xref: /openbmc/u-boot/drivers/ddr/altera/sequencer.c (revision 10c14261f3c0644d2ae21785701f5aa3898d98e9)
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6 
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include <errno.h>
11 #include "sequencer.h"
12 
13 /*
14  * FIXME: This path is temporary until the SDRAM driver gets
15  *        a proper thorough cleanup.
16  */
17 #include "../../../board/altera/socfpga/qts/sequencer_auto.h"
18 #include "../../../board/altera/socfpga/qts/sequencer_defines.h"
19 
20 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
21 	(struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
22 
23 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
24 	(struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
25 
26 static struct socfpga_sdr_reg_file *sdr_reg_file =
27 	(struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
28 
29 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
30 	(struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
31 
32 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
33 	(struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
34 
35 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
36 	(struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
37 
38 static struct socfpga_data_mgr *data_mgr =
39 	(struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
40 
41 static struct socfpga_sdr_ctrl *sdr_ctrl =
42 	(struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
43 
44 const struct socfpga_sdram_rw_mgr_config *rwcfg;
45 const struct socfpga_sdram_io_config *iocfg;
46 
47 #define DELTA_D		1
48 
49 /*
50  * In order to reduce ROM size, most of the selectable calibration steps are
51  * decided at compile time based on the user's calibration mode selection,
52  * as captured by the STATIC_CALIB_STEPS selection below.
53  *
54  * However, to support simulation-time selection of fast simulation mode, where
55  * we skip everything except the bare minimum, we need a few of the steps to
56  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
57  * check, which is based on the rtl-supplied value, or we dynamically compute
58  * the value to use based on the dynamically-chosen calibration mode
59  */
60 
61 #define DLEVEL 0
62 #define STATIC_IN_RTL_SIM 0
63 #define STATIC_SKIP_DELAY_LOOPS 0
64 
65 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
66 	STATIC_SKIP_DELAY_LOOPS)
67 
68 /* calibration steps requested by the rtl */
69 uint16_t dyn_calib_steps;
70 
71 /*
72  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
73  * instead of static, we use boolean logic to select between
74  * non-skip and skip values
75  *
76  * The mask is set to include all bits when not-skipping, but is
77  * zero when skipping
78  */
79 
80 uint16_t skip_delay_mask;	/* mask off bits when skipping/not-skipping */
81 
82 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
83 	((non_skip_value) & skip_delay_mask)
84 
85 struct gbl_type *gbl;
86 struct param_type *param;
87 
88 static void set_failing_group_stage(uint32_t group, uint32_t stage,
89 	uint32_t substage)
90 {
91 	/*
92 	 * Only set the global stage if there was not been any other
93 	 * failing group
94 	 */
95 	if (gbl->error_stage == CAL_STAGE_NIL)	{
96 		gbl->error_substage = substage;
97 		gbl->error_stage = stage;
98 		gbl->error_group = group;
99 	}
100 }
101 
102 static void reg_file_set_group(u16 set_group)
103 {
104 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
105 }
106 
107 static void reg_file_set_stage(u8 set_stage)
108 {
109 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
110 }
111 
112 static void reg_file_set_sub_stage(u8 set_sub_stage)
113 {
114 	set_sub_stage &= 0xff;
115 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
116 }
117 
118 /**
119  * phy_mgr_initialize() - Initialize PHY Manager
120  *
121  * Initialize PHY Manager.
122  */
123 static void phy_mgr_initialize(void)
124 {
125 	u32 ratio;
126 
127 	debug("%s:%d\n", __func__, __LINE__);
128 	/* Calibration has control over path to memory */
129 	/*
130 	 * In Hard PHY this is a 2-bit control:
131 	 * 0: AFI Mux Select
132 	 * 1: DDIO Mux Select
133 	 */
134 	writel(0x3, &phy_mgr_cfg->mux_sel);
135 
136 	/* USER memory clock is not stable we begin initialization  */
137 	writel(0, &phy_mgr_cfg->reset_mem_stbl);
138 
139 	/* USER calibration status all set to zero */
140 	writel(0, &phy_mgr_cfg->cal_status);
141 
142 	writel(0, &phy_mgr_cfg->cal_debug_info);
143 
144 	/* Init params only if we do NOT skip calibration. */
145 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
146 		return;
147 
148 	ratio = rwcfg->mem_dq_per_read_dqs /
149 		rwcfg->mem_virtual_groups_per_read_dqs;
150 	param->read_correct_mask_vg = (1 << ratio) - 1;
151 	param->write_correct_mask_vg = (1 << ratio) - 1;
152 	param->read_correct_mask = (1 << rwcfg->mem_dq_per_read_dqs) - 1;
153 	param->write_correct_mask = (1 << rwcfg->mem_dq_per_write_dqs) - 1;
154 }
155 
156 /**
157  * set_rank_and_odt_mask() - Set Rank and ODT mask
158  * @rank:	Rank mask
159  * @odt_mode:	ODT mode, OFF or READ_WRITE
160  *
161  * Set Rank and ODT mask (On-Die Termination).
162  */
163 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
164 {
165 	u32 odt_mask_0 = 0;
166 	u32 odt_mask_1 = 0;
167 	u32 cs_and_odt_mask;
168 
169 	if (odt_mode == RW_MGR_ODT_MODE_OFF) {
170 		odt_mask_0 = 0x0;
171 		odt_mask_1 = 0x0;
172 	} else {	/* RW_MGR_ODT_MODE_READ_WRITE */
173 		switch (rwcfg->mem_number_of_ranks) {
174 		case 1:	/* 1 Rank */
175 			/* Read: ODT = 0 ; Write: ODT = 1 */
176 			odt_mask_0 = 0x0;
177 			odt_mask_1 = 0x1;
178 			break;
179 		case 2:	/* 2 Ranks */
180 			if (rwcfg->mem_number_of_cs_per_dimm == 1) {
181 				/*
182 				 * - Dual-Slot , Single-Rank (1 CS per DIMM)
183 				 *   OR
184 				 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
185 				 *
186 				 * Since MEM_NUMBER_OF_RANKS is 2, they
187 				 * are both single rank with 2 CS each
188 				 * (special for RDIMM).
189 				 *
190 				 * Read: Turn on ODT on the opposite rank
191 				 * Write: Turn on ODT on all ranks
192 				 */
193 				odt_mask_0 = 0x3 & ~(1 << rank);
194 				odt_mask_1 = 0x3;
195 			} else {
196 				/*
197 				 * - Single-Slot , Dual-Rank (2 CS per DIMM)
198 				 *
199 				 * Read: Turn on ODT off on all ranks
200 				 * Write: Turn on ODT on active rank
201 				 */
202 				odt_mask_0 = 0x0;
203 				odt_mask_1 = 0x3 & (1 << rank);
204 			}
205 			break;
206 		case 4:	/* 4 Ranks */
207 			/* Read:
208 			 * ----------+-----------------------+
209 			 *           |         ODT           |
210 			 * Read From +-----------------------+
211 			 *   Rank    |  3  |  2  |  1  |  0  |
212 			 * ----------+-----+-----+-----+-----+
213 			 *     0     |  0  |  1  |  0  |  0  |
214 			 *     1     |  1  |  0  |  0  |  0  |
215 			 *     2     |  0  |  0  |  0  |  1  |
216 			 *     3     |  0  |  0  |  1  |  0  |
217 			 * ----------+-----+-----+-----+-----+
218 			 *
219 			 * Write:
220 			 * ----------+-----------------------+
221 			 *           |         ODT           |
222 			 * Write To  +-----------------------+
223 			 *   Rank    |  3  |  2  |  1  |  0  |
224 			 * ----------+-----+-----+-----+-----+
225 			 *     0     |  0  |  1  |  0  |  1  |
226 			 *     1     |  1  |  0  |  1  |  0  |
227 			 *     2     |  0  |  1  |  0  |  1  |
228 			 *     3     |  1  |  0  |  1  |  0  |
229 			 * ----------+-----+-----+-----+-----+
230 			 */
231 			switch (rank) {
232 			case 0:
233 				odt_mask_0 = 0x4;
234 				odt_mask_1 = 0x5;
235 				break;
236 			case 1:
237 				odt_mask_0 = 0x8;
238 				odt_mask_1 = 0xA;
239 				break;
240 			case 2:
241 				odt_mask_0 = 0x1;
242 				odt_mask_1 = 0x5;
243 				break;
244 			case 3:
245 				odt_mask_0 = 0x2;
246 				odt_mask_1 = 0xA;
247 				break;
248 			}
249 			break;
250 		}
251 	}
252 
253 	cs_and_odt_mask = (0xFF & ~(1 << rank)) |
254 			  ((0xFF & odt_mask_0) << 8) |
255 			  ((0xFF & odt_mask_1) << 16);
256 	writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
257 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
258 }
259 
260 /**
261  * scc_mgr_set() - Set SCC Manager register
262  * @off:	Base offset in SCC Manager space
263  * @grp:	Read/Write group
264  * @val:	Value to be set
265  *
266  * This function sets the SCC Manager (Scan Chain Control Manager) register.
267  */
268 static void scc_mgr_set(u32 off, u32 grp, u32 val)
269 {
270 	writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
271 }
272 
273 /**
274  * scc_mgr_initialize() - Initialize SCC Manager registers
275  *
276  * Initialize SCC Manager registers.
277  */
278 static void scc_mgr_initialize(void)
279 {
280 	/*
281 	 * Clear register file for HPS. 16 (2^4) is the size of the
282 	 * full register file in the scc mgr:
283 	 *	RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
284 	 *                             MEM_IF_READ_DQS_WIDTH - 1);
285 	 */
286 	int i;
287 
288 	for (i = 0; i < 16; i++) {
289 		debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
290 			   __func__, __LINE__, i);
291 		scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
292 	}
293 }
294 
295 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
296 {
297 	scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
298 }
299 
300 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
301 {
302 	scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
303 }
304 
305 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
306 {
307 	scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
308 }
309 
310 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
311 {
312 	scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
313 }
314 
315 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
316 {
317 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, rwcfg->mem_dq_per_write_dqs,
318 		    delay);
319 }
320 
321 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
322 {
323 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
324 }
325 
326 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
327 {
328 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
329 }
330 
331 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
332 {
333 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, rwcfg->mem_dq_per_write_dqs,
334 		    delay);
335 }
336 
337 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
338 {
339 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
340 		    rwcfg->mem_dq_per_write_dqs + 1 + dm,
341 		    delay);
342 }
343 
344 /* load up dqs config settings */
345 static void scc_mgr_load_dqs(uint32_t dqs)
346 {
347 	writel(dqs, &sdr_scc_mgr->dqs_ena);
348 }
349 
350 /* load up dqs io config settings */
351 static void scc_mgr_load_dqs_io(void)
352 {
353 	writel(0, &sdr_scc_mgr->dqs_io_ena);
354 }
355 
356 /* load up dq config settings */
357 static void scc_mgr_load_dq(uint32_t dq_in_group)
358 {
359 	writel(dq_in_group, &sdr_scc_mgr->dq_ena);
360 }
361 
362 /* load up dm config settings */
363 static void scc_mgr_load_dm(uint32_t dm)
364 {
365 	writel(dm, &sdr_scc_mgr->dm_ena);
366 }
367 
368 /**
369  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
370  * @off:	Base offset in SCC Manager space
371  * @grp:	Read/Write group
372  * @val:	Value to be set
373  * @update:	If non-zero, trigger SCC Manager update for all ranks
374  *
375  * This function sets the SCC Manager (Scan Chain Control Manager) register
376  * and optionally triggers the SCC update for all ranks.
377  */
378 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
379 				  const int update)
380 {
381 	u32 r;
382 
383 	for (r = 0; r < rwcfg->mem_number_of_ranks;
384 	     r += NUM_RANKS_PER_SHADOW_REG) {
385 		scc_mgr_set(off, grp, val);
386 
387 		if (update || (r == 0)) {
388 			writel(grp, &sdr_scc_mgr->dqs_ena);
389 			writel(0, &sdr_scc_mgr->update);
390 		}
391 	}
392 }
393 
394 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
395 {
396 	/*
397 	 * USER although the h/w doesn't support different phases per
398 	 * shadow register, for simplicity our scc manager modeling
399 	 * keeps different phase settings per shadow reg, and it's
400 	 * important for us to keep them in sync to match h/w.
401 	 * for efficiency, the scan chain update should occur only
402 	 * once to sr0.
403 	 */
404 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
405 			      read_group, phase, 0);
406 }
407 
408 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
409 						     uint32_t phase)
410 {
411 	/*
412 	 * USER although the h/w doesn't support different phases per
413 	 * shadow register, for simplicity our scc manager modeling
414 	 * keeps different phase settings per shadow reg, and it's
415 	 * important for us to keep them in sync to match h/w.
416 	 * for efficiency, the scan chain update should occur only
417 	 * once to sr0.
418 	 */
419 	scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
420 			      write_group, phase, 0);
421 }
422 
423 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
424 					       uint32_t delay)
425 {
426 	/*
427 	 * In shadow register mode, the T11 settings are stored in
428 	 * registers in the core, which are updated by the DQS_ENA
429 	 * signals. Not issuing the SCC_MGR_UPD command allows us to
430 	 * save lots of rank switching overhead, by calling
431 	 * select_shadow_regs_for_update with update_scan_chains
432 	 * set to 0.
433 	 */
434 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
435 			      read_group, delay, 1);
436 	writel(0, &sdr_scc_mgr->update);
437 }
438 
439 /**
440  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
441  * @write_group:	Write group
442  * @delay:		Delay value
443  *
444  * This function sets the OCT output delay in SCC manager.
445  */
446 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
447 {
448 	const int ratio = rwcfg->mem_if_read_dqs_width /
449 			  rwcfg->mem_if_write_dqs_width;
450 	const int base = write_group * ratio;
451 	int i;
452 	/*
453 	 * Load the setting in the SCC manager
454 	 * Although OCT affects only write data, the OCT delay is controlled
455 	 * by the DQS logic block which is instantiated once per read group.
456 	 * For protocols where a write group consists of multiple read groups,
457 	 * the setting must be set multiple times.
458 	 */
459 	for (i = 0; i < ratio; i++)
460 		scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
461 }
462 
463 /**
464  * scc_mgr_set_hhp_extras() - Set HHP extras.
465  *
466  * Load the fixed setting in the SCC manager HHP extras.
467  */
468 static void scc_mgr_set_hhp_extras(void)
469 {
470 	/*
471 	 * Load the fixed setting in the SCC manager
472 	 * bits: 0:0 = 1'b1	- DQS bypass
473 	 * bits: 1:1 = 1'b1	- DQ bypass
474 	 * bits: 4:2 = 3'b001	- rfifo_mode
475 	 * bits: 6:5 = 2'b01	- rfifo clock_select
476 	 * bits: 7:7 = 1'b0	- separate gating from ungating setting
477 	 * bits: 8:8 = 1'b0	- separate OE from Output delay setting
478 	 */
479 	const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
480 			  (1 << 2) | (1 << 1) | (1 << 0);
481 	const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
482 			 SCC_MGR_HHP_GLOBALS_OFFSET |
483 			 SCC_MGR_HHP_EXTRAS_OFFSET;
484 
485 	debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
486 		   __func__, __LINE__);
487 	writel(value, addr);
488 	debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
489 		   __func__, __LINE__);
490 }
491 
492 /**
493  * scc_mgr_zero_all() - Zero all DQS config
494  *
495  * Zero all DQS config.
496  */
497 static void scc_mgr_zero_all(void)
498 {
499 	int i, r;
500 
501 	/*
502 	 * USER Zero all DQS config settings, across all groups and all
503 	 * shadow registers
504 	 */
505 	for (r = 0; r < rwcfg->mem_number_of_ranks;
506 	     r += NUM_RANKS_PER_SHADOW_REG) {
507 		for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
508 			/*
509 			 * The phases actually don't exist on a per-rank basis,
510 			 * but there's no harm updating them several times, so
511 			 * let's keep the code simple.
