1 /* 2 * Copyright Altera Corporation (C) 2012-2015 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <common.h> 8 #include <asm/io.h> 9 #include <asm/arch/sdram.h> 10 #include <errno.h> 11 #include "sequencer.h" 12 #include "sequencer_auto.h" 13 #include "sequencer_auto_ac_init.h" 14 #include "sequencer_auto_inst_init.h" 15 #include "sequencer_defines.h" 16 17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs = 18 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800); 19 20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs = 21 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00); 22 23 static struct socfpga_sdr_reg_file *sdr_reg_file = 24 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS; 25 26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr = 27 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00); 28 29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd = 30 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS; 31 32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg = 33 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40); 34 35 static struct socfpga_data_mgr *data_mgr = 36 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS; 37 38 static struct socfpga_sdr_ctrl *sdr_ctrl = 39 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS; 40 41 #define DELTA_D 1 42 43 /* 44 * In order to reduce ROM size, most of the selectable calibration steps are 45 * decided at compile time based on the user's calibration mode selection, 46 * as captured by the STATIC_CALIB_STEPS selection below. 47 * 48 * However, to support simulation-time selection of fast simulation mode, where 49 * we skip everything except the bare minimum, we need a few of the steps to 50 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the 51 * check, which is based on the rtl-supplied value, or we dynamically compute 52 * the value to use based on the dynamically-chosen calibration mode 53 */ 54 55 #define DLEVEL 0 56 #define STATIC_IN_RTL_SIM 0 57 #define STATIC_SKIP_DELAY_LOOPS 0 58 59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \ 60 STATIC_SKIP_DELAY_LOOPS) 61 62 /* calibration steps requested by the rtl */ 63 uint16_t dyn_calib_steps; 64 65 /* 66 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option 67 * instead of static, we use boolean logic to select between 68 * non-skip and skip values 69 * 70 * The mask is set to include all bits when not-skipping, but is 71 * zero when skipping 72 */ 73 74 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */ 75 76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \ 77 ((non_skip_value) & skip_delay_mask) 78 79 struct gbl_type *gbl; 80 struct param_type *param; 81 uint32_t curr_shadow_reg; 82 83 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 84 uint32_t write_group, uint32_t use_dm, 85 uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks); 86 87 static void set_failing_group_stage(uint32_t group, uint32_t stage, 88 uint32_t substage) 89 { 90 /* 91 * Only set the global stage if there was not been any other 92 * failing group 93 */ 94 if (gbl->error_stage == CAL_STAGE_NIL) { 95 gbl->error_substage = substage; 96 gbl->error_stage = stage; 97 gbl->error_group = group; 98 } 99 } 100 101 static void reg_file_set_group(u16 set_group) 102 { 103 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16); 104 } 105 106 static void reg_file_set_stage(u8 set_stage) 107 { 108 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff); 109 } 110 111 static void reg_file_set_sub_stage(u8 set_sub_stage) 112 { 113 set_sub_stage &= 0xff; 114 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8); 115 } 116 117 /** 118 * phy_mgr_initialize() - Initialize PHY Manager 119 * 120 * Initialize PHY Manager. 121 */ 122 static void phy_mgr_initialize(void) 123 { 124 u32 ratio; 125 126 debug("%s:%d\n", __func__, __LINE__); 127 /* Calibration has control over path to memory */ 128 /* 129 * In Hard PHY this is a 2-bit control: 130 * 0: AFI Mux Select 131 * 1: DDIO Mux Select 132 */ 133 writel(0x3, &phy_mgr_cfg->mux_sel); 134 135 /* USER memory clock is not stable we begin initialization */ 136 writel(0, &phy_mgr_cfg->reset_mem_stbl); 137 138 /* USER calibration status all set to zero */ 139 writel(0, &phy_mgr_cfg->cal_status); 140 141 writel(0, &phy_mgr_cfg->cal_debug_info); 142 143 /* Init params only if we do NOT skip calibration. */ 144 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) 145 return; 146 147 ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 148 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 149 param->read_correct_mask_vg = (1 << ratio) - 1; 150 param->write_correct_mask_vg = (1 << ratio) - 1; 151 param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1; 152 param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1; 153 ratio = RW_MGR_MEM_DATA_WIDTH / 154 RW_MGR_MEM_DATA_MASK_WIDTH; 155 param->dm_correct_mask = (1 << ratio) - 1; 156 } 157 158 /** 159 * set_rank_and_odt_mask() - Set Rank and ODT mask 160 * @rank: Rank mask 161 * @odt_mode: ODT mode, OFF or READ_WRITE 162 * 163 * Set Rank and ODT mask (On-Die Termination). 164 */ 165 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode) 166 { 167 u32 odt_mask_0 = 0; 168 u32 odt_mask_1 = 0; 169 u32 cs_and_odt_mask; 170 171 if (odt_mode == RW_MGR_ODT_MODE_OFF) { 172 odt_mask_0 = 0x0; 173 odt_mask_1 = 0x0; 174 } else { /* RW_MGR_ODT_MODE_READ_WRITE */ 175 switch (RW_MGR_MEM_NUMBER_OF_RANKS) { 176 case 1: /* 1 Rank */ 177 /* Read: ODT = 0 ; Write: ODT = 1 */ 178 odt_mask_0 = 0x0; 179 odt_mask_1 = 0x1; 180 break; 181 case 2: /* 2 Ranks */ 182 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) { 183 /* 184 * - Dual-Slot , Single-Rank (1 CS per DIMM) 185 * OR 186 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM) 187 * 188 * Since MEM_NUMBER_OF_RANKS is 2, they 189 * are both single rank with 2 CS each 190 * (special for RDIMM). 191 * 192 * Read: Turn on ODT on the opposite rank 193 * Write: Turn on ODT on all ranks 194 */ 195 odt_mask_0 = 0x3 & ~(1 << rank); 196 odt_mask_1 = 0x3; 197 } else { 198 /* 199 * - Single-Slot , Dual-Rank (2 CS per DIMM) 200 * 201 * Read: Turn on ODT off on all ranks 202 * Write: Turn on ODT on active rank 203 */ 204 odt_mask_0 = 0x0; 205 odt_mask_1 = 0x3 & (1 << rank); 206 } 207 break; 208 case 4: /* 4 Ranks */ 209 /* Read: 210 * ----------+-----------------------+ 211 * | ODT | 212 * Read From +-----------------------+ 213 * Rank | 3 | 2 | 1 | 0 | 214 * ----------+-----+-----+-----+-----+ 215 * 0 | 0 | 1 | 0 | 0 | 216 * 1 | 1 | 0 | 0 | 0 | 217 * 2 | 0 | 0 | 0 | 1 | 218 * 3 | 0 | 0 | 1 | 0 | 219 * ----------+-----+-----+-----+-----+ 220 * 221 * Write: 222 * ----------+-----------------------+ 223 * | ODT | 224 * Write To +-----------------------+ 225 * Rank | 3 | 2 | 1 | 0 | 226 * ----------+-----+-----+-----+-----+ 227 * 0 | 0 | 1 | 0 | 1 | 228 * 1 | 1 | 0 | 1 | 0 | 229 * 2 | 0 | 1 | 0 | 1 | 230 * 3 | 1 | 0 | 1 | 0 | 231 * ----------+-----+-----+-----+-----+ 232 */ 233 switch (rank) { 234 case 0: 235 odt_mask_0 = 0x4; 236 odt_mask_1 = 0x5; 237 break; 238 case 1: 239 odt_mask_0 = 0x8; 240 odt_mask_1 = 0xA; 241 break; 242 case 2: 243 odt_mask_0 = 0x1; 244 odt_mask_1 = 0x5; 245 break; 246 case 3: 247 odt_mask_0 = 0x2; 248 odt_mask_1 = 0xA; 249 break; 250 } 251 break; 252 } 253 } 254 255 cs_and_odt_mask = (0xFF & ~(1 << rank)) | 256 ((0xFF & odt_mask_0) << 8) | 257 ((0xFF & odt_mask_1) << 16); 258 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS | 259 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 260 } 261 262 /** 263 * scc_mgr_set() - Set SCC Manager register 264 * @off: Base offset in SCC Manager space 265 * @grp: Read/Write group 266 * @val: Value to be set 267 * 268 * This function sets the SCC Manager (Scan Chain Control Manager) register. 269 */ 270 static void scc_mgr_set(u32 off, u32 grp, u32 val) 271 { 272 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2)); 273 } 274 275 /** 276 * scc_mgr_initialize() - Initialize SCC Manager registers 277 * 278 * Initialize SCC Manager registers. 279 */ 280 static void scc_mgr_initialize(void) 281 { 282 /* 283 * Clear register file for HPS. 16 (2^4) is the size of the 284 * full register file in the scc mgr: 285 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + 286 * MEM_IF_READ_DQS_WIDTH - 1); 287 */ 288 int i; 289 290 for (i = 0; i < 16; i++) { 291 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n", 292 __func__, __LINE__, i); 293 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i); 294 } 295 } 296 297 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase) 298 { 299 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase); 300 } 301 302 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay) 303 { 304 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay); 305 } 306 307 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase) 308 { 309 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase); 310 } 311 312 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay) 313 { 314 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay); 315 } 316 317 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay) 318 { 319 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 320 delay); 321 } 322 323 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay) 324 { 325 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay); 326 } 327 328 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay) 329 { 330 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay); 331 } 332 333 static void scc_mgr_set_dqs_out1_delay(uint32_t delay) 334 { 335 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 336 delay); 337 } 338 339 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay) 340 { 341 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, 342 RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm, 343 delay); 344 } 345 346 /* load up dqs config settings */ 347 static void scc_mgr_load_dqs(uint32_t dqs) 348 { 349 writel(dqs, &sdr_scc_mgr->dqs_ena); 350 } 351 352 /* load up dqs io config settings */ 353 static void scc_mgr_load_dqs_io(void) 354 { 355 writel(0, &sdr_scc_mgr->dqs_io_ena); 356 } 357 358 /* load up dq config settings */ 359 static void scc_mgr_load_dq(uint32_t dq_in_group) 360 { 361 writel(dq_in_group, &sdr_scc_mgr->dq_ena); 362 } 363 364 /* load up dm config settings */ 365 static void scc_mgr_load_dm(uint32_t dm) 366 { 367 writel(dm, &sdr_scc_mgr->dm_ena); 368 } 369 370 /** 371 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks 372 * @off: Base offset in SCC Manager space 373 * @grp: Read/Write group 374 * @val: Value to be set 375 * @update: If non-zero, trigger SCC Manager update for all ranks 376 * 377 * This function sets the SCC Manager (Scan Chain Control Manager) register 378 * and optionally triggers the SCC update for all ranks. 379 */ 380 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val, 381 const int update) 382 { 383 u32 r; 384 385 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 386 r += NUM_RANKS_PER_SHADOW_REG) { 387 scc_mgr_set(off, grp, val); 388 389 if (update || (r == 0)) { 390 writel(grp, &sdr_scc_mgr->dqs_ena); 391 writel(0, &sdr_scc_mgr->update); 392 } 393 } 394 } 395 396 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase) 397 { 398 /* 399 * USER although the h/w doesn't support different phases per 400 * shadow register, for simplicity our scc manager modeling 401 * keeps different phase settings per shadow reg, and it's 402 * important for us to keep them in sync to match h/w. 403 * for efficiency, the scan chain update should occur only 404 * once to sr0. 405 */ 406 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET, 407 read_group, phase, 0); 408 } 409 410 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group, 411 uint32_t phase) 412 { 413 /* 414 * USER although the h/w doesn't support different phases per 415 * shadow register, for simplicity our scc manager modeling 416 * keeps different phase settings per shadow reg, and it's 417 * important for us to keep them in sync to match h/w. 418 * for efficiency, the scan chain update should occur only 419 * once to sr0. 420 */ 421 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, 422 write_group, phase, 0); 423 } 424 425 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group, 426 uint32_t delay) 427 { 428 /* 429 * In shadow register mode, the T11 settings are stored in 430 * registers in the core, which are updated by the DQS_ENA 431 * signals. Not issuing the SCC_MGR_UPD command allows us to 432 * save lots of rank switching overhead, by calling 433 * select_shadow_regs_for_update with update_scan_chains 434 * set to 0. 435 */ 436 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET, 437 read_group, delay, 1); 438 writel(0, &sdr_scc_mgr->update); 439 } 440 441 /** 442 * scc_mgr_set_oct_out1_delay() - Set OCT output delay 443 * @write_group: Write group 444 * @delay: Delay value 445 * 446 * This function sets the OCT output delay in SCC manager. 447 */ 448 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay) 449 { 450 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 451 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 452 const int base = write_group * ratio; 453 int i; 454 /* 455 * Load the setting in the SCC manager 456 * Although OCT affects only write data, the OCT delay is controlled 457 * by the DQS logic block which is instantiated once per read group. 458 * For protocols where a write group consists of multiple read groups, 459 * the setting must be set multiple times. 460 */ 461 for (i = 0; i < ratio; i++) 462 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay); 463 } 464 465 /** 466 * scc_mgr_set_hhp_extras() - Set HHP extras. 467 * 468 * Load the fixed setting in the SCC manager HHP extras. 469 */ 470 static void scc_mgr_set_hhp_extras(void) 471 { 472 /* 473 * Load the fixed setting in the SCC manager 474 * bits: 0:0 = 1'b1 - DQS bypass 475 * bits: 1:1 = 1'b1 - DQ bypass 476 * bits: 4:2 = 3'b001 - rfifo_mode 477 * bits: 6:5 = 2'b01 - rfifo clock_select 478 * bits: 7:7 = 1'b0 - separate gating from ungating setting 479 * bits: 8:8 = 1'b0 - separate OE from Output delay setting 480 */ 481 const u32 value = (0 << 8) | (0 << 7) | (1 << 5) | 482 (1 << 2) | (1 << 1) | (1 << 0); 483 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | 484 SCC_MGR_HHP_GLOBALS_OFFSET | 485 SCC_MGR_HHP_EXTRAS_OFFSET; 486 487 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", 488 __func__, __LINE__); 489 writel(value, addr); 490 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n", 491 __func__, __LINE__); 492 } 493 494 /** 495 * scc_mgr_zero_all() - Zero all DQS config 496 * 497 * Zero all DQS config. 498 */ 499 static void scc_mgr_zero_all(void) 500 { 501 int i, r; 502 503 /* 504 * USER Zero all DQS config settings, across all groups and all 505 * shadow registers 506 */ 507 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 508 r += NUM_RANKS_PER_SHADOW_REG) { 509 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 510 /* 511 * The phases actually don't exist on a per-rank basis, 512 * but there's no harm updating them several times, so 513 * let's keep the code simple. 