1 /* 2 * Copyright Altera Corporation (C) 2012-2015 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <common.h> 8 #include <asm/io.h> 9 #include <asm/arch/sdram.h> 10 #include <errno.h> 11 #include "sequencer.h" 12 #include "sequencer_auto.h" 13 #include "sequencer_auto_ac_init.h" 14 #include "sequencer_auto_inst_init.h" 15 #include "sequencer_defines.h" 16 17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs = 18 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800); 19 20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs = 21 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00); 22 23 static struct socfpga_sdr_reg_file *sdr_reg_file = 24 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS; 25 26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr = 27 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00); 28 29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd = 30 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS; 31 32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg = 33 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40); 34 35 static struct socfpga_data_mgr *data_mgr = 36 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS; 37 38 static struct socfpga_sdr_ctrl *sdr_ctrl = 39 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS; 40 41 #define DELTA_D 1 42 43 /* 44 * In order to reduce ROM size, most of the selectable calibration steps are 45 * decided at compile time based on the user's calibration mode selection, 46 * as captured by the STATIC_CALIB_STEPS selection below. 47 * 48 * However, to support simulation-time selection of fast simulation mode, where 49 * we skip everything except the bare minimum, we need a few of the steps to 50 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the 51 * check, which is based on the rtl-supplied value, or we dynamically compute 52 * the value to use based on the dynamically-chosen calibration mode 53 */ 54 55 #define DLEVEL 0 56 #define STATIC_IN_RTL_SIM 0 57 #define STATIC_SKIP_DELAY_LOOPS 0 58 59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \ 60 STATIC_SKIP_DELAY_LOOPS) 61 62 /* calibration steps requested by the rtl */ 63 uint16_t dyn_calib_steps; 64 65 /* 66 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option 67 * instead of static, we use boolean logic to select between 68 * non-skip and skip values 69 * 70 * The mask is set to include all bits when not-skipping, but is 71 * zero when skipping 72 */ 73 74 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */ 75 76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \ 77 ((non_skip_value) & skip_delay_mask) 78 79 struct gbl_type *gbl; 80 struct param_type *param; 81 uint32_t curr_shadow_reg; 82 83 static void set_failing_group_stage(uint32_t group, uint32_t stage, 84 uint32_t substage) 85 { 86 /* 87 * Only set the global stage if there was not been any other 88 * failing group 89 */ 90 if (gbl->error_stage == CAL_STAGE_NIL) { 91 gbl->error_substage = substage; 92 gbl->error_stage = stage; 93 gbl->error_group = group; 94 } 95 } 96 97 static void reg_file_set_group(u16 set_group) 98 { 99 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16); 100 } 101 102 static void reg_file_set_stage(u8 set_stage) 103 { 104 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff); 105 } 106 107 static void reg_file_set_sub_stage(u8 set_sub_stage) 108 { 109 set_sub_stage &= 0xff; 110 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8); 111 } 112 113 /** 114 * phy_mgr_initialize() - Initialize PHY Manager 115 * 116 * Initialize PHY Manager. 