xref: /openbmc/u-boot/drivers/ddr/altera/sequencer.c (revision 0c1b81bdf391b99863a5f8ffa8eb81c5d1cad3f6)
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6 
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include <errno.h>
11 #include "sequencer.h"
12 #include "sequencer_auto.h"
13 #include "sequencer_auto_ac_init.h"
14 #include "sequencer_auto_inst_init.h"
15 #include "sequencer_defines.h"
16 
17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
18 	(struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
19 
20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
21 	(struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
22 
23 static struct socfpga_sdr_reg_file *sdr_reg_file =
24 	(struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
25 
26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
27 	(struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
28 
29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
30 	(struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
31 
32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
33 	(struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
34 
35 static struct socfpga_data_mgr *data_mgr =
36 	(struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
37 
38 static struct socfpga_sdr_ctrl *sdr_ctrl =
39 	(struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
40 
41 #define DELTA_D		1
42 
43 /*
44  * In order to reduce ROM size, most of the selectable calibration steps are
45  * decided at compile time based on the user's calibration mode selection,
46  * as captured by the STATIC_CALIB_STEPS selection below.
47  *
48  * However, to support simulation-time selection of fast simulation mode, where
49  * we skip everything except the bare minimum, we need a few of the steps to
50  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
51  * check, which is based on the rtl-supplied value, or we dynamically compute
52  * the value to use based on the dynamically-chosen calibration mode
53  */
54 
55 #define DLEVEL 0
56 #define STATIC_IN_RTL_SIM 0
57 #define STATIC_SKIP_DELAY_LOOPS 0
58 
59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
60 	STATIC_SKIP_DELAY_LOOPS)
61 
62 /* calibration steps requested by the rtl */
63 uint16_t dyn_calib_steps;
64 
65 /*
66  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
67  * instead of static, we use boolean logic to select between
68  * non-skip and skip values
69  *
70  * The mask is set to include all bits when not-skipping, but is
71  * zero when skipping
72  */
73 
74 uint16_t skip_delay_mask;	/* mask off bits when skipping/not-skipping */
75 
76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
77 	((non_skip_value) & skip_delay_mask)
78 
79 struct gbl_type *gbl;
80 struct param_type *param;
81 uint32_t curr_shadow_reg;
82 
83 static void set_failing_group_stage(uint32_t group, uint32_t stage,
84 	uint32_t substage)
85 {
86 	/*
87 	 * Only set the global stage if there was not been any other
88 	 * failing group
89 	 */
90 	if (gbl->error_stage == CAL_STAGE_NIL)	{
91 		gbl->error_substage = substage;
92 		gbl->error_stage = stage;
93 		gbl->error_group = group;
94 	}
95 }
96 
97 static void reg_file_set_group(u16 set_group)
98 {
99 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
100 }
101 
102 static void reg_file_set_stage(u8 set_stage)
103 {
104 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
105 }
106 
107 static void reg_file_set_sub_stage(u8 set_sub_stage)
108 {
109 	set_sub_stage &= 0xff;
110 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
111 }
112 
113 /**
114  * phy_mgr_initialize() - Initialize PHY Manager
115  *
116  * Initialize PHY Manager.
117  */
118 static void phy_mgr_initialize(void)
119 {
120 	u32 ratio;
121 
122 	debug("%s:%d\n", __func__, __LINE__);
123 	/* Calibration has control over path to memory */
124 	/*
125 	 * In Hard PHY this is a 2-bit control:
126 	 * 0: AFI Mux Select
127 	 * 1: DDIO Mux Select
128 	 */
129 	writel(0x3, &phy_mgr_cfg->mux_sel);
130 
131 	/* USER memory clock is not stable we begin initialization  */
132 	writel(0, &phy_mgr_cfg->reset_mem_stbl);
133 
134 	/* USER calibration status all set to zero */
135 	writel(0, &phy_mgr_cfg->cal_status);
136 
137 	writel(0, &phy_mgr_cfg->cal_debug_info);
138 
139 	/* Init params only if we do NOT skip calibration. */
140 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
141 		return;
142 
143 	ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
144 		RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
145 	param->read_correct_mask_vg = (1 << ratio) - 1;
146 	param->write_correct_mask_vg = (1 << ratio) - 1;
147 	param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
148 	param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
149 	ratio = RW_MGR_MEM_DATA_WIDTH /
150 		RW_MGR_MEM_DATA_MASK_WIDTH;
151 	param->dm_correct_mask = (1 << ratio) - 1;
152 }
153 
154 /**
155  * set_rank_and_odt_mask() - Set Rank and ODT mask
156  * @rank:	Rank mask
157  * @odt_mode:	ODT mode, OFF or READ_WRITE
158  *
159  * Set Rank and ODT mask (On-Die Termination).
160  */
161 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
162 {
163 	u32 odt_mask_0 = 0;
164 	u32 odt_mask_1 = 0;
165 	u32 cs_and_odt_mask;
166 
167 	if (odt_mode == RW_MGR_ODT_MODE_OFF) {
168 		odt_mask_0 = 0x0;
169 		odt_mask_1 = 0x0;
170 	} else {	/* RW_MGR_ODT_MODE_READ_WRITE */
171 		switch (RW_MGR_MEM_NUMBER_OF_RANKS) {
172 		case 1:	/* 1 Rank */
173 			/* Read: ODT = 0 ; Write: ODT = 1 */
174 			odt_mask_0 = 0x0;
175 			odt_mask_1 = 0x1;
176 			break;
177 		case 2:	/* 2 Ranks */
178 			if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
179 				/*
180 				 * - Dual-Slot , Single-Rank (1 CS per DIMM)
181 				 *   OR
182 				 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
183 				 *
184 				 * Since MEM_NUMBER_OF_RANKS is 2, they
185 				 * are both single rank with 2 CS each
186 				 * (special for RDIMM).
187 				 *
188 				 * Read: Turn on ODT on the opposite rank
189 				 * Write: Turn on ODT on all ranks
190 				 */
191 				odt_mask_0 = 0x3 & ~(1 << rank);
192 				odt_mask_1 = 0x3;
193 			} else {
194 				/*
195 				 * - Single-Slot , Dual-Rank (2 CS per DIMM)
196 				 *
197 				 * Read: Turn on ODT off on all ranks
198 				 * Write: Turn on ODT on active rank
199 				 */
200 				odt_mask_0 = 0x0;
201 				odt_mask_1 = 0x3 & (1 << rank);
202 			}
203 			break;
204 		case 4:	/* 4 Ranks */
205 			/* Read:
206 			 * ----------+-----------------------+
207 			 *           |         ODT           |
208 			 * Read From +-----------------------+
209 			 *   Rank    |  3  |  2  |  1  |  0  |
210 			 * ----------+-----+-----+-----+-----+
211 			 *     0     |  0  |  1  |  0  |  0  |
212 			 *     1     |  1  |  0  |  0  |  0  |
213 			 *     2     |  0  |  0  |  0  |  1  |
214 			 *     3     |  0  |  0  |  1  |  0  |
215 			 * ----------+-----+-----+-----+-----+
216 			 *
217 			 * Write:
218 			 * ----------+-----------------------+
219 			 *           |         ODT           |
220 			 * Write To  +-----------------------+
221 			 *   Rank    |  3  |  2  |  1  |  0  |
222 			 * ----------+-----+-----+-----+-----+
223 			 *     0     |  0  |  1  |  0  |  1  |
224 			 *     1     |  1  |  0  |  1  |  0  |
225 			 *     2     |  0  |  1  |  0  |  1  |
226 			 *     3     |  1  |  0  |  1  |  0  |
227 			 * ----------+-----+-----+-----+-----+
228 			 */
229 			switch (rank) {
230 			case 0:
231 				odt_mask_0 = 0x4;
232 				odt_mask_1 = 0x5;
233 				break;
234 			case 1:
235 				odt_mask_0 = 0x8;
236 				odt_mask_1 = 0xA;
237 				break;
238 			case 2:
239 				odt_mask_0 = 0x1;
240 				odt_mask_1 = 0x5;
241 				break;
242 			case 3:
243 				odt_mask_0 = 0x2;
244 				odt_mask_1 = 0xA;
245 				break;
246 			}
247 			break;
248 		}
249 	}
250 
251 	cs_and_odt_mask = (0xFF & ~(1 << rank)) |
252 			  ((0xFF & odt_mask_0) << 8) |
253 			  ((0xFF & odt_mask_1) << 16);
254 	writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
255 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
256 }
257 
258 /**
259  * scc_mgr_set() - Set SCC Manager register
260  * @off:	Base offset in SCC Manager space
261  * @grp:	Read/Write group
262  * @val:	Value to be set
263  *
264  * This function sets the SCC Manager (Scan Chain Control Manager) register.
265  */
266 static void scc_mgr_set(u32 off, u32 grp, u32 val)
267 {
268 	writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
269 }
270 
271 /**
272  * scc_mgr_initialize() - Initialize SCC Manager registers
273  *
274  * Initialize SCC Manager registers.
275  */
276 static void scc_mgr_initialize(void)
277 {
278 	/*
279 	 * Clear register file for HPS. 16 (2^4) is the size of the
280 	 * full register file in the scc mgr:
281 	 *	RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
282 	 *                             MEM_IF_READ_DQS_WIDTH - 1);
283 	 */
284 	int i;
285 
286 	for (i = 0; i < 16; i++) {
287 		debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
288 			   __func__, __LINE__, i);
289 		scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
290 	}
291 }
292 
293 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
294 {
295 	scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
296 }
297 
298 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
299 {
300 	scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
301 }
302 
303 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
304 {
305 	scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
306 }
307 
308 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
309 {
310 	scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
311 }
312 
313 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
314 {
315 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
316 		    delay);
317 }
318 
319 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
320 {
321 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
322 }
323 
324 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
325 {
326 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
327 }
328 
329 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
330 {
331 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
332 		    delay);
333 }
334 
335 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
336 {
337 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
338 		    RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
339 		    delay);
340 }
341 
342 /* load up dqs config settings */
343 static void scc_mgr_load_dqs(uint32_t dqs)
344 {
345 	writel(dqs, &sdr_scc_mgr->dqs_ena);
346 }
347 
348 /* load up dqs io config settings */
349 static void scc_mgr_load_dqs_io(void)
350 {
351 	writel(0, &sdr_scc_mgr->dqs_io_ena);
352 }
353 
354 /* load up dq config settings */
355 static void scc_mgr_load_dq(uint32_t dq_in_group)
356 {
357 	writel(dq_in_group, &sdr_scc_mgr->dq_ena);
358 }
359 
360 /* load up dm config settings */
361 static void scc_mgr_load_dm(uint32_t dm)
362 {
363 	writel(dm, &sdr_scc_mgr->dm_ena);
364 }
365 
366 /**
367  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
368  * @off:	Base offset in SCC Manager space
369  * @grp:	Read/Write group
370  * @val:	Value to be set
371  * @update:	If non-zero, trigger SCC Manager update for all ranks
372  *
373  * This function sets the SCC Manager (Scan Chain Control Manager) register
374  * and optionally triggers the SCC update for all ranks.
375  */
376 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
377 				  const int update)
378 {
379 	u32 r;
380 
381 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
382 	     r += NUM_RANKS_PER_SHADOW_REG) {
383 		scc_mgr_set(off, grp, val);
384 
385 		if (update || (r == 0)) {
386 			writel(grp, &sdr_scc_mgr->dqs_ena);
387 			writel(0, &sdr_scc_mgr->update);
388 		}
389 	}
390 }
391 
392 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
393 {
394 	/*
395 	 * USER although the h/w doesn't support different phases per
396 	 * shadow register, for simplicity our scc manager modeling
397 	 * keeps different phase settings per shadow reg, and it's
398 	 * important for us to keep them in sync to match h/w.
399 	 * for efficiency, the scan chain update should occur only
400 	 * once to sr0.
401 	 */
402 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
403 			      read_group, phase, 0);
404 }
405 
406 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
407 						     uint32_t phase)
408 {
409 	/*
410 	 * USER although the h/w doesn't support different phases per
411 	 * shadow register, for simplicity our scc manager modeling
412 	 * keeps different phase settings per shadow reg, and it's
413 	 * important for us to keep them in sync to match h/w.
414 	 * for efficiency, the scan chain update should occur only
415 	 * once to sr0.
416 	 */
417 	scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
418 			      write_group, phase, 0);
419 }
420 
421 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
422 					       uint32_t delay)
423 {
424 	/*
425 	 * In shadow register mode, the T11 settings are stored in
426 	 * registers in the core, which are updated by the DQS_ENA
427 	 * signals. Not issuing the SCC_MGR_UPD command allows us to
428 	 * save lots of rank switching overhead, by calling
429 	 * select_shadow_regs_for_update with update_scan_chains
430 	 * set to 0.
431 	 */
432 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
433 			      read_group, delay, 1);
434 	writel(0, &sdr_scc_mgr->update);
435 }
436 
437 /**
438  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
439  * @write_group:	Write group
440  * @delay:		Delay value
441  *
442  * This function sets the OCT output delay in SCC manager.
443  */
444 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
445 {
446 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
447 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
448 	const int base = write_group * ratio;
449 	int i;
450 	/*
451 	 * Load the setting in the SCC manager
452 	 * Although OCT affects only write data, the OCT delay is controlled
453 	 * by the DQS logic block which is instantiated once per read group.
454 	 * For protocols where a write group consists of multiple read groups,
455 	 * the setting must be set multiple times.
456 	 */
457 	for (i = 0; i < ratio; i++)
458 		scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
459 }
460 
461 /**
462  * scc_mgr_set_hhp_extras() - Set HHP extras.
463  *
464  * Load the fixed setting in the SCC manager HHP extras.
465  */
466 static void scc_mgr_set_hhp_extras(void)
467 {
468 	/*
469 	 * Load the fixed setting in the SCC manager
470 	 * bits: 0:0 = 1'b1	- DQS bypass
471 	 * bits: 1:1 = 1'b1	- DQ bypass
472 	 * bits: 4:2 = 3'b001	- rfifo_mode
473 	 * bits: 6:5 = 2'b01	- rfifo clock_select
474 	 * bits: 7:7 = 1'b0	- separate gating from ungating setting
475 	 * bits: 8:8 = 1'b0	- separate OE from Output delay setting
476 	 */
477 	const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
478 			  (1 << 2) | (1 << 1) | (1 << 0);
479 	const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
480 			 SCC_MGR_HHP_GLOBALS_OFFSET |
481 			 SCC_MGR_HHP_EXTRAS_OFFSET;
482 
483 	debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
484 		   __func__, __LINE__);
485 	writel(value, addr);
486 	debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
487 		   __func__, __LINE__);
488 }
489 
490 /**
491  * scc_mgr_zero_all() - Zero all DQS config
492  *
493  * Zero all DQS config.
494  */
495 static void scc_mgr_zero_all(void)
496 {
497 	int i, r;
498 
499 	/*
500 	 * USER Zero all DQS config settings, across all groups and all
501 	 * shadow registers
502 	 */
503 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
504 	     r += NUM_RANKS_PER_SHADOW_REG) {
505 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
506 			/*
507 			 * The phases actually don't exist on a per-rank basis,
508 			 * but there's no harm updating them several times, so
509 			 * let's keep the code simple.