514 */ 515 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE); 516 scc_mgr_set_dqs_en_phase(i, 0); 517 scc_mgr_set_dqs_en_delay(i, 0); 518 } 519 520 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 521 scc_mgr_set_dqdqs_output_phase(i, 0); 522 /* Arria V/Cyclone V don't have out2. */ 523 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE); 524 } 525 } 526 527 /* Multicast to all DQS group enables. */ 528 writel(0xff, &sdr_scc_mgr->dqs_ena); 529 writel(0, &sdr_scc_mgr->update); 530 } 531 532 /** 533 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update 534 * @write_group: Write group 535 * 536 * Set bypass mode and trigger SCC update. 537 */ 538 static void scc_set_bypass_mode(const u32 write_group) 539 { 540 /* Multicast to all DQ enables. */ 541 writel(0xff, &sdr_scc_mgr->dq_ena); 542 writel(0xff, &sdr_scc_mgr->dm_ena); 543 544 /* Update current DQS IO enable. */ 545 writel(0, &sdr_scc_mgr->dqs_io_ena); 546 547 /* Update the DQS logic. */ 548 writel(write_group, &sdr_scc_mgr->dqs_ena); 549 550 /* Hit update. */ 551 writel(0, &sdr_scc_mgr->update); 552 } 553 554 /** 555 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group 556 * @write_group: Write group 557 * 558 * Load DQS settings for Write Group, do not trigger SCC update. 559 */ 560 static void scc_mgr_load_dqs_for_write_group(const u32 write_group) 561 { 562 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 563 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 564 const int base = write_group * ratio; 565 int i; 566 /* 567 * Load the setting in the SCC manager 568 * Although OCT affects only write data, the OCT delay is controlled 569 * by the DQS logic block which is instantiated once per read group. 570 * For protocols where a write group consists of multiple read groups, 571 * the setting must be set multiple times. 572 */ 573 for (i = 0; i < ratio; i++) 574 writel(base + i, &sdr_scc_mgr->dqs_ena); 575 } 576 577 /** 578 * scc_mgr_zero_group() - Zero all configs for a group 579 * 580 * Zero DQ, DM, DQS and OCT configs for a group. 581 */ 582 static void scc_mgr_zero_group(const u32 write_group, const int out_only) 583 { 584 int i, r; 585 586 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 587 r += NUM_RANKS_PER_SHADOW_REG) { 588 /* Zero all DQ config settings. */ 589 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 590 scc_mgr_set_dq_out1_delay(i, 0); 591 if (!out_only) 592 scc_mgr_set_dq_in_delay(i, 0); 593 } 594 595 /* Multicast to all DQ enables. */ 596 writel(0xff, &sdr_scc_mgr->dq_ena); 597 598 /* Zero all DM config settings. */ 599 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 600 scc_mgr_set_dm_out1_delay(i, 0); 601 602 /* Multicast to all DM enables. */ 603 writel(0xff, &sdr_scc_mgr->dm_ena); 604 605 /* Zero all DQS IO settings. */ 606 if (!out_only) 607 scc_mgr_set_dqs_io_in_delay(0); 608 609 /* Arria V/Cyclone V don't have out2. */ 610 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE); 611 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE); 612 scc_mgr_load_dqs_for_write_group(write_group); 613 614 /* Multicast to all DQS IO enables (only 1 in total). */ 615 writel(0, &sdr_scc_mgr->dqs_io_ena); 616 617 /* Hit update to zero everything. */ 618 writel(0, &sdr_scc_mgr->update); 619 } 620 } 621 622 /* 623 * apply and load a particular input delay for the DQ pins in a group 624 * group_bgn is the index of the first dq pin (in the write group) 625 */ 626 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay) 627 { 628 uint32_t i, p; 629 630 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 631 scc_mgr_set_dq_in_delay(p, delay); 632 scc_mgr_load_dq(p); 633 } 634 } 635 636 /** 637 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group 638 * @delay: Delay value 639 * 640 * Apply and load a particular output delay for the DQ pins in a group. 641 */ 642 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay) 643 { 644 int i; 645 646 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 647 scc_mgr_set_dq_out1_delay(i, delay); 648 scc_mgr_load_dq(i); 649 } 650 } 651 652 /* apply and load a particular output delay for the DM pins in a group */ 653 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1) 654 { 655 uint32_t i; 656 657 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 658 scc_mgr_set_dm_out1_delay(i, delay1); 659 scc_mgr_load_dm(i); 660 } 661 } 662 663 664 /* apply and load delay on both DQS and OCT out1 */ 665 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group, 666 uint32_t delay) 667 { 668 scc_mgr_set_dqs_out1_delay(delay); 669 scc_mgr_load_dqs_io(); 670 671 scc_mgr_set_oct_out1_delay(write_group, delay); 672 scc_mgr_load_dqs_for_write_group(write_group); 673 } 674 675 /** 676 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT 677 * @write_group: Write group 678 * @delay: Delay value 679 * 680 * Apply a delay to the entire output side: DQ, DM, DQS, OCT. 681 */ 682 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group, 683 const u32 delay) 684 { 685 u32 i, new_delay; 686 687 /* DQ shift */ 688 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) 689 scc_mgr_load_dq(i); 690 691 /* DM shift */ 692 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 693 scc_mgr_load_dm(i); 694 695 /* DQS shift */ 696 new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay; 697 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 698 debug_cond(DLEVEL == 1, 699 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 700 __func__, __LINE__, write_group, delay, new_delay, 701 IO_IO_OUT2_DELAY_MAX, 702 new_delay - IO_IO_OUT2_DELAY_MAX); 703 new_delay -= IO_IO_OUT2_DELAY_MAX; 704 scc_mgr_set_dqs_out1_delay(new_delay); 705 } 706 707 scc_mgr_load_dqs_io(); 708 709 /* OCT shift */ 710 new_delay = READ_SCC_OCT_OUT2_DELAY + delay; 711 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 712 debug_cond(DLEVEL == 1, 713 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 714 __func__, __LINE__, write_group, delay, 715 new_delay, IO_IO_OUT2_DELAY_MAX, 716 new_delay - IO_IO_OUT2_DELAY_MAX); 717 new_delay -= IO_IO_OUT2_DELAY_MAX; 718 scc_mgr_set_oct_out1_delay(write_group, new_delay); 719 } 720 721 scc_mgr_load_dqs_for_write_group(write_group); 722 } 723 724 /** 725 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks 726 * @write_group: Write group 727 * @delay: Delay value 728 * 729 * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks. 730 */ 731 static void 732 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group, 733 const u32 delay) 734 { 735 int r; 736 737 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 738 r += NUM_RANKS_PER_SHADOW_REG) { 739 scc_mgr_apply_group_all_out_delay_add(write_group, delay); 740 writel(0, &sdr_scc_mgr->update); 741 } 742 } 743 744 /** 745 * set_jump_as_return() - Return instruction optimization 746 * 747 * Optimization used to recover some slots in ddr3 inst_rom could be 748 * applied to other protocols if we wanted to 749 */ 750 static void set_jump_as_return(void) 751 { 752 /* 753 * To save space, we replace return with jump to special shared 754 * RETURN instruction so we set the counter to large value so that 755 * we always jump. 756 */ 757 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0); 758 writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 759 } 760 761 /* 762 * should always use constants as argument to ensure all computations are 763 * performed at compile time 764 */ 765 static void delay_for_n_mem_clocks(const uint32_t clocks) 766 { 767 uint32_t afi_clocks; 768 uint8_t inner = 0; 769 uint8_t outer = 0; 770 uint16_t c_loop = 0; 771 772 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks); 773 774 775 afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO; 776 /* scale (rounding up) to get afi clocks */ 777 778 /* 779 * Note, we don't bother accounting for being off a little bit 780 * because of a few extra instructions in outer loops 781 * Note, the loops have a test at the end, and do the test before 782 * the decrement, and so always perform the loop 783 * 1 time more than the counter value 784 */ 785 if (afi_clocks == 0) { 786 ; 787 } else if (afi_clocks <= 0x100) { 788 inner = afi_clocks-1; 789 outer = 0; 790 c_loop = 0; 791 } else if (afi_clocks <= 0x10000) { 792 inner = 0xff; 793 outer = (afi_clocks-1) >> 8; 794 c_loop = 0; 795 } else { 796 inner = 0xff; 797 outer = 0xff; 798 c_loop = (afi_clocks-1) >> 16; 799 } 800 801 /* 802 * rom instructions are structured as follows: 803 * 804 * IDLE_LOOP2: jnz cntr0, TARGET_A 805 * IDLE_LOOP1: jnz cntr1, TARGET_B 806 * return 807 * 808 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and 809 * TARGET_B is set to IDLE_LOOP2 as well 810 * 811 * if we have no outer loop, though, then we can use IDLE_LOOP1 only, 812 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely 813 * 814 * a little confusing, but it helps save precious space in the inst_rom 815 * and sequencer rom and keeps the delays more accurate and reduces 816 * overhead 817 */ 818 if (afi_clocks <= 0x100) { 819 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 820 &sdr_rw_load_mgr_regs->load_cntr1); 821 822 writel(RW_MGR_IDLE_LOOP1, 823 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 824 825 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 826 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 827 } else { 828 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 829 &sdr_rw_load_mgr_regs->load_cntr0); 830 831 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), 832 &sdr_rw_load_mgr_regs->load_cntr1); 833 834 writel(RW_MGR_IDLE_LOOP2, 835 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 836 837 writel(RW_MGR_IDLE_LOOP2, 838 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 839 840 /* hack to get around compiler not being smart enough */ 841 if (afi_clocks <= 0x10000) { 842 /* only need to run once */ 843 writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS | 844 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 845 } else { 846 do { 847 writel(RW_MGR_IDLE_LOOP2, 848 SDR_PHYGRP_RWMGRGRP_ADDRESS | 849 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 850 } while (c_loop-- != 0); 851 } 852 } 853 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks); 854 } 855 856 /** 857 * rw_mgr_mem_init_load_regs() - Load instruction registers 858 * @cntr0: Counter 0 value 859 * @cntr1: Counter 1 value 860 * @cntr2: Counter 2 value 861 * @jump: Jump instruction value 862 * 863 * Load instruction registers. 864 */ 865 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump) 866 { 867 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 868 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 869 870 /* Load counters */ 871 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0), 872 &sdr_rw_load_mgr_regs->load_cntr0); 873 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1), 874 &sdr_rw_load_mgr_regs->load_cntr1); 875 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2), 876 &sdr_rw_load_mgr_regs->load_cntr2); 877 878 /* Load jump address */ 879 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 880 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1); 881 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 882 883 /* Execute count instruction */ 884 writel(jump, grpaddr); 885 } 886 887 /** 888 * rw_mgr_mem_load_user() - Load user calibration values 889 * @fin1: Final instruction 1 890 * @fin2: Final instruction 2 891 * @precharge: If 1, precharge the banks at the end 892 * 893 * Load user calibration values and optionally precharge the banks. 894 */ 895 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2, 896 const int precharge) 897 { 898 u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 899 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 900 u32 r; 901 902 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 903 if (param->skip_ranks[r]) { 904 /* request to skip the rank */ 905 continue; 906 } 907 908 /* set rank */ 909 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 910 911 /* precharge all banks ... */ 912 if (precharge) 913 writel(RW_MGR_PRECHARGE_ALL, grpaddr); 914 915 /* 916 * USER Use Mirror-ed commands for odd ranks if address 917 * mirrorring is on 918 */ 919 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 920 set_jump_as_return(); 921 writel(RW_MGR_MRS2_MIRR, grpaddr); 922 delay_for_n_mem_clocks(4); 923 set_jump_as_return(); 924 writel(RW_MGR_MRS3_MIRR, grpaddr); 925 delay_for_n_mem_clocks(4); 926 set_jump_as_return(); 927 writel(RW_MGR_MRS1_MIRR, grpaddr); 928 delay_for_n_mem_clocks(4); 929 set_jump_as_return(); 930 writel(fin1, grpaddr); 931 } else { 932 set_jump_as_return(); 933 writel(RW_MGR_MRS2, grpaddr); 934 delay_for_n_mem_clocks(4); 935 set_jump_as_return(); 936 writel(RW_MGR_MRS3, grpaddr); 937 delay_for_n_mem_clocks(4); 938 set_jump_as_return(); 939 writel(RW_MGR_MRS1, grpaddr); 940 set_jump_as_return(); 941 writel(fin2, grpaddr); 942 } 943 944 if (precharge) 945 continue; 946 947 set_jump_as_return(); 948 writel(RW_MGR_ZQCL, grpaddr); 949 950 /* tZQinit = tDLLK = 512 ck cycles */ 951 delay_for_n_mem_clocks(512); 952 } 953 } 954 955 /** 956 * rw_mgr_mem_initialize() - Initialize RW Manager 957 * 958 * Initialize RW Manager. 959 */ 960 static void rw_mgr_mem_initialize(void) 961 { 962 debug("%s:%d\n", __func__, __LINE__); 963 964 /* The reset / cke part of initialization is broadcasted to all ranks */ 965 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 966 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 967 968 /* 969 * Here's how you load register for a loop 970 * Counters are located @ 0x800 971 * Jump address are located @ 0xC00 972 * For both, registers 0 to 3 are selected using bits 3 and 2, like 973 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C 974 * I know this ain't pretty, but Avalon bus throws away the 2 least 975 * significant bits 976 */ 977 978 /* Start with memory RESET activated */ 979 980 /* tINIT = 200us */ 981 982 /* 983 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles 984 * If a and b are the number of iteration in 2 nested loops 985 * it takes the following number of cycles to complete the operation: 986 * number_of_cycles = ((2 + n) * a + 2) * b 987 * where n is the number of instruction in the inner loop 988 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF, 989 * b = 6A 990 */ 991 rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL, 992 SEQ_TINIT_CNTR2_VAL, 993 RW_MGR_INIT_RESET_0_CKE_0); 994 995 /* Indicate that memory is stable. */ 996 writel(1, &phy_mgr_cfg->reset_mem_stbl); 997 998 /* 999 * transition the RESET to high 1000 * Wait for 500us 1001 */ 1002 1003 /* 1004 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles 1005 * If a and b are the number of iteration in 2 nested loops 1006 * it takes the following number of cycles to complete the operation 1007 * number_of_cycles = ((2 + n) * a + 2) * b 1008 * where n is the number of instruction in the inner loop 1009 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83, 1010 * b = FF 1011 */ 1012 rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL, 1013 SEQ_TRESET_CNTR2_VAL, 1014 RW_MGR_INIT_RESET_1_CKE_0); 1015 1016 /* Bring up clock enable. */ 1017 1018 /* tXRP < 250 ck cycles */ 1019 delay_for_n_mem_clocks(250); 1020 1021 rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET, 1022 0); 1023 } 1024 1025 /* 1026 * At the end of calibration we have to program the user settings in, and 1027 * USER hand off the memory to the user. 1028 */ 1029 static void rw_mgr_mem_handoff(void) 1030 { 1031 rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1); 1032 /* 1033 * USER need to wait tMOD (12CK or 15ns) time before issuing 1034 * other commands, but we will have plenty of NIOS cycles before 1035 * actual handoff so its okay. 1036 */ 1037 } 1038 1039 /** 1040 * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns 1041 * @rank_bgn: Rank number 1042 * @group: Read/Write Group 1043 * @all_ranks: Test all ranks 1044 * 1045 * Performs a guaranteed read on the patterns we are going to use during a 1046 * read test to ensure memory works. 