sdr_scc_mgr->update); 2609 } 2610 2611 return ret; 2612 } 2613 2614 /** 2615 * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS 2616 * @rw_group: Read/Write Group 2617 * @test_bgn: Rank at which the test begins 2618 * @use_read_test: Perform a read test 2619 * @update_fom: Update FOM 2620 * 2621 * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads 2622 * within a group. 2623 */ 2624 static int 2625 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn, 2626 const int use_read_test, 2627 const int update_fom) 2628 2629 { 2630 int ret, grp_calibrated; 2631 u32 rank_bgn, sr; 2632 2633 /* 2634 * Altera EMI_RM 2015.05.04 :: Figure 1-28 2635 * Read per-bit deskew can be done on a per shadow register basis. 2636 */ 2637 grp_calibrated = 1; 2638 for (rank_bgn = 0, sr = 0; 2639 rank_bgn < rwcfg->mem_number_of_ranks; 2640 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 2641 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group, 2642 test_bgn, 2643 use_read_test, 2644 update_fom); 2645 if (!ret) 2646 continue; 2647 2648 grp_calibrated = 0; 2649 } 2650 2651 if (!grp_calibrated) 2652 return -EIO; 2653 2654 return 0; 2655 } 2656 2657 /** 2658 * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO 2659 * @rw_group: Read/Write Group 2660 * @test_bgn: Rank at which the test begins 2661 * 2662 * Stage 1: Calibrate the read valid prediction FIFO. 2663 * 2664 * This function implements UniPHY calibration Stage 1, as explained in 2665 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 2666 * 2667 * - read valid prediction will consist of finding: 2668 * - DQS enable phase and DQS enable delay (DQS Enable Calibration) 2669 * - DQS input phase and DQS input delay (DQ/DQS Centering) 2670 * - we also do a per-bit deskew on the DQ lines. 2671 */ 2672 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn) 2673 { 2674 uint32_t p, d; 2675 uint32_t dtaps_per_ptap; 2676 uint32_t failed_substage; 2677 2678 int ret; 2679 2680 debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn); 2681 2682 /* Update info for sims */ 2683 reg_file_set_group(rw_group); 2684 reg_file_set_stage(CAL_STAGE_VFIFO); 2685 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ); 2686 2687 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ; 2688 2689 /* USER Determine number of delay taps for each phase tap. */ 2690 dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, 2691 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1; 2692 2693 for (d = 0; d <= dtaps_per_ptap; d += 2) { 2694 /* 2695 * In RLDRAMX we may be messing the delay of pins in 2696 * the same write rw_group but outside of the current read 2697 * the rw_group, but that's ok because we haven't calibrated 2698 * output side yet. 2699 */ 2700 if (d > 0) { 2701 scc_mgr_apply_group_all_out_delay_add_all_ranks( 2702 rw_group, d); 2703 } 2704 2705 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) { 2706 /* 1) Guaranteed Write */ 2707 ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p); 2708 if (ret) 2709 break; 2710 2711 /* 2) DQS Enable Calibration */ 2712 ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group, 2713 test_bgn); 2714 if (ret) { 2715 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE; 2716 continue; 2717 } 2718 2719 /* 3) Centering DQ/DQS */ 2720 /* 2721 * If doing read after write calibration, do not update 2722 * FOM now. Do it then. 2723 */ 2724 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, 2725 test_bgn, 1, 0); 2726 if (ret) { 2727 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER; 2728 continue; 2729 } 2730 2731 /* All done. */ 2732 goto cal_done_ok; 2733 } 2734 } 2735 2736 /* Calibration Stage 1 failed. */ 2737 set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage); 2738 return 0; 2739 2740 /* Calibration Stage 1 completed OK. */ 2741 cal_done_ok: 2742 /* 2743 * Reset the delay chains back to zero if they have moved > 1 2744 * (check for > 1 because loop will increase d even when pass in 2745 * first case). 2746 */ 2747 if (d > 2) 2748 scc_mgr_zero_group(rw_group, 1); 2749 2750 return 1; 2751 } 2752 2753 /** 2754 * rw_mgr_mem_calibrate_vfifo_end() - DQ/DQS Centering. 2755 * @rw_group: Read/Write Group 2756 * @test_bgn: Rank at which the test begins 2757 * 2758 * Stage 3: DQ/DQS Centering. 