510 			 */
511 			scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
512 			scc_mgr_set_dqs_en_phase(i, 0);
513 			scc_mgr_set_dqs_en_delay(i, 0);
514 		}
515 
516 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
517 			scc_mgr_set_dqdqs_output_phase(i, 0);
518 			/* Arria V/Cyclone V don't have out2. */
519 			scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
520 		}
521 	}
522 
523 	/* Multicast to all DQS group enables. */
524 	writel(0xff, &sdr_scc_mgr->dqs_ena);
525 	writel(0, &sdr_scc_mgr->update);
526 }
527 
528 /**
529  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
530  * @write_group:	Write group
531  *
532  * Set bypass mode and trigger SCC update.
533  */
534 static void scc_set_bypass_mode(const u32 write_group)
535 {
536 	/* Multicast to all DQ enables. */
537 	writel(0xff, &sdr_scc_mgr->dq_ena);
538 	writel(0xff, &sdr_scc_mgr->dm_ena);
539 
540 	/* Update current DQS IO enable. */
541 	writel(0, &sdr_scc_mgr->dqs_io_ena);
542 
543 	/* Update the DQS logic. */
544 	writel(write_group, &sdr_scc_mgr->dqs_ena);
545 
546 	/* Hit update. */
547 	writel(0, &sdr_scc_mgr->update);
548 }
549 
550 /**
551  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
552  * @write_group:	Write group
553  *
554  * Load DQS settings for Write Group, do not trigger SCC update.
555  */
556 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
557 {
558 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
559 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
560 	const int base = write_group * ratio;
561 	int i;
562 	/*
563 	 * Load the setting in the SCC manager
564 	 * Although OCT affects only write data, the OCT delay is controlled
565 	 * by the DQS logic block which is instantiated once per read group.
566 	 * For protocols where a write group consists of multiple read groups,
567 	 * the setting must be set multiple times.
568 	 */
569 	for (i = 0; i < ratio; i++)
570 		writel(base + i, &sdr_scc_mgr->dqs_ena);
571 }
572 
573 /**
574  * scc_mgr_zero_group() - Zero all configs for a group
575  *
576  * Zero DQ, DM, DQS and OCT configs for a group.
577  */
578 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
579 {
580 	int i, r;
581 
582 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
583 	     r += NUM_RANKS_PER_SHADOW_REG) {
584 		/* Zero all DQ config settings. */
585 		for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
586 			scc_mgr_set_dq_out1_delay(i, 0);
587 			if (!out_only)
588 				scc_mgr_set_dq_in_delay(i, 0);
589 		}
590 
591 		/* Multicast to all DQ enables. */
592 		writel(0xff, &sdr_scc_mgr->dq_ena);
593 
594 		/* Zero all DM config settings. */
595 		for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
596 			scc_mgr_set_dm_out1_delay(i, 0);
597 
598 		/* Multicast to all DM enables. */
599 		writel(0xff, &sdr_scc_mgr->dm_ena);
600 
601 		/* Zero all DQS IO settings. */
602 		if (!out_only)
603 			scc_mgr_set_dqs_io_in_delay(0);
604 
605 		/* Arria V/Cyclone V don't have out2. */
606 		scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
607 		scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
608 		scc_mgr_load_dqs_for_write_group(write_group);
609 
610 		/* Multicast to all DQS IO enables (only 1 in total). */
611 		writel(0, &sdr_scc_mgr->dqs_io_ena);
612 
613 		/* Hit update to zero everything. */
614 		writel(0, &sdr_scc_mgr->update);
615 	}
616 }
617 
618 /*
619  * apply and load a particular input delay for the DQ pins in a group
620  * group_bgn is the index of the first dq pin (in the write group)
621  */
622 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
623 {
624 	uint32_t i, p;
625 
626 	for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
627 		scc_mgr_set_dq_in_delay(p, delay);
628 		scc_mgr_load_dq(p);
629 	}
630 }
631 
632 /**
633  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
634  * @delay:		Delay value
635  *
636  * Apply and load a particular output delay for the DQ pins in a group.
637  */
638 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
639 {
640 	int i;
641 
642 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
643 		scc_mgr_set_dq_out1_delay(i, delay);
644 		scc_mgr_load_dq(i);
645 	}
646 }
647 
648 /* apply and load a particular output delay for the DM pins in a group */
649 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
650 {
651 	uint32_t i;
652 
653 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
654 		scc_mgr_set_dm_out1_delay(i, delay1);
655 		scc_mgr_load_dm(i);
656 	}
657 }
658 
659 
660 /* apply and load delay on both DQS and OCT out1 */
661 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
662 						    uint32_t delay)
663 {
664 	scc_mgr_set_dqs_out1_delay(delay);
665 	scc_mgr_load_dqs_io();
666 
667 	scc_mgr_set_oct_out1_delay(write_group, delay);
668 	scc_mgr_load_dqs_for_write_group(write_group);
669 }
670 
671 /**
672  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
673  * @write_group:	Write group
674  * @delay:		Delay value
675  *
676  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
677  */
678 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
679 						  const u32 delay)
680 {
681 	u32 i, new_delay;
682 
683 	/* DQ shift */
684 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
685 		scc_mgr_load_dq(i);
686 
687 	/* DM shift */
688 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
689 		scc_mgr_load_dm(i);
690 
691 	/* DQS shift */
692 	new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
693 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
694 		debug_cond(DLEVEL == 1,
695 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
696 			   __func__, __LINE__, write_group, delay, new_delay,
697 			   IO_IO_OUT2_DELAY_MAX,
698 			   new_delay - IO_IO_OUT2_DELAY_MAX);
699 		new_delay -= IO_IO_OUT2_DELAY_MAX;
700 		scc_mgr_set_dqs_out1_delay(new_delay);
701 	}
702 
703 	scc_mgr_load_dqs_io();
704 
705 	/* OCT shift */
706 	new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
707 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
708 		debug_cond(DLEVEL == 1,
709 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
710 			   __func__, __LINE__, write_group, delay,
711 			   new_delay, IO_IO_OUT2_DELAY_MAX,
712 			   new_delay - IO_IO_OUT2_DELAY_MAX);
713 		new_delay -= IO_IO_OUT2_DELAY_MAX;
714 		scc_mgr_set_oct_out1_delay(write_group, new_delay);
715 	}
716 
717 	scc_mgr_load_dqs_for_write_group(write_group);
718 }
719 
720 /**
721  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
722  * @write_group:	Write group
723  * @delay:		Delay value
724  *
725  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
726  */
727 static void
728 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
729 						const u32 delay)
730 {
731 	int r;
732 
733 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
734 	     r += NUM_RANKS_PER_SHADOW_REG) {
735 		scc_mgr_apply_group_all_out_delay_add(write_group, delay);
736 		writel(0, &sdr_scc_mgr->update);
737 	}
738 }
739 
740 /**
741  * set_jump_as_return() - Return instruction optimization
742  *
743  * Optimization used to recover some slots in ddr3 inst_rom could be
744  * applied to other protocols if we wanted to
745  */
746 static void set_jump_as_return(void)
747 {
748 	/*
749 	 * To save space, we replace return with jump to special shared
750 	 * RETURN instruction so we set the counter to large value so that
751 	 * we always jump.
752 	 */
753 	writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
754 	writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
755 }
756 
757 /*
758  * should always use constants as argument to ensure all computations are
759  * performed at compile time
760  */
761 static void delay_for_n_mem_clocks(const u32 clocks)
762 {
763 	u32 afi_clocks;
764 	u16 c_loop;
765 	u8 inner;
766 	u8 outer;
767 
768 	debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
769 
770 	/* Scale (rounding up) to get afi clocks. */
771 	afi_clocks = DIV_ROUND_UP(clocks, AFI_RATE_RATIO);
772 	if (afi_clocks)	/* Temporary underflow protection */
773 		afi_clocks--;
774 
775 	/*
776 	 * Note, we don't bother accounting for being off a little
777 	 * bit because of a few extra instructions in outer loops.
778 	 * Note, the loops have a test at the end, and do the test
779 	 * before the decrement, and so always perform the loop
780 	 * 1 time more than the counter value
781 	 */
782 	c_loop = afi_clocks >> 16;
783 	outer = c_loop ? 0xff : (afi_clocks >> 8);
784 	inner = outer ? 0xff : afi_clocks;
785 
786 	/*
787 	 * rom instructions are structured as follows:
788 	 *
789 	 *    IDLE_LOOP2: jnz cntr0, TARGET_A
790 	 *    IDLE_LOOP1: jnz cntr1, TARGET_B
791 	 *                return
792 	 *
793 	 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
794 	 * TARGET_B is set to IDLE_LOOP2 as well
795 	 *
796 	 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
797 	 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
798 	 *
799 	 * a little confusing, but it helps save precious space in the inst_rom
800 	 * and sequencer rom and keeps the delays more accurate and reduces
801 	 * overhead
802 	 */
803 	if (afi_clocks < 0x100) {
804 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
805 			&sdr_rw_load_mgr_regs->load_cntr1);
806 
807 		writel(RW_MGR_IDLE_LOOP1,
808 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
809 
810 		writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
811 					  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
812 	} else {
813 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
814 			&sdr_rw_load_mgr_regs->load_cntr0);
815 
816 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
817 			&sdr_rw_load_mgr_regs->load_cntr1);
818 
819 		writel(RW_MGR_IDLE_LOOP2,
820 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
821 
822 		writel(RW_MGR_IDLE_LOOP2,
823 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
824 
825 		do {
826 			writel(RW_MGR_IDLE_LOOP2,
827 				SDR_PHYGRP_RWMGRGRP_ADDRESS |
828 				RW_MGR_RUN_SINGLE_GROUP_OFFSET);
829 		} while (c_loop-- != 0);
830 	}
831 	debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
832 }
833 
834 /**
835  * rw_mgr_mem_init_load_regs() - Load instruction registers
836  * @cntr0:	Counter 0 value
837  * @cntr1:	Counter 1 value
838  * @cntr2:	Counter 2 value
839  * @jump:	Jump instruction value
840  *
841  * Load instruction registers.
842  */
843 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
844 {
845 	uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
846 			   RW_MGR_RUN_SINGLE_GROUP_OFFSET;
847 
848 	/* Load counters */
849 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
850 	       &sdr_rw_load_mgr_regs->load_cntr0);
851 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
852 	       &sdr_rw_load_mgr_regs->load_cntr1);
853 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
854 	       &sdr_rw_load_mgr_regs->load_cntr2);
855 
856 	/* Load jump address */
857 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
858 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
859 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
860 
861 	/* Execute count instruction */
862 	writel(jump, grpaddr);
863 }
864 
865 /**
866  * rw_mgr_mem_load_user() - Load user calibration values
867  * @fin1:	Final instruction 1
868  * @fin2:	Final instruction 2
869  * @precharge:	If 1, precharge the banks at the end
870  *
871  * Load user calibration values and optionally precharge the banks.
872  */
873 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
874 				 const int precharge)
875 {
876 	u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
877 		      RW_MGR_RUN_SINGLE_GROUP_OFFSET;
878 	u32 r;
879 
880 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
881 		if (param->skip_ranks[r]) {
882 			/* request to skip the rank */
883 			continue;
884 		}
885 
886 		/* set rank */
887 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
888 
889 		/* precharge all banks ... */
890 		if (precharge)
891 			writel(RW_MGR_PRECHARGE_ALL, grpaddr);
892 
893 		/*
894 		 * USER Use Mirror-ed commands for odd ranks if address
895 		 * mirrorring is on
896 		 */
897 		if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
898 			set_jump_as_return();
899 			writel(RW_MGR_MRS2_MIRR, grpaddr);
900 			delay_for_n_mem_clocks(4);
901 			set_jump_as_return();
902 			writel(RW_MGR_MRS3_MIRR, grpaddr);
903 			delay_for_n_mem_clocks(4);
904 			set_jump_as_return();
905 			writel(RW_MGR_MRS1_MIRR, grpaddr);
906 			delay_for_n_mem_clocks(4);
907 			set_jump_as_return();
908 			writel(fin1, grpaddr);
909 		} else {
910 			set_jump_as_return();
911 			writel(RW_MGR_MRS2, grpaddr);
912 			delay_for_n_mem_clocks(4);
913 			set_jump_as_return();
914 			writel(RW_MGR_MRS3, grpaddr);
915 			delay_for_n_mem_clocks(4);
916 			set_jump_as_return();
917 			writel(RW_MGR_MRS1, grpaddr);
918 			set_jump_as_return();
919 			writel(fin2, grpaddr);
920 		}
921 
922 		if (precharge)
923 			continue;
924 
925 		set_jump_as_return();
926 		writel(RW_MGR_ZQCL, grpaddr);
927 
928 		/* tZQinit = tDLLK = 512 ck cycles */
929 		delay_for_n_mem_clocks(512);
930 	}
931 }
932 
933 /**
934  * rw_mgr_mem_initialize() - Initialize RW Manager
935  *
936  * Initialize RW Manager.
937  */
938 static void rw_mgr_mem_initialize(void)
939 {
940 	debug("%s:%d\n", __func__, __LINE__);
941 
942 	/* The reset / cke part of initialization is broadcasted to all ranks */
943 	writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
944 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
945 
946 	/*
947 	 * Here's how you load register for a loop
948 	 * Counters are located @ 0x800
949 	 * Jump address are located @ 0xC00
950 	 * For both, registers 0 to 3 are selected using bits 3 and 2, like
951 	 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
952 	 * I know this ain't pretty, but Avalon bus throws away the 2 least
953 	 * significant bits
954 	 */
955 
956 	/* Start with memory RESET activated */
957 
958 	/* tINIT = 200us */
959 
960 	/*
961 	 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
962 	 * If a and b are the number of iteration in 2 nested loops
963 	 * it takes the following number of cycles to complete the operation:
964 	 * number_of_cycles = ((2 + n) * a + 2) * b
965 	 * where n is the number of instruction in the inner loop
966 	 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
967 	 * b = 6A
968 	 */
969 	rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
970 				  SEQ_TINIT_CNTR2_VAL,
971 				  RW_MGR_INIT_RESET_0_CKE_0);
972 
973 	/* Indicate that memory is stable. */
974 	writel(1, &phy_mgr_cfg->reset_mem_stbl);
975 
976 	/*
977 	 * transition the RESET to high
978 	 * Wait for 500us
979 	 */
980 
981 	/*
982 	 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
983 	 * If a and b are the number of iteration in 2 nested loops
984 	 * it takes the following number of cycles to complete the operation
985 	 * number_of_cycles = ((2 + n) * a + 2) * b
986 	 * where n is the number of instruction in the inner loop
987 	 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
988 	 * b = FF
989 	 */
990 	rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
991 				  SEQ_TRESET_CNTR2_VAL,
992 				  RW_MGR_INIT_RESET_1_CKE_0);
993 
994 	/* Bring up clock enable. */
995 
996 	/* tXRP < 250 ck cycles */
997 	delay_for_n_mem_clocks(250);
998 
999 	rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
1000 			     0);
1001 }
1002 
1003 /**
1004  * rw_mgr_mem_handoff() - Hand off the memory to user
1005  *
1006  * At the end of calibration we have to program the user settings in
1007  * and hand off the memory to the user.
1008  */
1009 static void rw_mgr_mem_handoff(void)
1010 {
1011 	rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
1012 	/*
1013 	 * Need to wait tMOD (12CK or 15ns) time before issuing other
1014 	 * commands, but we will have plenty of NIOS cycles before actual
1015 	 * handoff so its okay.
1016 	 */
1017 }
1018 
1019 /**
1020  * rw_mgr_mem_calibrate_write_test_issue() - Issue write test command
1021  * @group:	Write Group
1022  * @use_dm:	Use DM
1023  *
1024  * Issue write test command. Two variants are provided, one that just tests
1025  * a write pattern and another that tests datamask functionality.