117 */ 118 static void phy_mgr_initialize(void) 119 { 120 u32 ratio; 121 122 debug("%s:%d\n", __func__, __LINE__); 123 /* Calibration has control over path to memory */ 124 /* 125 * In Hard PHY this is a 2-bit control: 126 * 0: AFI Mux Select 127 * 1: DDIO Mux Select 128 */ 129 writel(0x3, &phy_mgr_cfg->mux_sel); 130 131 /* USER memory clock is not stable we begin initialization */ 132 writel(0, &phy_mgr_cfg->reset_mem_stbl); 133 134 /* USER calibration status all set to zero */ 135 writel(0, &phy_mgr_cfg->cal_status); 136 137 writel(0, &phy_mgr_cfg->cal_debug_info); 138 139 /* Init params only if we do NOT skip calibration. */ 140 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) 141 return; 142 143 ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 144 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 145 param->read_correct_mask_vg = (1 << ratio) - 1; 146 param->write_correct_mask_vg = (1 << ratio) - 1; 147 param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1; 148 param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1; 149 ratio = RW_MGR_MEM_DATA_WIDTH / 150 RW_MGR_MEM_DATA_MASK_WIDTH; 151 param->dm_correct_mask = (1 << ratio) - 1; 152 } 153 154 /** 155 * set_rank_and_odt_mask() - Set Rank and ODT mask 156 * @rank: Rank mask 157 * @odt_mode: ODT mode, OFF or READ_WRITE 158 * 159 * Set Rank and ODT mask (On-Die Termination). 160 */ 161 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode) 162 { 163 u32 odt_mask_0 = 0; 164 u32 odt_mask_1 = 0; 165 u32 cs_and_odt_mask; 166 167 if (odt_mode == RW_MGR_ODT_MODE_OFF) { 168 odt_mask_0 = 0x0; 169 odt_mask_1 = 0x0; 170 } else { /* RW_MGR_ODT_MODE_READ_WRITE */ 171 switch (RW_MGR_MEM_NUMBER_OF_RANKS) { 172 case 1: /* 1 Rank */ 173 /* Read: ODT = 0 ; Write: ODT = 1 */ 174 odt_mask_0 = 0x0; 175 odt_mask_1 = 0x1; 176 break; 177 case 2: /* 2 Ranks */ 178 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) { 179 /* 180 * - Dual-Slot , Single-Rank (1 CS per DIMM) 181 * OR 182 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM) 183 * 184 * Since MEM_NUMBER_OF_RANKS is 2, they 185 * are both single rank with 2 CS each 186 * (special for RDIMM). 187 * 188 * Read: Turn on ODT on the opposite rank 189 * Write: Turn on ODT on all ranks 190 */ 191 odt_mask_0 = 0x3 & ~(1 << rank); 192 odt_mask_1 = 0x3; 193 } else { 194 /* 195 * - Single-Slot , Dual-Rank (2 CS per DIMM) 196 * 197 * Read: Turn on ODT off on all ranks 198 * Write: Turn on ODT on active rank 199 */ 200 odt_mask_0 = 0x0; 201 odt_mask_1 = 0x3 & (1 << rank); 202 } 203 break; 204 case 4: /* 4 Ranks */ 205 /* Read: 206 * ----------+-----------------------+ 207 * | ODT | 208 * Read From +-----------------------+ 209 * Rank | 3 | 2 | 1 | 0 | 210 * ----------+-----+-----+-----+-----+ 211 * 0 | 0 | 1 | 0 | 0 | 212 * 1 | 1 | 0 | 0 | 0 | 213 * 2 | 0 | 0 | 0 | 1 | 214 * 3 | 0 | 0 | 1 | 0 | 215 * ----------+-----+-----+-----+-----+ 216 * 217 * Write: 218 * ----------+-----------------------+ 219 * | ODT | 220 * Write To +-----------------------+ 221 * Rank | 3 | 2 | 1 | 0 | 222 * ----------+-----+-----+-----+-----+ 223 * 0 | 0 | 1 | 0 | 1 | 224 * 1 | 1 | 0 | 1 | 0 | 225 * 2 | 0 | 1 | 0 | 1 | 226 * 3 | 1 | 0 | 1 | 0 | 227 * ----------+-----+-----+-----+-----+ 228 */ 229 switch (rank) { 230 case 0: 231 odt_mask_0 = 0x4; 232 odt_mask_1 = 0x5; 233 break; 234 case 1: 235 odt_mask_0 = 0x8; 236 odt_mask_1 = 0xA; 237 break; 238 case 2: 239 odt_mask_0 = 0x1; 240 odt_mask_1 = 0x5; 241 break; 242 case 3: 243 odt_mask_0 = 0x2; 244 odt_mask_1 = 0xA; 245 break; 246 } 247 break; 248 } 249 } 250 251 cs_and_odt_mask = (0xFF & ~(1 << rank)) | 252 ((0xFF & odt_mask_0) << 8) | 253 ((0xFF & odt_mask_1) << 16); 254 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS | 255 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 256 } 257 258 /** 259 * scc_mgr_set() - Set SCC Manager register 260 * @off: Base offset in SCC Manager space 261 * @grp: Read/Write group 262 * @val: Value to be set 263 * 264 * This function sets the SCC Manager (Scan Chain Control Manager) register. 265 */ 266 static void scc_mgr_set(u32 off, u32 grp, u32 val) 267 { 268 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2)); 269 } 270 271 /** 272 * scc_mgr_initialize() - Initialize SCC Manager registers 273 * 274 * Initialize SCC Manager registers. 