1047 */ 1048 static int 1049 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group, 1050 const u32 all_ranks) 1051 { 1052 const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1053 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1054 const u32 addr_offset = 1055 (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2; 1056 const u32 rank_end = all_ranks ? 1057 RW_MGR_MEM_NUMBER_OF_RANKS : 1058 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1059 const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 1060 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 1061 const u32 correct_mask_vg = param->read_correct_mask_vg; 1062 1063 u32 tmp_bit_chk, base_rw_mgr, bit_chk; 1064 int vg, r; 1065 int ret = 0; 1066 1067 bit_chk = param->read_correct_mask; 1068 1069 for (r = rank_bgn; r < rank_end; r++) { 1070 /* Request to skip the rank */ 1071 if (param->skip_ranks[r]) 1072 continue; 1073 1074 /* Set rank */ 1075 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1076 1077 /* Load up a constant bursts of read commands */ 1078 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1079 writel(RW_MGR_GUARANTEED_READ, 1080 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1081 1082 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1083 writel(RW_MGR_GUARANTEED_READ_CONT, 1084 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1085 1086 tmp_bit_chk = 0; 1087 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; 1088 vg >= 0; vg--) { 1089 /* Reset the FIFOs to get pointers to known state. */ 1090 writel(0, &phy_mgr_cmd->fifo_reset); 1091 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1092 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1093 writel(RW_MGR_GUARANTEED_READ, 1094 addr + addr_offset + (vg << 2)); 1095 1096 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1097 tmp_bit_chk <<= shift_ratio; 1098 tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr; 1099 } 1100 1101 bit_chk &= tmp_bit_chk; 1102 } 1103 1104 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1105 1106 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1107 1108 if (bit_chk != param->read_correct_mask) 1109 ret = -EIO; 1110 1111 debug_cond(DLEVEL == 1, 1112 "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n", 1113 __func__, __LINE__, group, bit_chk, 1114 param->read_correct_mask, ret); 1115 1116 return ret; 1117 } 1118 1119 /** 1120 * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test 1121 * @rank_bgn: Rank number 1122 * @all_ranks: Test all ranks 1123 * 1124 * Load up the patterns we are going to use during a read test. 1125 */ 1126 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn, 1127 const int all_ranks) 1128 { 1129 const u32 rank_end = all_ranks ? 1130 RW_MGR_MEM_NUMBER_OF_RANKS : 1131 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1132 u32 r; 1133 1134 debug("%s:%d\n", __func__, __LINE__); 1135 1136 for (r = rank_bgn; r < rank_end; r++) { 1137 if (param->skip_ranks[r]) 1138 /* request to skip the rank */ 1139 continue; 1140 1141 /* set rank */ 1142 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1143 1144 /* Load up a constant bursts */ 1145 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1146 1147 writel(RW_MGR_GUARANTEED_WRITE_WAIT0, 1148 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1149 1150 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1151 1152 writel(RW_MGR_GUARANTEED_WRITE_WAIT1, 1153 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1154 1155 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2); 1156 1157 writel(RW_MGR_GUARANTEED_WRITE_WAIT2, 1158 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1159 1160 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3); 1161 1162 writel(RW_MGR_GUARANTEED_WRITE_WAIT3, 1163 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1164 1165 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1166 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 1167 } 1168 1169 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1170 } 1171 1172 /* 1173 * try a read and see if it returns correct data back. has dummy reads 1174 * inserted into the mix used to align dqs enable. has more thorough checks 1175 * than the regular read test. 1176 */ 1177 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group, 1178 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1179 uint32_t all_groups, uint32_t all_ranks) 1180 { 1181 uint32_t r, vg; 1182 uint32_t correct_mask_vg; 1183 uint32_t tmp_bit_chk; 1184 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1185 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1186 uint32_t addr; 1187 uint32_t base_rw_mgr; 1188 1189 *bit_chk = param->read_correct_mask; 1190 correct_mask_vg = param->read_correct_mask_vg; 1191 1192 uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) & 1193 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION); 1194 1195 for (r = rank_bgn; r < rank_end; r++) { 1196 if (param->skip_ranks[r]) 1197 /* request to skip the rank */ 1198 continue; 1199 1200 /* set rank */ 1201 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1202 1203 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1); 1204 1205 writel(RW_MGR_READ_B2B_WAIT1, 1206 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1207 1208 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2); 1209 writel(RW_MGR_READ_B2B_WAIT2, 1210 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1211 1212 if (quick_read_mode) 1213 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0); 1214 /* need at least two (1+1) reads to capture failures */ 1215 else if (all_groups) 1216 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0); 1217 else 1218 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0); 1219 1220 writel(RW_MGR_READ_B2B, 1221 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1222 if (all_groups) 1223 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH * 1224 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1, 1225 &sdr_rw_load_mgr_regs->load_cntr3); 1226 else 1227 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3); 1228 1229 writel(RW_MGR_READ_B2B, 1230 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1231 1232 tmp_bit_chk = 0; 1233 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1234 /* reset the fifos to get pointers to known state */ 1235 writel(0, &phy_mgr_cmd->fifo_reset); 1236 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1237 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1238 1239 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1240 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1241 1242 if (all_groups) 1243 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET; 1244 else 1245 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1246 1247 writel(RW_MGR_READ_B2B, addr + 1248 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1249 vg) << 2)); 1250 1251 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1252 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 1253 1254 if (vg == 0) 1255 break; 1256 } 1257 *bit_chk &= tmp_bit_chk; 1258 } 1259 1260 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1261 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1262 1263 if (all_correct) { 1264 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1265 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\ 1266 (%u == %u) => %lu", __func__, __LINE__, group, 1267 all_groups, *bit_chk, param->read_correct_mask, 1268 (long unsigned int)(*bit_chk == 1269 param->read_correct_mask)); 1270 return *bit_chk == param->read_correct_mask; 1271 } else { 1272 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1273 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\ 1274 (%u != %lu) => %lu\n", __func__, __LINE__, 1275 group, all_groups, *bit_chk, (long unsigned int)0, 1276 (long unsigned int)(*bit_chk != 0x00)); 1277 return *bit_chk != 0x00; 1278 } 1279 } 1280 1281 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group, 1282 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1283 uint32_t all_groups) 1284 { 1285 return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct, 1286 bit_chk, all_groups, 1); 1287 } 1288 1289 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v) 1290 { 1291 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy); 1292 (*v)++; 1293 } 1294 1295 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v) 1296 { 1297 uint32_t i; 1298 1299 for (i = 0; i < VFIFO_SIZE-1; i++) 1300 rw_mgr_incr_vfifo(grp, v); 1301 } 1302 1303 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk) 1304 { 1305 uint32_t v; 1306 uint32_t fail_cnt = 0; 1307 uint32_t test_status; 1308 1309 for (v = 0; v < VFIFO_SIZE; ) { 1310 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n", 1311 __func__, __LINE__, v); 1312 test_status = rw_mgr_mem_calibrate_read_test_all_ranks 1313 (grp, 1, PASS_ONE_BIT, bit_chk, 0); 1314 if (!test_status) { 1315 fail_cnt++; 1316 1317 if (fail_cnt == 2) 1318 break; 1319 } 1320 1321 /* fiddle with FIFO */ 1322 rw_mgr_incr_vfifo(grp, &v); 1323 } 1324 1325 if (v >= VFIFO_SIZE) { 1326 /* no failing read found!! Something must have gone wrong */ 1327 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n", 1328 __func__, __LINE__); 1329 return 0; 1330 } else { 1331 return v; 1332 } 1333 } 1334 1335 static int sdr_working_phase(uint32_t *grp, uint32_t *bit_chk, 1336 uint32_t dtaps_per_ptap, uint32_t *work_bgn, 1337 uint32_t *v, uint32_t *d, uint32_t *p, 1338 uint32_t *i, uint32_t *max_working_cnt) 1339 { 1340 uint32_t found_begin = 0; 1341 uint32_t tmp_delay = 0; 1342 uint32_t test_status; 1343 1344 for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay += 1345 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1346 *work_bgn = tmp_delay; 1347 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1348 1349 for (*i = 0; *i < VFIFO_SIZE; (*i)++) { 1350 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn += 1351 IO_DELAY_PER_OPA_TAP) { 1352 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1353 1354 test_status = 1355 rw_mgr_mem_calibrate_read_test_all_ranks 1356 (*grp, 1, PASS_ONE_BIT, bit_chk, 0); 1357 1358 if (test_status) { 1359 *max_working_cnt = 1; 1360 found_begin = 1; 1361 break; 1362 } 1363 } 1364 1365 if (found_begin) 1366 break; 1367 1368 if (*p > IO_DQS_EN_PHASE_MAX) 1369 /* fiddle with FIFO */ 1370 rw_mgr_incr_vfifo(*grp, v); 1371 } 1372 1373 if (found_begin) 1374 break; 1375 } 1376 1377 if (*i >= VFIFO_SIZE) { 1378 /* cannot find working solution */ 1379 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\ 1380 ptap/dtap\n", __func__, __LINE__); 1381 return 0; 1382 } else { 1383 return 1; 1384 } 1385 } 1386 1387 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk, 1388 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1389 uint32_t *p, uint32_t *max_working_cnt) 1390 { 1391 uint32_t found_begin = 0; 1392 uint32_t tmp_delay; 1393 1394 /* Special case code for backing up a phase */ 1395 if (*p == 0) { 1396 *p = IO_DQS_EN_PHASE_MAX; 1397 rw_mgr_decr_vfifo(*grp, v); 1398 } else { 1399 (*p)--; 1400 } 1401 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP; 1402 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1403 1404 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; 1405 (*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1406 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1407 1408 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1, 1409 PASS_ONE_BIT, 1410 bit_chk, 0)) { 1411 found_begin = 1; 1412 *work_bgn = tmp_delay; 1413 break; 1414 } 1415 } 1416 1417 /* We have found a working dtap before the ptap found above */ 1418 if (found_begin == 1) 1419 (*max_working_cnt)++; 1420 1421 /* 1422 * Restore VFIFO to old state before we decremented it 1423 * (if needed). 1424 */ 1425 (*p)++; 1426 if (*p > IO_DQS_EN_PHASE_MAX) { 1427 *p = 0; 1428 rw_mgr_incr_vfifo(*grp, v); 1429 } 1430 1431 scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0); 1432 } 1433 1434 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk, 1435 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1436 uint32_t *p, uint32_t *i, uint32_t *max_working_cnt, 1437 uint32_t *work_end) 1438 { 1439 uint32_t found_end = 0; 1440 1441 (*p)++; 1442 *work_end += IO_DELAY_PER_OPA_TAP; 1443 if (*p > IO_DQS_EN_PHASE_MAX) { 1444 /* fiddle with FIFO */ 1445 *p = 0; 1446 rw_mgr_incr_vfifo(*grp, v); 1447 } 1448 1449 for (; *i < VFIFO_SIZE + 1; (*i)++) { 1450 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end 1451 += IO_DELAY_PER_OPA_TAP) { 1452 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1453 1454 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1455 (*grp, 1, PASS_ONE_BIT, bit_chk, 0)) { 1456 found_end = 1; 1457 break; 1458 } else { 1459 (*max_working_cnt)++; 1460 } 1461 } 1462 1463 if (found_end) 1464 break; 1465 1466 if (*p > IO_DQS_EN_PHASE_MAX) { 1467 /* fiddle with FIFO */ 1468 rw_mgr_incr_vfifo(*grp, v); 1469 *p = 0; 1470 } 1471 } 1472 1473 if (*i >= VFIFO_SIZE + 1) { 1474 /* cannot see edge of failing read */ 1475 debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\ 1476 failed\n", __func__, __LINE__); 1477 return 0; 1478 } else { 1479 return 1; 1480 } 1481 } 1482 1483 /** 1484 * sdr_find_window_center() - Find center of the working DQS window. 1485 * @grp: Read/Write group 1486 * @work_bgn: First working settings 1487 * @work_end: Last working settings 1488 * @val: VFIFO value 1489 * 1490 * Find center of the working DQS enable window. 