1026  */
1027 static void rw_mgr_mem_calibrate_write_test_issue(u32 group,
1028 						  u32 test_dm)
1029 {
1030 	const u32 quick_write_mode =
1031 		(STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) &&
1032 		ENABLE_SUPER_QUICK_CALIBRATION;
1033 	u32 mcc_instruction;
1034 	u32 rw_wl_nop_cycles;
1035 
1036 	/*
1037 	 * Set counter and jump addresses for the right
1038 	 * number of NOP cycles.
1039 	 * The number of supported NOP cycles can range from -1 to infinity
1040 	 * Three different cases are handled:
1041 	 *
1042 	 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
1043 	 *    mechanism will be used to insert the right number of NOPs
1044 	 *
1045 	 * 2. For a number of NOP cycles equals to 0, the micro-instruction
1046 	 *    issuing the write command will jump straight to the
1047 	 *    micro-instruction that turns on DQS (for DDRx), or outputs write
1048 	 *    data (for RLD), skipping
1049 	 *    the NOP micro-instruction all together
1050 	 *
1051 	 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
1052 	 *    turned on in the same micro-instruction that issues the write
1053 	 *    command. Then we need
1054 	 *    to directly jump to the micro-instruction that sends out the data
1055 	 *
1056 	 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
1057 	 *       (2 and 3). One jump-counter (0) is used to perform multiple
1058 	 *       write-read operations.
1059 	 *       one counter left to issue this command in "multiple-group" mode
1060 	 */
1061 
1062 	rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
1063 
1064 	if (rw_wl_nop_cycles == -1) {
1065 		/*
1066 		 * CNTR 2 - We want to execute the special write operation that
1067 		 * turns on DQS right away and then skip directly to the
1068 		 * instruction that sends out the data. We set the counter to a
1069 		 * large number so that the jump is always taken.
1070 		 */
1071 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1072 
1073 		/* CNTR 3 - Not used */
1074 		if (test_dm) {
1075 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
1076 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
1077 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1078 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
1079 			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1080 		} else {
1081 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
1082 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
1083 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1084 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
1085 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1086 		}
1087 	} else if (rw_wl_nop_cycles == 0) {
1088 		/*
1089 		 * CNTR 2 - We want to skip the NOP operation and go straight
1090 		 * to the DQS enable instruction. We set the counter to a large
1091 		 * number so that the jump is always taken.
1092 		 */
1093 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1094 
1095 		/* CNTR 3 - Not used */
1096 		if (test_dm) {
1097 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
1098 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
1099 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1100 		} else {
1101 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
1102 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
1103 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1104 		}
1105 	} else {
1106 		/*
1107 		 * CNTR 2 - In this case we want to execute the next instruction
1108 		 * and NOT take the jump. So we set the counter to 0. The jump
1109 		 * address doesn't count.
1110 		 */
1111 		writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
1112 		writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1113 
1114 		/*
1115 		 * CNTR 3 - Set the nop counter to the number of cycles we
1116 		 * need to loop for, minus 1.
1117 		 */
1118 		writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
1119 		if (test_dm) {
1120 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
1121 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
1122 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1123 		} else {
1124 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
1125 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
1126 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1127 		}
1128 	}
1129 
1130 	writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1131 		  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1132 
1133 	if (quick_write_mode)
1134 		writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
1135 	else
1136 		writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
1137 
1138 	writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1139 
1140 	/*
1141 	 * CNTR 1 - This is used to ensure enough time elapses
1142 	 * for read data to come back.
1143 	 */
1144 	writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
1145 
1146 	if (test_dm) {
1147 		writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
1148 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1149 	} else {
1150 		writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
1151 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1152 	}
1153 
1154 	writel(mcc_instruction, (SDR_PHYGRP_RWMGRGRP_ADDRESS |
1155 				RW_MGR_RUN_SINGLE_GROUP_OFFSET) +
1156 				(group << 2));
1157 }
1158 
1159 /**
1160  * rw_mgr_mem_calibrate_write_test() - Test writes, check for single/multiple pass
1161  * @rank_bgn:		Rank number
1162  * @write_group:	Write Group
1163  * @use_dm:		Use DM
1164  * @all_correct:	All bits must be correct in the mask
1165  * @bit_chk:		Resulting bit mask after the test
1166  * @all_ranks:		Test all ranks
1167  *
1168  * Test writes, can check for a single bit pass or multiple bit pass.
1169  */
1170 static int
1171 rw_mgr_mem_calibrate_write_test(const u32 rank_bgn, const u32 write_group,
1172 				const u32 use_dm, const u32 all_correct,
1173 				u32 *bit_chk, const u32 all_ranks)
1174 {
1175 	const u32 rank_end = all_ranks ?
1176 				RW_MGR_MEM_NUMBER_OF_RANKS :
1177 				(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1178 	const u32 shift_ratio = RW_MGR_MEM_DQ_PER_WRITE_DQS /
1179 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS;
1180 	const u32 correct_mask_vg = param->write_correct_mask_vg;
1181 
1182 	u32 tmp_bit_chk, base_rw_mgr;
1183 	int vg, r;
1184 
1185 	*bit_chk = param->write_correct_mask;
1186 
1187 	for (r = rank_bgn; r < rank_end; r++) {
1188 		/* Request to skip the rank */
1189 		if (param->skip_ranks[r])
1190 			continue;
1191 
1192 		/* Set rank */
1193 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1194 
1195 		tmp_bit_chk = 0;
1196 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS - 1;
1197 		     vg >= 0; vg--) {
1198 			/* Reset the FIFOs to get pointers to known state. */
1199 			writel(0, &phy_mgr_cmd->fifo_reset);
1200 
1201 			rw_mgr_mem_calibrate_write_test_issue(
1202 				write_group *
1203 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS + vg,
1204 				use_dm);
1205 
1206 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1207 			tmp_bit_chk <<= shift_ratio;
1208 			tmp_bit_chk |= (correct_mask_vg & ~(base_rw_mgr));
1209 		}
1210 
1211 		*bit_chk &= tmp_bit_chk;
1212 	}
1213 
1214 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1215 	if (all_correct) {
1216 		debug_cond(DLEVEL == 2,
1217 			   "write_test(%u,%u,ALL) : %u == %u => %i\n",
1218 			   write_group, use_dm, *bit_chk,
1219 			   param->write_correct_mask,
1220 			   *bit_chk == param->write_correct_mask);
1221 		return *bit_chk == param->write_correct_mask;
1222 	} else {
1223 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1224 		debug_cond(DLEVEL == 2,
1225 			   "write_test(%u,%u,ONE) : %u != %i => %i\n",
1226 			   write_group, use_dm, *bit_chk, 0, *bit_chk != 0);
1227 		return *bit_chk != 0x00;
1228 	}
1229 }
1230 
1231 /**
1232  * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1233  * @rank_bgn:	Rank number
1234  * @group:	Read/Write Group
1235  * @all_ranks:	Test all ranks
1236  *
1237  * Performs a guaranteed read on the patterns we are going to use during a
1238  * read test to ensure memory works.
1239  */
1240 static int
1241 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1242 					const u32 all_ranks)
1243 {
1244 	const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1245 			 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1246 	const u32 addr_offset =
1247 			 (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2;
1248 	const u32 rank_end = all_ranks ?
1249 				RW_MGR_MEM_NUMBER_OF_RANKS :
1250 				(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1251 	const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
1252 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1253 	const u32 correct_mask_vg = param->read_correct_mask_vg;
1254 
1255 	u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1256 	int vg, r;
1257 	int ret = 0;
1258 
1259 	bit_chk = param->read_correct_mask;
1260 
1261 	for (r = rank_bgn; r < rank_end; r++) {
1262 		/* Request to skip the rank */
1263 		if (param->skip_ranks[r])
1264 			continue;
1265 
1266 		/* Set rank */
1267 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1268 
1269 		/* Load up a constant bursts of read commands */
1270 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1271 		writel(RW_MGR_GUARANTEED_READ,
1272 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1273 
1274 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1275 		writel(RW_MGR_GUARANTEED_READ_CONT,
1276 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1277 
1278 		tmp_bit_chk = 0;
1279 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1;
1280 		     vg >= 0; vg--) {
1281 			/* Reset the FIFOs to get pointers to known state. */
1282 			writel(0, &phy_mgr_cmd->fifo_reset);
1283 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1284 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1285 			writel(RW_MGR_GUARANTEED_READ,
1286 			       addr + addr_offset + (vg << 2));
1287 
1288 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1289 			tmp_bit_chk <<= shift_ratio;
1290 			tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1291 		}
1292 
1293 		bit_chk &= tmp_bit_chk;
1294 	}
1295 
1296 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1297 
1298 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1299 
1300 	if (bit_chk != param->read_correct_mask)
1301 		ret = -EIO;
1302 
1303 	debug_cond(DLEVEL == 1,
1304 		   "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1305 		   __func__, __LINE__, group, bit_chk,
1306 		   param->read_correct_mask, ret);
1307 
1308 	return ret;
1309 }
1310 
1311 /**
1312  * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1313  * @rank_bgn:	Rank number
1314  * @all_ranks:	Test all ranks
1315  *
1316  * Load up the patterns we are going to use during a read test.
1317  */
1318 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1319 						    const int all_ranks)
1320 {
1321 	const u32 rank_end = all_ranks ?
1322 			RW_MGR_MEM_NUMBER_OF_RANKS :
1323 			(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1324 	u32 r;
1325 
1326 	debug("%s:%d\n", __func__, __LINE__);
1327 
1328 	for (r = rank_bgn; r < rank_end; r++) {
1329 		if (param->skip_ranks[r])
1330 			/* request to skip the rank */
1331 			continue;
1332 
1333 		/* set rank */
1334 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1335 
1336 		/* Load up a constant bursts */
1337 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1338 
1339 		writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1340 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1341 
1342 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1343 
1344 		writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1345 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1346 
1347 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1348 
1349 		writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1350 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1351 
1352 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1353 
1354 		writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1355 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1356 
1357 		writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1358 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1359 	}
1360 
1361 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1362 }
1363 
1364 /**
1365  * rw_mgr_mem_calibrate_read_test() - Perform READ test on single rank
1366  * @rank_bgn:		Rank number
1367  * @group:		Read/Write group
1368  * @num_tries:		Number of retries of the test
1369  * @all_correct:	All bits must be correct in the mask
1370  * @bit_chk:		Resulting bit mask after the test
1371  * @all_groups:		Test all R/W groups
1372  * @all_ranks:		Test all ranks
1373  *
1374  * Try a read and see if it returns correct data back. Test has dummy reads
1375  * inserted into the mix used to align DQS enable. Test has more thorough
1376  * checks than the regular read test.
1377  */
1378 static int
1379 rw_mgr_mem_calibrate_read_test(const u32 rank_bgn, const u32 group,
1380 			       const u32 num_tries, const u32 all_correct,
1381 			       u32 *bit_chk,
1382 			       const u32 all_groups, const u32 all_ranks)
1383 {
1384 	const u32 rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1385 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1386 	const u32 quick_read_mode =
1387 		((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) &&
1388 		 ENABLE_SUPER_QUICK_CALIBRATION);
1389 	u32 correct_mask_vg = param->read_correct_mask_vg;
1390 	u32 tmp_bit_chk;
1391 	u32 base_rw_mgr;
1392 	u32 addr;
1393 
1394 	int r, vg, ret;
1395 
1396 	*bit_chk = param->read_correct_mask;
1397 
1398 	for (r = rank_bgn; r < rank_end; r++) {
1399 		if (param->skip_ranks[r])
1400 			/* request to skip the rank */
1401 			continue;
1402 
1403 		/* set rank */
1404 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1405 
1406 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1407 
1408 		writel(RW_MGR_READ_B2B_WAIT1,
1409 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1410 
1411 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1412 		writel(RW_MGR_READ_B2B_WAIT2,
1413 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1414 
1415 		if (quick_read_mode)
1416 			writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1417 			/* need at least two (1+1) reads to capture failures */
1418 		else if (all_groups)
1419 			writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1420 		else
1421 			writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1422 
1423 		writel(RW_MGR_READ_B2B,
1424 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1425 		if (all_groups)
1426 			writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1427 			       RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1428 			       &sdr_rw_load_mgr_regs->load_cntr3);
1429 		else
1430 			writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1431 
1432 		writel(RW_MGR_READ_B2B,
1433 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1434 
1435 		tmp_bit_chk = 0;
1436 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; vg >= 0;
1437 		     vg--) {
1438 			/* Reset the FIFOs to get pointers to known state. */
1439 			writel(0, &phy_mgr_cmd->fifo_reset);
1440 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1441 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1442 
1443 			if (all_groups) {
1444 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1445 				       RW_MGR_RUN_ALL_GROUPS_OFFSET;
1446 			} else {
1447 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1448 				       RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1449 			}
1450 
1451 			writel(RW_MGR_READ_B2B, addr +
1452 			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1453 			       vg) << 2));
1454 
1455 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1456 			tmp_bit_chk <<= RW_MGR_MEM_DQ_PER_READ_DQS /
1457 					RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1458 			tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr);
1459 		}
1460 
1461 		*bit_chk &= tmp_bit_chk;
1462 	}
1463 
1464 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1465 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1466 
1467 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1468 
1469 	if (all_correct) {
1470 		ret = (*bit_chk == param->read_correct_mask);
1471 		debug_cond(DLEVEL == 2,
1472 			   "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n",
1473 			   __func__, __LINE__, group, all_groups, *bit_chk,
1474 			   param->read_correct_mask, ret);
1475 	} else	{
1476 		ret = (*bit_chk != 0x00);
1477 		debug_cond(DLEVEL == 2,
1478 			   "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n",
1479 			   __func__, __LINE__, group, all_groups, *bit_chk,
1480 			   0, ret);
1481 	}
1482 
1483 	return ret;
1484 }
1485 
1486 /**
1487  * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks
1488  * @grp:		Read/Write group
1489  * @num_tries:		Number of retries of the test
1490  * @all_correct:	All bits must be correct in the mask
1491  * @all_groups:		Test all R/W groups
1492  *
1493  * Perform a READ test across all memory ranks.
1494  */
1495 static int
1496 rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries,
1497 					 const u32 all_correct,
1498 					 const u32 all_groups)
1499 {
1500 	u32 bit_chk;
1501 	return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct,
1502 					      &bit_chk, all_groups, 1);
1503 }
1504 
1505 /**
1506  * rw_mgr_incr_vfifo() - Increase VFIFO value
1507  * @grp:	Read/Write group
1508  *
1509  * Increase VFIFO value.
1510  */
1511 static void rw_mgr_incr_vfifo(const u32 grp)
1512 {
1513 	writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1514 }
1515 
1516 /**
1517  * rw_mgr_decr_vfifo() - Decrease VFIFO value
1518  * @grp:	Read/Write group
1519  *
1520  * Decrease VFIFO value.
1521  */
1522 static void rw_mgr_decr_vfifo(const u32 grp)
1523 {
1524 	u32 i;
1525 
1526 	for (i = 0; i < VFIFO_SIZE - 1; i++)
1527 		rw_mgr_incr_vfifo(grp);
1528 }
1529 
1530 /**
1531  * find_vfifo_failing_read() - Push VFIFO to get a failing read
1532  * @grp:	Read/Write group
1533  *
1534  * Push VFIFO until a failing read happens.