275 */ 276 static void scc_mgr_initialize(void) 277 { 278 /* 279 * Clear register file for HPS. 16 (2^4) is the size of the 280 * full register file in the scc mgr: 281 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + 282 * MEM_IF_READ_DQS_WIDTH - 1); 283 */ 284 int i; 285 286 for (i = 0; i < 16; i++) { 287 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n", 288 __func__, __LINE__, i); 289 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i); 290 } 291 } 292 293 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase) 294 { 295 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase); 296 } 297 298 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay) 299 { 300 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay); 301 } 302 303 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase) 304 { 305 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase); 306 } 307 308 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay) 309 { 310 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay); 311 } 312 313 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay) 314 { 315 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 316 delay); 317 } 318 319 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay) 320 { 321 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay); 322 } 323 324 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay) 325 { 326 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay); 327 } 328 329 static void scc_mgr_set_dqs_out1_delay(uint32_t delay) 330 { 331 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 332 delay); 333 } 334 335 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay) 336 { 337 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, 338 RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm, 339 delay); 340 } 341 342 /* load up dqs config settings */ 343 static void scc_mgr_load_dqs(uint32_t dqs) 344 { 345 writel(dqs, &sdr_scc_mgr->dqs_ena); 346 } 347 348 /* load up dqs io config settings */ 349 static void scc_mgr_load_dqs_io(void) 350 { 351 writel(0, &sdr_scc_mgr->dqs_io_ena); 352 } 353 354 /* load up dq config settings */ 355 static void scc_mgr_load_dq(uint32_t dq_in_group) 356 { 357 writel(dq_in_group, &sdr_scc_mgr->dq_ena); 358 } 359 360 /* load up dm config settings */ 361 static void scc_mgr_load_dm(uint32_t dm) 362 { 363 writel(dm, &sdr_scc_mgr->dm_ena); 364 } 365 366 /** 367 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks 368 * @off: Base offset in SCC Manager space 369 * @grp: Read/Write group 370 * @val: Value to be set 371 * @update: If non-zero, trigger SCC Manager update for all ranks 372 * 373 * This function sets the SCC Manager (Scan Chain Control Manager) register 374 * and optionally triggers the SCC update for all ranks. 375 */ 376 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val, 377 const int update) 378 { 379 u32 r; 380 381 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 382 r += NUM_RANKS_PER_SHADOW_REG) { 383 scc_mgr_set(off, grp, val); 384 385 if (update || (r == 0)) { 386 writel(grp, &sdr_scc_mgr->dqs_ena); 387 writel(0, &sdr_scc_mgr->update); 388 } 389 } 390 } 391 392 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase) 393 { 394 /* 395 * USER although the h/w doesn't support different phases per 396 * shadow register, for simplicity our scc manager modeling 397 * keeps different phase settings per shadow reg, and it's 398 * important for us to keep them in sync to match h/w. 399 * for efficiency, the scan chain update should occur only 400 * once to sr0. 401 */ 402 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET, 403 read_group, phase, 0); 404 } 405 406 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group, 407 uint32_t phase) 408 { 409 /* 410 * USER although the h/w doesn't support different phases per 411 * shadow register, for simplicity our scc manager modeling 412 * keeps different phase settings per shadow reg, and it's 413 * important for us to keep them in sync to match h/w. 414 * for efficiency, the scan chain update should occur only 415 * once to sr0. 