1491 */ 1492 static int sdr_find_window_center(const u32 grp, const u32 work_bgn, 1493 const u32 work_end, const u32 val) 1494 { 1495 u32 bit_chk, work_mid, v = val; 1496 int tmp_delay = 0; 1497 int i, p, d; 1498 1499 work_mid = (work_bgn + work_end) / 2; 1500 1501 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n", 1502 work_bgn, work_end, work_mid); 1503 /* Get the middle delay to be less than a VFIFO delay */ 1504 tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP; 1505 1506 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay); 1507 work_mid %= tmp_delay; 1508 debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid); 1509 1510 tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP); 1511 if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP) 1512 tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP; 1513 p = tmp_delay / IO_DELAY_PER_OPA_TAP; 1514 1515 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay); 1516 1517 d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP); 1518 if (d > IO_DQS_EN_DELAY_MAX) 1519 d = IO_DQS_EN_DELAY_MAX; 1520 tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1521 1522 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay); 1523 1524 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1525 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1526 1527 /* 1528 * push vfifo until we can successfully calibrate. We can do this 1529 * because the largest possible margin in 1 VFIFO cycle. 1530 */ 1531 for (i = 0; i < VFIFO_SIZE; i++) { 1532 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n", 1533 v); 1534 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1535 PASS_ONE_BIT, 1536 &bit_chk, 0)) { 1537 debug_cond(DLEVEL == 2, 1538 "%s:%d center: found: vfifo=%u ptap=%u dtap=%u\n", 1539 __func__, __LINE__, v, p, d); 1540 return 0; 1541 } 1542 1543 /* Fiddle with FIFO. */ 1544 rw_mgr_incr_vfifo(grp, &v); 1545 } 1546 1547 debug_cond(DLEVEL == 2, "%s:%d center: failed.\n", 1548 __func__, __LINE__); 1549 return -EINVAL; 1550 } 1551 1552 /* find a good dqs enable to use */ 1553 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp) 1554 { 1555 uint32_t v, d, p, i; 1556 uint32_t max_working_cnt; 1557 uint32_t bit_chk; 1558 uint32_t dtaps_per_ptap; 1559 uint32_t work_bgn, work_end; 1560 uint32_t found_passing_read, found_failing_read, initial_failing_dtap; 1561 1562 debug("%s:%d %u\n", __func__, __LINE__, grp); 1563 1564 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 1565 1566 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1567 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); 1568 1569 /* ************************************************************** */ 1570 /* * Step 0 : Determine number of delay taps for each phase tap * */ 1571 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1572 1573 /* ********************************************************* */ 1574 /* * Step 1 : First push vfifo until we get a failing read * */ 1575 v = find_vfifo_read(grp, &bit_chk); 1576 1577 max_working_cnt = 0; 1578 1579 /* ******************************************************** */ 1580 /* * step 2: find first working phase, increment in ptaps * */ 1581 work_bgn = 0; 1582 if (sdr_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d, 1583 &p, &i, &max_working_cnt) == 0) 1584 return 0; 1585 1586 work_end = work_bgn; 1587 1588 /* 1589 * If d is 0 then the working window covers a phase tap and 1590 * we can follow the old procedure otherwise, we've found the beginning, 1591 * and we need to increment the dtaps until we find the end. 1592 */ 1593 if (d == 0) { 1594 /* ********************************************************* */ 1595 /* * step 3a: if we have room, back off by one and 1596 increment in dtaps * */ 1597 1598 sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1599 &max_working_cnt); 1600 1601 /* ********************************************************* */ 1602 /* * step 4a: go forward from working phase to non working 1603 phase, increment in ptaps * */ 1604 if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1605 &i, &max_working_cnt, &work_end) == 0) 1606 return 0; 1607 1608 /* ********************************************************* */ 1609 /* * step 5a: back off one from last, increment in dtaps * */ 1610 1611 /* Special case code for backing up a phase */ 1612 if (p == 0) { 1613 p = IO_DQS_EN_PHASE_MAX; 1614 rw_mgr_decr_vfifo(grp, &v); 1615 } else { 1616 p = p - 1; 1617 } 1618 1619 work_end -= IO_DELAY_PER_OPA_TAP; 1620 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1621 1622 /* * The actual increment of dtaps is done outside of 1623 the if/else loop to share code */ 1624 d = 0; 1625 1626 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \ 1627 vfifo=%u ptap=%u\n", __func__, __LINE__, 1628 v, p); 1629 } else { 1630 /* ******************************************************* */ 1631 /* * step 3-5b: Find the right edge of the window using 1632 delay taps * */ 1633 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \ 1634 ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__, 1635 v, p, d, work_bgn); 1636 1637 work_end = work_bgn; 1638 1639 /* * The actual increment of dtaps is done outside of the 1640 if/else loop to share code */ 1641 1642 /* Only here to counterbalance a subtract later on which is 1643 not needed if this branch of the algorithm is taken */ 1644 max_working_cnt++; 1645 } 1646 1647 /* The dtap increment to find the failing edge is done here */ 1648 for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end += 1649 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1650 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1651 end-2: dtap=%u\n", __func__, __LINE__, d); 1652 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1653 1654 if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1655 PASS_ONE_BIT, 1656 &bit_chk, 0)) { 1657 break; 1658 } 1659 } 1660 1661 /* Go back to working dtap */ 1662 if (d != 0) 1663 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1664 1665 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \ 1666 ptap=%u dtap=%u end=%u\n", __func__, __LINE__, 1667 v, p, d-1, work_end); 1668 1669 if (work_end < work_bgn) { 1670 /* nil range */ 1671 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \ 1672 failed\n", __func__, __LINE__); 1673 return 0; 1674 } 1675 1676 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n", 1677 __func__, __LINE__, work_bgn, work_end); 1678 1679 /* *************************************************************** */ 1680 /* 1681 * * We need to calculate the number of dtaps that equal a ptap 1682 * * To do that we'll back up a ptap and re-find the edge of the 1683 * * window using dtaps 1684 */ 1685 1686 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \ 1687 for tracking\n", __func__, __LINE__); 1688 1689 /* Special case code for backing up a phase */ 1690 if (p == 0) { 1691 p = IO_DQS_EN_PHASE_MAX; 1692 rw_mgr_decr_vfifo(grp, &v); 1693 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1694 cycle/phase: v=%u p=%u\n", __func__, __LINE__, 1695 v, p); 1696 } else { 1697 p = p - 1; 1698 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1699 phase only: v=%u p=%u", __func__, __LINE__, 1700 v, p); 1701 } 1702 1703 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1704 1705 /* 1706 * Increase dtap until we first see a passing read (in case the 1707 * window is smaller than a ptap), 1708 * and then a failing read to mark the edge of the window again 1709 */ 1710 1711 /* Find a passing read */ 1712 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n", 1713 __func__, __LINE__); 1714 found_passing_read = 0; 1715 found_failing_read = 0; 1716 initial_failing_dtap = d; 1717 for (; d <= IO_DQS_EN_DELAY_MAX; d++) { 1718 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \ 1719 read d=%u\n", __func__, __LINE__, d); 1720 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1721 1722 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1723 PASS_ONE_BIT, 1724 &bit_chk, 0)) { 1725 found_passing_read = 1; 1726 break; 1727 } 1728 } 1729 1730 if (found_passing_read) { 1731 /* Find a failing read */ 1732 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \ 1733 read\n", __func__, __LINE__); 1734 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) { 1735 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1736 testing read d=%u\n", __func__, __LINE__, d); 1737 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1738 1739 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1740 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { 1741 found_failing_read = 1; 1742 break; 1743 } 1744 } 1745 } else { 1746 debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \ 1747 calculate dtaps", __func__, __LINE__); 1748 debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n"); 1749 } 1750 1751 /* 1752 * The dynamically calculated dtaps_per_ptap is only valid if we 1753 * found a passing/failing read. If we didn't, it means d hit the max 1754 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its 1755 * statically calculated value. 1756 */ 1757 if (found_passing_read && found_failing_read) 1758 dtaps_per_ptap = d - initial_failing_dtap; 1759 1760 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 1761 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \ 1762 - %u = %u", __func__, __LINE__, d, 1763 initial_failing_dtap, dtaps_per_ptap); 1764 1765 /* ******************************************** */ 1766 /* * step 6: Find the centre of the window * */ 1767 if (sdr_find_window_centre(grp, work_bgn, work_end, v)) 1768 return 0; /* FIXME: Old code, return 0 means failure :-( */ 1769 1770 return 1; 1771 } 1772 1773 /* per-bit deskew DQ and center */ 1774 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn, 1775 uint32_t write_group, uint32_t read_group, uint32_t test_bgn, 1776 uint32_t use_read_test, uint32_t update_fom) 1777 { 1778 uint32_t i, p, d, min_index; 1779 /* 1780 * Store these as signed since there are comparisons with 1781 * signed numbers. 1782 */ 1783 uint32_t bit_chk; 1784 uint32_t sticky_bit_chk; 1785 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1786 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1787 int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS]; 1788 int32_t mid; 1789 int32_t orig_mid_min, mid_min; 1790 int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs, 1791 final_dqs_en; 1792 int32_t dq_margin, dqs_margin; 1793 uint32_t stop; 1794 uint32_t temp_dq_in_delay1, temp_dq_in_delay2; 1795 uint32_t addr; 1796 1797 debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn); 1798 1799 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET; 1800 start_dqs = readl(addr + (read_group << 2)); 1801 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 1802 start_dqs_en = readl(addr + ((read_group << 2) 1803 - IO_DQS_EN_DELAY_OFFSET)); 1804 1805 /* set the left and right edge of each bit to an illegal value */ 1806 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */ 1807 sticky_bit_chk = 0; 1808 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1809 left_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1810 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1811 } 1812 1813 /* Search for the left edge of the window for each bit */ 1814 for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) { 1815 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d); 1816 1817 writel(0, &sdr_scc_mgr->update); 1818 1819 /* 1820 * Stop searching when the read test doesn't pass AND when 1821 * we've seen a passing read on every bit. 1822 */ 1823 if (use_read_test) { 1824 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1825 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1826 &bit_chk, 0, 0); 1827 } else { 1828 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1829 0, PASS_ONE_BIT, 1830 &bit_chk, 0); 1831 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1832 (read_group - (write_group * 1833 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1834 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1835 stop = (bit_chk == 0); 1836 } 1837 sticky_bit_chk = sticky_bit_chk | bit_chk; 1838 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1839 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \ 1840 && %u", __func__, __LINE__, d, 1841 sticky_bit_chk, 1842 param->read_correct_mask, stop); 1843 1844 if (stop == 1) { 1845 break; 1846 } else { 1847 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1848 if (bit_chk & 1) { 1849 /* Remember a passing test as the 1850 left_edge */ 1851 left_edge[i] = d; 1852 } else { 1853 /* If a left edge has not been seen yet, 1854 then a future passing test will mark 1855 this edge as the right edge */ 1856 if (left_edge[i] == 1857 IO_IO_IN_DELAY_MAX + 1) { 1858 right_edge[i] = -(d + 1); 1859 } 1860 } 1861 bit_chk = bit_chk >> 1; 1862 } 1863 } 1864 } 1865 1866 /* Reset DQ delay chains to 0 */ 1867 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 1868 sticky_bit_chk = 0; 1869 for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) { 1870 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 1871 %d right_edge[%u]: %d\n", __func__, __LINE__, 1872 i, left_edge[i], i, right_edge[i]); 1873 1874 /* 1875 * Check for cases where we haven't found the left edge, 1876 * which makes our assignment of the the right edge invalid. 1877 * Reset it to the illegal value. 1878 */ 1879 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && ( 1880 right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1881 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1882 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \ 1883 right_edge[%u]: %d\n", __func__, __LINE__, 1884 i, right_edge[i]); 1885 } 1886 1887 /* 1888 * Reset sticky bit (except for bits where we have seen 1889 * both the left and right edge). 