2759 * 2760 * This function implements UniPHY calibration Stage 3, as explained in 2761 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 2762 */ 2763 static int rw_mgr_mem_calibrate_vfifo_end(const u32 rw_group, 2764 const u32 test_bgn) 2765 { 2766 int ret; 2767 2768 debug("%s:%d %u %u", __func__, __LINE__, rw_group, test_bgn); 2769 2770 /* Update info for sims. */ 2771 reg_file_set_group(rw_group); 2772 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES); 2773 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 2774 2775 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, test_bgn, 0, 1); 2776 if (ret) 2777 set_failing_group_stage(rw_group, 2778 CAL_STAGE_VFIFO_AFTER_WRITES, 2779 CAL_SUBSTAGE_VFIFO_CENTER); 2780 return ret; 2781 } 2782 2783 /** 2784 * rw_mgr_mem_calibrate_lfifo() - Minimize latency 2785 * 2786 * Stage 4: Minimize latency. 2787 * 2788 * This function implements UniPHY calibration Stage 4, as explained in 2789 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 2790 * Calibrate LFIFO to find smallest read latency. 2791 */ 2792 static uint32_t rw_mgr_mem_calibrate_lfifo(void) 2793 { 2794 int found_one = 0; 2795 2796 debug("%s:%d\n", __func__, __LINE__); 2797 2798 /* Update info for sims. */ 2799 reg_file_set_stage(CAL_STAGE_LFIFO); 2800 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY); 2801 2802 /* Load up the patterns used by read calibration for all ranks */ 2803 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2804 2805 do { 2806 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2807 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u", 2808 __func__, __LINE__, gbl->curr_read_lat); 2809 2810 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, NUM_READ_TESTS, 2811 PASS_ALL_BITS, 1)) 2812 break; 2813 2814 found_one = 1; 2815 /* 2816 * Reduce read latency and see if things are 2817 * working correctly. 2818 */ 2819 gbl->curr_read_lat--; 2820 } while (gbl->curr_read_lat > 0); 2821 2822 /* Reset the fifos to get pointers to known state. */ 2823 writel(0, &phy_mgr_cmd->fifo_reset); 2824 2825 if (found_one) { 2826 /* Add a fudge factor to the read latency that was determined */ 2827 gbl->curr_read_lat += 2; 2828 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2829 debug_cond(DLEVEL == 2, 2830 "%s:%d lfifo: success: using read_lat=%u\n", 2831 __func__, __LINE__, gbl->curr_read_lat); 2832 } else { 2833 set_failing_group_stage(0xff, CAL_STAGE_LFIFO, 2834 CAL_SUBSTAGE_READ_LATENCY); 2835 2836 debug_cond(DLEVEL == 2, 2837 "%s:%d lfifo: failed at initial read_lat=%u\n", 2838 __func__, __LINE__, gbl->curr_read_lat); 2839 } 2840 2841 return found_one; 2842 } 2843 2844 /** 2845 * search_window() - Search for the/part of the window with DM/DQS shift 2846 * @search_dm: If 1, search for the DM shift, if 0, search for DQS shift 2847 * @rank_bgn: Rank number 2848 * @write_group: Write Group 2849 * @bgn_curr: Current window begin 2850 * @end_curr: Current window end 2851 * @bgn_best: Current best window begin 2852 * @end_best: Current best window end 2853 * @win_best: Size of the best window 2854 * @new_dqs: New DQS value (only applicable if search_dm = 0). 2855 * 2856 * Search for the/part of the window with DM/DQS shift. 2857 */ 2858 static void search_window(const int search_dm, 2859 const u32 rank_bgn, const u32 write_group, 2860 int *bgn_curr, int *end_curr, int *bgn_best, 2861 int *end_best, int *win_best, int new_dqs) 2862 { 2863 u32 bit_chk; 2864 const int max = IO_IO_OUT1_DELAY_MAX - new_dqs; 2865 int d, di; 2866 2867 /* Search for the/part of the window with DM/DQS shift. */ 2868 for (di = max; di >= 0; di -= DELTA_D) { 2869 if (search_dm) { 2870 d = di; 2871 scc_mgr_apply_group_dm_out1_delay(d); 2872 } else { 2873 /* For DQS, we go from 0...max */ 2874 d = max - di; 2875 /* 2876 * Note: This only shifts DQS, so are we limiting ourselve to 2877 * width of DQ unnecessarily. 2878 */ 2879 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2880 d + new_dqs); 2881 } 2882 2883 writel(0, &sdr_scc_mgr->update); 2884 2885 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 2886 PASS_ALL_BITS, &bit_chk, 2887 0)) { 2888 /* Set current end of the window. */ 2889 *end_curr = search_dm ? -d : d; 2890 2891 /* 2892 * If a starting edge of our window has not been seen 2893 * this is our current start of the DM window. 2894 */ 2895 if (*bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 2896 *bgn_curr = search_dm ? -d : d; 2897 2898 /* 2899 * If current window is bigger than best seen. 2900 * Set best seen to be current window. 