416 */ 417 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, 418 write_group, phase, 0); 419 } 420 421 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group, 422 uint32_t delay) 423 { 424 /* 425 * In shadow register mode, the T11 settings are stored in 426 * registers in the core, which are updated by the DQS_ENA 427 * signals. Not issuing the SCC_MGR_UPD command allows us to 428 * save lots of rank switching overhead, by calling 429 * select_shadow_regs_for_update with update_scan_chains 430 * set to 0. 431 */ 432 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET, 433 read_group, delay, 1); 434 writel(0, &sdr_scc_mgr->update); 435 } 436 437 /** 438 * scc_mgr_set_oct_out1_delay() - Set OCT output delay 439 * @write_group: Write group 440 * @delay: Delay value 441 * 442 * This function sets the OCT output delay in SCC manager. 443 */ 444 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay) 445 { 446 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 447 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 448 const int base = write_group * ratio; 449 int i; 450 /* 451 * Load the setting in the SCC manager 452 * Although OCT affects only write data, the OCT delay is controlled 453 * by the DQS logic block which is instantiated once per read group. 454 * For protocols where a write group consists of multiple read groups, 455 * the setting must be set multiple times. 456 */ 457 for (i = 0; i < ratio; i++) 458 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay); 459 } 460 461 /** 462 * scc_mgr_set_hhp_extras() - Set HHP extras. 463 * 464 * Load the fixed setting in the SCC manager HHP extras. 465 */ 466 static void scc_mgr_set_hhp_extras(void) 467 { 468 /* 469 * Load the fixed setting in the SCC manager 470 * bits: 0:0 = 1'b1 - DQS bypass 471 * bits: 1:1 = 1'b1 - DQ bypass 472 * bits: 4:2 = 3'b001 - rfifo_mode 473 * bits: 6:5 = 2'b01 - rfifo clock_select 474 * bits: 7:7 = 1'b0 - separate gating from ungating setting 475 * bits: 8:8 = 1'b0 - separate OE from Output delay setting 476 */ 477 const u32 value = (0 << 8) | (0 << 7) | (1 << 5) | 478 (1 << 2) | (1 << 1) | (1 << 0); 479 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | 480 SCC_MGR_HHP_GLOBALS_OFFSET | 481 SCC_MGR_HHP_EXTRAS_OFFSET; 482 483 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", 484 __func__, __LINE__); 485 writel(value, addr); 486 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n", 487 __func__, __LINE__); 488 } 489 490 /** 491 * scc_mgr_zero_all() - Zero all DQS config 492 * 493 * Zero all DQS config. 494 */ 495 static void scc_mgr_zero_all(void) 496 { 497 int i, r; 498 499 /* 500 * USER Zero all DQS config settings, across all groups and all 501 * shadow registers 502 */ 503 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 504 r += NUM_RANKS_PER_SHADOW_REG) { 505 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 506 /* 507 * The phases actually don't exist on a per-rank basis, 508 * but there's no harm updating them several times, so 509 * let's keep the code simple. 510 */ 511 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE); 512 scc_mgr_set_dqs_en_phase(i, 0); 513 scc_mgr_set_dqs_en_delay(i, 0); 514 } 515 516 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 517 scc_mgr_set_dqdqs_output_phase(i, 0); 518 /* Arria V/Cyclone V don't have out2. */ 519 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE); 520 } 521 } 522 523 /* Multicast to all DQS group enables. */ 524 writel(0xff, &sdr_scc_mgr->dqs_ena); 525 writel(0, &sdr_scc_mgr->update); 526 } 527 528 /** 529 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update 530 * @write_group: Write group 531 * 532 * Set bypass mode and trigger SCC update. 533 */ 534 static void scc_set_bypass_mode(const u32 write_group) 535 { 536 /* Multicast to all DQ enables. */ 537 writel(0xff, &sdr_scc_mgr->dq_ena); 538 writel(0xff, &sdr_scc_mgr->dm_ena); 539 540 /* Update current DQS IO enable. */ 541 writel(0, &sdr_scc_mgr->dqs_io_ena); 542 543 /* Update the DQS logic. */ 544 writel(write_group, &sdr_scc_mgr->dqs_ena); 545 546 /* Hit update. */ 547 writel(0, &sdr_scc_mgr->update); 548 } 549 550 /** 551 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group 552 * @write_group: Write group 553 * 554 * Load DQS settings for Write Group, do not trigger SCC update. 