1890 */ 1891 sticky_bit_chk = sticky_bit_chk << 1; 1892 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) && 1893 (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1894 sticky_bit_chk = sticky_bit_chk | 1; 1895 } 1896 1897 if (i == 0) 1898 break; 1899 } 1900 1901 /* Search for the right edge of the window for each bit */ 1902 for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) { 1903 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs); 1904 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 1905 uint32_t delay = d + start_dqs_en; 1906 if (delay > IO_DQS_EN_DELAY_MAX) 1907 delay = IO_DQS_EN_DELAY_MAX; 1908 scc_mgr_set_dqs_en_delay(read_group, delay); 1909 } 1910 scc_mgr_load_dqs(read_group); 1911 1912 writel(0, &sdr_scc_mgr->update); 1913 1914 /* 1915 * Stop searching when the read test doesn't pass AND when 1916 * we've seen a passing read on every bit. 1917 */ 1918 if (use_read_test) { 1919 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1920 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1921 &bit_chk, 0, 0); 1922 } else { 1923 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1924 0, PASS_ONE_BIT, 1925 &bit_chk, 0); 1926 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1927 (read_group - (write_group * 1928 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1929 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1930 stop = (bit_chk == 0); 1931 } 1932 sticky_bit_chk = sticky_bit_chk | bit_chk; 1933 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1934 1935 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \ 1936 %u && %u", __func__, __LINE__, d, 1937 sticky_bit_chk, param->read_correct_mask, stop); 1938 1939 if (stop == 1) { 1940 break; 1941 } else { 1942 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1943 if (bit_chk & 1) { 1944 /* Remember a passing test as 1945 the right_edge */ 1946 right_edge[i] = d; 1947 } else { 1948 if (d != 0) { 1949 /* If a right edge has not been 1950 seen yet, then a future passing 1951 test will mark this edge as the 1952 left edge */ 1953 if (right_edge[i] == 1954 IO_IO_IN_DELAY_MAX + 1) { 1955 left_edge[i] = -(d + 1); 1956 } 1957 } else { 1958 /* d = 0 failed, but it passed 1959 when testing the left edge, 1960 so it must be marginal, 1961 set it to -1 */ 1962 if (right_edge[i] == 1963 IO_IO_IN_DELAY_MAX + 1 && 1964 left_edge[i] != 1965 IO_IO_IN_DELAY_MAX 1966 + 1) { 1967 right_edge[i] = -1; 1968 } 1969 /* If a right edge has not been 1970 seen yet, then a future passing 1971 test will mark this edge as the 1972 left edge */ 1973 else if (right_edge[i] == 1974 IO_IO_IN_DELAY_MAX + 1975 1) { 1976 left_edge[i] = -(d + 1); 1977 } 1978 } 1979 } 1980 1981 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\ 1982 d=%u]: ", __func__, __LINE__, d); 1983 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ", 1984 (int)(bit_chk & 1), i, left_edge[i]); 1985 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 1986 right_edge[i]); 1987 bit_chk = bit_chk >> 1; 1988 } 1989 } 1990 } 1991 1992 /* Check that all bits have a window */ 1993 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1994 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 1995 %d right_edge[%u]: %d", __func__, __LINE__, 1996 i, left_edge[i], i, right_edge[i]); 1997 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i] 1998 == IO_IO_IN_DELAY_MAX + 1)) { 1999 /* 2000 * Restore delay chain settings before letting the loop 2001 * in rw_mgr_mem_calibrate_vfifo to retry different 2002 * dqs/ck relationships. 2003 */ 2004 scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs); 2005 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2006 scc_mgr_set_dqs_en_delay(read_group, 2007 start_dqs_en); 2008 } 2009 scc_mgr_load_dqs(read_group); 2010 writel(0, &sdr_scc_mgr->update); 2011 2012 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \ 2013 find edge [%u]: %d %d", __func__, __LINE__, 2014 i, left_edge[i], right_edge[i]); 2015 if (use_read_test) { 2016 set_failing_group_stage(read_group * 2017 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2018 CAL_STAGE_VFIFO, 2019 CAL_SUBSTAGE_VFIFO_CENTER); 2020 } else { 2021 set_failing_group_stage(read_group * 2022 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2023 CAL_STAGE_VFIFO_AFTER_WRITES, 2024 CAL_SUBSTAGE_VFIFO_CENTER); 2025 } 2026 return 0; 2027 } 2028 } 2029 2030 /* Find middle of window for each DQ bit */ 2031 mid_min = left_edge[0] - right_edge[0]; 2032 min_index = 0; 2033 for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2034 mid = left_edge[i] - right_edge[i]; 2035 if (mid < mid_min) { 2036 mid_min = mid; 2037 min_index = i; 2038 } 2039 } 2040 2041 /* 2042 * -mid_min/2 represents the amount that we need to move DQS. 2043 * If mid_min is odd and positive we'll need to add one to 2044 * make sure the rounding in further calculations is correct 2045 * (always bias to the right), so just add 1 for all positive values. 2046 */ 2047 if (mid_min > 0) 2048 mid_min++; 2049 2050 mid_min = mid_min / 2; 2051 2052 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n", 2053 __func__, __LINE__, mid_min, min_index); 2054 2055 /* Determine the amount we can change DQS (which is -mid_min) */ 2056 orig_mid_min = mid_min; 2057 new_dqs = start_dqs - mid_min; 2058 if (new_dqs > IO_DQS_IN_DELAY_MAX) 2059 new_dqs = IO_DQS_IN_DELAY_MAX; 2060 else if (new_dqs < 0) 2061 new_dqs = 0; 2062 2063 mid_min = start_dqs - new_dqs; 2064 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n", 2065 mid_min, new_dqs); 2066 2067 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2068 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX) 2069 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX; 2070 else if (start_dqs_en - mid_min < 0) 2071 mid_min += start_dqs_en - mid_min; 2072 } 2073 new_dqs = start_dqs - mid_min; 2074 2075 debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \ 2076 new_dqs=%d mid_min=%d\n", start_dqs, 2077 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1, 2078 new_dqs, mid_min); 2079 2080 /* Initialize data for export structures */ 2081 dqs_margin = IO_IO_IN_DELAY_MAX + 1; 2082 dq_margin = IO_IO_IN_DELAY_MAX + 1; 2083 2084 /* add delay to bring centre of all DQ windows to the same "level" */ 2085 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 2086 /* Use values before divide by 2 to reduce round off error */ 2087 shift_dq = (left_edge[i] - right_edge[i] - 2088 (left_edge[min_index] - right_edge[min_index]))/2 + 2089 (orig_mid_min - mid_min); 2090 2091 debug_cond(DLEVEL == 2, "vfifo_center: before: \ 2092 shift_dq[%u]=%d\n", i, shift_dq); 2093 2094 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET; 2095 temp_dq_in_delay1 = readl(addr + (p << 2)); 2096 temp_dq_in_delay2 = readl(addr + (i << 2)); 2097 2098 if (shift_dq + (int32_t)temp_dq_in_delay1 > 2099 (int32_t)IO_IO_IN_DELAY_MAX) { 2100 shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2; 2101 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) { 2102 shift_dq = -(int32_t)temp_dq_in_delay1; 2103 } 2104 debug_cond(DLEVEL == 2, "vfifo_center: after: \ 2105 shift_dq[%u]=%d\n", i, shift_dq); 2106 final_dq[i] = temp_dq_in_delay1 + shift_dq; 2107 scc_mgr_set_dq_in_delay(p, final_dq[i]); 2108 scc_mgr_load_dq(p); 2109 2110 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i, 2111 left_edge[i] - shift_dq + (-mid_min), 2112 right_edge[i] + shift_dq - (-mid_min)); 2113 /* To determine values for export structures */ 2114 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2115 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2116 2117 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2118 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2119 } 2120 2121 final_dqs = new_dqs; 2122 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2123 final_dqs_en = start_dqs_en - mid_min; 2124 2125 /* Move DQS-en */ 2126 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2127 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en); 2128 scc_mgr_load_dqs(read_group); 2129 } 2130 2131 /* Move DQS */ 2132 scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs); 2133 scc_mgr_load_dqs(read_group); 2134 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \ 2135 dqs_margin=%d", __func__, __LINE__, 2136 dq_margin, dqs_margin); 2137 2138 /* 2139 * Do not remove this line as it makes sure all of our decisions 2140 * have been applied. Apply the update bit. 2141 */ 2142 writel(0, &sdr_scc_mgr->update); 2143 2144 return (dq_margin >= 0) && (dqs_margin >= 0); 2145 } 2146 2147 /** 2148 * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device 2149 * @rw_group: Read/Write Group 2150 * @phase: DQ/DQS phase 2151 * 2152 * Because initially no communication ca be reliably performed with the memory 2153 * device, the sequencer uses a guaranteed write mechanism to write data into 2154 * the memory device. 2155 */ 2156 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group, 2157 const u32 phase) 2158 { 2159 int ret; 2160 2161 /* Set a particular DQ/DQS phase. */ 2162 scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase); 2163 2164 debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n", 2165 __func__, __LINE__, rw_group, phase); 2166 2167 /* 2168 * Altera EMI_RM 2015.05.04 :: Figure 1-25 2169 * Load up the patterns used by read calibration using the 2170 * current DQDQS phase. 2171 */ 2172 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2173 2174 if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ) 2175 return 0; 2176 2177 /* 2178 * Altera EMI_RM 2015.05.04 :: Figure 1-26 2179 * Back-to-Back reads of the patterns used for calibration. 2180 */ 2181 ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1); 2182 if (ret) 2183 debug_cond(DLEVEL == 1, 2184 "%s:%d Guaranteed read test failed: g=%u p=%u\n", 2185 __func__, __LINE__, rw_group, phase); 2186 return ret; 2187 } 2188 2189 /** 2190 * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration 2191 * @rw_group: Read/Write Group 2192 * @test_bgn: Rank at which the test begins 2193 * 2194 * DQS enable calibration ensures reliable capture of the DQ signal without 2195 * glitches on the DQS line. 2196 */ 2197 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group, 2198 const u32 test_bgn) 2199 { 2200 /* 2201 * Altera EMI_RM 2015.05.04 :: Figure 1-27 2202 * DQS and DQS Eanble Signal Relationships. 2203 */ 2204 2205 /* We start at zero, so have one less dq to devide among */ 2206 const u32 delay_step = IO_IO_IN_DELAY_MAX / 2207 (RW_MGR_MEM_DQ_PER_READ_DQS - 1); 2208 int found; 2209 u32 i, p, d, r; 2210 2211 debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn); 2212 2213 /* Try different dq_in_delays since the DQ path is shorter than DQS. */ 2214 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 2215 r += NUM_RANKS_PER_SHADOW_REG) { 2216 for (i = 0, p = test_bgn, d = 0; 2217 i < RW_MGR_MEM_DQ_PER_READ_DQS; 2218 i++, p++, d += delay_step) { 2219 debug_cond(DLEVEL == 1, 2220 "%s:%d: g=%u r=%u i=%u p=%u d=%u\n", 2221 __func__, __LINE__, rw_group, r, i, p, d); 2222 2223 scc_mgr_set_dq_in_delay(p, d); 2224 scc_mgr_load_dq(p); 2225 } 2226 2227 writel(0, &sdr_scc_mgr->update); 2228 } 2229 2230 /* 2231 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different 2232 * dq_in_delay values 2233 */ 2234 found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group); 2235 2236 debug_cond(DLEVEL == 1, 2237 "%s:%d: g=%u found=%u; Reseting delay chain to zero\n", 2238 __func__, __LINE__, rw_group, found); 2239 2240 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 2241 r += NUM_RANKS_PER_SHADOW_REG) { 2242 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 2243 writel(0, &sdr_scc_mgr->update); 2244 } 2245 2246 if (!found) 2247 return -EINVAL; 2248 2249 return 0; 2250 2251 } 2252 2253 /** 2254 * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS 2255 * @rw_group: Read/Write Group 2256 * @test_bgn: Rank at which the test begins 2257 * @use_read_test: Perform a read test 2258 * @update_fom: Update FOM 2259 * 2260 * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads 2261 * within a group. 2262 */ 2263 static int 2264 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn, 2265 const int use_read_test, 2266 const int update_fom) 2267 2268 { 2269 int ret, grp_calibrated; 2270 u32 rank_bgn, sr; 2271 2272 /* 2273 * Altera EMI_RM 2015.05.04 :: Figure 1-28 2274 * Read per-bit deskew can be done on a per shadow register basis. 2275 */ 2276 grp_calibrated = 1; 2277 for (rank_bgn = 0, sr = 0; 2278 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2279 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 2280 /* Check if this set of ranks should be skipped entirely. */ 2281 if (param->skip_shadow_regs[sr]) 2282 continue; 2283 2284 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group, 2285 rw_group, test_bgn, 2286 use_read_test, 2287 update_fom); 2288 if (ret) 2289 continue; 2290 2291 grp_calibrated = 0; 2292 } 2293 2294 if (!grp_calibrated) 2295 return -EIO; 2296 2297 return 0; 2298 } 2299 2300 /** 2301 * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO 2302 * @rw_group: Read/Write Group 2303 * @test_bgn: Rank at which the test begins 2304 * 2305 * Stage 1: Calibrate the read valid prediction FIFO. 2306 * 2307 * This function implements UniPHY calibration Stage 1, as explained in 2308 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 2309 * 2310 * - read valid prediction will consist of finding: 2311 * - DQS enable phase and DQS enable delay (DQS Enable Calibration) 2312 * - DQS input phase and DQS input delay (DQ/DQS Centering) 2313 * - we also do a per-bit deskew on the DQ lines. 2314 */ 2315 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn) 2316 { 2317 uint32_t p, d; 2318 uint32_t dtaps_per_ptap; 2319 uint32_t failed_substage; 2320 2321 int ret; 2322 2323 debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn); 2324 2325 /* Update info for sims */ 2326 reg_file_set_group(rw_group); 2327 reg_file_set_stage(CAL_STAGE_VFIFO); 2328 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ); 2329 2330 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ; 2331 2332 /* USER Determine number of delay taps for each phase tap. */ 2333 dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, 2334 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1; 2335 2336 for (d = 0; d <= dtaps_per_ptap; d += 2) { 2337 /* 2338 * In RLDRAMX we may be messing the delay of pins in 2339 * the same write rw_group but outside of the current read 2340 * the rw_group, but that's ok because we haven't calibrated 2341 * output side yet. 2342 */ 2343 if (d > 0) { 2344 scc_mgr_apply_group_all_out_delay_add_all_ranks( 2345 rw_group, d); 2346 } 2347 2348 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) { 2349 /* 1) Guaranteed Write */ 2350 ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p); 2351 if (ret) 2352 break; 2353 2354 /* 2) DQS Enable Calibration */ 2355 ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group, 2356 test_bgn); 2357 if (ret) { 2358 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE; 2359 continue; 2360 } 2361 2362 /* 3) Centering DQ/DQS */ 2363 /* 2364 * If doing read after write calibration, do not update 2365 * FOM now. Do it then. 2366 */ 2367 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, 2368 test_bgn, 1, 0); 2369 if (ret) { 2370 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER; 2371 continue; 2372 } 2373 2374 /* All done. */ 2375 goto cal_done_ok; 2376 } 2377 } 2378 2379 /* Calibration Stage 1 failed. */ 2380 set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage); 2381 return 0; 2382 2383 /* Calibration Stage 1 completed OK. */ 2384 cal_done_ok: 2385 /* 2386 * Reset the delay chains back to zero if they have moved > 1 2387 * (check for > 1 because loop will increase d even when pass in 2388 * first case). 