1535  */
1536 static int find_vfifo_failing_read(const u32 grp)
1537 {
1538 	u32 v, ret, fail_cnt = 0;
1539 
1540 	for (v = 0; v < VFIFO_SIZE; v++) {
1541 		debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n",
1542 			   __func__, __LINE__, v);
1543 		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1544 						PASS_ONE_BIT, 0);
1545 		if (!ret) {
1546 			fail_cnt++;
1547 
1548 			if (fail_cnt == 2)
1549 				return v;
1550 		}
1551 
1552 		/* Fiddle with FIFO. */
1553 		rw_mgr_incr_vfifo(grp);
1554 	}
1555 
1556 	/* No failing read found! Something must have gone wrong. */
1557 	debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__);
1558 	return 0;
1559 }
1560 
1561 /**
1562  * sdr_find_phase_delay() - Find DQS enable phase or delay
1563  * @working:	If 1, look for working phase/delay, if 0, look for non-working
1564  * @delay:	If 1, look for delay, if 0, look for phase
1565  * @grp:	Read/Write group
1566  * @work:	Working window position
1567  * @work_inc:	Working window increment
1568  * @pd:		DQS Phase/Delay Iterator
1569  *
1570  * Find working or non-working DQS enable phase setting.
1571  */
1572 static int sdr_find_phase_delay(int working, int delay, const u32 grp,
1573 				u32 *work, const u32 work_inc, u32 *pd)
1574 {
1575 	const u32 max = delay ? IO_DQS_EN_DELAY_MAX : IO_DQS_EN_PHASE_MAX;
1576 	u32 ret;
1577 
1578 	for (; *pd <= max; (*pd)++) {
1579 		if (delay)
1580 			scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd);
1581 		else
1582 			scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd);
1583 
1584 		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1585 					PASS_ONE_BIT, 0);
1586 		if (!working)
1587 			ret = !ret;
1588 
1589 		if (ret)
1590 			return 0;
1591 
1592 		if (work)
1593 			*work += work_inc;
1594 	}
1595 
1596 	return -EINVAL;
1597 }
1598 /**
1599  * sdr_find_phase() - Find DQS enable phase
1600  * @working:	If 1, look for working phase, if 0, look for non-working phase
1601  * @grp:	Read/Write group
1602  * @work:	Working window position
1603  * @i:		Iterator
1604  * @p:		DQS Phase Iterator
1605  *
1606  * Find working or non-working DQS enable phase setting.
1607  */
1608 static int sdr_find_phase(int working, const u32 grp, u32 *work,
1609 			  u32 *i, u32 *p)
1610 {
1611 	const u32 end = VFIFO_SIZE + (working ? 0 : 1);
1612 	int ret;
1613 
1614 	for (; *i < end; (*i)++) {
1615 		if (working)
1616 			*p = 0;
1617 
1618 		ret = sdr_find_phase_delay(working, 0, grp, work,
1619 					   IO_DELAY_PER_OPA_TAP, p);
1620 		if (!ret)
1621 			return 0;
1622 
1623 		if (*p > IO_DQS_EN_PHASE_MAX) {
1624 			/* Fiddle with FIFO. */
1625 			rw_mgr_incr_vfifo(grp);
1626 			if (!working)
1627 				*p = 0;
1628 		}
1629 	}
1630 
1631 	return -EINVAL;
1632 }
1633 
1634 /**
1635  * sdr_working_phase() - Find working DQS enable phase
1636  * @grp:	Read/Write group
1637  * @work_bgn:	Working window start position
1638  * @d:		dtaps output value
1639  * @p:		DQS Phase Iterator
1640  * @i:		Iterator
1641  *
1642  * Find working DQS enable phase setting.
1643  */
1644 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d,
1645 			     u32 *p, u32 *i)
1646 {
1647 	const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP /
1648 				   IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1649 	int ret;
1650 
1651 	*work_bgn = 0;
1652 
1653 	for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
1654 		*i = 0;
1655 		scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
1656 		ret = sdr_find_phase(1, grp, work_bgn, i, p);
1657 		if (!ret)
1658 			return 0;
1659 		*work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1660 	}
1661 
1662 	/* Cannot find working solution */
1663 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
1664 		   __func__, __LINE__);
1665 	return -EINVAL;
1666 }
1667 
1668 /**
1669  * sdr_backup_phase() - Find DQS enable backup phase
1670  * @grp:	Read/Write group
1671  * @work_bgn:	Working window start position
1672  * @p:		DQS Phase Iterator
1673  *
1674  * Find DQS enable backup phase setting.
1675  */
1676 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p)
1677 {
1678 	u32 tmp_delay, d;
1679 	int ret;
1680 
1681 	/* Special case code for backing up a phase */
1682 	if (*p == 0) {
1683 		*p = IO_DQS_EN_PHASE_MAX;
1684 		rw_mgr_decr_vfifo(grp);
1685 	} else {
1686 		(*p)--;
1687 	}
1688 	tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1689 	scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1690 
1691 	for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; d++) {
1692 		scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1693 
1694 		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1695 					PASS_ONE_BIT, 0);
1696 		if (ret) {
1697 			*work_bgn = tmp_delay;
1698 			break;
1699 		}
1700 
1701 		tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1702 	}
1703 
1704 	/* Restore VFIFO to old state before we decremented it (if needed). */
1705 	(*p)++;
1706 	if (*p > IO_DQS_EN_PHASE_MAX) {
1707 		*p = 0;
1708 		rw_mgr_incr_vfifo(grp);
1709 	}
1710 
1711 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1712 }
1713 
1714 /**
1715  * sdr_nonworking_phase() - Find non-working DQS enable phase
1716  * @grp:	Read/Write group
1717  * @work_end:	Working window end position
1718  * @p:		DQS Phase Iterator
1719  * @i:		Iterator
1720  *
1721  * Find non-working DQS enable phase setting.
1722  */
1723 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i)
1724 {
1725 	int ret;
1726 
1727 	(*p)++;
1728 	*work_end += IO_DELAY_PER_OPA_TAP;
1729 	if (*p > IO_DQS_EN_PHASE_MAX) {
1730 		/* Fiddle with FIFO. */
1731 		*p = 0;
1732 		rw_mgr_incr_vfifo(grp);
1733 	}
1734 
1735 	ret = sdr_find_phase(0, grp, work_end, i, p);
1736 	if (ret) {
1737 		/* Cannot see edge of failing read. */
1738 		debug_cond(DLEVEL == 2, "%s:%d: end: failed\n",
1739 			   __func__, __LINE__);
1740 	}
1741 
1742 	return ret;
1743 }
1744 
1745 /**
1746  * sdr_find_window_center() - Find center of the working DQS window.
1747  * @grp:	Read/Write group
1748  * @work_bgn:	First working settings
1749  * @work_end:	Last working settings
1750  *
1751  * Find center of the working DQS enable window.
1752  */
1753 static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
1754 				  const u32 work_end)
1755 {
1756 	u32 work_mid;
1757 	int tmp_delay = 0;
1758 	int i, p, d;
1759 
1760 	work_mid = (work_bgn + work_end) / 2;
1761 
1762 	debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1763 		   work_bgn, work_end, work_mid);
1764 	/* Get the middle delay to be less than a VFIFO delay */
1765 	tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP;
1766 
1767 	debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1768 	work_mid %= tmp_delay;
1769 	debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid);
1770 
1771 	tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP);
1772 	if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP)
1773 		tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP;
1774 	p = tmp_delay / IO_DELAY_PER_OPA_TAP;
1775 
1776 	debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
1777 
1778 	d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP);
1779 	if (d > IO_DQS_EN_DELAY_MAX)
1780 		d = IO_DQS_EN_DELAY_MAX;
1781 	tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1782 
1783 	debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
1784 
1785 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1786 	scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1787 
1788 	/*
1789 	 * push vfifo until we can successfully calibrate. We can do this
1790 	 * because the largest possible margin in 1 VFIFO cycle.
1791 	 */
1792 	for (i = 0; i < VFIFO_SIZE; i++) {
1793 		debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n");
1794 		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1795 							     PASS_ONE_BIT,
1796 							     0)) {
1797 			debug_cond(DLEVEL == 2,
1798 				   "%s:%d center: found: ptap=%u dtap=%u\n",
1799 				   __func__, __LINE__, p, d);
1800 			return 0;
1801 		}
1802 
1803 		/* Fiddle with FIFO. */
1804 		rw_mgr_incr_vfifo(grp);
1805 	}
1806 
1807 	debug_cond(DLEVEL == 2, "%s:%d center: failed.\n",
1808 		   __func__, __LINE__);
1809 	return -EINVAL;
1810 }
1811 
1812 /**
1813  * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use
1814  * @grp:	Read/Write Group
1815  *
1816  * Find a good DQS enable to use.
1817  */
1818 static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp)
1819 {
1820 	u32 d, p, i;
1821 	u32 dtaps_per_ptap;
1822 	u32 work_bgn, work_end;
1823 	u32 found_passing_read, found_failing_read, initial_failing_dtap;
1824 	int ret;
1825 
1826 	debug("%s:%d %u\n", __func__, __LINE__, grp);
1827 
1828 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1829 
1830 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1831 	scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1832 
1833 	/* Step 0: Determine number of delay taps for each phase tap. */
1834 	dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1835 
1836 	/* Step 1: First push vfifo until we get a failing read. */
1837 	find_vfifo_failing_read(grp);
1838 
1839 	/* Step 2: Find first working phase, increment in ptaps. */
1840 	work_bgn = 0;
1841 	ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i);
1842 	if (ret)
1843 		return ret;
1844 
1845 	work_end = work_bgn;
1846 
1847 	/*
1848 	 * If d is 0 then the working window covers a phase tap and we can
1849 	 * follow the old procedure. Otherwise, we've found the beginning
1850 	 * and we need to increment the dtaps until we find the end.
1851 	 */
1852 	if (d == 0) {
1853 		/*
1854 		 * Step 3a: If we have room, back off by one and
1855 		 *          increment in dtaps.
1856 		 */
1857 		sdr_backup_phase(grp, &work_bgn, &p);
1858 
1859 		/*
1860 		 * Step 4a: go forward from working phase to non working
1861 		 * phase, increment in ptaps.
1862 		 */
1863 		ret = sdr_nonworking_phase(grp, &work_end, &p, &i);
1864 		if (ret)
1865 			return ret;
1866 
1867 		/* Step 5a: Back off one from last, increment in dtaps. */
1868 
1869 		/* Special case code for backing up a phase */
1870 		if (p == 0) {
1871 			p = IO_DQS_EN_PHASE_MAX;
1872 			rw_mgr_decr_vfifo(grp);
1873 		} else {
1874 			p = p - 1;
1875 		}
1876 
1877 		work_end -= IO_DELAY_PER_OPA_TAP;
1878 		scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1879 
1880 		d = 0;
1881 
1882 		debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n",
1883 			   __func__, __LINE__, p);
1884 	}
1885 
1886 	/* The dtap increment to find the failing edge is done here. */
1887 	sdr_find_phase_delay(0, 1, grp, &work_end,
1888 			     IO_DELAY_PER_DQS_EN_DCHAIN_TAP, &d);
1889 
1890 	/* Go back to working dtap */
1891 	if (d != 0)
1892 		work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1893 
1894 	debug_cond(DLEVEL == 2,
1895 		   "%s:%d p/d: ptap=%u dtap=%u end=%u\n",
1896 		   __func__, __LINE__, p, d - 1, work_end);
1897 
1898 	if (work_end < work_bgn) {
1899 		/* nil range */
1900 		debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n",
1901 			   __func__, __LINE__);
1902 		return -EINVAL;
1903 	}
1904 
1905 	debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n",
1906 		   __func__, __LINE__, work_bgn, work_end);
1907 
1908 	/*
1909 	 * We need to calculate the number of dtaps that equal a ptap.
1910 	 * To do that we'll back up a ptap and re-find the edge of the
1911 	 * window using dtaps
1912 	 */
1913 	debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n",
1914 		   __func__, __LINE__);
1915 
1916 	/* Special case code for backing up a phase */
1917 	if (p == 0) {
1918 		p = IO_DQS_EN_PHASE_MAX;
1919 		rw_mgr_decr_vfifo(grp);
1920 		debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n",
1921 			   __func__, __LINE__, p);
1922 	} else {
1923 		p = p - 1;
1924 		debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u",
1925 			   __func__, __LINE__, p);
1926 	}
1927 
1928 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1929 
1930 	/*
1931 	 * Increase dtap until we first see a passing read (in case the
1932 	 * window is smaller than a ptap), and then a failing read to
1933 	 * mark the edge of the window again.
1934 	 */
1935 
1936 	/* Find a passing read. */
1937 	debug_cond(DLEVEL == 2, "%s:%d find passing read\n",
1938 		   __func__, __LINE__);
1939 
1940 	initial_failing_dtap = d;
1941 
1942 	found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d);
1943 	if (found_passing_read) {
1944 		/* Find a failing read. */
1945 		debug_cond(DLEVEL == 2, "%s:%d find failing read\n",
1946 			   __func__, __LINE__);
1947 		d++;
1948 		found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0,
1949 							   &d);
1950 	} else {
1951 		debug_cond(DLEVEL == 1,
1952 			   "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n",
1953 			   __func__, __LINE__);
1954 	}
1955 
1956 	/*
1957 	 * The dynamically calculated dtaps_per_ptap is only valid if we
1958 	 * found a passing/failing read. If we didn't, it means d hit the max
1959 	 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1960 	 * statically calculated value.
1961 	 */
1962 	if (found_passing_read && found_failing_read)
1963 		dtaps_per_ptap = d - initial_failing_dtap;
1964 
1965 	writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1966 	debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u",
1967 		   __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap);
1968 
1969 	/* Step 6: Find the centre of the window. */
1970 	ret = sdr_find_window_center(grp, work_bgn, work_end);
1971 
1972 	return ret;
1973 }
1974 
1975 /**
1976  * search_stop_check() - Check if the detected edge is valid
1977  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
1978  * @d:			DQS delay
1979  * @rank_bgn:		Rank number
1980  * @write_group:	Write Group
1981  * @read_group:		Read Group
1982  * @bit_chk:		Resulting bit mask after the test
1983  * @sticky_bit_chk:	Resulting sticky bit mask after the test
1984  * @use_read_test:	Perform read test
1985  *
1986  * Test if the found edge is valid.
1987  */
1988 static u32 search_stop_check(const int write, const int d, const int rank_bgn,
1989 			     const u32 write_group, const u32 read_group,
1990 			     u32 *bit_chk, u32 *sticky_bit_chk,
1991 			     const u32 use_read_test)
1992 {
1993 	const u32 ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
1994 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
1995 	const u32 correct_mask = write ? param->write_correct_mask :
1996 					 param->read_correct_mask;
1997 	const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
1998 				    RW_MGR_MEM_DQ_PER_READ_DQS;
1999 	u32 ret;
2000 	/*
2001 	 * Stop searching when the read test doesn't pass AND when
2002 	 * we've seen a passing read on every bit.