555 */ 556 static void scc_mgr_load_dqs_for_write_group(const u32 write_group) 557 { 558 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 559 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 560 const int base = write_group * ratio; 561 int i; 562 /* 563 * Load the setting in the SCC manager 564 * Although OCT affects only write data, the OCT delay is controlled 565 * by the DQS logic block which is instantiated once per read group. 566 * For protocols where a write group consists of multiple read groups, 567 * the setting must be set multiple times. 568 */ 569 for (i = 0; i < ratio; i++) 570 writel(base + i, &sdr_scc_mgr->dqs_ena); 571 } 572 573 /** 574 * scc_mgr_zero_group() - Zero all configs for a group 575 * 576 * Zero DQ, DM, DQS and OCT configs for a group. 577 */ 578 static void scc_mgr_zero_group(const u32 write_group, const int out_only) 579 { 580 int i, r; 581 582 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 583 r += NUM_RANKS_PER_SHADOW_REG) { 584 /* Zero all DQ config settings. */ 585 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 586 scc_mgr_set_dq_out1_delay(i, 0); 587 if (!out_only) 588 scc_mgr_set_dq_in_delay(i, 0); 589 } 590 591 /* Multicast to all DQ enables. */ 592 writel(0xff, &sdr_scc_mgr->dq_ena); 593 594 /* Zero all DM config settings. */ 595 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 596 scc_mgr_set_dm_out1_delay(i, 0); 597 598 /* Multicast to all DM enables. */ 599 writel(0xff, &sdr_scc_mgr->dm_ena); 600 601 /* Zero all DQS IO settings. */ 602 if (!out_only) 603 scc_mgr_set_dqs_io_in_delay(0); 604 605 /* Arria V/Cyclone V don't have out2. */ 606 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE); 607 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE); 608 scc_mgr_load_dqs_for_write_group(write_group); 609 610 /* Multicast to all DQS IO enables (only 1 in total). */ 611 writel(0, &sdr_scc_mgr->dqs_io_ena); 612 613 /* Hit update to zero everything. */ 614 writel(0, &sdr_scc_mgr->update); 615 } 616 } 617 618 /* 619 * apply and load a particular input delay for the DQ pins in a group 620 * group_bgn is the index of the first dq pin (in the write group) 621 */ 622 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay) 623 { 624 uint32_t i, p; 625 626 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 627 scc_mgr_set_dq_in_delay(p, delay); 628 scc_mgr_load_dq(p); 629 } 630 } 631 632 /** 633 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group 634 * @delay: Delay value 635 * 636 * Apply and load a particular output delay for the DQ pins in a group. 637 */ 638 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay) 639 { 640 int i; 641 642 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 643 scc_mgr_set_dq_out1_delay(i, delay); 644 scc_mgr_load_dq(i); 645 } 646 } 647 648 /* apply and load a particular output delay for the DM pins in a group */ 649 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1) 650 { 651 uint32_t i; 652 653 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 654 scc_mgr_set_dm_out1_delay(i, delay1); 655 scc_mgr_load_dm(i); 656 } 657 } 658 659 660 /* apply and load delay on both DQS and OCT out1 */ 661 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group, 662 uint32_t delay) 663 { 664 scc_mgr_set_dqs_out1_delay(delay); 665 scc_mgr_load_dqs_io(); 666 667 scc_mgr_set_oct_out1_delay(write_group, delay); 668 scc_mgr_load_dqs_for_write_group(write_group); 669 } 670 671 /** 672 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT 673 * @write_group: Write group 674 * @delay: Delay value 675 * 676 * Apply a delay to the entire output side: DQ, DM, DQS, OCT. 677 */ 678 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group, 679 const u32 delay) 680 { 681 u32 i, new_delay; 682 683 /* DQ shift */ 684 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) 685 scc_mgr_load_dq(i); 686 687 /* DM shift */ 688 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 689 scc_mgr_load_dm(i); 690 691 /* DQS shift */ 