2389 */ 2390 if (d > 2) 2391 scc_mgr_zero_group(rw_group, 1); 2392 2393 return 1; 2394 } 2395 2396 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */ 2397 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group, 2398 uint32_t test_bgn) 2399 { 2400 uint32_t rank_bgn, sr; 2401 uint32_t grp_calibrated; 2402 uint32_t write_group; 2403 2404 debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn); 2405 2406 /* update info for sims */ 2407 2408 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES); 2409 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 2410 2411 write_group = read_group; 2412 2413 /* update info for sims */ 2414 reg_file_set_group(read_group); 2415 2416 grp_calibrated = 1; 2417 /* Read per-bit deskew can be done on a per shadow register basis */ 2418 for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2419 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) { 2420 /* Determine if this set of ranks should be skipped entirely */ 2421 if (!param->skip_shadow_regs[sr]) { 2422 /* This is the last calibration round, update FOM here */ 2423 if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn, 2424 write_group, 2425 read_group, 2426 test_bgn, 0, 2427 1)) { 2428 grp_calibrated = 0; 2429 } 2430 } 2431 } 2432 2433 2434 if (grp_calibrated == 0) { 2435 set_failing_group_stage(write_group, 2436 CAL_STAGE_VFIFO_AFTER_WRITES, 2437 CAL_SUBSTAGE_VFIFO_CENTER); 2438 return 0; 2439 } 2440 2441 return 1; 2442 } 2443 2444 /* Calibrate LFIFO to find smallest read latency */ 2445 static uint32_t rw_mgr_mem_calibrate_lfifo(void) 2446 { 2447 uint32_t found_one; 2448 uint32_t bit_chk; 2449 2450 debug("%s:%d\n", __func__, __LINE__); 2451 2452 /* update info for sims */ 2453 reg_file_set_stage(CAL_STAGE_LFIFO); 2454 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY); 2455 2456 /* Load up the patterns used by read calibration for all ranks */ 2457 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2458 found_one = 0; 2459 2460 do { 2461 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2462 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u", 2463 __func__, __LINE__, gbl->curr_read_lat); 2464 2465 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, 2466 NUM_READ_TESTS, 2467 PASS_ALL_BITS, 2468 &bit_chk, 1)) { 2469 break; 2470 } 2471 2472 found_one = 1; 2473 /* reduce read latency and see if things are working */ 2474 /* correctly */ 2475 gbl->curr_read_lat--; 2476 } while (gbl->curr_read_lat > 0); 2477 2478 /* reset the fifos to get pointers to known state */ 2479 2480 writel(0, &phy_mgr_cmd->fifo_reset); 2481 2482 if (found_one) { 2483 /* add a fudge factor to the read latency that was determined */ 2484 gbl->curr_read_lat += 2; 2485 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2486 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \ 2487 read_lat=%u\n", __func__, __LINE__, 2488 gbl->curr_read_lat); 2489 return 1; 2490 } else { 2491 set_failing_group_stage(0xff, CAL_STAGE_LFIFO, 2492 CAL_SUBSTAGE_READ_LATENCY); 2493 2494 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \ 2495 read_lat=%u\n", __func__, __LINE__, 2496 gbl->curr_read_lat); 2497 return 0; 2498 } 2499 } 2500 2501 /* 2502 * issue write test command. 2503 * two variants are provided. one that just tests a write pattern and 2504 * another that tests datamask functionality. 2505 */ 2506 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group, 2507 uint32_t test_dm) 2508 { 2509 uint32_t mcc_instruction; 2510 uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) && 2511 ENABLE_SUPER_QUICK_CALIBRATION); 2512 uint32_t rw_wl_nop_cycles; 2513 uint32_t addr; 2514 2515 /* 2516 * Set counter and jump addresses for the right 2517 * number of NOP cycles. 2518 * The number of supported NOP cycles can range from -1 to infinity 2519 * Three different cases are handled: 2520 * 2521 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping 2522 * mechanism will be used to insert the right number of NOPs 2523 * 2524 * 2. For a number of NOP cycles equals to 0, the micro-instruction 2525 * issuing the write command will jump straight to the 2526 * micro-instruction that turns on DQS (for DDRx), or outputs write 2527 * data (for RLD), skipping 2528 * the NOP micro-instruction all together 2529 * 2530 * 3. A number of NOP cycles equal to -1 indicates that DQS must be 2531 * turned on in the same micro-instruction that issues the write 2532 * command. Then we need 2533 * to directly jump to the micro-instruction that sends out the data 2534 * 2535 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters 2536 * (2 and 3). One jump-counter (0) is used to perform multiple 2537 * write-read operations. 2538 * one counter left to issue this command in "multiple-group" mode 2539 */ 2540 2541 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles; 2542 2543 if (rw_wl_nop_cycles == -1) { 2544 /* 2545 * CNTR 2 - We want to execute the special write operation that 2546 * turns on DQS right away and then skip directly to the 2547 * instruction that sends out the data. We set the counter to a 2548 * large number so that the jump is always taken. 2549 */ 2550 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2551 2552 /* CNTR 3 - Not used */ 2553 if (test_dm) { 2554 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1; 2555 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA, 2556 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2557 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2558 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2559 } else { 2560 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1; 2561 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA, 2562 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2563 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2564 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2565 } 2566 } else if (rw_wl_nop_cycles == 0) { 2567 /* 2568 * CNTR 2 - We want to skip the NOP operation and go straight 2569 * to the DQS enable instruction. We set the counter to a large 2570 * number so that the jump is always taken. 2571 */ 2572 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2573 2574 /* CNTR 3 - Not used */ 2575 if (test_dm) { 2576 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2577 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS, 2578 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2579 } else { 2580 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2581 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS, 2582 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2583 } 2584 } else { 2585 /* 2586 * CNTR 2 - In this case we want to execute the next instruction 2587 * and NOT take the jump. So we set the counter to 0. The jump 2588 * address doesn't count. 2589 */ 2590 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2); 2591 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2592 2593 /* 2594 * CNTR 3 - Set the nop counter to the number of cycles we 2595 * need to loop for, minus 1. 2596 */ 2597 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3); 2598 if (test_dm) { 2599 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2600 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2601 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2602 } else { 2603 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2604 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2605 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2606 } 2607 } 2608 2609 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 2610 RW_MGR_RESET_READ_DATAPATH_OFFSET); 2611 2612 if (quick_write_mode) 2613 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0); 2614 else 2615 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0); 2616 2617 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 2618 2619 /* 2620 * CNTR 1 - This is used to ensure enough time elapses 2621 * for read data to come back. 2622 */ 2623 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1); 2624 2625 if (test_dm) { 2626 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT, 2627 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2628 } else { 2629 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT, 2630 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2631 } 2632 2633 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 2634 writel(mcc_instruction, addr + (group << 2)); 2635 } 2636 2637 /* Test writes, can check for a single bit pass or multiple bit pass */ 2638 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 2639 uint32_t write_group, uint32_t use_dm, uint32_t all_correct, 2640 uint32_t *bit_chk, uint32_t all_ranks) 2641 { 2642 uint32_t r; 2643 uint32_t correct_mask_vg; 2644 uint32_t tmp_bit_chk; 2645 uint32_t vg; 2646 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 2647 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 2648 uint32_t addr_rw_mgr; 2649 uint32_t base_rw_mgr; 2650 2651 *bit_chk = param->write_correct_mask; 2652 correct_mask_vg = param->write_correct_mask_vg; 2653 2654 for (r = rank_bgn; r < rank_end; r++) { 2655 if (param->skip_ranks[r]) { 2656 /* request to skip the rank */ 2657 continue; 2658 } 2659 2660 /* set rank */ 2661 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 2662 2663 tmp_bit_chk = 0; 2664 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS; 2665 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) { 2666 /* reset the fifos to get pointers to known state */ 2667 writel(0, &phy_mgr_cmd->fifo_reset); 2668 2669 tmp_bit_chk = tmp_bit_chk << 2670 (RW_MGR_MEM_DQ_PER_WRITE_DQS / 2671 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 2672 rw_mgr_mem_calibrate_write_test_issue(write_group * 2673 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg, 2674 use_dm); 2675 2676 base_rw_mgr = readl(addr_rw_mgr); 2677 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 2678 if (vg == 0) 2679 break; 2680 } 2681 *bit_chk &= tmp_bit_chk; 2682 } 2683 2684 if (all_correct) { 2685 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2686 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \ 2687 %u => %lu", write_group, use_dm, 2688 *bit_chk, param->write_correct_mask, 2689 (long unsigned int)(*bit_chk == 2690 param->write_correct_mask)); 2691 return *bit_chk == param->write_correct_mask; 2692 } else { 2693 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2694 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ", 2695 write_group, use_dm, *bit_chk); 2696 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0, 2697 (long unsigned int)(*bit_chk != 0)); 2698 return *bit_chk != 0x00; 2699 } 2700 } 2701 2702 /* 2703 * center all windows. do per-bit-deskew to possibly increase size of 2704 * certain windows. 2705 */ 2706 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn, 2707 uint32_t write_group, uint32_t test_bgn) 2708 { 2709 uint32_t i, p, min_index; 2710 int32_t d; 2711 /* 2712 * Store these as signed since there are comparisons with 2713 * signed numbers. 2714 */ 2715 uint32_t bit_chk; 2716 uint32_t sticky_bit_chk; 2717 int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2718 int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2719 int32_t mid; 2720 int32_t mid_min, orig_mid_min; 2721 int32_t new_dqs, start_dqs, shift_dq; 2722 int32_t dq_margin, dqs_margin, dm_margin; 2723 uint32_t stop; 2724 uint32_t temp_dq_out1_delay; 2725 uint32_t addr; 2726 2727 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn); 2728 2729 dm_margin = 0; 2730 2731 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2732 start_dqs = readl(addr + 2733 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 2734 2735 /* per-bit deskew */ 2736 2737 /* 2738 * set the left and right edge of each bit to an illegal value 2739 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 2740 */ 2741 sticky_bit_chk = 0; 2742 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2743 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2744 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2745 } 2746 2747 /* Search for the left edge of the window for each bit */ 2748 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) { 2749 scc_mgr_apply_group_dq_out1_delay(write_group, d); 2750 2751 writel(0, &sdr_scc_mgr->update); 2752 2753 /* 2754 * Stop searching when the read test doesn't pass AND when 2755 * we've seen a passing read on every bit. 2756 */ 2757 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2758 0, PASS_ONE_BIT, &bit_chk, 0); 2759 sticky_bit_chk = sticky_bit_chk | bit_chk; 2760 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2761 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \ 2762 == %u && %u [bit_chk= %u ]\n", 2763 d, sticky_bit_chk, param->write_correct_mask, 2764 stop, bit_chk); 2765 2766 if (stop == 1) { 2767 break; 2768 } else { 2769 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2770 if (bit_chk & 1) { 2771 /* 2772 * Remember a passing test as the 2773 * left_edge. 2774 */ 2775 left_edge[i] = d; 2776 } else { 2777 /* 2778 * If a left edge has not been seen 2779 * yet, then a future passing test will 2780 * mark this edge as the right edge. 2781 */ 2782 if (left_edge[i] == 2783 IO_IO_OUT1_DELAY_MAX + 1) { 2784 right_edge[i] = -(d + 1); 2785 } 2786 } 2787 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d); 2788 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2789 (int)(bit_chk & 1), i, left_edge[i]); 2790 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2791 right_edge[i]); 2792 bit_chk = bit_chk >> 1; 2793 } 2794 } 2795 } 2796 2797 /* Reset DQ delay chains to 0 */ 2798 scc_mgr_apply_group_dq_out1_delay(0); 2799 sticky_bit_chk = 0; 2800 for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) { 2801 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2802 %d right_edge[%u]: %d\n", __func__, __LINE__, 2803 i, left_edge[i], i, right_edge[i]); 2804 2805 /* 2806 * Check for cases where we haven't found the left edge, 2807 * which makes our assignment of the the right edge invalid. 2808 * Reset it to the illegal value. 2809 */ 2810 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) && 2811 (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) { 2812 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2813 debug_cond(DLEVEL == 2, "%s:%d write_center: reset \ 2814 right_edge[%u]: %d\n", __func__, __LINE__, 2815 i, right_edge[i]); 2816 } 2817 2818 /* 2819 * Reset sticky bit (except for bits where we have 2820 * seen the left edge). 2821 */ 2822 sticky_bit_chk = sticky_bit_chk << 1; 2823 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) 2824 sticky_bit_chk = sticky_bit_chk | 1; 2825 2826 if (i == 0) 2827 break; 2828 } 2829 2830 /* Search for the right edge of the window for each bit */ 2831 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) { 2832 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2833 d + start_dqs); 2834 2835 writel(0, &sdr_scc_mgr->update); 2836 2837 /* 2838 * Stop searching when the read test doesn't pass AND when 2839 * we've seen a passing read on every bit. 2840 */ 2841 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2842 0, PASS_ONE_BIT, &bit_chk, 0); 2843 2844 sticky_bit_chk = sticky_bit_chk | bit_chk; 2845 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2846 2847 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \ 2848 %u && %u\n", d, sticky_bit_chk, 2849 param->write_correct_mask, stop); 2850 2851 if (stop == 1) { 2852 if (d == 0) { 2853 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; 2854 i++) { 2855 /* d = 0 failed, but it passed when 2856 testing the left edge, so it must be 2857 marginal, set it to -1 */ 2858 if (right_edge[i] == 2859 IO_IO_OUT1_DELAY_MAX + 1 && 2860 left_edge[i] != 2861 IO_IO_OUT1_DELAY_MAX + 1) { 2862 right_edge[i] = -1; 2863 } 2864 } 2865 } 2866 break; 2867 } else { 2868 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2869 if (bit_chk & 1) { 2870 /* 2871 * Remember a passing test as 2872 * the right_edge. 2873 */ 2874 right_edge[i] = d; 2875 } else { 2876 if (d != 0) { 2877 /* 2878 * If a right edge has not 2879 * been seen yet, then a future 2880 * passing test will mark this 2881 * edge as the left edge. 2882 */ 2883 if (right_edge[i] == 2884 IO_IO_OUT1_DELAY_MAX + 1) 2885 left_edge[i] = -(d + 1); 2886 } else { 2887 /* 2888 * d = 0 failed, but it passed 2889 * when testing the left edge, 2890 * so it must be marginal, set 2891 * it to -1. 