512 			 */
513 			scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
514 			scc_mgr_set_dqs_en_phase(i, 0);
515 			scc_mgr_set_dqs_en_delay(i, 0);
516 		}
517 
518 		for (i = 0; i < rwcfg->mem_if_write_dqs_width; i++) {
519 			scc_mgr_set_dqdqs_output_phase(i, 0);
520 			/* Arria V/Cyclone V don't have out2. */
521 			scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
522 		}
523 	}
524 
525 	/* Multicast to all DQS group enables. */
526 	writel(0xff, &sdr_scc_mgr->dqs_ena);
527 	writel(0, &sdr_scc_mgr->update);
528 }
529 
530 /**
531  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
532  * @write_group:	Write group
533  *
534  * Set bypass mode and trigger SCC update.
535  */
536 static void scc_set_bypass_mode(const u32 write_group)
537 {
538 	/* Multicast to all DQ enables. */
539 	writel(0xff, &sdr_scc_mgr->dq_ena);
540 	writel(0xff, &sdr_scc_mgr->dm_ena);
541 
542 	/* Update current DQS IO enable. */
543 	writel(0, &sdr_scc_mgr->dqs_io_ena);
544 
545 	/* Update the DQS logic. */
546 	writel(write_group, &sdr_scc_mgr->dqs_ena);
547 
548 	/* Hit update. */
549 	writel(0, &sdr_scc_mgr->update);
550 }
551 
552 /**
553  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
554  * @write_group:	Write group
555  *
556  * Load DQS settings for Write Group, do not trigger SCC update.
557  */
558 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
559 {
560 	const int ratio = rwcfg->mem_if_read_dqs_width /
561 			  rwcfg->mem_if_write_dqs_width;
562 	const int base = write_group * ratio;
563 	int i;
564 	/*
565 	 * Load the setting in the SCC manager
566 	 * Although OCT affects only write data, the OCT delay is controlled
567 	 * by the DQS logic block which is instantiated once per read group.
568 	 * For protocols where a write group consists of multiple read groups,
569 	 * the setting must be set multiple times.
570 	 */
571 	for (i = 0; i < ratio; i++)
572 		writel(base + i, &sdr_scc_mgr->dqs_ena);
573 }
574 
575 /**
576  * scc_mgr_zero_group() - Zero all configs for a group
577  *
578  * Zero DQ, DM, DQS and OCT configs for a group.
579  */
580 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
581 {
582 	int i, r;
583 
584 	for (r = 0; r < rwcfg->mem_number_of_ranks;
585 	     r += NUM_RANKS_PER_SHADOW_REG) {
586 		/* Zero all DQ config settings. */
587 		for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
588 			scc_mgr_set_dq_out1_delay(i, 0);
589 			if (!out_only)
590 				scc_mgr_set_dq_in_delay(i, 0);
591 		}
592 
593 		/* Multicast to all DQ enables. */
594 		writel(0xff, &sdr_scc_mgr->dq_ena);
595 
596 		/* Zero all DM config settings. */
597 		for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
598 			scc_mgr_set_dm_out1_delay(i, 0);
599 
600 		/* Multicast to all DM enables. */
601 		writel(0xff, &sdr_scc_mgr->dm_ena);
602 
603 		/* Zero all DQS IO settings. */
604 		if (!out_only)
605 			scc_mgr_set_dqs_io_in_delay(0);
606 
607 		/* Arria V/Cyclone V don't have out2. */
608 		scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
609 		scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
610 		scc_mgr_load_dqs_for_write_group(write_group);
611 
612 		/* Multicast to all DQS IO enables (only 1 in total). */
613 		writel(0, &sdr_scc_mgr->dqs_io_ena);
614 
615 		/* Hit update to zero everything. */
616 		writel(0, &sdr_scc_mgr->update);
617 	}
618 }
619 
620 /*
621  * apply and load a particular input delay for the DQ pins in a group
622  * group_bgn is the index of the first dq pin (in the write group)
623  */
624 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
625 {
626 	uint32_t i, p;
627 
628 	for (i = 0, p = group_bgn; i < rwcfg->mem_dq_per_read_dqs; i++, p++) {
629 		scc_mgr_set_dq_in_delay(p, delay);
630 		scc_mgr_load_dq(p);
631 	}
632 }
633 
634 /**
635  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
636  * @delay:		Delay value
637  *
638  * Apply and load a particular output delay for the DQ pins in a group.
639  */
640 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
641 {
642 	int i;
643 
644 	for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
645 		scc_mgr_set_dq_out1_delay(i, delay);
646 		scc_mgr_load_dq(i);
647 	}
648 }
649 
650 /* apply and load a particular output delay for the DM pins in a group */
651 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
652 {
653 	uint32_t i;
654 
655 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
656 		scc_mgr_set_dm_out1_delay(i, delay1);
657 		scc_mgr_load_dm(i);
658 	}
659 }
660 
661 
662 /* apply and load delay on both DQS and OCT out1 */
663 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
664 						    uint32_t delay)
665 {
666 	scc_mgr_set_dqs_out1_delay(delay);
667 	scc_mgr_load_dqs_io();
668 
669 	scc_mgr_set_oct_out1_delay(write_group, delay);
670 	scc_mgr_load_dqs_for_write_group(write_group);
671 }
672 
673 /**
674  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
675  * @write_group:	Write group
676  * @delay:		Delay value
677  *
678  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
679  */
680 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
681 						  const u32 delay)
682 {
683 	u32 i, new_delay;
684 
685 	/* DQ shift */
686 	for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++)
687 		scc_mgr_load_dq(i);
688 
689 	/* DM shift */
690 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
691 		scc_mgr_load_dm(i);
692 
693 	/* DQS shift */
694 	new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
695 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
696 		debug_cond(DLEVEL == 1,
697 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
698 			   __func__, __LINE__, write_group, delay, new_delay,
699 			   IO_IO_OUT2_DELAY_MAX,
700 			   new_delay - IO_IO_OUT2_DELAY_MAX);
701 		new_delay -= IO_IO_OUT2_DELAY_MAX;
702 		scc_mgr_set_dqs_out1_delay(new_delay);
703 	}
704 
705 	scc_mgr_load_dqs_io();
706 
707 	/* OCT shift */
708 	new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
709 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
710 		debug_cond(DLEVEL == 1,
711 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
712 			   __func__, __LINE__, write_group, delay,
713 			   new_delay, IO_IO_OUT2_DELAY_MAX,
714 			   new_delay - IO_IO_OUT2_DELAY_MAX);
715 		new_delay -= IO_IO_OUT2_DELAY_MAX;
716 		scc_mgr_set_oct_out1_delay(write_group, new_delay);
717 	}
718 
719 	scc_mgr_load_dqs_for_write_group(write_group);
720 }
721 
722 /**
723  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
724  * @write_group:	Write group
725  * @delay:		Delay value
726  *
727  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
728  */
729 static void
730 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
731 						const u32 delay)
732 {
733 	int r;
734 
735 	for (r = 0; r < rwcfg->mem_number_of_ranks;
736 	     r += NUM_RANKS_PER_SHADOW_REG) {
737 		scc_mgr_apply_group_all_out_delay_add(write_group, delay);
738 		writel(0, &sdr_scc_mgr->update);
739 	}
740 }
741 
742 /**
743  * set_jump_as_return() - Return instruction optimization
744  *
745  * Optimization used to recover some slots in ddr3 inst_rom could be
746  * applied to other protocols if we wanted to
747  */
748 static void set_jump_as_return(void)
749 {
750 	/*
751 	 * To save space, we replace return with jump to special shared
752 	 * RETURN instruction so we set the counter to large value so that
753 	 * we always jump.
754 	 */
755 	writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
756 	writel(rwcfg->rreturn, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
757 }
758 
759 /**
760  * delay_for_n_mem_clocks() - Delay for N memory clocks
761  * @clocks:	Length of the delay
762  *
763  * Delay for N memory clocks.
764  */
765 static void delay_for_n_mem_clocks(const u32 clocks)
766 {
767 	u32 afi_clocks;
768 	u16 c_loop;
769 	u8 inner;
770 	u8 outer;
771 
772 	debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
773 
774 	/* Scale (rounding up) to get afi clocks. */
775 	afi_clocks = DIV_ROUND_UP(clocks, AFI_RATE_RATIO);
776 	if (afi_clocks)	/* Temporary underflow protection */
777 		afi_clocks--;
778 
779 	/*
780 	 * Note, we don't bother accounting for being off a little
781 	 * bit because of a few extra instructions in outer loops.
782 	 * Note, the loops have a test at the end, and do the test
783 	 * before the decrement, and so always perform the loop
784 	 * 1 time more than the counter value
785 	 */
786 	c_loop = afi_clocks >> 16;
787 	outer = c_loop ? 0xff : (afi_clocks >> 8);
788 	inner = outer ? 0xff : afi_clocks;
789 
790 	/*
791 	 * rom instructions are structured as follows:
792 	 *
793 	 *    IDLE_LOOP2: jnz cntr0, TARGET_A
794 	 *    IDLE_LOOP1: jnz cntr1, TARGET_B
795 	 *                return
796 	 *
797 	 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
798 	 * TARGET_B is set to IDLE_LOOP2 as well
799 	 *
800 	 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
801 	 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
802 	 *
803 	 * a little confusing, but it helps save precious space in the inst_rom
804 	 * and sequencer rom and keeps the delays more accurate and reduces
805 	 * overhead
806 	 */
807 	if (afi_clocks < 0x100) {
808 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
809 			&sdr_rw_load_mgr_regs->load_cntr1);
810 
811 		writel(rwcfg->idle_loop1,
812 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
813 
814 		writel(rwcfg->idle_loop1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
815 					  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
816 	} else {
817 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
818 			&sdr_rw_load_mgr_regs->load_cntr0);
819 
820 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
821 			&sdr_rw_load_mgr_regs->load_cntr1);
822 
823 		writel(rwcfg->idle_loop2,
824 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
825 
826 		writel(rwcfg->idle_loop2,
827 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
828 
829 		do {
830 			writel(rwcfg->idle_loop2,
831 				SDR_PHYGRP_RWMGRGRP_ADDRESS |
832 				RW_MGR_RUN_SINGLE_GROUP_OFFSET);
833 		} while (c_loop-- != 0);
834 	}
835 	debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
836 }
837 
838 /**
839  * rw_mgr_mem_init_load_regs() - Load instruction registers
840  * @cntr0:	Counter 0 value
841  * @cntr1:	Counter 1 value
842  * @cntr2:	Counter 2 value
843  * @jump:	Jump instruction value
844  *
845  * Load instruction registers.
846  */
847 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
848 {
849 	uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
850 			   RW_MGR_RUN_SINGLE_GROUP_OFFSET;
851 
852 	/* Load counters */
853 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
854 	       &sdr_rw_load_mgr_regs->load_cntr0);
855 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
856 	       &sdr_rw_load_mgr_regs->load_cntr1);
857 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
858 	       &sdr_rw_load_mgr_regs->load_cntr2);
859 
860 	/* Load jump address */
861 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
862 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
863 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
864 
865 	/* Execute count instruction */
866 	writel(jump, grpaddr);
867 }
868 
869 /**
870  * rw_mgr_mem_load_user() - Load user calibration values
871  * @fin1:	Final instruction 1
872  * @fin2:	Final instruction 2
873  * @precharge:	If 1, precharge the banks at the end
874  *
875  * Load user calibration values and optionally precharge the banks.
876  */
877 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
878 				 const int precharge)
879 {
880 	u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
881 		      RW_MGR_RUN_SINGLE_GROUP_OFFSET;
882 	u32 r;
883 
884 	for (r = 0; r < rwcfg->mem_number_of_ranks; r++) {
885 		/* set rank */
886 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
887 
888 		/* precharge all banks ... */
889 		if (precharge)
890 			writel(rwcfg->precharge_all, grpaddr);
891 
892 		/*
893 		 * USER Use Mirror-ed commands for odd ranks if address
894 		 * mirrorring is on
895 		 */
896 		if ((rwcfg->mem_address_mirroring >> r) & 0x1) {
897 			set_jump_as_return();
898 			writel(rwcfg->mrs2_mirr, grpaddr);
899 			delay_for_n_mem_clocks(4);
900 			set_jump_as_return();
901 			writel(rwcfg->mrs3_mirr, grpaddr);
902 			delay_for_n_mem_clocks(4);
903 			set_jump_as_return();
904 			writel(rwcfg->mrs1_mirr, grpaddr);
905 			delay_for_n_mem_clocks(4);
906 			set_jump_as_return();
907 			writel(fin1, grpaddr);
908 		} else {
909 			set_jump_as_return();
910 			writel(rwcfg->mrs2, grpaddr);
911 			delay_for_n_mem_clocks(4);
912 			set_jump_as_return();
913 			writel(rwcfg->mrs3, grpaddr);
914 			delay_for_n_mem_clocks(4);
915 			set_jump_as_return();
916 			writel(rwcfg->mrs1, grpaddr);
917 			set_jump_as_return();
918 			writel(fin2, grpaddr);
919 		}
920 
921 		if (precharge)
922 			continue;
923 
924 		set_jump_as_return();
925 		writel(rwcfg->zqcl, grpaddr);
926 
927 		/* tZQinit = tDLLK = 512 ck cycles */
928 		delay_for_n_mem_clocks(512);
929 	}
930 }
931 
932 /**
933  * rw_mgr_mem_initialize() - Initialize RW Manager
934  *
935  * Initialize RW Manager.
936  */
937 static void rw_mgr_mem_initialize(void)
938 {
939 	debug("%s:%d\n", __func__, __LINE__);
940 
941 	/* The reset / cke part of initialization is broadcasted to all ranks */
942 	writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
943 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
944 
945 	/*
946 	 * Here's how you load register for a loop
947 	 * Counters are located @ 0x800
948 	 * Jump address are located @ 0xC00
949 	 * For both, registers 0 to 3 are selected using bits 3 and 2, like
950 	 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
951 	 * I know this ain't pretty, but Avalon bus throws away the 2 least
952 	 * significant bits
953 	 */
954 
955 	/* Start with memory RESET activated */
956 
957 	/* tINIT = 200us */
958 
959 	/*
960 	 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
961 	 * If a and b are the number of iteration in 2 nested loops
962 	 * it takes the following number of cycles to complete the operation:
963 	 * number_of_cycles = ((2 + n) * a + 2) * b
964 	 * where n is the number of instruction in the inner loop
965 	 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
966 	 * b = 6A
967 	 */
968 	rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
969 				  SEQ_TINIT_CNTR2_VAL,
970 				  rwcfg->init_reset_0_cke_0);
971 
972 	/* Indicate that memory is stable. */
973 	writel(1, &phy_mgr_cfg->reset_mem_stbl);
974 
975 	/*
976 	 * transition the RESET to high
977 	 * Wait for 500us
978 	 */
979 
980 	/*
981 	 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
982 	 * If a and b are the number of iteration in 2 nested loops
983 	 * it takes the following number of cycles to complete the operation
984 	 * number_of_cycles = ((2 + n) * a + 2) * b
985 	 * where n is the number of instruction in the inner loop
986 	 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
987 	 * b = FF
988 	 */
989 	rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
990 				  SEQ_TRESET_CNTR2_VAL,
991 				  rwcfg->init_reset_1_cke_0);
992 
993 	/* Bring up clock enable. */
994 
995 	/* tXRP < 250 ck cycles */
996 	delay_for_n_mem_clocks(250);
997 
998 	rw_mgr_mem_load_user(rwcfg->mrs0_dll_reset_mirr, rwcfg->mrs0_dll_reset,
999 			     0);
1000 }
1001 
1002 /**
1003  * rw_mgr_mem_handoff() - Hand off the memory to user
1004  *
1005  * At the end of calibration we have to program the user settings in
1006  * and hand off the memory to the user.
1007  */
1008 static void rw_mgr_mem_handoff(void)
1009 {
1010 	rw_mgr_mem_load_user(rwcfg->mrs0_user_mirr, rwcfg->mrs0_user, 1);
1011 	/*
1012 	 * Need to wait tMOD (12CK or 15ns) time before issuing other
1013 	 * commands, but we will have plenty of NIOS cycles before actual
1014 	 * handoff so its okay.