2901 */ 2902 if ((*end_curr - *bgn_curr + 1) > *win_best) { 2903 *win_best = *end_curr - *bgn_curr + 1; 2904 *bgn_best = *bgn_curr; 2905 *end_best = *end_curr; 2906 } 2907 } else { 2908 /* We just saw a failing test. Reset temp edge. */ 2909 *bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2910 *end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2911 2912 /* Early exit is only applicable to DQS. */ 2913 if (search_dm) 2914 continue; 2915 2916 /* 2917 * Early exit optimization: if the remaining delay 2918 * chain space is less than already seen largest 2919 * window we can exit. 2920 */ 2921 if (*win_best - 1 > IO_IO_OUT1_DELAY_MAX - new_dqs - d) 2922 break; 2923 } 2924 } 2925 } 2926 2927 /* 2928 * rw_mgr_mem_calibrate_writes_center() - Center all windows 2929 * @rank_bgn: Rank number 2930 * @write_group: Write group 2931 * @test_bgn: Rank at which the test begins 2932 * 2933 * Center all windows. Do per-bit-deskew to possibly increase size of 2934 * certain windows. 2935 */ 2936 static int 2937 rw_mgr_mem_calibrate_writes_center(const u32 rank_bgn, const u32 write_group, 2938 const u32 test_bgn) 2939 { 2940 int i; 2941 u32 sticky_bit_chk; 2942 u32 min_index; 2943 int left_edge[rwcfg->mem_dq_per_write_dqs]; 2944 int right_edge[rwcfg->mem_dq_per_write_dqs]; 2945 int mid; 2946 int mid_min, orig_mid_min; 2947 int new_dqs, start_dqs; 2948 int dq_margin, dqs_margin, dm_margin; 2949 int bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2950 int end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2951 int bgn_best = IO_IO_OUT1_DELAY_MAX + 1; 2952 int end_best = IO_IO_OUT1_DELAY_MAX + 1; 2953 int win_best = 0; 2954 2955 int ret; 2956 2957 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn); 2958 2959 dm_margin = 0; 2960 2961 start_dqs = readl((SDR_PHYGRP_SCCGRP_ADDRESS | 2962 SCC_MGR_IO_OUT1_DELAY_OFFSET) + 2963 (rwcfg->mem_dq_per_write_dqs << 2)); 2964 2965 /* Per-bit deskew. */ 2966 2967 /* 2968 * Set the left and right edge of each bit to an illegal value. 2969 * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 2970 */ 2971 sticky_bit_chk = 0; 2972 for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) { 2973 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2974 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2975 } 2976 2977 /* Search for the left edge of the window for each bit. */ 2978 search_left_edge(1, rank_bgn, write_group, 0, test_bgn, 2979 &sticky_bit_chk, 2980 left_edge, right_edge, 0); 2981 2982 /* Search for the right edge of the window for each bit. */ 2983 ret = search_right_edge(1, rank_bgn, write_group, 0, 2984 start_dqs, 0, 2985 &sticky_bit_chk, 2986 left_edge, right_edge, 0); 2987 if (ret) { 2988 set_failing_group_stage(test_bgn + ret - 1, CAL_STAGE_WRITES, 2989 CAL_SUBSTAGE_WRITES_CENTER); 2990 return -EINVAL; 2991 } 2992 2993 min_index = get_window_mid_index(1, left_edge, right_edge, &mid_min); 2994 2995 /* Determine the amount we can change DQS (which is -mid_min). */ 2996 orig_mid_min = mid_min; 2997 new_dqs = start_dqs; 2998 mid_min = 0; 2999 debug_cond(DLEVEL == 1, 3000 "%s:%d write_center: start_dqs=%d new_dqs=%d mid_min=%d\n", 3001 __func__, __LINE__, start_dqs, new_dqs, mid_min); 3002 3003 /* Add delay to bring centre of all DQ windows to the same "level". */ 3004 center_dq_windows(1, left_edge, right_edge, mid_min, orig_mid_min, 3005 min_index, 0, &dq_margin, &dqs_margin); 3006 3007 /* Move DQS */ 3008 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3009 writel(0, &sdr_scc_mgr->update); 3010 3011 /* Centre DM */ 3012 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__); 3013 3014 /* 3015 * Set the left and right edge of each bit to an illegal value. 3016 * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 3017 */ 3018 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 3019 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 3020 3021 /* Search for the/part of the window with DM shift. */ 3022 search_window(1, rank_bgn, write_group, &bgn_curr, &end_curr, 3023 &bgn_best, &end_best, &win_best, 0); 3024 3025 /* Reset DM delay chains to 0. */ 3026 scc_mgr_apply_group_dm_out1_delay(0); 3027 3028 /* 3029 * Check to see if the current window nudges up aganist 0 delay. 3030 * If so we need to continue the search by shifting DQS otherwise DQS 3031 * search begins as a new search. 