692 new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay; 693 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 694 debug_cond(DLEVEL == 1, 695 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 696 __func__, __LINE__, write_group, delay, new_delay, 697 IO_IO_OUT2_DELAY_MAX, 698 new_delay - IO_IO_OUT2_DELAY_MAX); 699 new_delay -= IO_IO_OUT2_DELAY_MAX; 700 scc_mgr_set_dqs_out1_delay(new_delay); 701 } 702 703 scc_mgr_load_dqs_io(); 704 705 /* OCT shift */ 706 new_delay = READ_SCC_OCT_OUT2_DELAY + delay; 707 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 708 debug_cond(DLEVEL == 1, 709 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 710 __func__, __LINE__, write_group, delay, 711 new_delay, IO_IO_OUT2_DELAY_MAX, 712 new_delay - IO_IO_OUT2_DELAY_MAX); 713 new_delay -= IO_IO_OUT2_DELAY_MAX; 714 scc_mgr_set_oct_out1_delay(write_group, new_delay); 715 } 716 717 scc_mgr_load_dqs_for_write_group(write_group); 718 } 719 720 /** 721 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks 722 * @write_group: Write group 723 * @delay: Delay value 724 * 725 * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks. 726 */ 727 static void 728 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group, 729 const u32 delay) 730 { 731 int r; 732 733 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 734 r += NUM_RANKS_PER_SHADOW_REG) { 735 scc_mgr_apply_group_all_out_delay_add(write_group, delay); 736 writel(0, &sdr_scc_mgr->update); 737 } 738 } 739 740 /** 741 * set_jump_as_return() - Return instruction optimization 742 * 743 * Optimization used to recover some slots in ddr3 inst_rom could be 744 * applied to other protocols if we wanted to 745 */ 746 static void set_jump_as_return(void) 747 { 748 /* 749 * To save space, we replace return with jump to special shared 750 * RETURN instruction so we set the counter to large value so that 751 * we always jump. 752 */ 753 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0); 754 writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 755 } 756 757 /* 758 * should always use constants as argument to ensure all computations are 759 * performed at compile time 760 */ 761 static void delay_for_n_mem_clocks(const u32 clocks) 762 { 763 u32 afi_clocks; 764 u16 c_loop; 765 u8 inner; 766 u8 outer; 767 768 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks); 769 770 /* Scale (rounding up) to get afi clocks. */ 771 afi_clocks = DIV_ROUND_UP(clocks, AFI_RATE_RATIO); 772 if (afi_clocks) /* Temporary underflow protection */ 773 afi_clocks--; 774 775 /* 776 * Note, we don't bother accounting for being off a little 777 * bit because of a few extra instructions in outer loops. 778 * Note, the loops have a test at the end, and do the test 779 * before the decrement, and so always perform the loop 780 * 1 time more than the counter value 781 */ 782 c_loop = afi_clocks >> 16; 783 outer = c_loop ? 0xff : (afi_clocks >> 8); 784 inner = outer ? 0xff : afi_clocks; 785 786 /* 787 * rom instructions are structured as follows: 788 * 789 * IDLE_LOOP2: jnz cntr0, TARGET_A 790 * IDLE_LOOP1: jnz cntr1, TARGET_B 791 * return 792 * 793 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and 794 * TARGET_B is set to IDLE_LOOP2 as well 795 * 796 * if we have no outer loop, though, then we can use IDLE_LOOP1 only, 797 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely 798 * 799 * a little confusing, but it helps save precious space in the inst_rom 800 * and sequencer rom and keeps the delays more accurate and reduces 801 * overhead 802 */ 803 if (afi_clocks < 0x100) { 804 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 805 &sdr_rw_load_mgr_regs->load_cntr1); 806 807 writel(RW_MGR_IDLE_LOOP1, 808 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 809 810 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 811 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 812 } else { 813 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 814 &sdr_rw_load_mgr_regs->load_cntr0); 815 816 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), 