1015 	 */
1016 }
1017 
1018 /**
1019  * rw_mgr_mem_calibrate_write_test_issue() - Issue write test command
1020  * @group:	Write Group
1021  * @use_dm:	Use DM
1022  *
1023  * Issue write test command. Two variants are provided, one that just tests
1024  * a write pattern and another that tests datamask functionality.
1025  */
1026 static void rw_mgr_mem_calibrate_write_test_issue(u32 group,
1027 						  u32 test_dm)
1028 {
1029 	const u32 quick_write_mode =
1030 		(STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) &&
1031 		ENABLE_SUPER_QUICK_CALIBRATION;
1032 	u32 mcc_instruction;
1033 	u32 rw_wl_nop_cycles;
1034 
1035 	/*
1036 	 * Set counter and jump addresses for the right
1037 	 * number of NOP cycles.
1038 	 * The number of supported NOP cycles can range from -1 to infinity
1039 	 * Three different cases are handled:
1040 	 *
1041 	 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
1042 	 *    mechanism will be used to insert the right number of NOPs
1043 	 *
1044 	 * 2. For a number of NOP cycles equals to 0, the micro-instruction
1045 	 *    issuing the write command will jump straight to the
1046 	 *    micro-instruction that turns on DQS (for DDRx), or outputs write
1047 	 *    data (for RLD), skipping
1048 	 *    the NOP micro-instruction all together
1049 	 *
1050 	 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
1051 	 *    turned on in the same micro-instruction that issues the write
1052 	 *    command. Then we need
1053 	 *    to directly jump to the micro-instruction that sends out the data
1054 	 *
1055 	 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
1056 	 *       (2 and 3). One jump-counter (0) is used to perform multiple
1057 	 *       write-read operations.
1058 	 *       one counter left to issue this command in "multiple-group" mode
1059 	 */
1060 
1061 	rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
1062 
1063 	if (rw_wl_nop_cycles == -1) {
1064 		/*
1065 		 * CNTR 2 - We want to execute the special write operation that
1066 		 * turns on DQS right away and then skip directly to the
1067 		 * instruction that sends out the data. We set the counter to a
1068 		 * large number so that the jump is always taken.
1069 		 */
1070 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1071 
1072 		/* CNTR 3 - Not used */
1073 		if (test_dm) {
1074 			mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0_wl_1;
1075 			writel(rwcfg->lfsr_wr_rd_dm_bank_0_data,
1076 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1077 			writel(rwcfg->lfsr_wr_rd_dm_bank_0_nop,
1078 			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1079 		} else {
1080 			mcc_instruction = rwcfg->lfsr_wr_rd_bank_0_wl_1;
1081 			writel(rwcfg->lfsr_wr_rd_bank_0_data,
1082 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1083 			writel(rwcfg->lfsr_wr_rd_bank_0_nop,
1084 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1085 		}
1086 	} else if (rw_wl_nop_cycles == 0) {
1087 		/*
1088 		 * CNTR 2 - We want to skip the NOP operation and go straight
1089 		 * to the DQS enable instruction. We set the counter to a large
1090 		 * number so that the jump is always taken.
1091 		 */
1092 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1093 
1094 		/* CNTR 3 - Not used */
1095 		if (test_dm) {
1096 			mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0;
1097 			writel(rwcfg->lfsr_wr_rd_dm_bank_0_dqs,
1098 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1099 		} else {
1100 			mcc_instruction = rwcfg->lfsr_wr_rd_bank_0;
1101 			writel(rwcfg->lfsr_wr_rd_bank_0_dqs,
1102 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1103 		}
1104 	} else {
1105 		/*
1106 		 * CNTR 2 - In this case we want to execute the next instruction
1107 		 * and NOT take the jump. So we set the counter to 0. The jump
1108 		 * address doesn't count.
1109 		 */
1110 		writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
1111 		writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1112 
1113 		/*
1114 		 * CNTR 3 - Set the nop counter to the number of cycles we
1115 		 * need to loop for, minus 1.
1116 		 */
1117 		writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
1118 		if (test_dm) {
1119 			mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0;
1120 			writel(rwcfg->lfsr_wr_rd_dm_bank_0_nop,
1121 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1122 		} else {
1123 			mcc_instruction = rwcfg->lfsr_wr_rd_bank_0;
1124 			writel(rwcfg->lfsr_wr_rd_bank_0_nop,
1125 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1126 		}
1127 	}
1128 
1129 	writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1130 		  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1131 
1132 	if (quick_write_mode)
1133 		writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
1134 	else
1135 		writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
1136 
1137 	writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1138 
1139 	/*
1140 	 * CNTR 1 - This is used to ensure enough time elapses
1141 	 * for read data to come back.
1142 	 */
1143 	writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
1144 
1145 	if (test_dm) {
1146 		writel(rwcfg->lfsr_wr_rd_dm_bank_0_wait,
1147 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1148 	} else {
1149 		writel(rwcfg->lfsr_wr_rd_bank_0_wait,
1150 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1151 	}
1152 
1153 	writel(mcc_instruction, (SDR_PHYGRP_RWMGRGRP_ADDRESS |
1154 				RW_MGR_RUN_SINGLE_GROUP_OFFSET) +
1155 				(group << 2));
1156 }
1157 
1158 /**
1159  * rw_mgr_mem_calibrate_write_test() - Test writes, check for single/multiple pass
1160  * @rank_bgn:		Rank number
1161  * @write_group:	Write Group
1162  * @use_dm:		Use DM
1163  * @all_correct:	All bits must be correct in the mask
1164  * @bit_chk:		Resulting bit mask after the test
1165  * @all_ranks:		Test all ranks
1166  *
1167  * Test writes, can check for a single bit pass or multiple bit pass.
1168  */
1169 static int
1170 rw_mgr_mem_calibrate_write_test(const u32 rank_bgn, const u32 write_group,
1171 				const u32 use_dm, const u32 all_correct,
1172 				u32 *bit_chk, const u32 all_ranks)
1173 {
1174 	const u32 rank_end = all_ranks ?
1175 				rwcfg->mem_number_of_ranks :
1176 				(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1177 	const u32 shift_ratio = rwcfg->mem_dq_per_write_dqs /
1178 				rwcfg->mem_virtual_groups_per_write_dqs;
1179 	const u32 correct_mask_vg = param->write_correct_mask_vg;
1180 
1181 	u32 tmp_bit_chk, base_rw_mgr;
1182 	int vg, r;
1183 
1184 	*bit_chk = param->write_correct_mask;
1185 
1186 	for (r = rank_bgn; r < rank_end; r++) {
1187 		/* Set rank */
1188 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1189 
1190 		tmp_bit_chk = 0;
1191 		for (vg = rwcfg->mem_virtual_groups_per_write_dqs - 1;
1192 		     vg >= 0; vg--) {
1193 			/* Reset the FIFOs to get pointers to known state. */
1194 			writel(0, &phy_mgr_cmd->fifo_reset);
1195 
1196 			rw_mgr_mem_calibrate_write_test_issue(
1197 				write_group *
1198 				rwcfg->mem_virtual_groups_per_write_dqs + vg,
1199 				use_dm);
1200 
1201 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1202 			tmp_bit_chk <<= shift_ratio;
1203 			tmp_bit_chk |= (correct_mask_vg & ~(base_rw_mgr));
1204 		}
1205 
1206 		*bit_chk &= tmp_bit_chk;
1207 	}
1208 
1209 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1210 	if (all_correct) {
1211 		debug_cond(DLEVEL == 2,
1212 			   "write_test(%u,%u,ALL) : %u == %u => %i\n",
1213 			   write_group, use_dm, *bit_chk,
1214 			   param->write_correct_mask,
1215 			   *bit_chk == param->write_correct_mask);
1216 		return *bit_chk == param->write_correct_mask;
1217 	} else {
1218 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1219 		debug_cond(DLEVEL == 2,
1220 			   "write_test(%u,%u,ONE) : %u != %i => %i\n",
1221 			   write_group, use_dm, *bit_chk, 0, *bit_chk != 0);
1222 		return *bit_chk != 0x00;
1223 	}
1224 }
1225 
1226 /**
1227  * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1228  * @rank_bgn:	Rank number
1229  * @group:	Read/Write Group
1230  * @all_ranks:	Test all ranks
1231  *
1232  * Performs a guaranteed read on the patterns we are going to use during a
1233  * read test to ensure memory works.
1234  */
1235 static int
1236 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1237 					const u32 all_ranks)
1238 {
1239 	const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1240 			 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1241 	const u32 addr_offset =
1242 			 (group * rwcfg->mem_virtual_groups_per_read_dqs) << 2;
1243 	const u32 rank_end = all_ranks ?
1244 				rwcfg->mem_number_of_ranks :
1245 				(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1246 	const u32 shift_ratio = rwcfg->mem_dq_per_read_dqs /
1247 				rwcfg->mem_virtual_groups_per_read_dqs;
1248 	const u32 correct_mask_vg = param->read_correct_mask_vg;
1249 
1250 	u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1251 	int vg, r;
1252 	int ret = 0;
1253 
1254 	bit_chk = param->read_correct_mask;
1255 
1256 	for (r = rank_bgn; r < rank_end; r++) {
1257 		/* Set rank */
1258 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1259 
1260 		/* Load up a constant bursts of read commands */
1261 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1262 		writel(rwcfg->guaranteed_read,
1263 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1264 
1265 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1266 		writel(rwcfg->guaranteed_read_cont,
1267 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1268 
1269 		tmp_bit_chk = 0;
1270 		for (vg = rwcfg->mem_virtual_groups_per_read_dqs - 1;
1271 		     vg >= 0; vg--) {
1272 			/* Reset the FIFOs to get pointers to known state. */
1273 			writel(0, &phy_mgr_cmd->fifo_reset);
1274 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1275 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1276 			writel(rwcfg->guaranteed_read,
1277 			       addr + addr_offset + (vg << 2));
1278 
1279 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1280 			tmp_bit_chk <<= shift_ratio;
1281 			tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1282 		}
1283 
1284 		bit_chk &= tmp_bit_chk;
1285 	}
1286 
1287 	writel(rwcfg->clear_dqs_enable, addr + (group << 2));
1288 
1289 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1290 
1291 	if (bit_chk != param->read_correct_mask)
1292 		ret = -EIO;
1293 
1294 	debug_cond(DLEVEL == 1,
1295 		   "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1296 		   __func__, __LINE__, group, bit_chk,
1297 		   param->read_correct_mask, ret);
1298 
1299 	return ret;
1300 }
1301 
1302 /**
1303  * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1304  * @rank_bgn:	Rank number
1305  * @all_ranks:	Test all ranks
1306  *
1307  * Load up the patterns we are going to use during a read test.
1308  */
1309 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1310 						    const int all_ranks)
1311 {
1312 	const u32 rank_end = all_ranks ?
1313 			rwcfg->mem_number_of_ranks :
1314 			(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1315 	u32 r;
1316 
1317 	debug("%s:%d\n", __func__, __LINE__);
1318 
1319 	for (r = rank_bgn; r < rank_end; r++) {
1320 		/* set rank */
1321 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1322 
1323 		/* Load up a constant bursts */
1324 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1325 
1326 		writel(rwcfg->guaranteed_write_wait0,
1327 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1328 
1329 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1330 
1331 		writel(rwcfg->guaranteed_write_wait1,
1332 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1333 
1334 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1335 
1336 		writel(rwcfg->guaranteed_write_wait2,
1337 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1338 
1339 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1340 
1341 		writel(rwcfg->guaranteed_write_wait3,
1342 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1343 
1344 		writel(rwcfg->guaranteed_write, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1345 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1346 	}
1347 
1348 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1349 }
1350 
1351 /**
1352  * rw_mgr_mem_calibrate_read_test() - Perform READ test on single rank
1353  * @rank_bgn:		Rank number
1354  * @group:		Read/Write group
1355  * @num_tries:		Number of retries of the test
1356  * @all_correct:	All bits must be correct in the mask
1357  * @bit_chk:		Resulting bit mask after the test
1358  * @all_groups:		Test all R/W groups
1359  * @all_ranks:		Test all ranks
1360  *
1361  * Try a read and see if it returns correct data back. Test has dummy reads
1362  * inserted into the mix used to align DQS enable. Test has more thorough
1363  * checks than the regular read test.
1364  */
1365 static int
1366 rw_mgr_mem_calibrate_read_test(const u32 rank_bgn, const u32 group,
1367 			       const u32 num_tries, const u32 all_correct,
1368 			       u32 *bit_chk,
1369 			       const u32 all_groups, const u32 all_ranks)
1370 {
1371 	const u32 rank_end = all_ranks ? rwcfg->mem_number_of_ranks :
1372 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1373 	const u32 quick_read_mode =
1374 		((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) &&
1375 		 ENABLE_SUPER_QUICK_CALIBRATION);
1376 	u32 correct_mask_vg = param->read_correct_mask_vg;
1377 	u32 tmp_bit_chk;
1378 	u32 base_rw_mgr;
1379 	u32 addr;
1380 
1381 	int r, vg, ret;
1382 
1383 	*bit_chk = param->read_correct_mask;
1384 
1385 	for (r = rank_bgn; r < rank_end; r++) {
1386 		/* set rank */
1387 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1388 
1389 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1390 
1391 		writel(rwcfg->read_b2b_wait1,
1392 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1393 
1394 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1395 		writel(rwcfg->read_b2b_wait2,
1396 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1397 
1398 		if (quick_read_mode)
1399 			writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1400 			/* need at least two (1+1) reads to capture failures */
1401 		else if (all_groups)
1402 			writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1403 		else
1404 			writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1405 
1406 		writel(rwcfg->read_b2b,
1407 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1408 		if (all_groups)
1409 			writel(rwcfg->mem_if_read_dqs_width *
1410 			       rwcfg->mem_virtual_groups_per_read_dqs - 1,
1411 			       &sdr_rw_load_mgr_regs->load_cntr3);
1412 		else
1413 			writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1414 
1415 		writel(rwcfg->read_b2b,
1416 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1417 
1418 		tmp_bit_chk = 0;
1419 		for (vg = rwcfg->mem_virtual_groups_per_read_dqs - 1; vg >= 0;
1420 		     vg--) {
1421 			/* Reset the FIFOs to get pointers to known state. */
1422 			writel(0, &phy_mgr_cmd->fifo_reset);
1423 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1424 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1425 
1426 			if (all_groups) {
1427 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1428 				       RW_MGR_RUN_ALL_GROUPS_OFFSET;
1429 			} else {
1430 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1431 				       RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1432 			}
1433 
1434 			writel(rwcfg->read_b2b, addr +
1435 			       ((group * rwcfg->mem_virtual_groups_per_read_dqs +
1436 			       vg) << 2));
1437 
1438 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1439 			tmp_bit_chk <<= rwcfg->mem_dq_per_read_dqs /
1440 					rwcfg->mem_virtual_groups_per_read_dqs;
1441 			tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr);
1442 		}
1443 
1444 		*bit_chk &= tmp_bit_chk;
1445 	}
1446 
1447 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1448 	writel(rwcfg->clear_dqs_enable, addr + (group << 2));
1449 
1450 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1451 
1452 	if (all_correct) {
1453 		ret = (*bit_chk == param->read_correct_mask);
1454 		debug_cond(DLEVEL == 2,
1455 			   "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n",
1456 			   __func__, __LINE__, group, all_groups, *bit_chk,
1457 			   param->read_correct_mask, ret);
1458 	} else	{
1459 		ret = (*bit_chk != 0x00);
1460 		debug_cond(DLEVEL == 2,
1461 			   "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n",
1462 			   __func__, __LINE__, group, all_groups, *bit_chk,
1463 			   0, ret);
1464 	}
1465 
1466 	return ret;
1467 }
1468 
1469 /**
1470  * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks
1471  * @grp:		Read/Write group
1472  * @num_tries:		Number of retries of the test
1473  * @all_correct:	All bits must be correct in the mask
1474  * @all_groups:		Test all R/W groups
1475  *
1476  * Perform a READ test across all memory ranks.