3032 */ 3033 if (end_curr != 0) { 3034 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3035 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3036 } 3037 3038 /* Search for the/part of the window with DQS shifts. */ 3039 search_window(0, rank_bgn, write_group, &bgn_curr, &end_curr, 3040 &bgn_best, &end_best, &win_best, new_dqs); 3041 3042 /* Assign left and right edge for cal and reporting. */ 3043 left_edge[0] = -1 * bgn_best; 3044 right_edge[0] = end_best; 3045 3046 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", 3047 __func__, __LINE__, left_edge[0], right_edge[0]); 3048 3049 /* Move DQS (back to orig). */ 3050 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3051 3052 /* Move DM */ 3053 3054 /* Find middle of window for the DM bit. */ 3055 mid = (left_edge[0] - right_edge[0]) / 2; 3056 3057 /* Only move right, since we are not moving DQS/DQ. */ 3058 if (mid < 0) 3059 mid = 0; 3060 3061 /* dm_marign should fail if we never find a window. */ 3062 if (win_best == 0) 3063 dm_margin = -1; 3064 else 3065 dm_margin = left_edge[0] - mid; 3066 3067 scc_mgr_apply_group_dm_out1_delay(mid); 3068 writel(0, &sdr_scc_mgr->update); 3069 3070 debug_cond(DLEVEL == 2, 3071 "%s:%d dm_calib: left=%d right=%d mid=%d dm_margin=%d\n", 3072 __func__, __LINE__, left_edge[0], right_edge[0], 3073 mid, dm_margin); 3074 /* Export values. */ 3075 gbl->fom_out += dq_margin + dqs_margin; 3076 3077 debug_cond(DLEVEL == 2, 3078 "%s:%d write_center: dq_margin=%d dqs_margin=%d dm_margin=%d\n", 3079 __func__, __LINE__, dq_margin, dqs_margin, dm_margin); 3080 3081 /* 3082 * Do not remove this line as it makes sure all of our 3083 * decisions have been applied. 3084 */ 3085 writel(0, &sdr_scc_mgr->update); 3086 3087 if ((dq_margin < 0) || (dqs_margin < 0) || (dm_margin < 0)) 3088 return -EINVAL; 3089 3090 return 0; 3091 } 3092 3093 /** 3094 * rw_mgr_mem_calibrate_writes() - Write Calibration Part One 3095 * @rank_bgn: Rank number 3096 * @group: Read/Write Group 3097 * @test_bgn: Rank at which the test begins 3098 * 3099 * Stage 2: Write Calibration Part One. 3100 * 3101 * This function implements UniPHY calibration Stage 2, as explained in 3102 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 3103 */ 3104 static int rw_mgr_mem_calibrate_writes(const u32 rank_bgn, const u32 group, 3105 const u32 test_bgn) 3106 { 3107 int ret; 3108 3109 /* Update info for sims */ 3110 debug("%s:%d %u %u\n", __func__, __LINE__, group, test_bgn); 3111 3112 reg_file_set_group(group); 3113 reg_file_set_stage(CAL_STAGE_WRITES); 3114 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER); 3115 3116 ret = rw_mgr_mem_calibrate_writes_center(rank_bgn, group, test_bgn); 3117 if (ret) 3118 set_failing_group_stage(group, CAL_STAGE_WRITES, 3119 CAL_SUBSTAGE_WRITES_CENTER); 3120 3121 return ret; 3122 } 3123 3124 /** 3125 * mem_precharge_and_activate() - Precharge all banks and activate 3126 * 3127 * Precharge all banks and activate row 0 in bank "000..." and bank "111...". 3128 */ 3129 static void mem_precharge_and_activate(void) 3130 { 3131 int r; 3132 3133 for (r = 0; r < rwcfg->mem_number_of_ranks; r++) { 3134 /* Set rank. */ 3135 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 3136 3137 /* Precharge all banks. */ 3138 writel(rwcfg->precharge_all, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3139 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3140 3141 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0); 3142 writel(rwcfg->activate_0_and_1_wait1, 3143 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 3144 3145 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1); 3146 writel(rwcfg->activate_0_and_1_wait2, 3147 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 3148 3149 /* Activate rows. */ 3150 writel(rwcfg->activate_0_and_1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3151 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3152 } 3153 } 3154 3155 /** 3156 * mem_init_latency() - Configure memory RLAT and WLAT settings 3157 * 3158 * Configure memory RLAT and WLAT parameters. 3159 */ 3160 static void mem_init_latency(void) 3161 { 3162 /* 3163 * For AV/CV, LFIFO is hardened and always runs at full rate 3164 * so max latency in AFI clocks, used here, is correspondingly 3165 * smaller. 3166 */ 3167 const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1; 3168 u32 rlat, wlat; 3169 3170 debug("%s:%d\n", __func__, __LINE__); 3171 3172 /* 3173 * Read in write latency. 3174 * WL for Hard PHY does not include additive latency. 