2003 	 */
2004 	if (write) {			/* WRITE-ONLY */
2005 		ret = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2006 							 0, PASS_ONE_BIT,
2007 							 bit_chk, 0);
2008 	} else if (use_read_test) {	/* READ-ONLY */
2009 		ret = !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group,
2010 							NUM_READ_PB_TESTS,
2011 							PASS_ONE_BIT, bit_chk,
2012 							0, 0);
2013 	} else {			/* READ-ONLY */
2014 		rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0,
2015 						PASS_ONE_BIT, bit_chk, 0);
2016 		*bit_chk = *bit_chk >> (per_dqs *
2017 			(read_group - (write_group * ratio)));
2018 		ret = (*bit_chk == 0);
2019 	}
2020 	*sticky_bit_chk = *sticky_bit_chk | *bit_chk;
2021 	ret = ret && (*sticky_bit_chk == correct_mask);
2022 	debug_cond(DLEVEL == 2,
2023 		   "%s:%d center(left): dtap=%u => %u == %u && %u",
2024 		   __func__, __LINE__, d,
2025 		   *sticky_bit_chk, correct_mask, ret);
2026 	return ret;
2027 }
2028 
2029 /**
2030  * search_left_edge() - Find left edge of DQ/DQS working phase
2031  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
2032  * @rank_bgn:		Rank number
2033  * @write_group:	Write Group
2034  * @read_group:		Read Group
2035  * @test_bgn:		Rank number to begin the test
2036  * @sticky_bit_chk:	Resulting sticky bit mask after the test
2037  * @left_edge:		Left edge of the DQ/DQS phase
2038  * @right_edge:		Right edge of the DQ/DQS phase
2039  * @use_read_test:	Perform read test
2040  *
2041  * Find left edge of DQ/DQS working phase.
2042  */
2043 static void search_left_edge(const int write, const int rank_bgn,
2044 	const u32 write_group, const u32 read_group, const u32 test_bgn,
2045 	u32 *sticky_bit_chk,
2046 	int *left_edge, int *right_edge, const u32 use_read_test)
2047 {
2048 	const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2049 	const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX;
2050 	const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2051 				    RW_MGR_MEM_DQ_PER_READ_DQS;
2052 	u32 stop, bit_chk;
2053 	int i, d;
2054 
2055 	for (d = 0; d <= dqs_max; d++) {
2056 		if (write)
2057 			scc_mgr_apply_group_dq_out1_delay(d);
2058 		else
2059 			scc_mgr_apply_group_dq_in_delay(test_bgn, d);
2060 
2061 		writel(0, &sdr_scc_mgr->update);
2062 
2063 		stop = search_stop_check(write, d, rank_bgn, write_group,
2064 					 read_group, &bit_chk, sticky_bit_chk,
2065 					 use_read_test);
2066 		if (stop == 1)
2067 			break;
2068 
2069 		/* stop != 1 */
2070 		for (i = 0; i < per_dqs; i++) {
2071 			if (bit_chk & 1) {
2072 				/*
2073 				 * Remember a passing test as
2074 				 * the left_edge.
2075 				 */
2076 				left_edge[i] = d;
2077 			} else {
2078 				/*
2079 				 * If a left edge has not been seen
2080 				 * yet, then a future passing test
2081 				 * will mark this edge as the right
2082 				 * edge.
2083 				 */
2084 				if (left_edge[i] == delay_max + 1)
2085 					right_edge[i] = -(d + 1);
2086 			}
2087 			bit_chk >>= 1;
2088 		}
2089 	}
2090 
2091 	/* Reset DQ delay chains to 0 */
2092 	if (write)
2093 		scc_mgr_apply_group_dq_out1_delay(0);
2094 	else
2095 		scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2096 
2097 	*sticky_bit_chk = 0;
2098 	for (i = per_dqs - 1; i >= 0; i--) {
2099 		debug_cond(DLEVEL == 2,
2100 			   "%s:%d vfifo_center: left_edge[%u]: %d right_edge[%u]: %d\n",
2101 			   __func__, __LINE__, i, left_edge[i],
2102 			   i, right_edge[i]);
2103 
2104 		/*
2105 		 * Check for cases where we haven't found the left edge,
2106 		 * which makes our assignment of the the right edge invalid.
2107 		 * Reset it to the illegal value.
2108 		 */
2109 		if ((left_edge[i] == delay_max + 1) &&
2110 		    (right_edge[i] != delay_max + 1)) {
2111 			right_edge[i] = delay_max + 1;
2112 			debug_cond(DLEVEL == 2,
2113 				   "%s:%d vfifo_center: reset right_edge[%u]: %d\n",
2114 				   __func__, __LINE__, i, right_edge[i]);
2115 		}
2116 
2117 		/*
2118 		 * Reset sticky bit
2119 		 * READ: except for bits where we have seen both
2120 		 *       the left and right edge.
2121 		 * WRITE: except for bits where we have seen the
2122 		 *        left edge.
2123 		 */
2124 		*sticky_bit_chk <<= 1;
2125 		if (write) {
2126 			if (left_edge[i] != delay_max + 1)
2127 				*sticky_bit_chk |= 1;
2128 		} else {
2129 			if ((left_edge[i] != delay_max + 1) &&
2130 			    (right_edge[i] != delay_max + 1))
2131 				*sticky_bit_chk |= 1;
2132 		}
2133 	}
2134 
2135 
2136 }
2137 
2138 /**
2139  * search_right_edge() - Find right edge of DQ/DQS working phase
2140  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
2141  * @rank_bgn:		Rank number
2142  * @write_group:	Write Group
2143  * @read_group:		Read Group
2144  * @start_dqs:		DQS start phase
2145  * @start_dqs_en:	DQS enable start phase
2146  * @sticky_bit_chk:	Resulting sticky bit mask after the test
2147  * @left_edge:		Left edge of the DQ/DQS phase
2148  * @right_edge:		Right edge of the DQ/DQS phase
2149  * @use_read_test:	Perform read test
2150  *
2151  * Find right edge of DQ/DQS working phase.
2152  */
2153 static int search_right_edge(const int write, const int rank_bgn,
2154 	const u32 write_group, const u32 read_group,
2155 	const int start_dqs, const int start_dqs_en,
2156 	u32 *sticky_bit_chk,
2157 	int *left_edge, int *right_edge, const u32 use_read_test)
2158 {
2159 	const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2160 	const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX;
2161 	const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2162 				    RW_MGR_MEM_DQ_PER_READ_DQS;
2163 	u32 stop, bit_chk;
2164 	int i, d;
2165 
2166 	for (d = 0; d <= dqs_max - start_dqs; d++) {
2167 		if (write) {	/* WRITE-ONLY */
2168 			scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2169 								d + start_dqs);
2170 		} else {	/* READ-ONLY */
2171 			scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
2172 			if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2173 				uint32_t delay = d + start_dqs_en;
2174 				if (delay > IO_DQS_EN_DELAY_MAX)
2175 					delay = IO_DQS_EN_DELAY_MAX;
2176 				scc_mgr_set_dqs_en_delay(read_group, delay);
2177 			}
2178 			scc_mgr_load_dqs(read_group);
2179 		}
2180 
2181 		writel(0, &sdr_scc_mgr->update);
2182 
2183 		stop = search_stop_check(write, d, rank_bgn, write_group,
2184 					 read_group, &bit_chk, sticky_bit_chk,
2185 					 use_read_test);
2186 		if (stop == 1) {
2187 			if (write && (d == 0)) {	/* WRITE-ONLY */
2188 				for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2189 					/*
2190 					 * d = 0 failed, but it passed when
2191 					 * testing the left edge, so it must be
2192 					 * marginal, set it to -1
2193 					 */
2194 					if (right_edge[i] == delay_max + 1 &&
2195 					    left_edge[i] != delay_max + 1)
2196 						right_edge[i] = -1;
2197 				}
2198 			}
2199 			break;
2200 		}
2201 
2202 		/* stop != 1 */
2203 		for (i = 0; i < per_dqs; i++) {
2204 			if (bit_chk & 1) {
2205 				/*
2206 				 * Remember a passing test as
2207 				 * the right_edge.
2208 				 */
2209 				right_edge[i] = d;
2210 			} else {
2211 				if (d != 0) {
2212 					/*
2213 					 * If a right edge has not
2214 					 * been seen yet, then a future
2215 					 * passing test will mark this
2216 					 * edge as the left edge.
2217 					 */
2218 					if (right_edge[i] == delay_max + 1)
2219 						left_edge[i] = -(d + 1);
2220 				} else {
2221 					/*
2222 					 * d = 0 failed, but it passed
2223 					 * when testing the left edge,
2224 					 * so it must be marginal, set
2225 					 * it to -1
2226 					 */
2227 					if (right_edge[i] == delay_max + 1 &&
2228 					    left_edge[i] != delay_max + 1)
2229 						right_edge[i] = -1;
2230 					/*
2231 					 * If a right edge has not been
2232 					 * seen yet, then a future
2233 					 * passing test will mark this
2234 					 * edge as the left edge.
2235 					 */
2236 					else if (right_edge[i] == delay_max + 1)
2237 						left_edge[i] = -(d + 1);
2238 				}
2239 			}
2240 
2241 			debug_cond(DLEVEL == 2, "%s:%d center[r,d=%u]: ",
2242 				   __func__, __LINE__, d);
2243 			debug_cond(DLEVEL == 2,
2244 				   "bit_chk_test=%i left_edge[%u]: %d ",
2245 				   bit_chk & 1, i, left_edge[i]);
2246 			debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2247 				   right_edge[i]);
2248 			bit_chk >>= 1;
2249 		}
2250 	}
2251 
2252 	/* Check that all bits have a window */
2253 	for (i = 0; i < per_dqs; i++) {
2254 		debug_cond(DLEVEL == 2,
2255 			   "%s:%d write_center: left_edge[%u]: %d right_edge[%u]: %d",
2256 			   __func__, __LINE__, i, left_edge[i],
2257 			   i, right_edge[i]);
2258 		if ((left_edge[i] == dqs_max + 1) ||
2259 		    (right_edge[i] == dqs_max + 1))
2260 			return i + 1;	/* FIXME: If we fail, retval > 0 */
2261 	}
2262 
2263 	return 0;
2264 }
2265 
2266 /**
2267  * get_window_mid_index() - Find the best middle setting of DQ/DQS phase
2268  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
2269  * @left_edge:		Left edge of the DQ/DQS phase
2270  * @right_edge:		Right edge of the DQ/DQS phase
2271  * @mid_min:		Best DQ/DQS phase middle setting
2272  *
2273  * Find index and value of the middle of the DQ/DQS working phase.
2274  */
2275 static int get_window_mid_index(const int write, int *left_edge,
2276 				int *right_edge, int *mid_min)
2277 {
2278 	const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2279 				    RW_MGR_MEM_DQ_PER_READ_DQS;
2280 	int i, mid, min_index;
2281 
2282 	/* Find middle of window for each DQ bit */
2283 	*mid_min = left_edge[0] - right_edge[0];
2284 	min_index = 0;
2285 	for (i = 1; i < per_dqs; i++) {
2286 		mid = left_edge[i] - right_edge[i];
2287 		if (mid < *mid_min) {
2288 			*mid_min = mid;
2289 			min_index = i;
2290 		}
2291 	}
2292 
2293 	/*
2294 	 * -mid_min/2 represents the amount that we need to move DQS.
2295 	 * If mid_min is odd and positive we'll need to add one to make
2296 	 * sure the rounding in further calculations is correct (always
2297 	 * bias to the right), so just add 1 for all positive values.
2298 	 */
2299 	if (*mid_min > 0)
2300 		(*mid_min)++;
2301 	*mid_min = *mid_min / 2;
2302 
2303 	debug_cond(DLEVEL == 1, "%s:%d vfifo_center: *mid_min=%d (index=%u)\n",
2304 		   __func__, __LINE__, *mid_min, min_index);
2305 	return min_index;
2306 }
2307 
2308 /**
2309  * center_dq_windows() - Center the DQ/DQS windows
2310  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
2311  * @left_edge:		Left edge of the DQ/DQS phase
2312  * @right_edge:		Right edge of the DQ/DQS phase
2313  * @mid_min:		Adjusted DQ/DQS phase middle setting
2314  * @orig_mid_min:	Original DQ/DQS phase middle setting
2315  * @min_index:		DQ/DQS phase middle setting index
2316  * @test_bgn:		Rank number to begin the test
2317  * @dq_margin:		Amount of shift for the DQ
2318  * @dqs_margin:		Amount of shift for the DQS
2319  *
2320  * Align the DQ/DQS windows in each group.
2321  */
2322 static void center_dq_windows(const int write, int *left_edge, int *right_edge,
2323 			      const int mid_min, const int orig_mid_min,
2324 			      const int min_index, const int test_bgn,
2325 			      int *dq_margin, int *dqs_margin)
2326 {
2327 	const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2328 	const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2329 				    RW_MGR_MEM_DQ_PER_READ_DQS;
2330 	const u32 delay_off = write ? SCC_MGR_IO_OUT1_DELAY_OFFSET :
2331 				      SCC_MGR_IO_IN_DELAY_OFFSET;
2332 	const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | delay_off;
2333 
2334 	u32 temp_dq_io_delay1, temp_dq_io_delay2;
2335 	int shift_dq, i, p;
2336 
2337 	/* Initialize data for export structures */
2338 	*dqs_margin = delay_max + 1;
2339 	*dq_margin  = delay_max + 1;
2340 
2341 	/* add delay to bring centre of all DQ windows to the same "level" */
2342 	for (i = 0, p = test_bgn; i < per_dqs; i++, p++) {
2343 		/* Use values before divide by 2 to reduce round off error */
2344 		shift_dq = (left_edge[i] - right_edge[i] -
2345 			(left_edge[min_index] - right_edge[min_index]))/2  +
2346 			(orig_mid_min - mid_min);
2347 
2348 		debug_cond(DLEVEL == 2,
2349 			   "vfifo_center: before: shift_dq[%u]=%d\n",
2350 			   i, shift_dq);
2351 
2352 		temp_dq_io_delay1 = readl(addr + (p << 2));
2353 		temp_dq_io_delay2 = readl(addr + (i << 2));
2354 
2355 		if (shift_dq + temp_dq_io_delay1 > delay_max)
2356 			shift_dq = delay_max - temp_dq_io_delay2;
2357 		else if (shift_dq + temp_dq_io_delay1 < 0)
2358 			shift_dq = -temp_dq_io_delay1;
2359 
2360 		debug_cond(DLEVEL == 2,
2361 			   "vfifo_center: after: shift_dq[%u]=%d\n",
2362 			   i, shift_dq);
2363 
2364 		if (write)
2365 			scc_mgr_set_dq_out1_delay(i, temp_dq_io_delay1 + shift_dq);
2366 		else
2367 			scc_mgr_set_dq_in_delay(p, temp_dq_io_delay1 + shift_dq);
2368 
2369 		scc_mgr_load_dq(p);
2370 
2371 		debug_cond(DLEVEL == 2,
2372 			   "vfifo_center: margin[%u]=[%d,%d]\n", i,
2373 			   left_edge[i] - shift_dq + (-mid_min),
2374 			   right_edge[i] + shift_dq - (-mid_min));
2375 
2376 		/* To determine values for export structures */
2377 		if (left_edge[i] - shift_dq + (-mid_min) < *dq_margin)
2378 			*dq_margin = left_edge[i] - shift_dq + (-mid_min);
2379 
2380 		if (right_edge[i] + shift_dq - (-mid_min) < *dqs_margin)
2381 			*dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2382 	}
2383 
2384 }
2385 
2386 /**
2387  * rw_mgr_mem_calibrate_vfifo_center() - Per-bit deskew DQ and centering
2388  * @rank_bgn:		Rank number
2389  * @rw_group:		Read/Write Group
2390  * @test_bgn:		Rank at which the test begins
2391  * @use_read_test:	Perform a read test
2392  * @update_fom:		Update FOM
2393  *
2394  * Per-bit deskew DQ and centering.