1477  */
1478 static int
1479 rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries,
1480 					 const u32 all_correct,
1481 					 const u32 all_groups)
1482 {
1483 	u32 bit_chk;
1484 	return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct,
1485 					      &bit_chk, all_groups, 1);
1486 }
1487 
1488 /**
1489  * rw_mgr_incr_vfifo() - Increase VFIFO value
1490  * @grp:	Read/Write group
1491  *
1492  * Increase VFIFO value.
1493  */
1494 static void rw_mgr_incr_vfifo(const u32 grp)
1495 {
1496 	writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1497 }
1498 
1499 /**
1500  * rw_mgr_decr_vfifo() - Decrease VFIFO value
1501  * @grp:	Read/Write group
1502  *
1503  * Decrease VFIFO value.
1504  */
1505 static void rw_mgr_decr_vfifo(const u32 grp)
1506 {
1507 	u32 i;
1508 
1509 	for (i = 0; i < VFIFO_SIZE - 1; i++)
1510 		rw_mgr_incr_vfifo(grp);
1511 }
1512 
1513 /**
1514  * find_vfifo_failing_read() - Push VFIFO to get a failing read
1515  * @grp:	Read/Write group
1516  *
1517  * Push VFIFO until a failing read happens.
1518  */
1519 static int find_vfifo_failing_read(const u32 grp)
1520 {
1521 	u32 v, ret, fail_cnt = 0;
1522 
1523 	for (v = 0; v < VFIFO_SIZE; v++) {
1524 		debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n",
1525 			   __func__, __LINE__, v);
1526 		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1527 						PASS_ONE_BIT, 0);
1528 		if (!ret) {
1529 			fail_cnt++;
1530 
1531 			if (fail_cnt == 2)
1532 				return v;
1533 		}
1534 
1535 		/* Fiddle with FIFO. */
1536 		rw_mgr_incr_vfifo(grp);
1537 	}
1538 
1539 	/* No failing read found! Something must have gone wrong. */
1540 	debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__);
1541 	return 0;
1542 }
1543 
1544 /**
1545  * sdr_find_phase_delay() - Find DQS enable phase or delay
1546  * @working:	If 1, look for working phase/delay, if 0, look for non-working
1547  * @delay:	If 1, look for delay, if 0, look for phase
1548  * @grp:	Read/Write group
1549  * @work:	Working window position
1550  * @work_inc:	Working window increment
1551  * @pd:		DQS Phase/Delay Iterator
1552  *
1553  * Find working or non-working DQS enable phase setting.
1554  */
1555 static int sdr_find_phase_delay(int working, int delay, const u32 grp,
1556 				u32 *work, const u32 work_inc, u32 *pd)
1557 {
1558 	const u32 max = delay ? IO_DQS_EN_DELAY_MAX : IO_DQS_EN_PHASE_MAX;
1559 	u32 ret;
1560 
1561 	for (; *pd <= max; (*pd)++) {
1562 		if (delay)
1563 			scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd);
1564 		else
1565 			scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd);
1566 
1567 		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1568 					PASS_ONE_BIT, 0);
1569 		if (!working)
1570 			ret = !ret;
1571 
1572 		if (ret)
1573 			return 0;
1574 
1575 		if (work)
1576 			*work += work_inc;
1577 	}
1578 
1579 	return -EINVAL;
1580 }
1581 /**
1582  * sdr_find_phase() - Find DQS enable phase
1583  * @working:	If 1, look for working phase, if 0, look for non-working phase
1584  * @grp:	Read/Write group
1585  * @work:	Working window position
1586  * @i:		Iterator
1587  * @p:		DQS Phase Iterator
1588  *
1589  * Find working or non-working DQS enable phase setting.
1590  */
1591 static int sdr_find_phase(int working, const u32 grp, u32 *work,
1592 			  u32 *i, u32 *p)
1593 {
1594 	const u32 end = VFIFO_SIZE + (working ? 0 : 1);
1595 	int ret;
1596 
1597 	for (; *i < end; (*i)++) {
1598 		if (working)
1599 			*p = 0;
1600 
1601 		ret = sdr_find_phase_delay(working, 0, grp, work,
1602 					   IO_DELAY_PER_OPA_TAP, p);
1603 		if (!ret)
1604 			return 0;
1605 
1606 		if (*p > IO_DQS_EN_PHASE_MAX) {
1607 			/* Fiddle with FIFO. */
1608 			rw_mgr_incr_vfifo(grp);
1609 			if (!working)
1610 				*p = 0;
1611 		}
1612 	}
1613 
1614 	return -EINVAL;
1615 }
1616 
1617 /**
1618  * sdr_working_phase() - Find working DQS enable phase
1619  * @grp:	Read/Write group
1620  * @work_bgn:	Working window start position
1621  * @d:		dtaps output value
1622  * @p:		DQS Phase Iterator
1623  * @i:		Iterator
1624  *
1625  * Find working DQS enable phase setting.
1626  */
1627 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d,
1628 			     u32 *p, u32 *i)
1629 {
1630 	const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP /
1631 				   IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1632 	int ret;
1633 
1634 	*work_bgn = 0;
1635 
1636 	for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
1637 		*i = 0;
1638 		scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
1639 		ret = sdr_find_phase(1, grp, work_bgn, i, p);
1640 		if (!ret)
1641 			return 0;
1642 		*work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1643 	}
1644 
1645 	/* Cannot find working solution */
1646 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
1647 		   __func__, __LINE__);
1648 	return -EINVAL;
1649 }
1650 
1651 /**
1652  * sdr_backup_phase() - Find DQS enable backup phase
1653  * @grp:	Read/Write group
1654  * @work_bgn:	Working window start position
1655  * @p:		DQS Phase Iterator
1656  *
1657  * Find DQS enable backup phase setting.
1658  */
1659 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p)
1660 {
1661 	u32 tmp_delay, d;
1662 	int ret;
1663 
1664 	/* Special case code for backing up a phase */
1665 	if (*p == 0) {
1666 		*p = IO_DQS_EN_PHASE_MAX;
1667 		rw_mgr_decr_vfifo(grp);
1668 	} else {
1669 		(*p)--;
1670 	}
1671 	tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1672 	scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1673 
1674 	for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; d++) {
1675 		scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1676 
1677 		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1678 					PASS_ONE_BIT, 0);
1679 		if (ret) {
1680 			*work_bgn = tmp_delay;
1681 			break;
1682 		}
1683 
1684 		tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1685 	}
1686 
1687 	/* Restore VFIFO to old state before we decremented it (if needed). */
1688 	(*p)++;
1689 	if (*p > IO_DQS_EN_PHASE_MAX) {
1690 		*p = 0;
1691 		rw_mgr_incr_vfifo(grp);
1692 	}
1693 
1694 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1695 }
1696 
1697 /**
1698  * sdr_nonworking_phase() - Find non-working DQS enable phase
1699  * @grp:	Read/Write group
1700  * @work_end:	Working window end position
1701  * @p:		DQS Phase Iterator
1702  * @i:		Iterator
1703  *
1704  * Find non-working DQS enable phase setting.
1705  */
1706 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i)
1707 {
1708 	int ret;
1709 
1710 	(*p)++;
1711 	*work_end += IO_DELAY_PER_OPA_TAP;
1712 	if (*p > IO_DQS_EN_PHASE_MAX) {
1713 		/* Fiddle with FIFO. */
1714 		*p = 0;
1715 		rw_mgr_incr_vfifo(grp);
1716 	}
1717 
1718 	ret = sdr_find_phase(0, grp, work_end, i, p);
1719 	if (ret) {
1720 		/* Cannot see edge of failing read. */
1721 		debug_cond(DLEVEL == 2, "%s:%d: end: failed\n",
1722 			   __func__, __LINE__);
1723 	}
1724 
1725 	return ret;
1726 }
1727 
1728 /**
1729  * sdr_find_window_center() - Find center of the working DQS window.
1730  * @grp:	Read/Write group
1731  * @work_bgn:	First working settings
1732  * @work_end:	Last working settings
1733  *
1734  * Find center of the working DQS enable window.
1735  */
1736 static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
1737 				  const u32 work_end)
1738 {
1739 	u32 work_mid;
1740 	int tmp_delay = 0;
1741 	int i, p, d;
1742 
1743 	work_mid = (work_bgn + work_end) / 2;
1744 
1745 	debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1746 		   work_bgn, work_end, work_mid);
1747 	/* Get the middle delay to be less than a VFIFO delay */
1748 	tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP;
1749 
1750 	debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1751 	work_mid %= tmp_delay;
1752 	debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid);
1753 
1754 	tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP);
1755 	if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP)
1756 		tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP;
1757 	p = tmp_delay / IO_DELAY_PER_OPA_TAP;
1758 
1759 	debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
1760 
1761 	d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP);
1762 	if (d > IO_DQS_EN_DELAY_MAX)
1763 		d = IO_DQS_EN_DELAY_MAX;
1764 	tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1765 
1766 	debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
1767 
1768 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1769 	scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1770 
1771 	/*
1772 	 * push vfifo until we can successfully calibrate. We can do this
1773 	 * because the largest possible margin in 1 VFIFO cycle.
1774 	 */
1775 	for (i = 0; i < VFIFO_SIZE; i++) {
1776 		debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n");
1777 		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1778 							     PASS_ONE_BIT,
1779 							     0)) {
1780 			debug_cond(DLEVEL == 2,
1781 				   "%s:%d center: found: ptap=%u dtap=%u\n",
1782 				   __func__, __LINE__, p, d);
1783 			return 0;
1784 		}
1785 
1786 		/* Fiddle with FIFO. */
1787 		rw_mgr_incr_vfifo(grp);
1788 	}
1789 
1790 	debug_cond(DLEVEL == 2, "%s:%d center: failed.\n",
1791 		   __func__, __LINE__);
1792 	return -EINVAL;
1793 }
1794 
1795 /**
1796  * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use
1797  * @grp:	Read/Write Group
1798  *
1799  * Find a good DQS enable to use.
1800  */
1801 static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp)
1802 {
1803 	u32 d, p, i;
1804 	u32 dtaps_per_ptap;
1805 	u32 work_bgn, work_end;
1806 	u32 found_passing_read, found_failing_read, initial_failing_dtap;
1807 	int ret;
1808 
1809 	debug("%s:%d %u\n", __func__, __LINE__, grp);
1810 
1811 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1812 
1813 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1814 	scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1815 
1816 	/* Step 0: Determine number of delay taps for each phase tap. */
1817 	dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1818 
1819 	/* Step 1: First push vfifo until we get a failing read. */
1820 	find_vfifo_failing_read(grp);
1821 
1822 	/* Step 2: Find first working phase, increment in ptaps. */
1823 	work_bgn = 0;
1824 	ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i);
1825 	if (ret)
1826 		return ret;
1827 
1828 	work_end = work_bgn;
1829 
1830 	/*
1831 	 * If d is 0 then the working window covers a phase tap and we can
1832 	 * follow the old procedure. Otherwise, we've found the beginning
1833 	 * and we need to increment the dtaps until we find the end.
1834 	 */
1835 	if (d == 0) {
1836 		/*
1837 		 * Step 3a: If we have room, back off by one and
1838 		 *          increment in dtaps.
1839 		 */
1840 		sdr_backup_phase(grp, &work_bgn, &p);
1841 
1842 		/*
1843 		 * Step 4a: go forward from working phase to non working
1844 		 * phase, increment in ptaps.
1845 		 */
1846 		ret = sdr_nonworking_phase(grp, &work_end, &p, &i);
1847 		if (ret)
1848 			return ret;
1849 
1850 		/* Step 5a: Back off one from last, increment in dtaps. */
1851 
1852 		/* Special case code for backing up a phase */
1853 		if (p == 0) {
1854 			p = IO_DQS_EN_PHASE_MAX;
1855 			rw_mgr_decr_vfifo(grp);
1856 		} else {
1857 			p = p - 1;
1858 		}
1859 
1860 		work_end -= IO_DELAY_PER_OPA_TAP;
1861 		scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1862 
1863 		d = 0;
1864 
1865 		debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n",
1866 			   __func__, __LINE__, p);
1867 	}
1868 
1869 	/* The dtap increment to find the failing edge is done here. */
1870 	sdr_find_phase_delay(0, 1, grp, &work_end,
1871 			     IO_DELAY_PER_DQS_EN_DCHAIN_TAP, &d);
1872 
1873 	/* Go back to working dtap */
1874 	if (d != 0)
1875 		work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1876 
1877 	debug_cond(DLEVEL == 2,
1878 		   "%s:%d p/d: ptap=%u dtap=%u end=%u\n",
1879 		   __func__, __LINE__, p, d - 1, work_end);
1880 
1881 	if (work_end < work_bgn) {
1882 		/* nil range */
1883 		debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n",
1884 			   __func__, __LINE__);
1885 		return -EINVAL;
1886 	}
1887 
1888 	debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n",
1889 		   __func__, __LINE__, work_bgn, work_end);
1890 
1891 	/*
1892 	 * We need to calculate the number of dtaps that equal a ptap.
1893 	 * To do that we'll back up a ptap and re-find the edge of the
1894 	 * window using dtaps
1895 	 */
1896 	debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n",
1897 		   __func__, __LINE__);
1898 
1899 	/* Special case code for backing up a phase */
1900 	if (p == 0) {
1901 		p = IO_DQS_EN_PHASE_MAX;
1902 		rw_mgr_decr_vfifo(grp);
1903 		debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n",
1904 			   __func__, __LINE__, p);
1905 	} else {
1906 		p = p - 1;
1907 		debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u",
1908 			   __func__, __LINE__, p);
1909 	}
1910 
1911 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1912 
1913 	/*
1914 	 * Increase dtap until we first see a passing read (in case the
1915 	 * window is smaller than a ptap), and then a failing read to
1916 	 * mark the edge of the window again.
1917 	 */
1918 
1919 	/* Find a passing read. */
1920 	debug_cond(DLEVEL == 2, "%s:%d find passing read\n",
1921 		   __func__, __LINE__);
1922 
1923 	initial_failing_dtap = d;
1924 
1925 	found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d);
1926 	if (found_passing_read) {
1927 		/* Find a failing read. */
1928 		debug_cond(DLEVEL == 2, "%s:%d find failing read\n",
1929 			   __func__, __LINE__);
1930 		d++;
1931 		found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0,
1932 							   &d);
1933 	} else {
1934 		debug_cond(DLEVEL == 1,
1935 			   "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n",
1936 			   __func__, __LINE__);
1937 	}
1938 
1939 	/*
1940 	 * The dynamically calculated dtaps_per_ptap is only valid if we
1941 	 * found a passing/failing read. If we didn't, it means d hit the max
1942 	 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1943 	 * statically calculated value.
1944 	 */
1945 	if (found_passing_read && found_failing_read)
1946 		dtaps_per_ptap = d - initial_failing_dtap;
1947 
1948 	writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1949 	debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u",
1950 		   __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap);
1951 
1952 	/* Step 6: Find the centre of the window. */
1953 	ret = sdr_find_window_center(grp, work_bgn, work_end);
1954 
1955 	return ret;
1956 }
1957 
1958 /**
1959  * search_stop_check() - Check if the detected edge is valid
1960  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
1961  * @d:			DQS delay
1962  * @rank_bgn:		Rank number
1963  * @write_group:	Write Group
1964  * @read_group:		Read Group
1965  * @bit_chk:		Resulting bit mask after the test
1966  * @sticky_bit_chk:	Resulting sticky bit mask after the test
1967  * @use_read_test:	Perform read test
1968  *
1969  * Test if the found edge is valid.
1970  */
1971 static u32 search_stop_check(const int write, const int d, const int rank_bgn,
1972 			     const u32 write_group, const u32 read_group,
1973 			     u32 *bit_chk, u32 *sticky_bit_chk,
1974 			     const u32 use_read_test)
1975 {
1976 	const u32 ratio = rwcfg->mem_if_read_dqs_width /
1977 			  rwcfg->mem_if_write_dqs_width;
1978 	const u32 correct_mask = write ? param->write_correct_mask :
1979 					 param->read_correct_mask;
1980 	const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
1981 				    rwcfg->mem_dq_per_read_dqs;
1982 	u32 ret;
1983 	/*
1984 	 * Stop searching when the read test doesn't pass AND when
1985 	 * we've seen a passing read on every bit.