3175 */ 3176 wlat = readl(&data_mgr->t_wl_add); 3177 wlat += readl(&data_mgr->mem_t_add); 3178 3179 gbl->rw_wl_nop_cycles = wlat - 1; 3180 3181 /* Read in readl latency. */ 3182 rlat = readl(&data_mgr->t_rl_add); 3183 3184 /* Set a pretty high read latency initially. */ 3185 gbl->curr_read_lat = rlat + 16; 3186 if (gbl->curr_read_lat > max_latency) 3187 gbl->curr_read_lat = max_latency; 3188 3189 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3190 3191 /* Advertise write latency. */ 3192 writel(wlat, &phy_mgr_cfg->afi_wlat); 3193 } 3194 3195 /** 3196 * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings 3197 * 3198 * Set VFIFO and LFIFO to instant-on settings in skip calibration mode. 3199 */ 3200 static void mem_skip_calibrate(void) 3201 { 3202 uint32_t vfifo_offset; 3203 uint32_t i, j, r; 3204 3205 debug("%s:%d\n", __func__, __LINE__); 3206 /* Need to update every shadow register set used by the interface */ 3207 for (r = 0; r < rwcfg->mem_number_of_ranks; 3208 r += NUM_RANKS_PER_SHADOW_REG) { 3209 /* 3210 * Set output phase alignment settings appropriate for 3211 * skip calibration. 3212 */ 3213 for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) { 3214 scc_mgr_set_dqs_en_phase(i, 0); 3215 #if IO_DLL_CHAIN_LENGTH == 6 3216 scc_mgr_set_dqdqs_output_phase(i, 6); 3217 #else 3218 scc_mgr_set_dqdqs_output_phase(i, 7); 3219 #endif 3220 /* 3221 * Case:33398 3222 * 3223 * Write data arrives to the I/O two cycles before write 3224 * latency is reached (720 deg). 3225 * -> due to bit-slip in a/c bus 3226 * -> to allow board skew where dqs is longer than ck 3227 * -> how often can this happen!? 3228 * -> can claim back some ptaps for high freq 3229 * support if we can relax this, but i digress... 3230 * 3231 * The write_clk leads mem_ck by 90 deg 3232 * The minimum ptap of the OPA is 180 deg 3233 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay 3234 * The write_clk is always delayed by 2 ptaps 3235 * 3236 * Hence, to make DQS aligned to CK, we need to delay 3237 * DQS by: 3238 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH)) 3239 * 3240 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH) 3241 * gives us the number of ptaps, which simplies to: 3242 * 3243 * (1.25 * IO_DLL_CHAIN_LENGTH - 2) 3244 */ 3245 scc_mgr_set_dqdqs_output_phase(i, 3246 1.25 * IO_DLL_CHAIN_LENGTH - 2); 3247 } 3248 writel(0xff, &sdr_scc_mgr->dqs_ena); 3249 writel(0xff, &sdr_scc_mgr->dqs_io_ena); 3250 3251 for (i = 0; i < rwcfg->mem_if_write_dqs_width; i++) { 3252 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3253 SCC_MGR_GROUP_COUNTER_OFFSET); 3254 } 3255 writel(0xff, &sdr_scc_mgr->dq_ena); 3256 writel(0xff, &sdr_scc_mgr->dm_ena); 3257 writel(0, &sdr_scc_mgr->update); 3258 } 3259 3260 /* Compensate for simulation model behaviour */ 3261 for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) { 3262 scc_mgr_set_dqs_bus_in_delay(i, 10); 3263 scc_mgr_load_dqs(i); 3264 } 3265 writel(0, &sdr_scc_mgr->update); 3266 3267 /* 3268 * ArriaV has hard FIFOs that can only be initialized by incrementing 3269 * in sequencer. 3270 */ 3271 vfifo_offset = CALIB_VFIFO_OFFSET; 3272 for (j = 0; j < vfifo_offset; j++) 3273 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy); 3274 writel(0, &phy_mgr_cmd->fifo_reset); 3275 3276 /* 3277 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal 3278 * setting from generation-time constant. 3279 */ 3280 gbl->curr_read_lat = CALIB_LFIFO_OFFSET; 3281 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3282 } 3283 3284 /** 3285 * mem_calibrate() - Memory calibration entry point. 3286 * 3287 * Perform memory calibration. 3288 */ 3289 static uint32_t mem_calibrate(void) 3290 { 3291 uint32_t i; 3292 uint32_t rank_bgn, sr; 3293 uint32_t write_group, write_test_bgn; 3294 uint32_t read_group, read_test_bgn; 3295 uint32_t run_groups, current_run; 3296 uint32_t failing_groups = 0; 3297 uint32_t group_failed = 0; 3298 3299 const u32 rwdqs_ratio = rwcfg->mem_if_read_dqs_width / 3300 rwcfg->mem_if_write_dqs_width; 3301 3302 debug("%s:%d\n", __func__, __LINE__); 3303 3304 /* Initialize the data settings */ 3305 gbl->error_substage = CAL_SUBSTAGE_NIL; 3306 gbl->error_stage = CAL_STAGE_NIL; 3307 gbl->error_group = 0xff; 3308 gbl->fom_in = 0; 3309 gbl->fom_out = 0; 3310 3311 /* Initialize WLAT and RLAT. */ 3312 mem_init_latency(); 3313 3314 /* Initialize bit slips. */ 3315 mem_precharge_and_activate(); 3316 3317 for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) { 3318 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3319 SCC_MGR_GROUP_COUNTER_OFFSET); 3320 /* Only needed once to set all groups, pins, DQ, DQS, DM. */ 3321 if (i == 0) 3322 scc_mgr_set_hhp_extras(); 3323 3324 scc_set_bypass_mode(i); 3325 } 3326 3327 /* Calibration is skipped. */ 3328 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) { 3329 /* 3330 * Set VFIFO and LFIFO to instant-on settings in skip 3331 * calibration mode. 3332 */ 3333 mem_skip_calibrate(); 3334 3335 /* 3336 * Do not remove this line as it makes sure all of our 3337 * decisions have been applied. 