2395  */
2396 static int rw_mgr_mem_calibrate_vfifo_center(const u32 rank_bgn,
2397 			const u32 rw_group, const u32 test_bgn,
2398 			const int use_read_test, const int update_fom)
2399 {
2400 	const u32 addr =
2401 		SDR_PHYGRP_SCCGRP_ADDRESS + SCC_MGR_DQS_IN_DELAY_OFFSET +
2402 		(rw_group << 2);
2403 	/*
2404 	 * Store these as signed since there are comparisons with
2405 	 * signed numbers.
2406 	 */
2407 	uint32_t sticky_bit_chk;
2408 	int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
2409 	int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
2410 	int32_t orig_mid_min, mid_min;
2411 	int32_t new_dqs, start_dqs, start_dqs_en, final_dqs_en;
2412 	int32_t dq_margin, dqs_margin;
2413 	int i, min_index;
2414 	int ret;
2415 
2416 	debug("%s:%d: %u %u", __func__, __LINE__, rw_group, test_bgn);
2417 
2418 	start_dqs = readl(addr);
2419 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2420 		start_dqs_en = readl(addr - IO_DQS_EN_DELAY_OFFSET);
2421 
2422 	/* set the left and right edge of each bit to an illegal value */
2423 	/* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
2424 	sticky_bit_chk = 0;
2425 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2426 		left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
2427 		right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
2428 	}
2429 
2430 	/* Search for the left edge of the window for each bit */
2431 	search_left_edge(0, rank_bgn, rw_group, rw_group, test_bgn,
2432 			 &sticky_bit_chk,
2433 			 left_edge, right_edge, use_read_test);
2434 
2435 
2436 	/* Search for the right edge of the window for each bit */
2437 	ret = search_right_edge(0, rank_bgn, rw_group, rw_group,
2438 				start_dqs, start_dqs_en,
2439 				&sticky_bit_chk,
2440 				left_edge, right_edge, use_read_test);
2441 	if (ret) {
2442 		/*
2443 		 * Restore delay chain settings before letting the loop
2444 		 * in rw_mgr_mem_calibrate_vfifo to retry different
2445 		 * dqs/ck relationships.
2446 		 */
2447 		scc_mgr_set_dqs_bus_in_delay(rw_group, start_dqs);
2448 		if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2449 			scc_mgr_set_dqs_en_delay(rw_group, start_dqs_en);
2450 
2451 		scc_mgr_load_dqs(rw_group);
2452 		writel(0, &sdr_scc_mgr->update);
2453 
2454 		debug_cond(DLEVEL == 1,
2455 			   "%s:%d vfifo_center: failed to find edge [%u]: %d %d",
2456 			   __func__, __LINE__, i, left_edge[i], right_edge[i]);
2457 		if (use_read_test) {
2458 			set_failing_group_stage(rw_group *
2459 				RW_MGR_MEM_DQ_PER_READ_DQS + i,
2460 				CAL_STAGE_VFIFO,
2461 				CAL_SUBSTAGE_VFIFO_CENTER);
2462 		} else {
2463 			set_failing_group_stage(rw_group *
2464 				RW_MGR_MEM_DQ_PER_READ_DQS + i,
2465 				CAL_STAGE_VFIFO_AFTER_WRITES,
2466 				CAL_SUBSTAGE_VFIFO_CENTER);
2467 		}
2468 		return -EIO;
2469 	}
2470 
2471 	min_index = get_window_mid_index(0, left_edge, right_edge, &mid_min);
2472 
2473 	/* Determine the amount we can change DQS (which is -mid_min) */
2474 	orig_mid_min = mid_min;
2475 	new_dqs = start_dqs - mid_min;
2476 	if (new_dqs > IO_DQS_IN_DELAY_MAX)
2477 		new_dqs = IO_DQS_IN_DELAY_MAX;
2478 	else if (new_dqs < 0)
2479 		new_dqs = 0;
2480 
2481 	mid_min = start_dqs - new_dqs;
2482 	debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2483 		   mid_min, new_dqs);
2484 
2485 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2486 		if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2487 			mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2488 		else if (start_dqs_en - mid_min < 0)
2489 			mid_min += start_dqs_en - mid_min;
2490 	}
2491 	new_dqs = start_dqs - mid_min;
2492 
2493 	debug_cond(DLEVEL == 1,
2494 		   "vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d\n",
2495 		   start_dqs,
2496 		   IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2497 		   new_dqs, mid_min);
2498 
2499 	/* Add delay to bring centre of all DQ windows to the same "level". */
2500 	center_dq_windows(0, left_edge, right_edge, mid_min, orig_mid_min,
2501 			  min_index, test_bgn, &dq_margin, &dqs_margin);
2502 
2503 	/* Move DQS-en */
2504 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2505 		final_dqs_en = start_dqs_en - mid_min;
2506 		scc_mgr_set_dqs_en_delay(rw_group, final_dqs_en);
2507 		scc_mgr_load_dqs(rw_group);
2508 	}
2509 
2510 	/* Move DQS */
2511 	scc_mgr_set_dqs_bus_in_delay(rw_group, new_dqs);
2512 	scc_mgr_load_dqs(rw_group);
2513 	debug_cond(DLEVEL == 2,
2514 		   "%s:%d vfifo_center: dq_margin=%d dqs_margin=%d",
2515 		   __func__, __LINE__, dq_margin, dqs_margin);
2516 
2517 	/*
2518 	 * Do not remove this line as it makes sure all of our decisions
2519 	 * have been applied. Apply the update bit.
2520 	 */
2521 	writel(0, &sdr_scc_mgr->update);
2522 
2523 	if ((dq_margin < 0) || (dqs_margin < 0))
2524 		return -EINVAL;
2525 
2526 	return 0;
2527 }
2528 
2529 /**
2530  * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2531  * @rw_group:	Read/Write Group
2532  * @phase:	DQ/DQS phase
2533  *
2534  * Because initially no communication ca be reliably performed with the memory
2535  * device, the sequencer uses a guaranteed write mechanism to write data into
2536  * the memory device.
2537  */
2538 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2539 						 const u32 phase)
2540 {
2541 	int ret;
2542 
2543 	/* Set a particular DQ/DQS phase. */
2544 	scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2545 
2546 	debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
2547 		   __func__, __LINE__, rw_group, phase);
2548 
2549 	/*
2550 	 * Altera EMI_RM 2015.05.04 :: Figure 1-25
2551 	 * Load up the patterns used by read calibration using the
2552 	 * current DQDQS phase.
2553 	 */
2554 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2555 
2556 	if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2557 		return 0;
2558 
2559 	/*
2560 	 * Altera EMI_RM 2015.05.04 :: Figure 1-26
2561 	 * Back-to-Back reads of the patterns used for calibration.
2562 	 */
2563 	ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2564 	if (ret)
2565 		debug_cond(DLEVEL == 1,
2566 			   "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2567 			   __func__, __LINE__, rw_group, phase);
2568 	return ret;
2569 }
2570 
2571 /**
2572  * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2573  * @rw_group:	Read/Write Group
2574  * @test_bgn:	Rank at which the test begins
2575  *
2576  * DQS enable calibration ensures reliable capture of the DQ signal without
2577  * glitches on the DQS line.
2578  */
2579 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2580 						       const u32 test_bgn)
2581 {
2582 	/*
2583 	 * Altera EMI_RM 2015.05.04 :: Figure 1-27
2584 	 * DQS and DQS Eanble Signal Relationships.
2585 	 */
2586 
2587 	/* We start at zero, so have one less dq to devide among */
2588 	const u32 delay_step = IO_IO_IN_DELAY_MAX /
2589 			       (RW_MGR_MEM_DQ_PER_READ_DQS - 1);
2590 	int ret;
2591 	u32 i, p, d, r;
2592 
2593 	debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2594 
2595 	/* Try different dq_in_delays since the DQ path is shorter than DQS. */
2596 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2597 	     r += NUM_RANKS_PER_SHADOW_REG) {
2598 		for (i = 0, p = test_bgn, d = 0;
2599 		     i < RW_MGR_MEM_DQ_PER_READ_DQS;
2600 		     i++, p++, d += delay_step) {
2601 			debug_cond(DLEVEL == 1,
2602 				   "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2603 				   __func__, __LINE__, rw_group, r, i, p, d);
2604 
2605 			scc_mgr_set_dq_in_delay(p, d);
2606 			scc_mgr_load_dq(p);
2607 		}
2608 
2609 		writel(0, &sdr_scc_mgr->update);
2610 	}
2611 
2612 	/*
2613 	 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2614 	 * dq_in_delay values
2615 	 */
2616 	ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
2617 
2618 	debug_cond(DLEVEL == 1,
2619 		   "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
2620 		   __func__, __LINE__, rw_group, !ret);
2621 
2622 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2623 	     r += NUM_RANKS_PER_SHADOW_REG) {
2624 		scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2625 		writel(0, &sdr_scc_mgr->update);
2626 	}
2627 
2628 	return ret;
2629 }
2630 
2631 /**
2632  * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2633  * @rw_group:		Read/Write Group
2634  * @test_bgn:		Rank at which the test begins
2635  * @use_read_test:	Perform a read test
2636  * @update_fom:		Update FOM
2637  *
2638  * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2639  * within a group.
2640  */
2641 static int
2642 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2643 				      const int use_read_test,
2644 				      const int update_fom)
2645 
2646 {
2647 	int ret, grp_calibrated;
2648 	u32 rank_bgn, sr;
2649 
2650 	/*
2651 	 * Altera EMI_RM 2015.05.04 :: Figure 1-28
2652 	 * Read per-bit deskew can be done on a per shadow register basis.
2653 	 */
2654 	grp_calibrated = 1;
2655 	for (rank_bgn = 0, sr = 0;
2656 	     rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2657 	     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2658 		/* Check if this set of ranks should be skipped entirely. */
2659 		if (param->skip_shadow_regs[sr])
2660 			continue;
2661 
2662 		ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2663 							test_bgn,
2664 							use_read_test,
2665 							update_fom);
2666 		if (!ret)
2667 			continue;
2668 
2669 		grp_calibrated = 0;
2670 	}
2671 
2672 	if (!grp_calibrated)
2673 		return -EIO;
2674 
2675 	return 0;
2676 }
2677 
2678 /**
2679  * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2680  * @rw_group:		Read/Write Group
2681  * @test_bgn:		Rank at which the test begins
2682  *
2683  * Stage 1: Calibrate the read valid prediction FIFO.
2684  *
2685  * This function implements UniPHY calibration Stage 1, as explained in
2686  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2687  *
2688  * - read valid prediction will consist of finding:
2689  *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2690  *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
2691  *  - we also do a per-bit deskew on the DQ lines.
2692  */
2693 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2694 {
2695 	uint32_t p, d;
2696 	uint32_t dtaps_per_ptap;
2697 	uint32_t failed_substage;
2698 
2699 	int ret;
2700 
2701 	debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2702 
2703 	/* Update info for sims */
2704 	reg_file_set_group(rw_group);
2705 	reg_file_set_stage(CAL_STAGE_VFIFO);
2706 	reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2707 
2708 	failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2709 
2710 	/* USER Determine number of delay taps for each phase tap. */
2711 	dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2712 				      IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
2713 
2714 	for (d = 0; d <= dtaps_per_ptap; d += 2) {
2715 		/*
2716 		 * In RLDRAMX we may be messing the delay of pins in
2717 		 * the same write rw_group but outside of the current read
2718 		 * the rw_group, but that's ok because we haven't calibrated
2719 		 * output side yet.
2720 		 */
2721 		if (d > 0) {
2722 			scc_mgr_apply_group_all_out_delay_add_all_ranks(
2723 								rw_group, d);
2724 		}
2725 
2726 		for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
2727 			/* 1) Guaranteed Write */
2728 			ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2729 			if (ret)
2730 				break;
2731 
2732 			/* 2) DQS Enable Calibration */
2733 			ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2734 									  test_bgn);
2735 			if (ret) {
2736 				failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2737 				continue;
2738 			}
2739 
2740 			/* 3) Centering DQ/DQS */
2741 			/*
2742 			 * If doing read after write calibration, do not update
2743 			 * FOM now. Do it then.
2744 			 */
2745 			ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2746 								test_bgn, 1, 0);
2747 			if (ret) {
2748 				failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2749 				continue;
2750 			}
2751 
2752 			/* All done. */
2753 			goto cal_done_ok;
2754 		}
2755 	}
2756 
2757 	/* Calibration Stage 1 failed. */
2758 	set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2759 	return 0;
2760 
2761 	/* Calibration Stage 1 completed OK. */
2762 cal_done_ok:
2763 	/*
2764 	 * Reset the delay chains back to zero if they have moved > 1
2765 	 * (check for > 1 because loop will increase d even when pass in
2766 	 * first case).
2767 	 */
2768 	if (d > 2)
2769 		scc_mgr_zero_group(rw_group, 1);
2770 
2771 	return 1;
2772 }
2773 
2774 /**
2775  * rw_mgr_mem_calibrate_vfifo_end() - DQ/DQS Centering.
2776  * @rw_group:		Read/Write Group
2777  * @test_bgn:		Rank at which the test begins
2778  *
2779  * Stage 3: DQ/DQS Centering.
2780  *
2781  * This function implements UniPHY calibration Stage 3, as explained in
2782  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2783  */
2784 static int rw_mgr_mem_calibrate_vfifo_end(const u32 rw_group,
2785 					  const u32 test_bgn)
2786 {
2787 	int ret;
2788 
2789 	debug("%s:%d %u %u", __func__, __LINE__, rw_group, test_bgn);
2790 
2791 	/* Update info for sims. */
2792 	reg_file_set_group(rw_group);
2793 	reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2794 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2795 
2796 	ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, test_bgn, 0, 1);
2797 	if (ret)
2798 		set_failing_group_stage(rw_group,
2799 					CAL_STAGE_VFIFO_AFTER_WRITES,
2800 					CAL_SUBSTAGE_VFIFO_CENTER);
2801 	return ret;
2802 }
2803 
2804 /**
2805  * rw_mgr_mem_calibrate_lfifo() - Minimize latency
2806  *
2807  * Stage 4: Minimize latency.
2808  *
2809  * This function implements UniPHY calibration Stage 4, as explained in
2810  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2811  * Calibrate LFIFO to find smallest read latency.
2812  */
2813 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2814 {
2815 	int found_one = 0;
2816 
2817 	debug("%s:%d\n", __func__, __LINE__);
2818 
2819 	/* Update info for sims. */
2820 	reg_file_set_stage(CAL_STAGE_LFIFO);
2821 	reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2822 
2823 	/* Load up the patterns used by read calibration for all ranks */
2824 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2825 
2826 	do {
2827 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2828 		debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2829 			   __func__, __LINE__, gbl->curr_read_lat);
2830 
2831 		if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, NUM_READ_TESTS,
2832 							      PASS_ALL_BITS, 1))
2833 			break;
2834 
2835 		found_one = 1;
2836 		/*
2837 		 * Reduce read latency and see if things are
2838 		 * working correctly.