1986 	 */
1987 	if (write) {			/* WRITE-ONLY */
1988 		ret = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1989 							 0, PASS_ONE_BIT,
1990 							 bit_chk, 0);
1991 	} else if (use_read_test) {	/* READ-ONLY */
1992 		ret = !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group,
1993 							NUM_READ_PB_TESTS,
1994 							PASS_ONE_BIT, bit_chk,
1995 							0, 0);
1996 	} else {			/* READ-ONLY */
1997 		rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0,
1998 						PASS_ONE_BIT, bit_chk, 0);
1999 		*bit_chk = *bit_chk >> (per_dqs *
2000 			(read_group - (write_group * ratio)));
2001 		ret = (*bit_chk == 0);
2002 	}
2003 	*sticky_bit_chk = *sticky_bit_chk | *bit_chk;
2004 	ret = ret && (*sticky_bit_chk == correct_mask);
2005 	debug_cond(DLEVEL == 2,
2006 		   "%s:%d center(left): dtap=%u => %u == %u && %u",
2007 		   __func__, __LINE__, d,
2008 		   *sticky_bit_chk, correct_mask, ret);
2009 	return ret;
2010 }
2011 
2012 /**
2013  * search_left_edge() - Find left edge of DQ/DQS working phase
2014  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
2015  * @rank_bgn:		Rank number
2016  * @write_group:	Write Group
2017  * @read_group:		Read Group
2018  * @test_bgn:		Rank number to begin the test
2019  * @sticky_bit_chk:	Resulting sticky bit mask after the test
2020  * @left_edge:		Left edge of the DQ/DQS phase
2021  * @right_edge:		Right edge of the DQ/DQS phase
2022  * @use_read_test:	Perform read test
2023  *
2024  * Find left edge of DQ/DQS working phase.
2025  */
2026 static void search_left_edge(const int write, const int rank_bgn,
2027 	const u32 write_group, const u32 read_group, const u32 test_bgn,
2028 	u32 *sticky_bit_chk,
2029 	int *left_edge, int *right_edge, const u32 use_read_test)
2030 {
2031 	const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2032 	const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX;
2033 	const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2034 				    rwcfg->mem_dq_per_read_dqs;
2035 	u32 stop, bit_chk;
2036 	int i, d;
2037 
2038 	for (d = 0; d <= dqs_max; d++) {
2039 		if (write)
2040 			scc_mgr_apply_group_dq_out1_delay(d);
2041 		else
2042 			scc_mgr_apply_group_dq_in_delay(test_bgn, d);
2043 
2044 		writel(0, &sdr_scc_mgr->update);
2045 
2046 		stop = search_stop_check(write, d, rank_bgn, write_group,
2047 					 read_group, &bit_chk, sticky_bit_chk,
2048 					 use_read_test);
2049 		if (stop == 1)
2050 			break;
2051 
2052 		/* stop != 1 */
2053 		for (i = 0; i < per_dqs; i++) {
2054 			if (bit_chk & 1) {
2055 				/*
2056 				 * Remember a passing test as
2057 				 * the left_edge.
2058 				 */
2059 				left_edge[i] = d;
2060 			} else {
2061 				/*
2062 				 * If a left edge has not been seen
2063 				 * yet, then a future passing test
2064 				 * will mark this edge as the right
2065 				 * edge.
2066 				 */
2067 				if (left_edge[i] == delay_max + 1)
2068 					right_edge[i] = -(d + 1);
2069 			}
2070 			bit_chk >>= 1;
2071 		}
2072 	}
2073 
2074 	/* Reset DQ delay chains to 0 */
2075 	if (write)
2076 		scc_mgr_apply_group_dq_out1_delay(0);
2077 	else
2078 		scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2079 
2080 	*sticky_bit_chk = 0;
2081 	for (i = per_dqs - 1; i >= 0; i--) {
2082 		debug_cond(DLEVEL == 2,
2083 			   "%s:%d vfifo_center: left_edge[%u]: %d right_edge[%u]: %d\n",
2084 			   __func__, __LINE__, i, left_edge[i],
2085 			   i, right_edge[i]);
2086 
2087 		/*
2088 		 * Check for cases where we haven't found the left edge,
2089 		 * which makes our assignment of the the right edge invalid.
2090 		 * Reset it to the illegal value.
2091 		 */
2092 		if ((left_edge[i] == delay_max + 1) &&
2093 		    (right_edge[i] != delay_max + 1)) {
2094 			right_edge[i] = delay_max + 1;
2095 			debug_cond(DLEVEL == 2,
2096 				   "%s:%d vfifo_center: reset right_edge[%u]: %d\n",
2097 				   __func__, __LINE__, i, right_edge[i]);
2098 		}
2099 
2100 		/*
2101 		 * Reset sticky bit
2102 		 * READ: except for bits where we have seen both
2103 		 *       the left and right edge.
2104 		 * WRITE: except for bits where we have seen the
2105 		 *        left edge.
2106 		 */
2107 		*sticky_bit_chk <<= 1;
2108 		if (write) {
2109 			if (left_edge[i] != delay_max + 1)
2110 				*sticky_bit_chk |= 1;
2111 		} else {
2112 			if ((left_edge[i] != delay_max + 1) &&
2113 			    (right_edge[i] != delay_max + 1))
2114 				*sticky_bit_chk |= 1;
2115 		}
2116 	}
2117 
2118 
2119 }
2120 
2121 /**
2122  * search_right_edge() - Find right edge of DQ/DQS working phase
2123  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
2124  * @rank_bgn:		Rank number
2125  * @write_group:	Write Group
2126  * @read_group:		Read Group
2127  * @start_dqs:		DQS start phase
2128  * @start_dqs_en:	DQS enable start phase
2129  * @sticky_bit_chk:	Resulting sticky bit mask after the test
2130  * @left_edge:		Left edge of the DQ/DQS phase
2131  * @right_edge:		Right edge of the DQ/DQS phase
2132  * @use_read_test:	Perform read test
2133  *
2134  * Find right edge of DQ/DQS working phase.
2135  */
2136 static int search_right_edge(const int write, const int rank_bgn,
2137 	const u32 write_group, const u32 read_group,
2138 	const int start_dqs, const int start_dqs_en,
2139 	u32 *sticky_bit_chk,
2140 	int *left_edge, int *right_edge, const u32 use_read_test)
2141 {
2142 	const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2143 	const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX;
2144 	const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2145 				    rwcfg->mem_dq_per_read_dqs;
2146 	u32 stop, bit_chk;
2147 	int i, d;
2148 
2149 	for (d = 0; d <= dqs_max - start_dqs; d++) {
2150 		if (write) {	/* WRITE-ONLY */
2151 			scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2152 								d + start_dqs);
2153 		} else {	/* READ-ONLY */
2154 			scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
2155 			if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2156 				uint32_t delay = d + start_dqs_en;
2157 				if (delay > IO_DQS_EN_DELAY_MAX)
2158 					delay = IO_DQS_EN_DELAY_MAX;
2159 				scc_mgr_set_dqs_en_delay(read_group, delay);
2160 			}
2161 			scc_mgr_load_dqs(read_group);
2162 		}
2163 
2164 		writel(0, &sdr_scc_mgr->update);
2165 
2166 		stop = search_stop_check(write, d, rank_bgn, write_group,
2167 					 read_group, &bit_chk, sticky_bit_chk,
2168 					 use_read_test);
2169 		if (stop == 1) {
2170 			if (write && (d == 0)) {	/* WRITE-ONLY */
2171 				for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
2172 					/*
2173 					 * d = 0 failed, but it passed when
2174 					 * testing the left edge, so it must be
2175 					 * marginal, set it to -1
2176 					 */
2177 					if (right_edge[i] == delay_max + 1 &&
2178 					    left_edge[i] != delay_max + 1)
2179 						right_edge[i] = -1;
2180 				}
2181 			}
2182 			break;
2183 		}
2184 
2185 		/* stop != 1 */
2186 		for (i = 0; i < per_dqs; i++) {
2187 			if (bit_chk & 1) {
2188 				/*
2189 				 * Remember a passing test as
2190 				 * the right_edge.
2191 				 */
2192 				right_edge[i] = d;
2193 			} else {
2194 				if (d != 0) {
2195 					/*
2196 					 * If a right edge has not
2197 					 * been seen yet, then a future
2198 					 * passing test will mark this
2199 					 * edge as the left edge.
2200 					 */
2201 					if (right_edge[i] == delay_max + 1)
2202 						left_edge[i] = -(d + 1);
2203 				} else {
2204 					/*
2205 					 * d = 0 failed, but it passed
2206 					 * when testing the left edge,
2207 					 * so it must be marginal, set
2208 					 * it to -1
2209 					 */
2210 					if (right_edge[i] == delay_max + 1 &&
2211 					    left_edge[i] != delay_max + 1)
2212 						right_edge[i] = -1;
2213 					/*
2214 					 * If a right edge has not been
2215 					 * seen yet, then a future
2216 					 * passing test will mark this
2217 					 * edge as the left edge.
2218 					 */
2219 					else if (right_edge[i] == delay_max + 1)
2220 						left_edge[i] = -(d + 1);
2221 				}
2222 			}
2223 
2224 			debug_cond(DLEVEL == 2, "%s:%d center[r,d=%u]: ",
2225 				   __func__, __LINE__, d);
2226 			debug_cond(DLEVEL == 2,
2227 				   "bit_chk_test=%i left_edge[%u]: %d ",
2228 				   bit_chk & 1, i, left_edge[i]);
2229 			debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2230 				   right_edge[i]);
2231 			bit_chk >>= 1;
2232 		}
2233 	}
2234 
2235 	/* Check that all bits have a window */
2236 	for (i = 0; i < per_dqs; i++) {
2237 		debug_cond(DLEVEL == 2,
2238 			   "%s:%d write_center: left_edge[%u]: %d right_edge[%u]: %d",
2239 			   __func__, __LINE__, i, left_edge[i],
2240 			   i, right_edge[i]);
2241 		if ((left_edge[i] == dqs_max + 1) ||
2242 		    (right_edge[i] == dqs_max + 1))
2243 			return i + 1;	/* FIXME: If we fail, retval > 0 */
2244 	}
2245 
2246 	return 0;
2247 }
2248 
2249 /**
2250  * get_window_mid_index() - Find the best middle setting of DQ/DQS phase
2251  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
2252  * @left_edge:		Left edge of the DQ/DQS phase
2253  * @right_edge:		Right edge of the DQ/DQS phase
2254  * @mid_min:		Best DQ/DQS phase middle setting
2255  *
2256  * Find index and value of the middle of the DQ/DQS working phase.
2257  */
2258 static int get_window_mid_index(const int write, int *left_edge,
2259 				int *right_edge, int *mid_min)
2260 {
2261 	const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2262 				    rwcfg->mem_dq_per_read_dqs;
2263 	int i, mid, min_index;
2264 
2265 	/* Find middle of window for each DQ bit */
2266 	*mid_min = left_edge[0] - right_edge[0];
2267 	min_index = 0;
2268 	for (i = 1; i < per_dqs; i++) {
2269 		mid = left_edge[i] - right_edge[i];
2270 		if (mid < *mid_min) {
2271 			*mid_min = mid;
2272 			min_index = i;
2273 		}
2274 	}
2275 
2276 	/*
2277 	 * -mid_min/2 represents the amount that we need to move DQS.
2278 	 * If mid_min is odd and positive we'll need to add one to make
2279 	 * sure the rounding in further calculations is correct (always
2280 	 * bias to the right), so just add 1 for all positive values.
2281 	 */
2282 	if (*mid_min > 0)
2283 		(*mid_min)++;
2284 	*mid_min = *mid_min / 2;
2285 
2286 	debug_cond(DLEVEL == 1, "%s:%d vfifo_center: *mid_min=%d (index=%u)\n",
2287 		   __func__, __LINE__, *mid_min, min_index);
2288 	return min_index;
2289 }
2290 
2291 /**
2292  * center_dq_windows() - Center the DQ/DQS windows
2293  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
2294  * @left_edge:		Left edge of the DQ/DQS phase
2295  * @right_edge:		Right edge of the DQ/DQS phase
2296  * @mid_min:		Adjusted DQ/DQS phase middle setting
2297  * @orig_mid_min:	Original DQ/DQS phase middle setting
2298  * @min_index:		DQ/DQS phase middle setting index
2299  * @test_bgn:		Rank number to begin the test
2300  * @dq_margin:		Amount of shift for the DQ
2301  * @dqs_margin:		Amount of shift for the DQS
2302  *
2303  * Align the DQ/DQS windows in each group.
2304  */
2305 static void center_dq_windows(const int write, int *left_edge, int *right_edge,
2306 			      const int mid_min, const int orig_mid_min,
2307 			      const int min_index, const int test_bgn,
2308 			      int *dq_margin, int *dqs_margin)
2309 {
2310 	const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2311 	const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2312 				    rwcfg->mem_dq_per_read_dqs;
2313 	const u32 delay_off = write ? SCC_MGR_IO_OUT1_DELAY_OFFSET :
2314 				      SCC_MGR_IO_IN_DELAY_OFFSET;
2315 	const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | delay_off;
2316 
2317 	u32 temp_dq_io_delay1, temp_dq_io_delay2;
2318 	int shift_dq, i, p;
2319 
2320 	/* Initialize data for export structures */
2321 	*dqs_margin = delay_max + 1;
2322 	*dq_margin  = delay_max + 1;
2323 
2324 	/* add delay to bring centre of all DQ windows to the same "level" */
2325 	for (i = 0, p = test_bgn; i < per_dqs; i++, p++) {
2326 		/* Use values before divide by 2 to reduce round off error */
2327 		shift_dq = (left_edge[i] - right_edge[i] -
2328 			(left_edge[min_index] - right_edge[min_index]))/2  +
2329 			(orig_mid_min - mid_min);
2330 
2331 		debug_cond(DLEVEL == 2,
2332 			   "vfifo_center: before: shift_dq[%u]=%d\n",
2333 			   i, shift_dq);
2334 
2335 		temp_dq_io_delay1 = readl(addr + (p << 2));
2336 		temp_dq_io_delay2 = readl(addr + (i << 2));
2337 
2338 		if (shift_dq + temp_dq_io_delay1 > delay_max)
2339 			shift_dq = delay_max - temp_dq_io_delay2;
2340 		else if (shift_dq + temp_dq_io_delay1 < 0)
2341 			shift_dq = -temp_dq_io_delay1;
2342 
2343 		debug_cond(DLEVEL == 2,
2344 			   "vfifo_center: after: shift_dq[%u]=%d\n",
2345 			   i, shift_dq);
2346 
2347 		if (write)
2348 			scc_mgr_set_dq_out1_delay(i, temp_dq_io_delay1 + shift_dq);
2349 		else
2350 			scc_mgr_set_dq_in_delay(p, temp_dq_io_delay1 + shift_dq);
2351 
2352 		scc_mgr_load_dq(p);
2353 
2354 		debug_cond(DLEVEL == 2,
2355 			   "vfifo_center: margin[%u]=[%d,%d]\n", i,
2356 			   left_edge[i] - shift_dq + (-mid_min),
2357 			   right_edge[i] + shift_dq - (-mid_min));
2358 
2359 		/* To determine values for export structures */
2360 		if (left_edge[i] - shift_dq + (-mid_min) < *dq_margin)
2361 			*dq_margin = left_edge[i] - shift_dq + (-mid_min);
2362 
2363 		if (right_edge[i] + shift_dq - (-mid_min) < *dqs_margin)
2364 			*dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2365 	}
2366 
2367 }
2368 
2369 /**
2370  * rw_mgr_mem_calibrate_vfifo_center() - Per-bit deskew DQ and centering
2371  * @rank_bgn:		Rank number
2372  * @rw_group:		Read/Write Group
2373  * @test_bgn:		Rank at which the test begins
2374  * @use_read_test:	Perform a read test
2375  * @update_fom:		Update FOM
2376  *
2377  * Per-bit deskew DQ and centering.