3338 */ 3339 writel(0, &sdr_scc_mgr->update); 3340 return 1; 3341 } 3342 3343 /* Calibration is not skipped. */ 3344 for (i = 0; i < NUM_CALIB_REPEAT; i++) { 3345 /* 3346 * Zero all delay chain/phase settings for all 3347 * groups and all shadow register sets. 3348 */ 3349 scc_mgr_zero_all(); 3350 3351 run_groups = ~0; 3352 3353 for (write_group = 0, write_test_bgn = 0; write_group 3354 < rwcfg->mem_if_write_dqs_width; write_group++, 3355 write_test_bgn += rwcfg->mem_dq_per_write_dqs) { 3356 3357 /* Initialize the group failure */ 3358 group_failed = 0; 3359 3360 current_run = run_groups & ((1 << 3361 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1); 3362 run_groups = run_groups >> 3363 RW_MGR_NUM_DQS_PER_WRITE_GROUP; 3364 3365 if (current_run == 0) 3366 continue; 3367 3368 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS | 3369 SCC_MGR_GROUP_COUNTER_OFFSET); 3370 scc_mgr_zero_group(write_group, 0); 3371 3372 for (read_group = write_group * rwdqs_ratio, 3373 read_test_bgn = 0; 3374 read_group < (write_group + 1) * rwdqs_ratio; 3375 read_group++, 3376 read_test_bgn += rwcfg->mem_dq_per_read_dqs) { 3377 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO) 3378 continue; 3379 3380 /* Calibrate the VFIFO */ 3381 if (rw_mgr_mem_calibrate_vfifo(read_group, 3382 read_test_bgn)) 3383 continue; 3384 3385 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3386 return 0; 3387 3388 /* The group failed, we're done. */ 3389 goto grp_failed; 3390 } 3391 3392 /* Calibrate the output side */ 3393 for (rank_bgn = 0, sr = 0; 3394 rank_bgn < rwcfg->mem_number_of_ranks; 3395 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 3396 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3397 continue; 3398 3399 /* Not needed in quick mode! */ 3400 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) 3401 continue; 3402 3403 /* Calibrate WRITEs */ 3404 if (!rw_mgr_mem_calibrate_writes(rank_bgn, 3405 write_group, write_test_bgn)) 3406 continue; 3407 3408 group_failed = 1; 3409 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3410 return 0; 3411 } 3412 3413 /* Some group failed, we're done. */ 3414 if (group_failed) 3415 goto grp_failed; 3416 3417 for (read_group = write_group * rwdqs_ratio, 3418 read_test_bgn = 0; 3419 read_group < (write_group + 1) * rwdqs_ratio; 3420 read_group++, 3421 read_test_bgn += rwcfg->mem_dq_per_read_dqs) { 3422 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3423 continue; 3424 3425 if (!rw_mgr_mem_calibrate_vfifo_end(read_group, 3426 read_test_bgn)) 3427 continue; 3428 3429 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3430 return 0; 3431 3432 /* The group failed, we're done. */ 3433 goto grp_failed; 3434 } 3435 3436 /* No group failed, continue as usual. */ 3437 continue; 3438 3439 grp_failed: /* A group failed, increment the counter. */ 3440 failing_groups++; 3441 } 3442 3443 /* 3444 * USER If there are any failing groups then report 3445 * the failure. 3446 */ 3447 if (failing_groups != 0) 3448 return 0; 3449 3450 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO) 3451 continue; 3452 3453 /* Calibrate the LFIFO */ 3454 if (!rw_mgr_mem_calibrate_lfifo()) 3455 return 0; 3456 } 3457 3458 /* 3459 * Do not remove this line as it makes sure all of our decisions 3460 * have been applied. 3461 */ 3462 writel(0, &sdr_scc_mgr->update); 3463 return 1; 3464 } 3465 3466 /** 3467 * run_mem_calibrate() - Perform memory calibration 3468 * 3469 * This function triggers the entire memory calibration procedure. 