2892 */ 2893 if (right_edge[i] == 2894 IO_IO_OUT1_DELAY_MAX + 1 && 2895 left_edge[i] != 2896 IO_IO_OUT1_DELAY_MAX + 1) 2897 right_edge[i] = -1; 2898 /* 2899 * If a right edge has not been 2900 * seen yet, then a future 2901 * passing test will mark this 2902 * edge as the left edge. 2903 */ 2904 else if (right_edge[i] == 2905 IO_IO_OUT1_DELAY_MAX + 2906 1) 2907 left_edge[i] = -(d + 1); 2908 } 2909 } 2910 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d); 2911 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2912 (int)(bit_chk & 1), i, left_edge[i]); 2913 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2914 right_edge[i]); 2915 bit_chk = bit_chk >> 1; 2916 } 2917 } 2918 } 2919 2920 /* Check that all bits have a window */ 2921 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2922 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2923 %d right_edge[%u]: %d", __func__, __LINE__, 2924 i, left_edge[i], i, right_edge[i]); 2925 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) || 2926 (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) { 2927 set_failing_group_stage(test_bgn + i, 2928 CAL_STAGE_WRITES, 2929 CAL_SUBSTAGE_WRITES_CENTER); 2930 return 0; 2931 } 2932 } 2933 2934 /* Find middle of window for each DQ bit */ 2935 mid_min = left_edge[0] - right_edge[0]; 2936 min_index = 0; 2937 for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2938 mid = left_edge[i] - right_edge[i]; 2939 if (mid < mid_min) { 2940 mid_min = mid; 2941 min_index = i; 2942 } 2943 } 2944 2945 /* 2946 * -mid_min/2 represents the amount that we need to move DQS. 2947 * If mid_min is odd and positive we'll need to add one to 2948 * make sure the rounding in further calculations is correct 2949 * (always bias to the right), so just add 1 for all positive values. 2950 */ 2951 if (mid_min > 0) 2952 mid_min++; 2953 mid_min = mid_min / 2; 2954 debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__, 2955 __LINE__, mid_min); 2956 2957 /* Determine the amount we can change DQS (which is -mid_min) */ 2958 orig_mid_min = mid_min; 2959 new_dqs = start_dqs; 2960 mid_min = 0; 2961 debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \ 2962 mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min); 2963 /* Initialize data for export structures */ 2964 dqs_margin = IO_IO_OUT1_DELAY_MAX + 1; 2965 dq_margin = IO_IO_OUT1_DELAY_MAX + 1; 2966 2967 /* add delay to bring centre of all DQ windows to the same "level" */ 2968 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 2969 /* Use values before divide by 2 to reduce round off error */ 2970 shift_dq = (left_edge[i] - right_edge[i] - 2971 (left_edge[min_index] - right_edge[min_index]))/2 + 2972 (orig_mid_min - mid_min); 2973 2974 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \ 2975 [%u]=%d\n", __func__, __LINE__, i, shift_dq); 2976 2977 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2978 temp_dq_out1_delay = readl(addr + (i << 2)); 2979 if (shift_dq + (int32_t)temp_dq_out1_delay > 2980 (int32_t)IO_IO_OUT1_DELAY_MAX) { 2981 shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay; 2982 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) { 2983 shift_dq = -(int32_t)temp_dq_out1_delay; 2984 } 2985 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n", 2986 i, shift_dq); 2987 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq); 2988 scc_mgr_load_dq(i); 2989 2990 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i, 2991 left_edge[i] - shift_dq + (-mid_min), 2992 right_edge[i] + shift_dq - (-mid_min)); 2993 /* To determine values for export structures */ 2994 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2995 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2996 2997 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2998 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2999 } 3000 3001 /* Move DQS */ 3002 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3003 writel(0, &sdr_scc_mgr->update); 3004 3005 /* Centre DM */ 3006 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__); 3007 3008 /* 3009 * set the left and right edge of each bit to an illegal value, 3010 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value, 3011 */ 3012 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 3013 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 3014 int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3015 int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3016 int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1; 3017 int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1; 3018 int32_t win_best = 0; 3019 3020 /* Search for the/part of the window with DM shift */ 3021 for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) { 3022 scc_mgr_apply_group_dm_out1_delay(d); 3023 writel(0, &sdr_scc_mgr->update); 3024 3025 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3026 PASS_ALL_BITS, &bit_chk, 3027 0)) { 3028 /* USE Set current end of the window */ 3029 end_curr = -d; 3030 /* 3031 * If a starting edge of our window has not been seen 3032 * this is our current start of the DM window. 3033 */ 3034 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3035 bgn_curr = -d; 3036 3037 /* 3038 * If current window is bigger than best seen. 3039 * Set best seen to be current window. 3040 */ 3041 if ((end_curr-bgn_curr+1) > win_best) { 3042 win_best = end_curr-bgn_curr+1; 3043 bgn_best = bgn_curr; 3044 end_best = end_curr; 3045 } 3046 } else { 3047 /* We just saw a failing test. Reset temp edge */ 3048 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3049 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3050 } 3051 } 3052 3053 3054 /* Reset DM delay chains to 0 */ 3055 scc_mgr_apply_group_dm_out1_delay(0); 3056 3057 /* 3058 * Check to see if the current window nudges up aganist 0 delay. 3059 * If so we need to continue the search by shifting DQS otherwise DQS 3060 * search begins as a new search. */ 3061 if (end_curr != 0) { 3062 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3063 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3064 } 3065 3066 /* Search for the/part of the window with DQS shifts */ 3067 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) { 3068 /* 3069 * Note: This only shifts DQS, so are we limiting ourselve to 3070 * width of DQ unnecessarily. 3071 */ 3072 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 3073 d + new_dqs); 3074 3075 writel(0, &sdr_scc_mgr->update); 3076 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3077 PASS_ALL_BITS, &bit_chk, 3078 0)) { 3079 /* USE Set current end of the window */ 3080 end_curr = d; 3081 /* 3082 * If a beginning edge of our window has not been seen 3083 * this is our current begin of the DM window. 3084 */ 3085 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3086 bgn_curr = d; 3087 3088 /* 3089 * If current window is bigger than best seen. Set best 3090 * seen to be current window. 3091 */ 3092 if ((end_curr-bgn_curr+1) > win_best) { 3093 win_best = end_curr-bgn_curr+1; 3094 bgn_best = bgn_curr; 3095 end_best = end_curr; 3096 } 3097 } else { 3098 /* We just saw a failing test. Reset temp edge */ 3099 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3100 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3101 3102 /* Early exit optimization: if ther remaining delay 3103 chain space is less than already seen largest window 3104 we can exit */ 3105 if ((win_best-1) > 3106 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) { 3107 break; 3108 } 3109 } 3110 } 3111 3112 /* assign left and right edge for cal and reporting; */ 3113 left_edge[0] = -1*bgn_best; 3114 right_edge[0] = end_best; 3115 3116 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__, 3117 __LINE__, left_edge[0], right_edge[0]); 3118 3119 /* Move DQS (back to orig) */ 3120 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3121 3122 /* Move DM */ 3123 3124 /* Find middle of window for the DM bit */ 3125 mid = (left_edge[0] - right_edge[0]) / 2; 3126 3127 /* only move right, since we are not moving DQS/DQ */ 3128 if (mid < 0) 3129 mid = 0; 3130 3131 /* dm_marign should fail if we never find a window */ 3132 if (win_best == 0) 3133 dm_margin = -1; 3134 else 3135 dm_margin = left_edge[0] - mid; 3136 3137 scc_mgr_apply_group_dm_out1_delay(mid); 3138 writel(0, &sdr_scc_mgr->update); 3139 3140 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \ 3141 dm_margin=%d\n", __func__, __LINE__, left_edge[0], 3142 right_edge[0], mid, dm_margin); 3143 /* Export values */ 3144 gbl->fom_out += dq_margin + dqs_margin; 3145 3146 debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \ 3147 dqs_margin=%d dm_margin=%d\n", __func__, __LINE__, 3148 dq_margin, dqs_margin, dm_margin); 3149 3150 /* 3151 * Do not remove this line as it makes sure all of our 3152 * decisions have been applied. 3153 */ 3154 writel(0, &sdr_scc_mgr->update); 3155 return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0); 3156 } 3157 3158 /* calibrate the write operations */ 3159 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g, 3160 uint32_t test_bgn) 3161 { 3162 /* update info for sims */ 3163 debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn); 3164 3165 reg_file_set_stage(CAL_STAGE_WRITES); 3166 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER); 3167 3168 reg_file_set_group(g); 3169 3170 if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) { 3171 set_failing_group_stage(g, CAL_STAGE_WRITES, 3172 CAL_SUBSTAGE_WRITES_CENTER); 3173 return 0; 3174 } 3175 3176 return 1; 3177 } 3178 3179 /** 3180 * mem_precharge_and_activate() - Precharge all banks and activate 3181 * 3182 * Precharge all banks and activate row 0 in bank "000..." and bank "111...". 3183 */ 3184 static void mem_precharge_and_activate(void) 3185 { 3186 int r; 3187 3188 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 3189 /* Test if the rank should be skipped. */ 3190 if (param->skip_ranks[r]) 3191 continue; 3192 3193 /* Set rank. */ 3194 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 3195 3196 /* Precharge all banks. */ 3197 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3198 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3199 3200 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0); 3201 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1, 3202 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 3203 3204 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1); 3205 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2, 3206 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 3207 3208 /* Activate rows. */ 3209 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3210 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3211 } 3212 } 3213 3214 /** 3215 * mem_init_latency() - Configure memory RLAT and WLAT settings 3216 * 3217 * Configure memory RLAT and WLAT parameters. 3218 */ 3219 static void mem_init_latency(void) 3220 { 3221 /* 3222 * For AV/CV, LFIFO is hardened and always runs at full rate 3223 * so max latency in AFI clocks, used here, is correspondingly 3224 * smaller. 3225 */ 3226 const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1; 3227 u32 rlat, wlat; 3228 3229 debug("%s:%d\n", __func__, __LINE__); 3230 3231 /* 3232 * Read in write latency. 3233 * WL for Hard PHY does not include additive latency. 3234 */ 3235 wlat = readl(&data_mgr->t_wl_add); 3236 wlat += readl(&data_mgr->mem_t_add); 3237 3238 gbl->rw_wl_nop_cycles = wlat - 1; 3239 3240 /* Read in readl latency. */ 3241 rlat = readl(&data_mgr->t_rl_add); 3242 3243 /* Set a pretty high read latency initially. */ 3244 gbl->curr_read_lat = rlat + 16; 3245 if (gbl->curr_read_lat > max_latency) 3246 gbl->curr_read_lat = max_latency; 3247 3248 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3249 3250 /* Advertise write latency. */ 3251 writel(wlat, &phy_mgr_cfg->afi_wlat); 3252 } 3253 3254 /** 3255 * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings 3256 * 3257 * Set VFIFO and LFIFO to instant-on settings in skip calibration mode. 3258 */ 3259 static void mem_skip_calibrate(void) 3260 { 3261 uint32_t vfifo_offset; 3262 uint32_t i, j, r; 3263 3264 debug("%s:%d\n", __func__, __LINE__); 3265 /* Need to update every shadow register set used by the interface */ 3266 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 3267 r += NUM_RANKS_PER_SHADOW_REG) { 3268 /* 3269 * Set output phase alignment settings appropriate for 3270 * skip calibration. 3271 */ 3272 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3273 scc_mgr_set_dqs_en_phase(i, 0); 3274 #if IO_DLL_CHAIN_LENGTH == 6 3275 scc_mgr_set_dqdqs_output_phase(i, 6); 3276 #else 3277 scc_mgr_set_dqdqs_output_phase(i, 7); 3278 #endif 3279 /* 3280 * Case:33398 3281 * 3282 * Write data arrives to the I/O two cycles before write 3283 * latency is reached (720 deg). 3284 * -> due to bit-slip in a/c bus 3285 * -> to allow board skew where dqs is longer than ck 3286 * -> how often can this happen!? 3287 * -> can claim back some ptaps for high freq 3288 * support if we can relax this, but i digress... 3289 * 3290 * The write_clk leads mem_ck by 90 deg 3291 * The minimum ptap of the OPA is 180 deg 3292 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay 3293 * The write_clk is always delayed by 2 ptaps 3294 * 3295 * Hence, to make DQS aligned to CK, we need to delay 3296 * DQS by: 3297 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH)) 3298 * 3299 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH) 3300 * gives us the number of ptaps, which simplies to: 3301 * 3302 * (1.25 * IO_DLL_CHAIN_LENGTH - 2) 3303 */ 3304 scc_mgr_set_dqdqs_output_phase(i, 3305 1.25 * IO_DLL_CHAIN_LENGTH - 2); 3306 } 3307 writel(0xff, &sdr_scc_mgr->dqs_ena); 3308 writel(0xff, &sdr_scc_mgr->dqs_io_ena); 3309 3310 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 3311 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3312 SCC_MGR_GROUP_COUNTER_OFFSET); 3313 } 3314 writel(0xff, &sdr_scc_mgr->dq_ena); 3315 writel(0xff, &sdr_scc_mgr->dm_ena); 3316 writel(0, &sdr_scc_mgr->update); 3317 } 3318 3319 /* Compensate for simulation model behaviour */ 3320 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3321 scc_mgr_set_dqs_bus_in_delay(i, 10); 3322 scc_mgr_load_dqs(i); 3323 } 3324 writel(0, &sdr_scc_mgr->update); 3325 3326 /* 3327 * ArriaV has hard FIFOs that can only be initialized by incrementing 3328 * in sequencer. 3329 */ 3330 vfifo_offset = CALIB_VFIFO_OFFSET; 3331 for (j = 0; j < vfifo_offset; j++) 3332 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy); 3333 writel(0, &phy_mgr_cmd->fifo_reset); 3334 3335 /* 3336 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal 3337 * setting from generation-time constant. 