2378  */
2379 static int rw_mgr_mem_calibrate_vfifo_center(const u32 rank_bgn,
2380 			const u32 rw_group, const u32 test_bgn,
2381 			const int use_read_test, const int update_fom)
2382 {
2383 	const u32 addr =
2384 		SDR_PHYGRP_SCCGRP_ADDRESS + SCC_MGR_DQS_IN_DELAY_OFFSET +
2385 		(rw_group << 2);
2386 	/*
2387 	 * Store these as signed since there are comparisons with
2388 	 * signed numbers.
2389 	 */
2390 	uint32_t sticky_bit_chk;
2391 	int32_t left_edge[rwcfg->mem_dq_per_read_dqs];
2392 	int32_t right_edge[rwcfg->mem_dq_per_read_dqs];
2393 	int32_t orig_mid_min, mid_min;
2394 	int32_t new_dqs, start_dqs, start_dqs_en, final_dqs_en;
2395 	int32_t dq_margin, dqs_margin;
2396 	int i, min_index;
2397 	int ret;
2398 
2399 	debug("%s:%d: %u %u", __func__, __LINE__, rw_group, test_bgn);
2400 
2401 	start_dqs = readl(addr);
2402 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2403 		start_dqs_en = readl(addr - IO_DQS_EN_DELAY_OFFSET);
2404 
2405 	/* set the left and right edge of each bit to an illegal value */
2406 	/* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
2407 	sticky_bit_chk = 0;
2408 	for (i = 0; i < rwcfg->mem_dq_per_read_dqs; i++) {
2409 		left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
2410 		right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
2411 	}
2412 
2413 	/* Search for the left edge of the window for each bit */
2414 	search_left_edge(0, rank_bgn, rw_group, rw_group, test_bgn,
2415 			 &sticky_bit_chk,
2416 			 left_edge, right_edge, use_read_test);
2417 
2418 
2419 	/* Search for the right edge of the window for each bit */
2420 	ret = search_right_edge(0, rank_bgn, rw_group, rw_group,
2421 				start_dqs, start_dqs_en,
2422 				&sticky_bit_chk,
2423 				left_edge, right_edge, use_read_test);
2424 	if (ret) {
2425 		/*
2426 		 * Restore delay chain settings before letting the loop
2427 		 * in rw_mgr_mem_calibrate_vfifo to retry different
2428 		 * dqs/ck relationships.
2429 		 */
2430 		scc_mgr_set_dqs_bus_in_delay(rw_group, start_dqs);
2431 		if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2432 			scc_mgr_set_dqs_en_delay(rw_group, start_dqs_en);
2433 
2434 		scc_mgr_load_dqs(rw_group);
2435 		writel(0, &sdr_scc_mgr->update);
2436 
2437 		debug_cond(DLEVEL == 1,
2438 			   "%s:%d vfifo_center: failed to find edge [%u]: %d %d",
2439 			   __func__, __LINE__, i, left_edge[i], right_edge[i]);
2440 		if (use_read_test) {
2441 			set_failing_group_stage(rw_group *
2442 				rwcfg->mem_dq_per_read_dqs + i,
2443 				CAL_STAGE_VFIFO,
2444 				CAL_SUBSTAGE_VFIFO_CENTER);
2445 		} else {
2446 			set_failing_group_stage(rw_group *
2447 				rwcfg->mem_dq_per_read_dqs + i,
2448 				CAL_STAGE_VFIFO_AFTER_WRITES,
2449 				CAL_SUBSTAGE_VFIFO_CENTER);
2450 		}
2451 		return -EIO;
2452 	}
2453 
2454 	min_index = get_window_mid_index(0, left_edge, right_edge, &mid_min);
2455 
2456 	/* Determine the amount we can change DQS (which is -mid_min) */
2457 	orig_mid_min = mid_min;
2458 	new_dqs = start_dqs - mid_min;
2459 	if (new_dqs > IO_DQS_IN_DELAY_MAX)
2460 		new_dqs = IO_DQS_IN_DELAY_MAX;
2461 	else if (new_dqs < 0)
2462 		new_dqs = 0;
2463 
2464 	mid_min = start_dqs - new_dqs;
2465 	debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2466 		   mid_min, new_dqs);
2467 
2468 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2469 		if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2470 			mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2471 		else if (start_dqs_en - mid_min < 0)
2472 			mid_min += start_dqs_en - mid_min;
2473 	}
2474 	new_dqs = start_dqs - mid_min;
2475 
2476 	debug_cond(DLEVEL == 1,
2477 		   "vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d\n",
2478 		   start_dqs,
2479 		   IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2480 		   new_dqs, mid_min);
2481 
2482 	/* Add delay to bring centre of all DQ windows to the same "level". */
2483 	center_dq_windows(0, left_edge, right_edge, mid_min, orig_mid_min,
2484 			  min_index, test_bgn, &dq_margin, &dqs_margin);
2485 
2486 	/* Move DQS-en */
2487 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2488 		final_dqs_en = start_dqs_en - mid_min;
2489 		scc_mgr_set_dqs_en_delay(rw_group, final_dqs_en);
2490 		scc_mgr_load_dqs(rw_group);
2491 	}
2492 
2493 	/* Move DQS */
2494 	scc_mgr_set_dqs_bus_in_delay(rw_group, new_dqs);
2495 	scc_mgr_load_dqs(rw_group);
2496 	debug_cond(DLEVEL == 2,
2497 		   "%s:%d vfifo_center: dq_margin=%d dqs_margin=%d",
2498 		   __func__, __LINE__, dq_margin, dqs_margin);
2499 
2500 	/*
2501 	 * Do not remove this line as it makes sure all of our decisions
2502 	 * have been applied. Apply the update bit.
2503 	 */
2504 	writel(0, &sdr_scc_mgr->update);
2505 
2506 	if ((dq_margin < 0) || (dqs_margin < 0))
2507 		return -EINVAL;
2508 
2509 	return 0;
2510 }
2511 
2512 /**
2513  * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2514  * @rw_group:	Read/Write Group
2515  * @phase:	DQ/DQS phase
2516  *
2517  * Because initially no communication ca be reliably performed with the memory
2518  * device, the sequencer uses a guaranteed write mechanism to write data into
2519  * the memory device.
2520  */
2521 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2522 						 const u32 phase)
2523 {
2524 	int ret;
2525 
2526 	/* Set a particular DQ/DQS phase. */
2527 	scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2528 
2529 	debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
2530 		   __func__, __LINE__, rw_group, phase);
2531 
2532 	/*
2533 	 * Altera EMI_RM 2015.05.04 :: Figure 1-25
2534 	 * Load up the patterns used by read calibration using the
2535 	 * current DQDQS phase.
2536 	 */
2537 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2538 
2539 	if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2540 		return 0;
2541 
2542 	/*
2543 	 * Altera EMI_RM 2015.05.04 :: Figure 1-26
2544 	 * Back-to-Back reads of the patterns used for calibration.
2545 	 */
2546 	ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2547 	if (ret)
2548 		debug_cond(DLEVEL == 1,
2549 			   "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2550 			   __func__, __LINE__, rw_group, phase);
2551 	return ret;
2552 }
2553 
2554 /**
2555  * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2556  * @rw_group:	Read/Write Group
2557  * @test_bgn:	Rank at which the test begins
2558  *
2559  * DQS enable calibration ensures reliable capture of the DQ signal without
2560  * glitches on the DQS line.
2561  */
2562 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2563 						       const u32 test_bgn)
2564 {
2565 	/*
2566 	 * Altera EMI_RM 2015.05.04 :: Figure 1-27
2567 	 * DQS and DQS Eanble Signal Relationships.
2568 	 */
2569 
2570 	/* We start at zero, so have one less dq to devide among */
2571 	const u32 delay_step = IO_IO_IN_DELAY_MAX /
2572 			       (rwcfg->mem_dq_per_read_dqs - 1);
2573 	int ret;
2574 	u32 i, p, d, r;
2575 
2576 	debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2577 
2578 	/* Try different dq_in_delays since the DQ path is shorter than DQS. */
2579 	for (r = 0; r < rwcfg->mem_number_of_ranks;
2580 	     r += NUM_RANKS_PER_SHADOW_REG) {
2581 		for (i = 0, p = test_bgn, d = 0;
2582 		     i < rwcfg->mem_dq_per_read_dqs;
2583 		     i++, p++, d += delay_step) {
2584 			debug_cond(DLEVEL == 1,
2585 				   "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2586 				   __func__, __LINE__, rw_group, r, i, p, d);
2587 
2588 			scc_mgr_set_dq_in_delay(p, d);
2589 			scc_mgr_load_dq(p);
2590 		}
2591 
2592 		writel(0, &sdr_scc_mgr->update);
2593 	}
2594 
2595 	/*
2596 	 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2597 	 * dq_in_delay values
2598 	 */
2599 	ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
2600 
2601 	debug_cond(DLEVEL == 1,
2602 		   "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
2603 		   __func__, __LINE__, rw_group, !ret);
2604 
2605 	for (r = 0; r < rwcfg->mem_number_of_ranks;
2606 	     r += NUM_RANKS_PER_SHADOW_REG) {
2607 		scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2608 		writel(0, &sdr_scc_mgr->update);
2609 	}
2610 
2611 	return ret;
2612 }
2613 
2614 /**
2615  * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2616  * @rw_group:		Read/Write Group
2617  * @test_bgn:		Rank at which the test begins
2618  * @use_read_test:	Perform a read test
2619  * @update_fom:		Update FOM
2620  *
2621  * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2622  * within a group.
2623  */
2624 static int
2625 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2626 				      const int use_read_test,
2627 				      const int update_fom)
2628 
2629 {
2630 	int ret, grp_calibrated;
2631 	u32 rank_bgn, sr;
2632 
2633 	/*
2634 	 * Altera EMI_RM 2015.05.04 :: Figure 1-28
2635 	 * Read per-bit deskew can be done on a per shadow register basis.
2636 	 */
2637 	grp_calibrated = 1;
2638 	for (rank_bgn = 0, sr = 0;
2639 	     rank_bgn < rwcfg->mem_number_of_ranks;
2640 	     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2641 		ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2642 							test_bgn,
2643 							use_read_test,
2644 							update_fom);
2645 		if (!ret)
2646 			continue;
2647 
2648 		grp_calibrated = 0;
2649 	}
2650 
2651 	if (!grp_calibrated)
2652 		return -EIO;
2653 
2654 	return 0;
2655 }
2656 
2657 /**
2658  * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2659  * @rw_group:		Read/Write Group
2660  * @test_bgn:		Rank at which the test begins
2661  *
2662  * Stage 1: Calibrate the read valid prediction FIFO.
2663  *
2664  * This function implements UniPHY calibration Stage 1, as explained in
2665  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2666  *
2667  * - read valid prediction will consist of finding:
2668  *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2669  *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
2670  *  - we also do a per-bit deskew on the DQ lines.
2671  */
2672 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2673 {
2674 	uint32_t p, d;
2675 	uint32_t dtaps_per_ptap;
2676 	uint32_t failed_substage;
2677 
2678 	int ret;
2679 
2680 	debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2681 
2682 	/* Update info for sims */
2683 	reg_file_set_group(rw_group);
2684 	reg_file_set_stage(CAL_STAGE_VFIFO);
2685 	reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2686 
2687 	failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2688 
2689 	/* USER Determine number of delay taps for each phase tap. */
2690 	dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2691 				      IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
2692 
2693 	for (d = 0; d <= dtaps_per_ptap; d += 2) {
2694 		/*
2695 		 * In RLDRAMX we may be messing the delay of pins in
2696 		 * the same write rw_group but outside of the current read
2697 		 * the rw_group, but that's ok because we haven't calibrated
2698 		 * output side yet.
2699 		 */
2700 		if (d > 0) {
2701 			scc_mgr_apply_group_all_out_delay_add_all_ranks(
2702 								rw_group, d);
2703 		}
2704 
2705 		for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
2706 			/* 1) Guaranteed Write */
2707 			ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2708 			if (ret)
2709 				break;
2710 
2711 			/* 2) DQS Enable Calibration */
2712 			ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2713 									  test_bgn);
2714 			if (ret) {
2715 				failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2716 				continue;
2717 			}
2718 
2719 			/* 3) Centering DQ/DQS */
2720 			/*
2721 			 * If doing read after write calibration, do not update
2722 			 * FOM now. Do it then.
2723 			 */
2724 			ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2725 								test_bgn, 1, 0);
2726 			if (ret) {
2727 				failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2728 				continue;
2729 			}
2730 
2731 			/* All done. */
2732 			goto cal_done_ok;
2733 		}
2734 	}
2735 
2736 	/* Calibration Stage 1 failed. */
2737 	set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2738 	return 0;
2739 
2740 	/* Calibration Stage 1 completed OK. */
2741 cal_done_ok:
2742 	/*
2743 	 * Reset the delay chains back to zero if they have moved > 1
2744 	 * (check for > 1 because loop will increase d even when pass in
2745 	 * first case).
2746 	 */
2747 	if (d > 2)
2748 		scc_mgr_zero_group(rw_group, 1);
2749 
2750 	return 1;
2751 }
2752 
2753 /**
2754  * rw_mgr_mem_calibrate_vfifo_end() - DQ/DQS Centering.
2755  * @rw_group:		Read/Write Group
2756  * @test_bgn:		Rank at which the test begins
2757  *
2758  * Stage 3: DQ/DQS Centering.
2759  *
2760  * This function implements UniPHY calibration Stage 3, as explained in
2761  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2762  */
2763 static int rw_mgr_mem_calibrate_vfifo_end(const u32 rw_group,
2764 					  const u32 test_bgn)
2765 {
2766 	int ret;
2767 
2768 	debug("%s:%d %u %u", __func__, __LINE__, rw_group, test_bgn);
2769 
2770 	/* Update info for sims. */
2771 	reg_file_set_group(rw_group);
2772 	reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2773 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2774 
2775 	ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, test_bgn, 0, 1);
2776 	if (ret)
2777 		set_failing_group_stage(rw_group,
2778 					CAL_STAGE_VFIFO_AFTER_WRITES,
2779 					CAL_SUBSTAGE_VFIFO_CENTER);
2780 	return ret;
2781 }
2782 
2783 /**
2784  * rw_mgr_mem_calibrate_lfifo() - Minimize latency
2785  *
2786  * Stage 4: Minimize latency.
2787  *
2788  * This function implements UniPHY calibration Stage 4, as explained in
2789  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2790  * Calibrate LFIFO to find smallest read latency.
2791  */
2792 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2793 {
2794 	int found_one = 0;
2795 
2796 	debug("%s:%d\n", __func__, __LINE__);
2797 
2798 	/* Update info for sims. */
2799 	reg_file_set_stage(CAL_STAGE_LFIFO);
2800 	reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2801 
2802 	/* Load up the patterns used by read calibration for all ranks */
2803 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2804 
2805 	do {
2806 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2807 		debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2808 			   __func__, __LINE__, gbl->curr_read_lat);
2809 
2810 		if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, NUM_READ_TESTS,
2811 							      PASS_ALL_BITS, 1))
2812 			break;
2813 
2814 		found_one = 1;
2815 		/*
2816 		 * Reduce read latency and see if things are
2817 		 * working correctly.
2818 		 */
2819 		gbl->curr_read_lat--;
2820 	} while (gbl->curr_read_lat > 0);
2821 
2822 	/* Reset the fifos to get pointers to known state. */
2823 	writel(0, &phy_mgr_cmd->fifo_reset);
2824 
2825 	if (found_one) {
2826 		/* Add a fudge factor to the read latency that was determined */
2827 		gbl->curr_read_lat += 2;
2828 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2829 		debug_cond(DLEVEL == 2,
2830 			   "%s:%d lfifo: success: using read_lat=%u\n",
2831 			   __func__, __LINE__, gbl->curr_read_lat);
2832 	} else {
2833 		set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2834 					CAL_SUBSTAGE_READ_LATENCY);
2835 
2836 		debug_cond(DLEVEL == 2,
2837 			   "%s:%d lfifo: failed at initial read_lat=%u\n",
2838 			   __func__, __LINE__, gbl->curr_read_lat);
2839 	}
2840 
2841 	return found_one;
2842 }
2843 
2844 /**
2845  * search_window() - Search for the/part of the window with DM/DQS shift
2846  * @search_dm:		If 1, search for the DM shift, if 0, search for DQS shift
2847  * @rank_bgn:		Rank number
2848  * @write_group:	Write Group
2849  * @bgn_curr:		Current window begin
2850  * @end_curr:		Current window end
2851  * @bgn_best:		Current best window begin
2852  * @end_best:		Current best window end
2853  * @win_best:		Size of the best window
2854  * @new_dqs:		New DQS value (only applicable if search_dm = 0).