3470 */ 3471 static int run_mem_calibrate(void) 3472 { 3473 int pass; 3474 3475 debug("%s:%d\n", __func__, __LINE__); 3476 3477 /* Reset pass/fail status shown on afi_cal_success/fail */ 3478 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status); 3479 3480 /* Stop tracking manager. */ 3481 clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3482 3483 phy_mgr_initialize(); 3484 rw_mgr_mem_initialize(); 3485 3486 /* Perform the actual memory calibration. */ 3487 pass = mem_calibrate(); 3488 3489 mem_precharge_and_activate(); 3490 writel(0, &phy_mgr_cmd->fifo_reset); 3491 3492 /* Handoff. */ 3493 rw_mgr_mem_handoff(); 3494 /* 3495 * In Hard PHY this is a 2-bit control: 3496 * 0: AFI Mux Select 3497 * 1: DDIO Mux Select 3498 */ 3499 writel(0x2, &phy_mgr_cfg->mux_sel); 3500 3501 /* Start tracking manager. */ 3502 setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3503 3504 return pass; 3505 } 3506 3507 /** 3508 * debug_mem_calibrate() - Report result of memory calibration 3509 * @pass: Value indicating whether calibration passed or failed 3510 * 3511 * This function reports the results of the memory calibration 3512 * and writes debug information into the register file. 3513 */ 3514 static void debug_mem_calibrate(int pass) 3515 { 3516 uint32_t debug_info; 3517 3518 if (pass) { 3519 printf("%s: CALIBRATION PASSED\n", __FILE__); 3520 3521 gbl->fom_in /= 2; 3522 gbl->fom_out /= 2; 3523 3524 if (gbl->fom_in > 0xff) 3525 gbl->fom_in = 0xff; 3526 3527 if (gbl->fom_out > 0xff) 3528 gbl->fom_out = 0xff; 3529 3530 /* Update the FOM in the register file */ 3531 debug_info = gbl->fom_in; 3532 debug_info |= gbl->fom_out << 8; 3533 writel(debug_info, &sdr_reg_file->fom); 3534 3535 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3536 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status); 3537 } else { 3538 printf("%s: CALIBRATION FAILED\n", __FILE__); 3539 3540 debug_info = gbl->error_stage; 3541 debug_info |= gbl->error_substage << 8; 3542 debug_info |= gbl->error_group << 16; 3543 3544 writel(debug_info, &sdr_reg_file->failing_stage); 3545 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3546 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status); 3547 3548 /* Update the failing group/stage in the register file */ 3549 debug_info = gbl->error_stage; 3550 debug_info |= gbl->error_substage << 8; 3551 debug_info |= gbl->error_group << 16; 3552 writel(debug_info, &sdr_reg_file->failing_stage); 3553 } 3554 3555 printf("%s: Calibration complete\n", __FILE__); 3556 } 3557 3558 /** 3559 * hc_initialize_rom_data() - Initialize ROM data 3560 * 3561 * Initialize ROM data. 3562 */ 3563 static void hc_initialize_rom_data(void) 3564 { 3565 unsigned int nelem = 0; 3566 const u32 *rom_init; 3567 u32 i, addr; 3568 3569 socfpga_get_seq_inst_init(&rom_init, &nelem); 3570 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET; 3571 for (i = 0; i < nelem; i++) 3572 writel(rom_init[i], addr + (i << 2)); 3573 3574 socfpga_get_seq_ac_init(&rom_init, &nelem); 3575 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET; 3576 for (i = 0; i < nelem; i++) 3577 writel(rom_init[i], addr + (i << 2)); 3578 } 3579 3580 /** 3581 * initialize_reg_file() - Initialize SDR register file 3582 * 3583 * Initialize SDR register file. 3584 */ 3585 static void initialize_reg_file(void) 3586 { 3587 /* Initialize the register file with the correct data */ 3588 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature); 3589 writel(0, &sdr_reg_file->debug_data_addr); 3590 writel(0, &sdr_reg_file->cur_stage); 3591 writel(0, &sdr_reg_file->fom); 3592 writel(0, &sdr_reg_file->failing_stage); 3593 writel(0, &sdr_reg_file->debug1); 3594 writel(0, &sdr_reg_file->debug2); 3595 } 3596 3597 /** 3598 * initialize_hps_phy() - Initialize HPS PHY 3599 * 3600 * Initialize HPS PHY. 3601 */ 3602 static void initialize_hps_phy(void) 3603 { 3604 uint32_t reg; 3605 /* 3606 * Tracking also gets configured here because it's in the 3607 * same register. 3608 */ 3609 uint32_t trk_sample_count = 7500; 3610 uint32_t trk_long_idle_sample_count = (10 << 16) | 100; 3611 /* 3612 * Format is number of outer loops in the 16 MSB, sample 3613 * count in 16 LSB. 3614 */ 3615 3616 reg = 0; 3617 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2); 3618 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1); 3619 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1); 3620 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1); 3621 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0); 3622 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1); 3623 /* 3624 * This field selects the intrinsic latency to RDATA_EN/FULL path. 3625 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles. 3626 */ 3627 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0); 3628 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET( 3629 trk_sample_count); 3630 writel(reg, &sdr_ctrl->phy_ctrl0); 3631 3632 reg = 0; 3633 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET( 3634 trk_sample_count >> 3635 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH); 3636 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET( 3637 trk_long_idle_sample_count); 3638 writel(reg, &sdr_ctrl->phy_ctrl1); 3639 3640 reg = 0; 3641 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET( 3642 trk_long_idle_sample_count >> 3643 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH); 3644 writel(reg, &sdr_ctrl->phy_ctrl2); 3645 } 3646 3647 /** 3648 * initialize_tracking() - Initialize tracking 3649 * 3650 * Initialize the register file with usable initial data. 3651 */ 3652 static void initialize_tracking(void) 3653 { 3654 /* 3655 * Initialize the register file with the correct data. 3656 * Compute usable version of value in case we skip full 3657 * computation later. 