3338 */ 3339 gbl->curr_read_lat = CALIB_LFIFO_OFFSET; 3340 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3341 } 3342 3343 /** 3344 * mem_calibrate() - Memory calibration entry point. 3345 * 3346 * Perform memory calibration. 3347 */ 3348 static uint32_t mem_calibrate(void) 3349 { 3350 uint32_t i; 3351 uint32_t rank_bgn, sr; 3352 uint32_t write_group, write_test_bgn; 3353 uint32_t read_group, read_test_bgn; 3354 uint32_t run_groups, current_run; 3355 uint32_t failing_groups = 0; 3356 uint32_t group_failed = 0; 3357 3358 const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 3359 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 3360 3361 debug("%s:%d\n", __func__, __LINE__); 3362 3363 /* Initialize the data settings */ 3364 gbl->error_substage = CAL_SUBSTAGE_NIL; 3365 gbl->error_stage = CAL_STAGE_NIL; 3366 gbl->error_group = 0xff; 3367 gbl->fom_in = 0; 3368 gbl->fom_out = 0; 3369 3370 /* Initialize WLAT and RLAT. */ 3371 mem_init_latency(); 3372 3373 /* Initialize bit slips. */ 3374 mem_precharge_and_activate(); 3375 3376 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3377 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3378 SCC_MGR_GROUP_COUNTER_OFFSET); 3379 /* Only needed once to set all groups, pins, DQ, DQS, DM. */ 3380 if (i == 0) 3381 scc_mgr_set_hhp_extras(); 3382 3383 scc_set_bypass_mode(i); 3384 } 3385 3386 /* Calibration is skipped. */ 3387 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) { 3388 /* 3389 * Set VFIFO and LFIFO to instant-on settings in skip 3390 * calibration mode. 3391 */ 3392 mem_skip_calibrate(); 3393 3394 /* 3395 * Do not remove this line as it makes sure all of our 3396 * decisions have been applied. 3397 */ 3398 writel(0, &sdr_scc_mgr->update); 3399 return 1; 3400 } 3401 3402 /* Calibration is not skipped. */ 3403 for (i = 0; i < NUM_CALIB_REPEAT; i++) { 3404 /* 3405 * Zero all delay chain/phase settings for all 3406 * groups and all shadow register sets. 3407 */ 3408 scc_mgr_zero_all(); 3409 3410 run_groups = ~param->skip_groups; 3411 3412 for (write_group = 0, write_test_bgn = 0; write_group 3413 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++, 3414 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) { 3415 3416 /* Initialize the group failure */ 3417 group_failed = 0; 3418 3419 current_run = run_groups & ((1 << 3420 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1); 3421 run_groups = run_groups >> 3422 RW_MGR_NUM_DQS_PER_WRITE_GROUP; 3423 3424 if (current_run == 0) 3425 continue; 3426 3427 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS | 3428 SCC_MGR_GROUP_COUNTER_OFFSET); 3429 scc_mgr_zero_group(write_group, 0); 3430 3431 for (read_group = write_group * rwdqs_ratio, 3432 read_test_bgn = 0; 3433 read_group < (write_group + 1) * rwdqs_ratio; 3434 read_group++, 3435 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3436 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO) 3437 continue; 3438 3439 /* Calibrate the VFIFO */ 3440 if (rw_mgr_mem_calibrate_vfifo(read_group, 3441 read_test_bgn)) 3442 continue; 3443 3444 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3445 return 0; 3446 3447 /* The group failed, we're done. */ 3448 goto grp_failed; 3449 } 3450 3451 /* Calibrate the output side */ 3452 for (rank_bgn = 0, sr = 0; 3453 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 3454 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 3455 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3456 continue; 3457 3458 /* Not needed in quick mode! */ 3459 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) 3460 continue; 3461 3462 /* 3463 * Determine if this set of ranks 3464 * should be skipped entirely. 3465 */ 3466 if (param->skip_shadow_regs[sr]) 3467 continue; 3468 3469 /* Calibrate WRITEs */ 3470 if (rw_mgr_mem_calibrate_writes(rank_bgn, 3471 write_group, write_test_bgn)) 3472 continue; 3473 3474 group_failed = 1; 3475 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3476 return 0; 3477 } 3478 3479 /* Some group failed, we're done. */ 3480 if (group_failed) 3481 goto grp_failed; 3482 3483 for (read_group = write_group * rwdqs_ratio, 3484 read_test_bgn = 0; 3485 read_group < (write_group + 1) * rwdqs_ratio; 3486 read_group++, 3487 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3488 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3489 continue; 3490 3491 if (rw_mgr_mem_calibrate_vfifo_end(read_group, 3492 read_test_bgn)) 3493 continue; 3494 3495 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3496 return 0; 3497 3498 /* The group failed, we're done. */ 3499 goto grp_failed; 3500 } 3501 3502 /* No group failed, continue as usual. */ 3503 continue; 3504 3505 grp_failed: /* A group failed, increment the counter. */ 3506 failing_groups++; 3507 } 3508 3509 /* 3510 * USER If there are any failing groups then report 3511 * the failure. 3512 */ 3513 if (failing_groups != 0) 3514 return 0; 3515 3516 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO) 3517 continue; 3518 3519 /* 3520 * If we're skipping groups as part of debug, 3521 * don't calibrate LFIFO. 3522 */ 3523 if (param->skip_groups != 0) 3524 continue; 3525 3526 /* Calibrate the LFIFO */ 3527 if (!rw_mgr_mem_calibrate_lfifo()) 3528 return 0; 3529 } 3530 3531 /* 3532 * Do not remove this line as it makes sure all of our decisions 3533 * have been applied. 3534 */ 3535 writel(0, &sdr_scc_mgr->update); 3536 return 1; 3537 } 3538 3539 /** 3540 * run_mem_calibrate() - Perform memory calibration 3541 * 3542 * This function triggers the entire memory calibration procedure. 3543 */ 3544 static int run_mem_calibrate(void) 3545 { 3546 int pass; 3547 3548 debug("%s:%d\n", __func__, __LINE__); 3549 3550 /* Reset pass/fail status shown on afi_cal_success/fail */ 3551 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status); 3552 3553 /* Stop tracking manager. */ 3554 clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3555 3556 phy_mgr_initialize(); 3557 rw_mgr_mem_initialize(); 3558 3559 /* Perform the actual memory calibration. */ 3560 pass = mem_calibrate(); 3561 3562 mem_precharge_and_activate(); 3563 writel(0, &phy_mgr_cmd->fifo_reset); 3564 3565 /* Handoff. */ 3566 rw_mgr_mem_handoff(); 3567 /* 3568 * In Hard PHY this is a 2-bit control: 3569 * 0: AFI Mux Select 3570 * 1: DDIO Mux Select 3571 */ 3572 writel(0x2, &phy_mgr_cfg->mux_sel); 3573 3574 /* Start tracking manager. */ 3575 setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3576 3577 return pass; 3578 } 3579 3580 /** 3581 * debug_mem_calibrate() - Report result of memory calibration 3582 * @pass: Value indicating whether calibration passed or failed 3583 * 3584 * This function reports the results of the memory calibration 3585 * and writes debug information into the register file. 3586 */ 3587 static void debug_mem_calibrate(int pass) 3588 { 3589 uint32_t debug_info; 3590 3591 if (pass) { 3592 printf("%s: CALIBRATION PASSED\n", __FILE__); 3593 3594 gbl->fom_in /= 2; 3595 gbl->fom_out /= 2; 3596 3597 if (gbl->fom_in > 0xff) 3598 gbl->fom_in = 0xff; 3599 3600 if (gbl->fom_out > 0xff) 3601 gbl->fom_out = 0xff; 3602 3603 /* Update the FOM in the register file */ 3604 debug_info = gbl->fom_in; 3605 debug_info |= gbl->fom_out << 8; 3606 writel(debug_info, &sdr_reg_file->fom); 3607 3608 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3609 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status); 3610 } else { 3611 printf("%s: CALIBRATION FAILED\n", __FILE__); 3612 3613 debug_info = gbl->error_stage; 3614 debug_info |= gbl->error_substage << 8; 3615 debug_info |= gbl->error_group << 16; 3616 3617 writel(debug_info, &sdr_reg_file->failing_stage); 3618 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3619 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status); 3620 3621 /* Update the failing group/stage in the register file */ 3622 debug_info = gbl->error_stage; 3623 debug_info |= gbl->error_substage << 8; 3624 debug_info |= gbl->error_group << 16; 3625 writel(debug_info, &sdr_reg_file->failing_stage); 3626 } 3627 3628 printf("%s: Calibration complete\n", __FILE__); 3629 } 3630 3631 /** 3632 * hc_initialize_rom_data() - Initialize ROM data 3633 * 3634 * Initialize ROM data. 3635 */ 3636 static void hc_initialize_rom_data(void) 3637 { 3638 u32 i, addr; 3639 3640 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET; 3641 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++) 3642 writel(inst_rom_init[i], addr + (i << 2)); 3643 3644 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET; 3645 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++) 3646 writel(ac_rom_init[i], addr + (i << 2)); 3647 } 3648 3649 /** 3650 * initialize_reg_file() - Initialize SDR register file 3651 * 3652 * Initialize SDR register file. 3653 */ 3654 static void initialize_reg_file(void) 3655 { 3656 /* Initialize the register file with the correct data */ 3657 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature); 3658 writel(0, &sdr_reg_file->debug_data_addr); 3659 writel(0, &sdr_reg_file->cur_stage); 3660 writel(0, &sdr_reg_file->fom); 3661 writel(0, &sdr_reg_file->failing_stage); 3662 writel(0, &sdr_reg_file->debug1); 3663 writel(0, &sdr_reg_file->debug2); 3664 } 3665 3666 /** 3667 * initialize_hps_phy() - Initialize HPS PHY 3668 * 3669 * Initialize HPS PHY. 3670 */ 3671 static void initialize_hps_phy(void) 3672 { 3673 uint32_t reg; 3674 /* 3675 * Tracking also gets configured here because it's in the 3676 * same register. 3677 */ 3678 uint32_t trk_sample_count = 7500; 3679 uint32_t trk_long_idle_sample_count = (10 << 16) | 100; 3680 /* 3681 * Format is number of outer loops in the 16 MSB, sample 3682 * count in 16 LSB. 3683 */ 3684 3685 reg = 0; 3686 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2); 3687 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1); 3688 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1); 3689 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1); 3690 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0); 3691 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1); 3692 /* 3693 * This field selects the intrinsic latency to RDATA_EN/FULL path. 3694 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles. 3695 */ 3696 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0); 3697 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET( 3698 trk_sample_count); 3699 writel(reg, &sdr_ctrl->phy_ctrl0); 3700 3701 reg = 0; 3702 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET( 3703 trk_sample_count >> 3704 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH); 3705 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET( 3706 trk_long_idle_sample_count); 3707 writel(reg, &sdr_ctrl->phy_ctrl1); 3708 3709 reg = 0; 3710 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET( 3711 trk_long_idle_sample_count >> 3712 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH); 3713 writel(reg, &sdr_ctrl->phy_ctrl2); 3714 } 3715 3716 /** 3717 * initialize_tracking() - Initialize tracking 3718 * 3719 * Initialize the register file with usable initial data. 3720 */ 3721 static void initialize_tracking(void) 3722 { 3723 /* 3724 * Initialize the register file with the correct data. 3725 * Compute usable version of value in case we skip full 3726 * computation later. 3727 */ 3728 writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1, 3729 &sdr_reg_file->dtaps_per_ptap); 3730 3731 /* trk_sample_count */ 3732 writel(7500, &sdr_reg_file->trk_sample_count); 3733 3734 /* longidle outer loop [15:0] */ 3735 writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle); 3736 3737 /* 3738 * longidle sample count [31:24] 3739 * trfc, worst case of 933Mhz 4Gb [23:16] 3740 * trcd, worst case [15:8] 3741 * vfifo wait [7:0] 3742 */ 3743 writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0), 3744 &sdr_reg_file->delays); 3745 3746 /* mux delay */ 3747 writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) | 3748 (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0), 3749 &sdr_reg_file->trk_rw_mgr_addr); 3750 3751 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, 3752 &sdr_reg_file->trk_read_dqs_width); 3753 3754 /* trefi [7:0] */ 3755 writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0), 3756 &sdr_reg_file->trk_rfsh); 3757 } 3758 3759 int sdram_calibration_full(void) 3760 { 3761 struct param_type my_param; 3762 struct gbl_type my_gbl; 3763 uint32_t pass; 3764 3765 memset(&my_param, 0, sizeof(my_param)); 3766 memset(&my_gbl, 0, sizeof(my_gbl)); 3767 3768 param = &my_param; 3769 gbl = &my_gbl; 3770 3771 /* Set the calibration enabled by default */ 3772 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT; 3773 /* 3774 * Only sweep all groups (regardless of fail state) by default 3775 * Set enabled read test by default. 3776 */ 3777 #if DISABLE_GUARANTEED_READ 3778 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ; 3779 #endif 3780 /* Initialize the register file */ 3781 initialize_reg_file(); 3782 3783 /* Initialize any PHY CSR */ 3784 initialize_hps_phy(); 3785 3786 scc_mgr_initialize(); 3787 3788 initialize_tracking(); 3789 3790 printf("%s: Preparing to start memory calibration\n", __FILE__); 3791 3792 debug("%s:%d\n", __func__, __LINE__); 3793 debug_cond(DLEVEL == 1, 3794 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ", 3795 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM, 3796 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS, 3797 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS, 3798 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 3799 debug_cond(DLEVEL == 1, 3800 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ", 3801 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3802 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH, 3803 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP); 3804 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u", 3805 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH); 3806 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ", 3807 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX, 3808 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX); 3809 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ", 3810 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX, 3811 IO_IO_OUT2_DELAY_MAX); 3812 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n", 3813 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE); 3814 3815 hc_initialize_rom_data(); 3816 3817 /* update info for sims */ 3818 reg_file_set_stage(CAL_STAGE_NIL); 3819 reg_file_set_group(0); 3820 3821 /* 3822 * Load global needed for those actions that require 3823 * some dynamic calibration support. 3824 */ 3825 dyn_calib_steps = STATIC_CALIB_STEPS; 3826 /* 3827 * Load global to allow dynamic selection of delay loop settings 3828 * based on calibration mode. 3829 */ 3830 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS)) 3831 skip_delay_mask = 0xff; 3832 else 3833 skip_delay_mask = 0x0; 3834 3835 pass = run_mem_calibrate(); 3836 debug_mem_calibrate(pass); 3837 return pass; 3838 } 3839