2839 		 */
2840 		gbl->curr_read_lat--;
2841 	} while (gbl->curr_read_lat > 0);
2842 
2843 	/* Reset the fifos to get pointers to known state. */
2844 	writel(0, &phy_mgr_cmd->fifo_reset);
2845 
2846 	if (found_one) {
2847 		/* Add a fudge factor to the read latency that was determined */
2848 		gbl->curr_read_lat += 2;
2849 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2850 		debug_cond(DLEVEL == 2,
2851 			   "%s:%d lfifo: success: using read_lat=%u\n",
2852 			   __func__, __LINE__, gbl->curr_read_lat);
2853 	} else {
2854 		set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2855 					CAL_SUBSTAGE_READ_LATENCY);
2856 
2857 		debug_cond(DLEVEL == 2,
2858 			   "%s:%d lfifo: failed at initial read_lat=%u\n",
2859 			   __func__, __LINE__, gbl->curr_read_lat);
2860 	}
2861 
2862 	return found_one;
2863 }
2864 
2865 /**
2866  * search_window() - Search for the/part of the window with DM/DQS shift
2867  * @search_dm:		If 1, search for the DM shift, if 0, search for DQS shift
2868  * @rank_bgn:		Rank number
2869  * @write_group:	Write Group
2870  * @bgn_curr:		Current window begin
2871  * @end_curr:		Current window end
2872  * @bgn_best:		Current best window begin
2873  * @end_best:		Current best window end
2874  * @win_best:		Size of the best window
2875  * @new_dqs:		New DQS value (only applicable if search_dm = 0).
2876  *
2877  * Search for the/part of the window with DM/DQS shift.
2878  */
2879 static void search_window(const int search_dm,
2880 			  const u32 rank_bgn, const u32 write_group,
2881 			  int *bgn_curr, int *end_curr, int *bgn_best,
2882 			  int *end_best, int *win_best, int new_dqs)
2883 {
2884 	u32 bit_chk;
2885 	const int max = IO_IO_OUT1_DELAY_MAX - new_dqs;
2886 	int d, di;
2887 
2888 	/* Search for the/part of the window with DM/DQS shift. */
2889 	for (di = max; di >= 0; di -= DELTA_D) {
2890 		if (search_dm) {
2891 			d = di;
2892 			scc_mgr_apply_group_dm_out1_delay(d);
2893 		} else {
2894 			/* For DQS, we go from 0...max */
2895 			d = max - di;
2896 			/*
2897 			 * Note: This only shifts DQS, so are we limiting ourselve to
2898 			 * width of DQ unnecessarily.
2899 			 */
2900 			scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2901 								d + new_dqs);
2902 		}
2903 
2904 		writel(0, &sdr_scc_mgr->update);
2905 
2906 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2907 						    PASS_ALL_BITS, &bit_chk,
2908 						    0)) {
2909 			/* Set current end of the window. */
2910 			*end_curr = search_dm ? -d : d;
2911 
2912 			/*
2913 			 * If a starting edge of our window has not been seen
2914 			 * this is our current start of the DM window.
2915 			 */
2916 			if (*bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
2917 				*bgn_curr = search_dm ? -d : d;
2918 
2919 			/*
2920 			 * If current window is bigger than best seen.
2921 			 * Set best seen to be current window.
2922 			 */
2923 			if ((*end_curr - *bgn_curr + 1) > *win_best) {
2924 				*win_best = *end_curr - *bgn_curr + 1;
2925 				*bgn_best = *bgn_curr;
2926 				*end_best = *end_curr;
2927 			}
2928 		} else {
2929 			/* We just saw a failing test. Reset temp edge. */
2930 			*bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2931 			*end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2932 
2933 			/* Early exit is only applicable to DQS. */
2934 			if (search_dm)
2935 				continue;
2936 
2937 			/*
2938 			 * Early exit optimization: if the remaining delay
2939 			 * chain space is less than already seen largest
2940 			 * window we can exit.
2941 			 */
2942 			if (*win_best - 1 > IO_IO_OUT1_DELAY_MAX - new_dqs - d)
2943 				break;
2944 		}
2945 	}
2946 }
2947 
2948 /*
2949  * rw_mgr_mem_calibrate_writes_center() - Center all windows
2950  * @rank_bgn:		Rank number
2951  * @write_group:	Write group
2952  * @test_bgn:		Rank at which the test begins
2953  *
2954  * Center all windows. Do per-bit-deskew to possibly increase size of
2955  * certain windows.
2956  */
2957 static int
2958 rw_mgr_mem_calibrate_writes_center(const u32 rank_bgn, const u32 write_group,
2959 				   const u32 test_bgn)
2960 {
2961 	int i;
2962 	u32 sticky_bit_chk;
2963 	u32 min_index;
2964 	int left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2965 	int right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2966 	int mid;
2967 	int mid_min, orig_mid_min;
2968 	int new_dqs, start_dqs;
2969 	int dq_margin, dqs_margin, dm_margin;
2970 	int bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2971 	int end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2972 	int bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
2973 	int end_best = IO_IO_OUT1_DELAY_MAX + 1;
2974 	int win_best = 0;
2975 
2976 	int ret;
2977 
2978 	debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2979 
2980 	dm_margin = 0;
2981 
2982 	start_dqs = readl((SDR_PHYGRP_SCCGRP_ADDRESS |
2983 			  SCC_MGR_IO_OUT1_DELAY_OFFSET) +
2984 			  (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2985 
2986 	/* Per-bit deskew. */
2987 
2988 	/*
2989 	 * Set the left and right edge of each bit to an illegal value.
2990 	 * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2991 	 */
2992 	sticky_bit_chk = 0;
2993 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2994 		left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2995 		right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2996 	}
2997 
2998 	/* Search for the left edge of the window for each bit. */
2999 	search_left_edge(1, rank_bgn, write_group, 0, test_bgn,
3000 			 &sticky_bit_chk,
3001 			 left_edge, right_edge, 0);
3002 
3003 	/* Search for the right edge of the window for each bit. */
3004 	ret = search_right_edge(1, rank_bgn, write_group, 0,
3005 				start_dqs, 0,
3006 				&sticky_bit_chk,
3007 				left_edge, right_edge, 0);
3008 	if (ret) {
3009 		set_failing_group_stage(test_bgn + ret - 1, CAL_STAGE_WRITES,
3010 					CAL_SUBSTAGE_WRITES_CENTER);
3011 		return -EINVAL;
3012 	}
3013 
3014 	min_index = get_window_mid_index(1, left_edge, right_edge, &mid_min);
3015 
3016 	/* Determine the amount we can change DQS (which is -mid_min). */
3017 	orig_mid_min = mid_min;
3018 	new_dqs = start_dqs;
3019 	mid_min = 0;
3020 	debug_cond(DLEVEL == 1,
3021 		   "%s:%d write_center: start_dqs=%d new_dqs=%d mid_min=%d\n",
3022 		   __func__, __LINE__, start_dqs, new_dqs, mid_min);
3023 
3024 	/* Add delay to bring centre of all DQ windows to the same "level". */
3025 	center_dq_windows(1, left_edge, right_edge, mid_min, orig_mid_min,
3026 			  min_index, 0, &dq_margin, &dqs_margin);
3027 
3028 	/* Move DQS */
3029 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3030 	writel(0, &sdr_scc_mgr->update);
3031 
3032 	/* Centre DM */
3033 	debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3034 
3035 	/*
3036 	 * Set the left and right edge of each bit to an illegal value.
3037 	 * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
3038 	 */
3039 	left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
3040 	right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
3041 
3042 	/* Search for the/part of the window with DM shift. */
3043 	search_window(1, rank_bgn, write_group, &bgn_curr, &end_curr,
3044 		      &bgn_best, &end_best, &win_best, 0);
3045 
3046 	/* Reset DM delay chains to 0. */
3047 	scc_mgr_apply_group_dm_out1_delay(0);
3048 
3049 	/*
3050 	 * Check to see if the current window nudges up aganist 0 delay.
3051 	 * If so we need to continue the search by shifting DQS otherwise DQS
3052 	 * search begins as a new search.
3053 	 */
3054 	if (end_curr != 0) {
3055 		bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3056 		end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3057 	}
3058 
3059 	/* Search for the/part of the window with DQS shifts. */
3060 	search_window(0, rank_bgn, write_group, &bgn_curr, &end_curr,
3061 		      &bgn_best, &end_best, &win_best, new_dqs);
3062 
3063 	/* Assign left and right edge for cal and reporting. */
3064 	left_edge[0] = -1 * bgn_best;
3065 	right_edge[0] = end_best;
3066 
3067 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n",
3068 		   __func__, __LINE__, left_edge[0], right_edge[0]);
3069 
3070 	/* Move DQS (back to orig). */
3071 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3072 
3073 	/* Move DM */
3074 
3075 	/* Find middle of window for the DM bit. */
3076 	mid = (left_edge[0] - right_edge[0]) / 2;
3077 
3078 	/* Only move right, since we are not moving DQS/DQ. */
3079 	if (mid < 0)
3080 		mid = 0;
3081 
3082 	/* dm_marign should fail if we never find a window. */
3083 	if (win_best == 0)
3084 		dm_margin = -1;
3085 	else
3086 		dm_margin = left_edge[0] - mid;
3087 
3088 	scc_mgr_apply_group_dm_out1_delay(mid);
3089 	writel(0, &sdr_scc_mgr->update);
3090 
3091 	debug_cond(DLEVEL == 2,
3092 		   "%s:%d dm_calib: left=%d right=%d mid=%d dm_margin=%d\n",
3093 		   __func__, __LINE__, left_edge[0], right_edge[0],
3094 		   mid, dm_margin);
3095 	/* Export values. */
3096 	gbl->fom_out += dq_margin + dqs_margin;
3097 
3098 	debug_cond(DLEVEL == 2,
3099 		   "%s:%d write_center: dq_margin=%d dqs_margin=%d dm_margin=%d\n",
3100 		   __func__, __LINE__, dq_margin, dqs_margin, dm_margin);
3101 
3102 	/*
3103 	 * Do not remove this line as it makes sure all of our
3104 	 * decisions have been applied.
3105 	 */
3106 	writel(0, &sdr_scc_mgr->update);
3107 
3108 	if ((dq_margin < 0) || (dqs_margin < 0) || (dm_margin < 0))
3109 		return -EINVAL;
3110 
3111 	return 0;
3112 }
3113 
3114 /**
3115  * rw_mgr_mem_calibrate_writes() - Write Calibration Part One
3116  * @rank_bgn:		Rank number
3117  * @group:		Read/Write Group
3118  * @test_bgn:		Rank at which the test begins
3119  *
3120  * Stage 2: Write Calibration Part One.
3121  *
3122  * This function implements UniPHY calibration Stage 2, as explained in
3123  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
3124  */
3125 static int rw_mgr_mem_calibrate_writes(const u32 rank_bgn, const u32 group,
3126 				       const u32 test_bgn)
3127 {
3128 	int ret;
3129 
3130 	/* Update info for sims */
3131 	debug("%s:%d %u %u\n", __func__, __LINE__, group, test_bgn);
3132 
3133 	reg_file_set_group(group);
3134 	reg_file_set_stage(CAL_STAGE_WRITES);
3135 	reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3136 
3137 	ret = rw_mgr_mem_calibrate_writes_center(rank_bgn, group, test_bgn);
3138 	if (ret)
3139 		set_failing_group_stage(group, CAL_STAGE_WRITES,
3140 					CAL_SUBSTAGE_WRITES_CENTER);
3141 
3142 	return ret;
3143 }
3144 
3145 /**
3146  * mem_precharge_and_activate() - Precharge all banks and activate
3147  *
3148  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3149  */
3150 static void mem_precharge_and_activate(void)
3151 {
3152 	int r;
3153 
3154 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3155 		/* Test if the rank should be skipped. */
3156 		if (param->skip_ranks[r])
3157 			continue;
3158 
3159 		/* Set rank. */
3160 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3161 
3162 		/* Precharge all banks. */
3163 		writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3164 					     RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3165 
3166 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3167 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3168 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
3169 
3170 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3171 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3172 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
3173 
3174 		/* Activate rows. */
3175 		writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3176 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3177 	}
3178 }
3179 
3180 /**
3181  * mem_init_latency() - Configure memory RLAT and WLAT settings
3182  *
3183  * Configure memory RLAT and WLAT parameters.
3184  */
3185 static void mem_init_latency(void)
3186 {
3187 	/*
3188 	 * For AV/CV, LFIFO is hardened and always runs at full rate
3189 	 * so max latency in AFI clocks, used here, is correspondingly
3190 	 * smaller.
3191 	 */
3192 	const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3193 	u32 rlat, wlat;
3194 
3195 	debug("%s:%d\n", __func__, __LINE__);
3196 
3197 	/*
3198 	 * Read in write latency.
3199 	 * WL for Hard PHY does not include additive latency.
3200 	 */
3201 	wlat = readl(&data_mgr->t_wl_add);
3202 	wlat += readl(&data_mgr->mem_t_add);
3203 
3204 	gbl->rw_wl_nop_cycles = wlat - 1;
3205 
3206 	/* Read in readl latency. */
3207 	rlat = readl(&data_mgr->t_rl_add);
3208 
3209 	/* Set a pretty high read latency initially. */
3210 	gbl->curr_read_lat = rlat + 16;
3211 	if (gbl->curr_read_lat > max_latency)
3212 		gbl->curr_read_lat = max_latency;
3213 
3214 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3215 
3216 	/* Advertise write latency. */
3217 	writel(wlat, &phy_mgr_cfg->afi_wlat);
3218 }
3219 
3220 /**
3221  * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3222  *
3223  * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3224  */
3225 static void mem_skip_calibrate(void)
3226 {
3227 	uint32_t vfifo_offset;
3228 	uint32_t i, j, r;
3229 
3230 	debug("%s:%d\n", __func__, __LINE__);
3231 	/* Need to update every shadow register set used by the interface */
3232 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3233 	     r += NUM_RANKS_PER_SHADOW_REG) {
3234 		/*
3235 		 * Set output phase alignment settings appropriate for
3236 		 * skip calibration.
3237 		 */
3238 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3239 			scc_mgr_set_dqs_en_phase(i, 0);
3240 #if IO_DLL_CHAIN_LENGTH == 6
3241 			scc_mgr_set_dqdqs_output_phase(i, 6);
3242 #else
3243 			scc_mgr_set_dqdqs_output_phase(i, 7);
3244 #endif
3245 			/*
3246 			 * Case:33398
3247 			 *
3248 			 * Write data arrives to the I/O two cycles before write
3249 			 * latency is reached (720 deg).
3250 			 *   -> due to bit-slip in a/c bus
3251 			 *   -> to allow board skew where dqs is longer than ck
3252 			 *      -> how often can this happen!?
3253 			 *      -> can claim back some ptaps for high freq
3254 			 *       support if we can relax this, but i digress...
3255 			 *
3256 			 * The write_clk leads mem_ck by 90 deg
3257 			 * The minimum ptap of the OPA is 180 deg
3258 			 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3259 			 * The write_clk is always delayed by 2 ptaps
3260 			 *
3261 			 * Hence, to make DQS aligned to CK, we need to delay
3262 			 * DQS by:
3263 			 *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3264 			 *
3265 			 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3266 			 * gives us the number of ptaps, which simplies to:
3267 			 *
3268 			 *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3269 			 */
3270 			scc_mgr_set_dqdqs_output_phase(i,
3271 					1.25 * IO_DLL_CHAIN_LENGTH - 2);
3272 		}
3273 		writel(0xff, &sdr_scc_mgr->dqs_ena);
3274 		writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3275 
3276 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3277 			writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3278 				  SCC_MGR_GROUP_COUNTER_OFFSET);
3279 		}
3280 		writel(0xff, &sdr_scc_mgr->dq_ena);
3281 		writel(0xff, &sdr_scc_mgr->dm_ena);
3282 		writel(0, &sdr_scc_mgr->update);
3283 	}
3284 
3285 	/* Compensate for simulation model behaviour */
3286 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3287 		scc_mgr_set_dqs_bus_in_delay(i, 10);
3288 		scc_mgr_load_dqs(i);
3289 	}
3290 	writel(0, &sdr_scc_mgr->update);
3291 
3292 	/*
3293 	 * ArriaV has hard FIFOs that can only be initialized by incrementing
3294 	 * in sequencer.