3658 */ 3659 writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1, 3660 &sdr_reg_file->dtaps_per_ptap); 3661 3662 /* trk_sample_count */ 3663 writel(7500, &sdr_reg_file->trk_sample_count); 3664 3665 /* longidle outer loop [15:0] */ 3666 writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle); 3667 3668 /* 3669 * longidle sample count [31:24] 3670 * trfc, worst case of 933Mhz 4Gb [23:16] 3671 * trcd, worst case [15:8] 3672 * vfifo wait [7:0] 3673 */ 3674 writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0), 3675 &sdr_reg_file->delays); 3676 3677 /* mux delay */ 3678 writel((rwcfg->idle << 24) | (rwcfg->activate_1 << 16) | 3679 (rwcfg->sgle_read << 8) | (rwcfg->precharge_all << 0), 3680 &sdr_reg_file->trk_rw_mgr_addr); 3681 3682 writel(rwcfg->mem_if_read_dqs_width, 3683 &sdr_reg_file->trk_read_dqs_width); 3684 3685 /* trefi [7:0] */ 3686 writel((rwcfg->refresh_all << 24) | (1000 << 0), 3687 &sdr_reg_file->trk_rfsh); 3688 } 3689 3690 int sdram_calibration_full(void) 3691 { 3692 struct param_type my_param; 3693 struct gbl_type my_gbl; 3694 uint32_t pass; 3695 3696 memset(&my_param, 0, sizeof(my_param)); 3697 memset(&my_gbl, 0, sizeof(my_gbl)); 3698 3699 param = &my_param; 3700 gbl = &my_gbl; 3701 3702 rwcfg = socfpga_get_sdram_rwmgr_config(); 3703 iocfg = socfpga_get_sdram_io_config(); 3704 3705 /* Set the calibration enabled by default */ 3706 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT; 3707 /* 3708 * Only sweep all groups (regardless of fail state) by default 3709 * Set enabled read test by default. 3710 */ 3711 #if DISABLE_GUARANTEED_READ 3712 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ; 3713 #endif 3714 /* Initialize the register file */ 3715 initialize_reg_file(); 3716 3717 /* Initialize any PHY CSR */ 3718 initialize_hps_phy(); 3719 3720 scc_mgr_initialize(); 3721 3722 initialize_tracking(); 3723 3724 printf("%s: Preparing to start memory calibration\n", __FILE__); 3725 3726 debug("%s:%d\n", __func__, __LINE__); 3727 debug_cond(DLEVEL == 1, 3728 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ", 3729 rwcfg->mem_number_of_ranks, rwcfg->mem_number_of_cs_per_dimm, 3730 rwcfg->mem_dq_per_read_dqs, rwcfg->mem_dq_per_write_dqs, 3731 rwcfg->mem_virtual_groups_per_read_dqs, 3732 rwcfg->mem_virtual_groups_per_write_dqs); 3733 debug_cond(DLEVEL == 1, 3734 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ", 3735 rwcfg->mem_if_read_dqs_width, rwcfg->mem_if_write_dqs_width, 3736 rwcfg->mem_data_width, rwcfg->mem_data_mask_width, 3737 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP); 3738 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u", 3739 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH); 3740 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ", 3741 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX, 3742 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX); 3743 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ", 3744 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX, 3745 IO_IO_OUT2_DELAY_MAX); 3746 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n", 3747 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE); 3748 3749 hc_initialize_rom_data(); 3750 3751 /* update info for sims */ 3752 reg_file_set_stage(CAL_STAGE_NIL); 3753 reg_file_set_group(0); 3754 3755 /* 3756 * Load global needed for those actions that require 3757 * some dynamic calibration support. 3758 */ 3759 dyn_calib_steps = STATIC_CALIB_STEPS; 3760 /* 3761 * Load global to allow dynamic selection of delay loop settings 3762 * based on calibration mode. 3763 */ 3764 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS)) 3765 skip_delay_mask = 0xff; 3766 else 3767 skip_delay_mask = 0x0; 3768 3769 pass = run_mem_calibrate(); 3770 debug_mem_calibrate(pass); 3771 return pass; 3772 } 3773