2855  *
2856  * Search for the/part of the window with DM/DQS shift.
2857  */
2858 static void search_window(const int search_dm,
2859 			  const u32 rank_bgn, const u32 write_group,
2860 			  int *bgn_curr, int *end_curr, int *bgn_best,
2861 			  int *end_best, int *win_best, int new_dqs)
2862 {
2863 	u32 bit_chk;
2864 	const int max = IO_IO_OUT1_DELAY_MAX - new_dqs;
2865 	int d, di;
2866 
2867 	/* Search for the/part of the window with DM/DQS shift. */
2868 	for (di = max; di >= 0; di -= DELTA_D) {
2869 		if (search_dm) {
2870 			d = di;
2871 			scc_mgr_apply_group_dm_out1_delay(d);
2872 		} else {
2873 			/* For DQS, we go from 0...max */
2874 			d = max - di;
2875 			/*
2876 			 * Note: This only shifts DQS, so are we limiting ourselve to
2877 			 * width of DQ unnecessarily.
2878 			 */
2879 			scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2880 								d + new_dqs);
2881 		}
2882 
2883 		writel(0, &sdr_scc_mgr->update);
2884 
2885 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2886 						    PASS_ALL_BITS, &bit_chk,
2887 						    0)) {
2888 			/* Set current end of the window. */
2889 			*end_curr = search_dm ? -d : d;
2890 
2891 			/*
2892 			 * If a starting edge of our window has not been seen
2893 			 * this is our current start of the DM window.
2894 			 */
2895 			if (*bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
2896 				*bgn_curr = search_dm ? -d : d;
2897 
2898 			/*
2899 			 * If current window is bigger than best seen.
2900 			 * Set best seen to be current window.
2901 			 */
2902 			if ((*end_curr - *bgn_curr + 1) > *win_best) {
2903 				*win_best = *end_curr - *bgn_curr + 1;
2904 				*bgn_best = *bgn_curr;
2905 				*end_best = *end_curr;
2906 			}
2907 		} else {
2908 			/* We just saw a failing test. Reset temp edge. */
2909 			*bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2910 			*end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2911 
2912 			/* Early exit is only applicable to DQS. */
2913 			if (search_dm)
2914 				continue;
2915 
2916 			/*
2917 			 * Early exit optimization: if the remaining delay
2918 			 * chain space is less than already seen largest
2919 			 * window we can exit.
2920 			 */
2921 			if (*win_best - 1 > IO_IO_OUT1_DELAY_MAX - new_dqs - d)
2922 				break;
2923 		}
2924 	}
2925 }
2926 
2927 /*
2928  * rw_mgr_mem_calibrate_writes_center() - Center all windows
2929  * @rank_bgn:		Rank number
2930  * @write_group:	Write group
2931  * @test_bgn:		Rank at which the test begins
2932  *
2933  * Center all windows. Do per-bit-deskew to possibly increase size of
2934  * certain windows.
2935  */
2936 static int
2937 rw_mgr_mem_calibrate_writes_center(const u32 rank_bgn, const u32 write_group,
2938 				   const u32 test_bgn)
2939 {
2940 	int i;
2941 	u32 sticky_bit_chk;
2942 	u32 min_index;
2943 	int left_edge[rwcfg->mem_dq_per_write_dqs];
2944 	int right_edge[rwcfg->mem_dq_per_write_dqs];
2945 	int mid;
2946 	int mid_min, orig_mid_min;
2947 	int new_dqs, start_dqs;
2948 	int dq_margin, dqs_margin, dm_margin;
2949 	int bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2950 	int end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2951 	int bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
2952 	int end_best = IO_IO_OUT1_DELAY_MAX + 1;
2953 	int win_best = 0;
2954 
2955 	int ret;
2956 
2957 	debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2958 
2959 	dm_margin = 0;
2960 
2961 	start_dqs = readl((SDR_PHYGRP_SCCGRP_ADDRESS |
2962 			  SCC_MGR_IO_OUT1_DELAY_OFFSET) +
2963 			  (rwcfg->mem_dq_per_write_dqs << 2));
2964 
2965 	/* Per-bit deskew. */
2966 
2967 	/*
2968 	 * Set the left and right edge of each bit to an illegal value.
2969 	 * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2970 	 */
2971 	sticky_bit_chk = 0;
2972 	for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
2973 		left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2974 		right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2975 	}
2976 
2977 	/* Search for the left edge of the window for each bit. */
2978 	search_left_edge(1, rank_bgn, write_group, 0, test_bgn,
2979 			 &sticky_bit_chk,
2980 			 left_edge, right_edge, 0);
2981 
2982 	/* Search for the right edge of the window for each bit. */
2983 	ret = search_right_edge(1, rank_bgn, write_group, 0,
2984 				start_dqs, 0,
2985 				&sticky_bit_chk,
2986 				left_edge, right_edge, 0);
2987 	if (ret) {
2988 		set_failing_group_stage(test_bgn + ret - 1, CAL_STAGE_WRITES,
2989 					CAL_SUBSTAGE_WRITES_CENTER);
2990 		return -EINVAL;
2991 	}
2992 
2993 	min_index = get_window_mid_index(1, left_edge, right_edge, &mid_min);
2994 
2995 	/* Determine the amount we can change DQS (which is -mid_min). */
2996 	orig_mid_min = mid_min;
2997 	new_dqs = start_dqs;
2998 	mid_min = 0;
2999 	debug_cond(DLEVEL == 1,
3000 		   "%s:%d write_center: start_dqs=%d new_dqs=%d mid_min=%d\n",
3001 		   __func__, __LINE__, start_dqs, new_dqs, mid_min);
3002 
3003 	/* Add delay to bring centre of all DQ windows to the same "level". */
3004 	center_dq_windows(1, left_edge, right_edge, mid_min, orig_mid_min,
3005 			  min_index, 0, &dq_margin, &dqs_margin);
3006 
3007 	/* Move DQS */
3008 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3009 	writel(0, &sdr_scc_mgr->update);
3010 
3011 	/* Centre DM */
3012 	debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3013 
3014 	/*
3015 	 * Set the left and right edge of each bit to an illegal value.
3016 	 * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
3017 	 */
3018 	left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
3019 	right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
3020 
3021 	/* Search for the/part of the window with DM shift. */
3022 	search_window(1, rank_bgn, write_group, &bgn_curr, &end_curr,
3023 		      &bgn_best, &end_best, &win_best, 0);
3024 
3025 	/* Reset DM delay chains to 0. */
3026 	scc_mgr_apply_group_dm_out1_delay(0);
3027 
3028 	/*
3029 	 * Check to see if the current window nudges up aganist 0 delay.
3030 	 * If so we need to continue the search by shifting DQS otherwise DQS
3031 	 * search begins as a new search.
3032 	 */
3033 	if (end_curr != 0) {
3034 		bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3035 		end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3036 	}
3037 
3038 	/* Search for the/part of the window with DQS shifts. */
3039 	search_window(0, rank_bgn, write_group, &bgn_curr, &end_curr,
3040 		      &bgn_best, &end_best, &win_best, new_dqs);
3041 
3042 	/* Assign left and right edge for cal and reporting. */
3043 	left_edge[0] = -1 * bgn_best;
3044 	right_edge[0] = end_best;
3045 
3046 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n",
3047 		   __func__, __LINE__, left_edge[0], right_edge[0]);
3048 
3049 	/* Move DQS (back to orig). */
3050 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3051 
3052 	/* Move DM */
3053 
3054 	/* Find middle of window for the DM bit. */
3055 	mid = (left_edge[0] - right_edge[0]) / 2;
3056 
3057 	/* Only move right, since we are not moving DQS/DQ. */
3058 	if (mid < 0)
3059 		mid = 0;
3060 
3061 	/* dm_marign should fail if we never find a window. */
3062 	if (win_best == 0)
3063 		dm_margin = -1;
3064 	else
3065 		dm_margin = left_edge[0] - mid;
3066 
3067 	scc_mgr_apply_group_dm_out1_delay(mid);
3068 	writel(0, &sdr_scc_mgr->update);
3069 
3070 	debug_cond(DLEVEL == 2,
3071 		   "%s:%d dm_calib: left=%d right=%d mid=%d dm_margin=%d\n",
3072 		   __func__, __LINE__, left_edge[0], right_edge[0],
3073 		   mid, dm_margin);
3074 	/* Export values. */
3075 	gbl->fom_out += dq_margin + dqs_margin;
3076 
3077 	debug_cond(DLEVEL == 2,
3078 		   "%s:%d write_center: dq_margin=%d dqs_margin=%d dm_margin=%d\n",
3079 		   __func__, __LINE__, dq_margin, dqs_margin, dm_margin);
3080 
3081 	/*
3082 	 * Do not remove this line as it makes sure all of our
3083 	 * decisions have been applied.
3084 	 */
3085 	writel(0, &sdr_scc_mgr->update);
3086 
3087 	if ((dq_margin < 0) || (dqs_margin < 0) || (dm_margin < 0))
3088 		return -EINVAL;
3089 
3090 	return 0;
3091 }
3092 
3093 /**
3094  * rw_mgr_mem_calibrate_writes() - Write Calibration Part One
3095  * @rank_bgn:		Rank number
3096  * @group:		Read/Write Group
3097  * @test_bgn:		Rank at which the test begins
3098  *
3099  * Stage 2: Write Calibration Part One.
3100  *
3101  * This function implements UniPHY calibration Stage 2, as explained in
3102  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
3103  */
3104 static int rw_mgr_mem_calibrate_writes(const u32 rank_bgn, const u32 group,
3105 				       const u32 test_bgn)
3106 {
3107 	int ret;
3108 
3109 	/* Update info for sims */
3110 	debug("%s:%d %u %u\n", __func__, __LINE__, group, test_bgn);
3111 
3112 	reg_file_set_group(group);
3113 	reg_file_set_stage(CAL_STAGE_WRITES);
3114 	reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3115 
3116 	ret = rw_mgr_mem_calibrate_writes_center(rank_bgn, group, test_bgn);
3117 	if (ret)
3118 		set_failing_group_stage(group, CAL_STAGE_WRITES,
3119 					CAL_SUBSTAGE_WRITES_CENTER);
3120 
3121 	return ret;
3122 }
3123 
3124 /**
3125  * mem_precharge_and_activate() - Precharge all banks and activate
3126  *
3127  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3128  */
3129 static void mem_precharge_and_activate(void)
3130 {
3131 	int r;
3132 
3133 	for (r = 0; r < rwcfg->mem_number_of_ranks; r++) {
3134 		/* Set rank. */
3135 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3136 
3137 		/* Precharge all banks. */
3138 		writel(rwcfg->precharge_all, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3139 					     RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3140 
3141 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3142 		writel(rwcfg->activate_0_and_1_wait1,
3143 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
3144 
3145 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3146 		writel(rwcfg->activate_0_and_1_wait2,
3147 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
3148 
3149 		/* Activate rows. */
3150 		writel(rwcfg->activate_0_and_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3151 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3152 	}
3153 }
3154 
3155 /**
3156  * mem_init_latency() - Configure memory RLAT and WLAT settings
3157  *
3158  * Configure memory RLAT and WLAT parameters.
3159  */
3160 static void mem_init_latency(void)
3161 {
3162 	/*
3163 	 * For AV/CV, LFIFO is hardened and always runs at full rate
3164 	 * so max latency in AFI clocks, used here, is correspondingly
3165 	 * smaller.
3166 	 */
3167 	const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3168 	u32 rlat, wlat;
3169 
3170 	debug("%s:%d\n", __func__, __LINE__);
3171 
3172 	/*
3173 	 * Read in write latency.
3174 	 * WL for Hard PHY does not include additive latency.
3175 	 */
3176 	wlat = readl(&data_mgr->t_wl_add);
3177 	wlat += readl(&data_mgr->mem_t_add);
3178 
3179 	gbl->rw_wl_nop_cycles = wlat - 1;
3180 
3181 	/* Read in readl latency. */
3182 	rlat = readl(&data_mgr->t_rl_add);
3183 
3184 	/* Set a pretty high read latency initially. */
3185 	gbl->curr_read_lat = rlat + 16;
3186 	if (gbl->curr_read_lat > max_latency)
3187 		gbl->curr_read_lat = max_latency;
3188 
3189 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3190 
3191 	/* Advertise write latency. */
3192 	writel(wlat, &phy_mgr_cfg->afi_wlat);
3193 }
3194 
3195 /**
3196  * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3197  *
3198  * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3199  */
3200 static void mem_skip_calibrate(void)
3201 {
3202 	uint32_t vfifo_offset;
3203 	uint32_t i, j, r;
3204 
3205 	debug("%s:%d\n", __func__, __LINE__);
3206 	/* Need to update every shadow register set used by the interface */
3207 	for (r = 0; r < rwcfg->mem_number_of_ranks;
3208 	     r += NUM_RANKS_PER_SHADOW_REG) {
3209 		/*
3210 		 * Set output phase alignment settings appropriate for
3211 		 * skip calibration.
3212 		 */
3213 		for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
3214 			scc_mgr_set_dqs_en_phase(i, 0);
3215 #if IO_DLL_CHAIN_LENGTH == 6
3216 			scc_mgr_set_dqdqs_output_phase(i, 6);
3217 #else
3218 			scc_mgr_set_dqdqs_output_phase(i, 7);
3219 #endif
3220 			/*
3221 			 * Case:33398
3222 			 *
3223 			 * Write data arrives to the I/O two cycles before write
3224 			 * latency is reached (720 deg).
3225 			 *   -> due to bit-slip in a/c bus
3226 			 *   -> to allow board skew where dqs is longer than ck
3227 			 *      -> how often can this happen!?
3228 			 *      -> can claim back some ptaps for high freq
3229 			 *       support if we can relax this, but i digress...
3230 			 *
3231 			 * The write_clk leads mem_ck by 90 deg
3232 			 * The minimum ptap of the OPA is 180 deg
3233 			 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3234 			 * The write_clk is always delayed by 2 ptaps
3235 			 *
3236 			 * Hence, to make DQS aligned to CK, we need to delay
3237 			 * DQS by:
3238 			 *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3239 			 *
3240 			 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3241 			 * gives us the number of ptaps, which simplies to:
3242 			 *
3243 			 *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3244 			 */
3245 			scc_mgr_set_dqdqs_output_phase(i,
3246 					1.25 * IO_DLL_CHAIN_LENGTH - 2);
3247 		}
3248 		writel(0xff, &sdr_scc_mgr->dqs_ena);
3249 		writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3250 
3251 		for (i = 0; i < rwcfg->mem_if_write_dqs_width; i++) {
3252 			writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3253 				  SCC_MGR_GROUP_COUNTER_OFFSET);
3254 		}
3255 		writel(0xff, &sdr_scc_mgr->dq_ena);
3256 		writel(0xff, &sdr_scc_mgr->dm_ena);
3257 		writel(0, &sdr_scc_mgr->update);
3258 	}
3259 
3260 	/* Compensate for simulation model behaviour */
3261 	for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
3262 		scc_mgr_set_dqs_bus_in_delay(i, 10);
3263 		scc_mgr_load_dqs(i);
3264 	}
3265 	writel(0, &sdr_scc_mgr->update);
3266 
3267 	/*
3268 	 * ArriaV has hard FIFOs that can only be initialized by incrementing
3269 	 * in sequencer.
3270 	 */
3271 	vfifo_offset = CALIB_VFIFO_OFFSET;
3272 	for (j = 0; j < vfifo_offset; j++)
3273 		writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3274 	writel(0, &phy_mgr_cmd->fifo_reset);
3275 
3276 	/*
3277 	 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3278 	 * setting from generation-time constant.