3295 	 */
3296 	vfifo_offset = CALIB_VFIFO_OFFSET;
3297 	for (j = 0; j < vfifo_offset; j++)
3298 		writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3299 	writel(0, &phy_mgr_cmd->fifo_reset);
3300 
3301 	/*
3302 	 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3303 	 * setting from generation-time constant.
3304 	 */
3305 	gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3306 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3307 }
3308 
3309 /**
3310  * mem_calibrate() - Memory calibration entry point.
3311  *
3312  * Perform memory calibration.
3313  */
3314 static uint32_t mem_calibrate(void)
3315 {
3316 	uint32_t i;
3317 	uint32_t rank_bgn, sr;
3318 	uint32_t write_group, write_test_bgn;
3319 	uint32_t read_group, read_test_bgn;
3320 	uint32_t run_groups, current_run;
3321 	uint32_t failing_groups = 0;
3322 	uint32_t group_failed = 0;
3323 
3324 	const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
3325 				RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
3326 
3327 	debug("%s:%d\n", __func__, __LINE__);
3328 
3329 	/* Initialize the data settings */
3330 	gbl->error_substage = CAL_SUBSTAGE_NIL;
3331 	gbl->error_stage = CAL_STAGE_NIL;
3332 	gbl->error_group = 0xff;
3333 	gbl->fom_in = 0;
3334 	gbl->fom_out = 0;
3335 
3336 	/* Initialize WLAT and RLAT. */
3337 	mem_init_latency();
3338 
3339 	/* Initialize bit slips. */
3340 	mem_precharge_and_activate();
3341 
3342 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3343 		writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3344 			  SCC_MGR_GROUP_COUNTER_OFFSET);
3345 		/* Only needed once to set all groups, pins, DQ, DQS, DM. */
3346 		if (i == 0)
3347 			scc_mgr_set_hhp_extras();
3348 
3349 		scc_set_bypass_mode(i);
3350 	}
3351 
3352 	/* Calibration is skipped. */
3353 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3354 		/*
3355 		 * Set VFIFO and LFIFO to instant-on settings in skip
3356 		 * calibration mode.
3357 		 */
3358 		mem_skip_calibrate();
3359 
3360 		/*
3361 		 * Do not remove this line as it makes sure all of our
3362 		 * decisions have been applied.
3363 		 */
3364 		writel(0, &sdr_scc_mgr->update);
3365 		return 1;
3366 	}
3367 
3368 	/* Calibration is not skipped. */
3369 	for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3370 		/*
3371 		 * Zero all delay chain/phase settings for all
3372 		 * groups and all shadow register sets.
3373 		 */
3374 		scc_mgr_zero_all();
3375 
3376 		run_groups = ~param->skip_groups;
3377 
3378 		for (write_group = 0, write_test_bgn = 0; write_group
3379 			< RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3380 			write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3381 
3382 			/* Initialize the group failure */
3383 			group_failed = 0;
3384 
3385 			current_run = run_groups & ((1 <<
3386 				RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3387 			run_groups = run_groups >>
3388 				RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3389 
3390 			if (current_run == 0)
3391 				continue;
3392 
3393 			writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3394 					    SCC_MGR_GROUP_COUNTER_OFFSET);
3395 			scc_mgr_zero_group(write_group, 0);
3396 
3397 			for (read_group = write_group * rwdqs_ratio,
3398 			     read_test_bgn = 0;
3399 			     read_group < (write_group + 1) * rwdqs_ratio;
3400 			     read_group++,
3401 			     read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3402 				if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3403 					continue;
3404 
3405 				/* Calibrate the VFIFO */
3406 				if (rw_mgr_mem_calibrate_vfifo(read_group,
3407 							       read_test_bgn))
3408 					continue;
3409 
3410 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3411 					return 0;
3412 
3413 				/* The group failed, we're done. */
3414 				goto grp_failed;
3415 			}
3416 
3417 			/* Calibrate the output side */
3418 			for (rank_bgn = 0, sr = 0;
3419 			     rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
3420 			     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3421 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3422 					continue;
3423 
3424 				/* Not needed in quick mode! */
3425 				if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
3426 					continue;
3427 
3428 				/*
3429 				 * Determine if this set of ranks
3430 				 * should be skipped entirely.
3431 				 */
3432 				if (param->skip_shadow_regs[sr])
3433 					continue;
3434 
3435 				/* Calibrate WRITEs */
3436 				if (!rw_mgr_mem_calibrate_writes(rank_bgn,
3437 						write_group, write_test_bgn))
3438 					continue;
3439 
3440 				group_failed = 1;
3441 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3442 					return 0;
3443 			}
3444 
3445 			/* Some group failed, we're done. */
3446 			if (group_failed)
3447 				goto grp_failed;
3448 
3449 			for (read_group = write_group * rwdqs_ratio,
3450 			     read_test_bgn = 0;
3451 			     read_group < (write_group + 1) * rwdqs_ratio;
3452 			     read_group++,
3453 			     read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3454 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3455 					continue;
3456 
3457 				if (!rw_mgr_mem_calibrate_vfifo_end(read_group,
3458 								read_test_bgn))
3459 					continue;
3460 
3461 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3462 					return 0;
3463 
3464 				/* The group failed, we're done. */
3465 				goto grp_failed;
3466 			}
3467 
3468 			/* No group failed, continue as usual. */
3469 			continue;
3470 
3471 grp_failed:		/* A group failed, increment the counter. */
3472 			failing_groups++;
3473 		}
3474 
3475 		/*
3476 		 * USER If there are any failing groups then report
3477 		 * the failure.
3478 		 */
3479 		if (failing_groups != 0)
3480 			return 0;
3481 
3482 		if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3483 			continue;
3484 
3485 		/*
3486 		 * If we're skipping groups as part of debug,
3487 		 * don't calibrate LFIFO.
3488 		 */
3489 		if (param->skip_groups != 0)
3490 			continue;
3491 
3492 		/* Calibrate the LFIFO */
3493 		if (!rw_mgr_mem_calibrate_lfifo())
3494 			return 0;
3495 	}
3496 
3497 	/*
3498 	 * Do not remove this line as it makes sure all of our decisions
3499 	 * have been applied.
3500 	 */
3501 	writel(0, &sdr_scc_mgr->update);
3502 	return 1;
3503 }
3504 
3505 /**
3506  * run_mem_calibrate() - Perform memory calibration
3507  *
3508  * This function triggers the entire memory calibration procedure.
3509  */
3510 static int run_mem_calibrate(void)
3511 {
3512 	int pass;
3513 
3514 	debug("%s:%d\n", __func__, __LINE__);
3515 
3516 	/* Reset pass/fail status shown on afi_cal_success/fail */
3517 	writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3518 
3519 	/* Stop tracking manager. */
3520 	clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3521 
3522 	phy_mgr_initialize();
3523 	rw_mgr_mem_initialize();
3524 
3525 	/* Perform the actual memory calibration. */
3526 	pass = mem_calibrate();
3527 
3528 	mem_precharge_and_activate();
3529 	writel(0, &phy_mgr_cmd->fifo_reset);
3530 
3531 	/* Handoff. */
3532 	rw_mgr_mem_handoff();
3533 	/*
3534 	 * In Hard PHY this is a 2-bit control:
3535 	 * 0: AFI Mux Select
3536 	 * 1: DDIO Mux Select
3537 	 */
3538 	writel(0x2, &phy_mgr_cfg->mux_sel);
3539 
3540 	/* Start tracking manager. */
3541 	setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3542 
3543 	return pass;
3544 }
3545 
3546 /**
3547  * debug_mem_calibrate() - Report result of memory calibration
3548  * @pass:	Value indicating whether calibration passed or failed
3549  *
3550  * This function reports the results of the memory calibration
3551  * and writes debug information into the register file.
3552  */
3553 static void debug_mem_calibrate(int pass)
3554 {
3555 	uint32_t debug_info;
3556 
3557 	if (pass) {
3558 		printf("%s: CALIBRATION PASSED\n", __FILE__);
3559 
3560 		gbl->fom_in /= 2;
3561 		gbl->fom_out /= 2;
3562 
3563 		if (gbl->fom_in > 0xff)
3564 			gbl->fom_in = 0xff;
3565 
3566 		if (gbl->fom_out > 0xff)
3567 			gbl->fom_out = 0xff;
3568 
3569 		/* Update the FOM in the register file */
3570 		debug_info = gbl->fom_in;
3571 		debug_info |= gbl->fom_out << 8;
3572 		writel(debug_info, &sdr_reg_file->fom);
3573 
3574 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3575 		writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3576 	} else {
3577 		printf("%s: CALIBRATION FAILED\n", __FILE__);
3578 
3579 		debug_info = gbl->error_stage;
3580 		debug_info |= gbl->error_substage << 8;
3581 		debug_info |= gbl->error_group << 16;
3582 
3583 		writel(debug_info, &sdr_reg_file->failing_stage);
3584 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3585 		writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3586 
3587 		/* Update the failing group/stage in the register file */
3588 		debug_info = gbl->error_stage;
3589 		debug_info |= gbl->error_substage << 8;
3590 		debug_info |= gbl->error_group << 16;
3591 		writel(debug_info, &sdr_reg_file->failing_stage);
3592 	}
3593 
3594 	printf("%s: Calibration complete\n", __FILE__);
3595 }
3596 
3597 /**
3598  * hc_initialize_rom_data() - Initialize ROM data
3599  *
3600  * Initialize ROM data.
3601  */
3602 static void hc_initialize_rom_data(void)
3603 {
3604 	u32 i, addr;
3605 
3606 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3607 	for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3608 		writel(inst_rom_init[i], addr + (i << 2));
3609 
3610 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3611 	for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3612 		writel(ac_rom_init[i], addr + (i << 2));
3613 }
3614 
3615 /**
3616  * initialize_reg_file() - Initialize SDR register file
3617  *
3618  * Initialize SDR register file.
3619  */
3620 static void initialize_reg_file(void)
3621 {
3622 	/* Initialize the register file with the correct data */
3623 	writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3624 	writel(0, &sdr_reg_file->debug_data_addr);
3625 	writel(0, &sdr_reg_file->cur_stage);
3626 	writel(0, &sdr_reg_file->fom);
3627 	writel(0, &sdr_reg_file->failing_stage);
3628 	writel(0, &sdr_reg_file->debug1);
3629 	writel(0, &sdr_reg_file->debug2);
3630 }
3631 
3632 /**
3633  * initialize_hps_phy() - Initialize HPS PHY
3634  *
3635  * Initialize HPS PHY.
3636  */
3637 static void initialize_hps_phy(void)
3638 {
3639 	uint32_t reg;
3640 	/*
3641 	 * Tracking also gets configured here because it's in the
3642 	 * same register.
3643 	 */
3644 	uint32_t trk_sample_count = 7500;
3645 	uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3646 	/*
3647 	 * Format is number of outer loops in the 16 MSB, sample
3648 	 * count in 16 LSB.
3649 	 */
3650 
3651 	reg = 0;
3652 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3653 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3654 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3655 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3656 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3657 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3658 	/*
3659 	 * This field selects the intrinsic latency to RDATA_EN/FULL path.
3660 	 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3661 	 */
3662 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3663 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3664 		trk_sample_count);
3665 	writel(reg, &sdr_ctrl->phy_ctrl0);
3666 
3667 	reg = 0;
3668 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3669 		trk_sample_count >>
3670 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3671 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3672 		trk_long_idle_sample_count);
3673 	writel(reg, &sdr_ctrl->phy_ctrl1);
3674 
3675 	reg = 0;
3676 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3677 		trk_long_idle_sample_count >>
3678 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3679 	writel(reg, &sdr_ctrl->phy_ctrl2);
3680 }
3681 
3682 /**
3683  * initialize_tracking() - Initialize tracking
3684  *
3685  * Initialize the register file with usable initial data.
3686  */
3687 static void initialize_tracking(void)
3688 {
3689 	/*
3690 	 * Initialize the register file with the correct data.
3691 	 * Compute usable version of value in case we skip full
3692 	 * computation later.
3693 	 */
3694 	writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3695 	       &sdr_reg_file->dtaps_per_ptap);
3696 
3697 	/* trk_sample_count */
3698 	writel(7500, &sdr_reg_file->trk_sample_count);
3699 
3700 	/* longidle outer loop [15:0] */
3701 	writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3702 
3703 	/*
3704 	 * longidle sample count [31:24]
3705 	 * trfc, worst case of 933Mhz 4Gb [23:16]
3706 	 * trcd, worst case [15:8]
3707 	 * vfifo wait [7:0]
3708 	 */
3709 	writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3710 	       &sdr_reg_file->delays);
3711 
3712 	/* mux delay */
3713 	writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
3714 	       (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
3715 	       &sdr_reg_file->trk_rw_mgr_addr);
3716 
3717 	writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
3718 	       &sdr_reg_file->trk_read_dqs_width);
3719 
3720 	/* trefi [7:0] */
3721 	writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
3722 	       &sdr_reg_file->trk_rfsh);
3723 }
3724 
3725 int sdram_calibration_full(void)
3726 {
3727 	struct param_type my_param;
3728 	struct gbl_type my_gbl;
3729 	uint32_t pass;
3730 
3731 	memset(&my_param, 0, sizeof(my_param));
3732 	memset(&my_gbl, 0, sizeof(my_gbl));
3733 
3734 	param = &my_param;
3735 	gbl = &my_gbl;
3736 
3737 	/* Set the calibration enabled by default */
3738 	gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3739 	/*
3740 	 * Only sweep all groups (regardless of fail state) by default
3741 	 * Set enabled read test by default.
3742 	 */
3743 #if DISABLE_GUARANTEED_READ
3744 	gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3745 #endif
3746 	/* Initialize the register file */
3747 	initialize_reg_file();
3748 
3749 	/* Initialize any PHY CSR */
3750 	initialize_hps_phy();
3751 
3752 	scc_mgr_initialize();
3753 
3754 	initialize_tracking();
3755 
3756 	printf("%s: Preparing to start memory calibration\n", __FILE__);
3757 
3758 	debug("%s:%d\n", __func__, __LINE__);
3759 	debug_cond(DLEVEL == 1,
3760 		   "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3761 		   RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3762 		   RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3763 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3764 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3765 	debug_cond(DLEVEL == 1,
3766 		   "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3767 		   RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3768 		   RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3769 		   IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3770 	debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3771 		   IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3772 	debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3773 		   IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3774 		   IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3775 	debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3776 		   IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3777 		   IO_IO_OUT2_DELAY_MAX);
3778 	debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3779 		   IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3780 
3781 	hc_initialize_rom_data();
3782 
3783 	/* update info for sims */
3784 	reg_file_set_stage(CAL_STAGE_NIL);
3785 	reg_file_set_group(0);
3786 
3787 	/*
3788 	 * Load global needed for those actions that require
3789 	 * some dynamic calibration support.
3790 	 */
3791 	dyn_calib_steps = STATIC_CALIB_STEPS;
3792 	/*
3793 	 * Load global to allow dynamic selection of delay loop settings
3794 	 * based on calibration mode.
3795 	 */
3796 	if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3797 		skip_delay_mask = 0xff;
3798 	else
3799 		skip_delay_mask = 0x0;
3800 
3801 	pass = run_mem_calibrate();
3802 	debug_mem_calibrate(pass);
3803 	return pass;
3804 }
3805