3279 	 */
3280 	gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3281 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3282 }
3283 
3284 /**
3285  * mem_calibrate() - Memory calibration entry point.
3286  *
3287  * Perform memory calibration.
3288  */
3289 static uint32_t mem_calibrate(void)
3290 {
3291 	uint32_t i;
3292 	uint32_t rank_bgn, sr;
3293 	uint32_t write_group, write_test_bgn;
3294 	uint32_t read_group, read_test_bgn;
3295 	uint32_t run_groups, current_run;
3296 	uint32_t failing_groups = 0;
3297 	uint32_t group_failed = 0;
3298 
3299 	const u32 rwdqs_ratio = rwcfg->mem_if_read_dqs_width /
3300 				rwcfg->mem_if_write_dqs_width;
3301 
3302 	debug("%s:%d\n", __func__, __LINE__);
3303 
3304 	/* Initialize the data settings */
3305 	gbl->error_substage = CAL_SUBSTAGE_NIL;
3306 	gbl->error_stage = CAL_STAGE_NIL;
3307 	gbl->error_group = 0xff;
3308 	gbl->fom_in = 0;
3309 	gbl->fom_out = 0;
3310 
3311 	/* Initialize WLAT and RLAT. */
3312 	mem_init_latency();
3313 
3314 	/* Initialize bit slips. */
3315 	mem_precharge_and_activate();
3316 
3317 	for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
3318 		writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3319 			  SCC_MGR_GROUP_COUNTER_OFFSET);
3320 		/* Only needed once to set all groups, pins, DQ, DQS, DM. */
3321 		if (i == 0)
3322 			scc_mgr_set_hhp_extras();
3323 
3324 		scc_set_bypass_mode(i);
3325 	}
3326 
3327 	/* Calibration is skipped. */
3328 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3329 		/*
3330 		 * Set VFIFO and LFIFO to instant-on settings in skip
3331 		 * calibration mode.
3332 		 */
3333 		mem_skip_calibrate();
3334 
3335 		/*
3336 		 * Do not remove this line as it makes sure all of our
3337 		 * decisions have been applied.
3338 		 */
3339 		writel(0, &sdr_scc_mgr->update);
3340 		return 1;
3341 	}
3342 
3343 	/* Calibration is not skipped. */
3344 	for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3345 		/*
3346 		 * Zero all delay chain/phase settings for all
3347 		 * groups and all shadow register sets.
3348 		 */
3349 		scc_mgr_zero_all();
3350 
3351 		run_groups = ~0;
3352 
3353 		for (write_group = 0, write_test_bgn = 0; write_group
3354 			< rwcfg->mem_if_write_dqs_width; write_group++,
3355 			write_test_bgn += rwcfg->mem_dq_per_write_dqs) {
3356 
3357 			/* Initialize the group failure */
3358 			group_failed = 0;
3359 
3360 			current_run = run_groups & ((1 <<
3361 				RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3362 			run_groups = run_groups >>
3363 				RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3364 
3365 			if (current_run == 0)
3366 				continue;
3367 
3368 			writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3369 					    SCC_MGR_GROUP_COUNTER_OFFSET);
3370 			scc_mgr_zero_group(write_group, 0);
3371 
3372 			for (read_group = write_group * rwdqs_ratio,
3373 			     read_test_bgn = 0;
3374 			     read_group < (write_group + 1) * rwdqs_ratio;
3375 			     read_group++,
3376 			     read_test_bgn += rwcfg->mem_dq_per_read_dqs) {
3377 				if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3378 					continue;
3379 
3380 				/* Calibrate the VFIFO */
3381 				if (rw_mgr_mem_calibrate_vfifo(read_group,
3382 							       read_test_bgn))
3383 					continue;
3384 
3385 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3386 					return 0;
3387 
3388 				/* The group failed, we're done. */
3389 				goto grp_failed;
3390 			}
3391 
3392 			/* Calibrate the output side */
3393 			for (rank_bgn = 0, sr = 0;
3394 			     rank_bgn < rwcfg->mem_number_of_ranks;
3395 			     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3396 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3397 					continue;
3398 
3399 				/* Not needed in quick mode! */
3400 				if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
3401 					continue;
3402 
3403 				/* Calibrate WRITEs */
3404 				if (!rw_mgr_mem_calibrate_writes(rank_bgn,
3405 						write_group, write_test_bgn))
3406 					continue;
3407 
3408 				group_failed = 1;
3409 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3410 					return 0;
3411 			}
3412 
3413 			/* Some group failed, we're done. */
3414 			if (group_failed)
3415 				goto grp_failed;
3416 
3417 			for (read_group = write_group * rwdqs_ratio,
3418 			     read_test_bgn = 0;
3419 			     read_group < (write_group + 1) * rwdqs_ratio;
3420 			     read_group++,
3421 			     read_test_bgn += rwcfg->mem_dq_per_read_dqs) {
3422 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3423 					continue;
3424 
3425 				if (!rw_mgr_mem_calibrate_vfifo_end(read_group,
3426 								read_test_bgn))
3427 					continue;
3428 
3429 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3430 					return 0;
3431 
3432 				/* The group failed, we're done. */
3433 				goto grp_failed;
3434 			}
3435 
3436 			/* No group failed, continue as usual. */
3437 			continue;
3438 
3439 grp_failed:		/* A group failed, increment the counter. */
3440 			failing_groups++;
3441 		}
3442 
3443 		/*
3444 		 * USER If there are any failing groups then report
3445 		 * the failure.
3446 		 */
3447 		if (failing_groups != 0)
3448 			return 0;
3449 
3450 		if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3451 			continue;
3452 
3453 		/* Calibrate the LFIFO */
3454 		if (!rw_mgr_mem_calibrate_lfifo())
3455 			return 0;
3456 	}
3457 
3458 	/*
3459 	 * Do not remove this line as it makes sure all of our decisions
3460 	 * have been applied.
3461 	 */
3462 	writel(0, &sdr_scc_mgr->update);
3463 	return 1;
3464 }
3465 
3466 /**
3467  * run_mem_calibrate() - Perform memory calibration
3468  *
3469  * This function triggers the entire memory calibration procedure.
3470  */
3471 static int run_mem_calibrate(void)
3472 {
3473 	int pass;
3474 
3475 	debug("%s:%d\n", __func__, __LINE__);
3476 
3477 	/* Reset pass/fail status shown on afi_cal_success/fail */
3478 	writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3479 
3480 	/* Stop tracking manager. */
3481 	clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3482 
3483 	phy_mgr_initialize();
3484 	rw_mgr_mem_initialize();
3485 
3486 	/* Perform the actual memory calibration. */
3487 	pass = mem_calibrate();
3488 
3489 	mem_precharge_and_activate();
3490 	writel(0, &phy_mgr_cmd->fifo_reset);
3491 
3492 	/* Handoff. */
3493 	rw_mgr_mem_handoff();
3494 	/*
3495 	 * In Hard PHY this is a 2-bit control:
3496 	 * 0: AFI Mux Select
3497 	 * 1: DDIO Mux Select
3498 	 */
3499 	writel(0x2, &phy_mgr_cfg->mux_sel);
3500 
3501 	/* Start tracking manager. */
3502 	setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3503 
3504 	return pass;
3505 }
3506 
3507 /**
3508  * debug_mem_calibrate() - Report result of memory calibration
3509  * @pass:	Value indicating whether calibration passed or failed
3510  *
3511  * This function reports the results of the memory calibration
3512  * and writes debug information into the register file.
3513  */
3514 static void debug_mem_calibrate(int pass)
3515 {
3516 	uint32_t debug_info;
3517 
3518 	if (pass) {
3519 		printf("%s: CALIBRATION PASSED\n", __FILE__);
3520 
3521 		gbl->fom_in /= 2;
3522 		gbl->fom_out /= 2;
3523 
3524 		if (gbl->fom_in > 0xff)
3525 			gbl->fom_in = 0xff;
3526 
3527 		if (gbl->fom_out > 0xff)
3528 			gbl->fom_out = 0xff;
3529 
3530 		/* Update the FOM in the register file */
3531 		debug_info = gbl->fom_in;
3532 		debug_info |= gbl->fom_out << 8;
3533 		writel(debug_info, &sdr_reg_file->fom);
3534 
3535 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3536 		writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3537 	} else {
3538 		printf("%s: CALIBRATION FAILED\n", __FILE__);
3539 
3540 		debug_info = gbl->error_stage;
3541 		debug_info |= gbl->error_substage << 8;
3542 		debug_info |= gbl->error_group << 16;
3543 
3544 		writel(debug_info, &sdr_reg_file->failing_stage);
3545 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3546 		writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3547 
3548 		/* Update the failing group/stage in the register file */
3549 		debug_info = gbl->error_stage;
3550 		debug_info |= gbl->error_substage << 8;
3551 		debug_info |= gbl->error_group << 16;
3552 		writel(debug_info, &sdr_reg_file->failing_stage);
3553 	}
3554 
3555 	printf("%s: Calibration complete\n", __FILE__);
3556 }
3557 
3558 /**
3559  * hc_initialize_rom_data() - Initialize ROM data
3560  *
3561  * Initialize ROM data.
3562  */
3563 static void hc_initialize_rom_data(void)
3564 {
3565 	unsigned int nelem = 0;
3566 	const u32 *rom_init;
3567 	u32 i, addr;
3568 
3569 	socfpga_get_seq_inst_init(&rom_init, &nelem);
3570 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3571 	for (i = 0; i < nelem; i++)
3572 		writel(rom_init[i], addr + (i << 2));
3573 
3574 	socfpga_get_seq_ac_init(&rom_init, &nelem);
3575 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3576 	for (i = 0; i < nelem; i++)
3577 		writel(rom_init[i], addr + (i << 2));
3578 }
3579 
3580 /**
3581  * initialize_reg_file() - Initialize SDR register file
3582  *
3583  * Initialize SDR register file.
3584  */
3585 static void initialize_reg_file(void)
3586 {
3587 	/* Initialize the register file with the correct data */
3588 	writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3589 	writel(0, &sdr_reg_file->debug_data_addr);
3590 	writel(0, &sdr_reg_file->cur_stage);
3591 	writel(0, &sdr_reg_file->fom);
3592 	writel(0, &sdr_reg_file->failing_stage);
3593 	writel(0, &sdr_reg_file->debug1);
3594 	writel(0, &sdr_reg_file->debug2);
3595 }
3596 
3597 /**
3598  * initialize_hps_phy() - Initialize HPS PHY
3599  *
3600  * Initialize HPS PHY.
3601  */
3602 static void initialize_hps_phy(void)
3603 {
3604 	uint32_t reg;
3605 	/*
3606 	 * Tracking also gets configured here because it's in the
3607 	 * same register.
3608 	 */
3609 	uint32_t trk_sample_count = 7500;
3610 	uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3611 	/*
3612 	 * Format is number of outer loops in the 16 MSB, sample
3613 	 * count in 16 LSB.
3614 	 */
3615 
3616 	reg = 0;
3617 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3618 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3619 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3620 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3621 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3622 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3623 	/*
3624 	 * This field selects the intrinsic latency to RDATA_EN/FULL path.
3625 	 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3626 	 */
3627 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3628 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3629 		trk_sample_count);
3630 	writel(reg, &sdr_ctrl->phy_ctrl0);
3631 
3632 	reg = 0;
3633 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3634 		trk_sample_count >>
3635 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3636 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3637 		trk_long_idle_sample_count);
3638 	writel(reg, &sdr_ctrl->phy_ctrl1);
3639 
3640 	reg = 0;
3641 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3642 		trk_long_idle_sample_count >>
3643 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3644 	writel(reg, &sdr_ctrl->phy_ctrl2);
3645 }
3646 
3647 /**
3648  * initialize_tracking() - Initialize tracking
3649  *
3650  * Initialize the register file with usable initial data.
3651  */
3652 static void initialize_tracking(void)
3653 {
3654 	/*
3655 	 * Initialize the register file with the correct data.
3656 	 * Compute usable version of value in case we skip full
3657 	 * computation later.
3658 	 */
3659 	writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3660 	       &sdr_reg_file->dtaps_per_ptap);
3661 
3662 	/* trk_sample_count */
3663 	writel(7500, &sdr_reg_file->trk_sample_count);
3664 
3665 	/* longidle outer loop [15:0] */
3666 	writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3667 
3668 	/*
3669 	 * longidle sample count [31:24]
3670 	 * trfc, worst case of 933Mhz 4Gb [23:16]
3671 	 * trcd, worst case [15:8]
3672 	 * vfifo wait [7:0]
3673 	 */
3674 	writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3675 	       &sdr_reg_file->delays);
3676 
3677 	/* mux delay */
3678 	writel((rwcfg->idle << 24) | (rwcfg->activate_1 << 16) |
3679 	       (rwcfg->sgle_read << 8) | (rwcfg->precharge_all << 0),
3680 	       &sdr_reg_file->trk_rw_mgr_addr);
3681 
3682 	writel(rwcfg->mem_if_read_dqs_width,
3683 	       &sdr_reg_file->trk_read_dqs_width);
3684 
3685 	/* trefi [7:0] */
3686 	writel((rwcfg->refresh_all << 24) | (1000 << 0),
3687 	       &sdr_reg_file->trk_rfsh);
3688 }
3689 
3690 int sdram_calibration_full(void)
3691 {
3692 	struct param_type my_param;
3693 	struct gbl_type my_gbl;
3694 	uint32_t pass;
3695 
3696 	memset(&my_param, 0, sizeof(my_param));
3697 	memset(&my_gbl, 0, sizeof(my_gbl));
3698 
3699 	param = &my_param;
3700 	gbl = &my_gbl;
3701 
3702 	rwcfg = socfpga_get_sdram_rwmgr_config();
3703 	iocfg = socfpga_get_sdram_io_config();
3704 
3705 	/* Set the calibration enabled by default */
3706 	gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3707 	/*
3708 	 * Only sweep all groups (regardless of fail state) by default
3709 	 * Set enabled read test by default.
3710 	 */
3711 #if DISABLE_GUARANTEED_READ
3712 	gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3713 #endif
3714 	/* Initialize the register file */
3715 	initialize_reg_file();
3716 
3717 	/* Initialize any PHY CSR */
3718 	initialize_hps_phy();
3719 
3720 	scc_mgr_initialize();
3721 
3722 	initialize_tracking();
3723 
3724 	printf("%s: Preparing to start memory calibration\n", __FILE__);
3725 
3726 	debug("%s:%d\n", __func__, __LINE__);
3727 	debug_cond(DLEVEL == 1,
3728 		   "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3729 		   rwcfg->mem_number_of_ranks, rwcfg->mem_number_of_cs_per_dimm,
3730 		   rwcfg->mem_dq_per_read_dqs, rwcfg->mem_dq_per_write_dqs,
3731 		   rwcfg->mem_virtual_groups_per_read_dqs,
3732 		   rwcfg->mem_virtual_groups_per_write_dqs);
3733 	debug_cond(DLEVEL == 1,
3734 		   "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3735 		   rwcfg->mem_if_read_dqs_width, rwcfg->mem_if_write_dqs_width,
3736 		   rwcfg->mem_data_width, rwcfg->mem_data_mask_width,
3737 		   IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3738 	debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3739 		   IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3740 	debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3741 		   IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3742 		   IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3743 	debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3744 		   IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3745 		   IO_IO_OUT2_DELAY_MAX);
3746 	debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3747 		   IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3748 
3749 	hc_initialize_rom_data();
3750 
3751 	/* update info for sims */
3752 	reg_file_set_stage(CAL_STAGE_NIL);
3753 	reg_file_set_group(0);
3754 
3755 	/*
3756 	 * Load global needed for those actions that require
3757 	 * some dynamic calibration support.
3758 	 */
3759 	dyn_calib_steps = STATIC_CALIB_STEPS;
3760 	/*
3761 	 * Load global to allow dynamic selection of delay loop settings
3762 	 * based on calibration mode.
3763 	 */
3764 	if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3765 		skip_delay_mask = 0xff;
3766 	else
3767 		skip_delay_mask = 0x0;
3768 
3769 	pass = run_mem_calibrate();
3770 	debug_mem_calibrate(pass);
3771 	return pass;
3772 }
3773