817 &sdr_rw_load_mgr_regs->load_cntr1); 818 819 writel(RW_MGR_IDLE_LOOP2, 820 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 821 822 writel(RW_MGR_IDLE_LOOP2, 823 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 824 825 do { 826 writel(RW_MGR_IDLE_LOOP2, 827 SDR_PHYGRP_RWMGRGRP_ADDRESS | 828 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 829 } while (c_loop-- != 0); 830 } 831 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks); 832 } 833 834 /** 835 * rw_mgr_mem_init_load_regs() - Load instruction registers 836 * @cntr0: Counter 0 value 837 * @cntr1: Counter 1 value 838 * @cntr2: Counter 2 value 839 * @jump: Jump instruction value 840 * 841 * Load instruction registers. 842 */ 843 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump) 844 { 845 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 846 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 847 848 /* Load counters */ 849 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0), 850 &sdr_rw_load_mgr_regs->load_cntr0); 851 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1), 852 &sdr_rw_load_mgr_regs->load_cntr1); 853 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2), 854 &sdr_rw_load_mgr_regs->load_cntr2); 855 856 /* Load jump address */ 857 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 858 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1); 859 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 860 861 /* Execute count instruction */ 862 writel(jump, grpaddr); 863 } 864 865 /** 866 * rw_mgr_mem_load_user() - Load user calibration values 867 * @fin1: Final instruction 1 868 * @fin2: Final instruction 2 869 * @precharge: If 1, precharge the banks at the end 870 * 871 * Load user calibration values and optionally precharge the banks. 872 */ 873 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2, 874 const int precharge) 875 { 876 u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 877 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 878 u32 r; 879 880 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 881 if (param->skip_ranks[r]) { 882 /* request to skip the rank */ 883 continue; 884 } 885 886 /* set rank */ 887 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 888 889 /* precharge all banks ... */ 890 if (precharge) 891 writel(RW_MGR_PRECHARGE_ALL, grpaddr); 892 893 /* 894 * USER Use Mirror-ed commands for odd ranks if address 895 * mirrorring is on 896 */ 897 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 898 set_jump_as_return(); 899 writel(RW_MGR_MRS2_MIRR, grpaddr); 900 delay_for_n_mem_clocks(4); 901 set_jump_as_return(); 902 writel(RW_MGR_MRS3_MIRR, grpaddr); 903 delay_for_n_mem_clocks(4); 904 set_jump_as_return(); 905 writel(RW_MGR_MRS1_MIRR, grpaddr); 906 delay_for_n_mem_clocks(4); 907 set_jump_as_return(); 908 writel(fin1, grpaddr); 909 } else { 910 set_jump_as_return(); 911 writel(RW_MGR_MRS2, grpaddr); 912 delay_for_n_mem_clocks(4); 913 set_jump_as_return(); 914 writel(RW_MGR_MRS3, grpaddr); 915 delay_for_n_mem_clocks(4); 916 set_jump_as_return(); 917 writel(RW_MGR_MRS1, grpaddr); 918 set_jump_as_return(); 919 writel(fin2, grpaddr); 920 } 921 922 if (precharge) 923 continue; 924 925 set_jump_as_return(); 926 writel(RW_MGR_ZQCL, grpaddr); 927 928 /* tZQinit = tDLLK = 512 ck cycles */ 929 delay_for_n_mem_clocks(512); 930 } 931 } 932 933 /** 934 * rw_mgr_mem_initialize() - Initialize RW Manager 935 * 936 * Initialize RW Manager. 937 */ 938 static void rw_mgr_mem_initialize(void) 939 { 940 debug("%s:%d\n", __func__, __LINE__); 941 942 /* The reset / cke part of initialization is broadcasted to all ranks */ 943 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 944 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 945 946 /* 947 * Here's how you load register for a loop 948 * Counters are located @ 0x800 949 * Jump address are located @ 0xC00 950 * For both, registers 0 to 3 are selected using bits 3 and 2, like 951 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C 952 * I know this ain't pretty, but Avalon bus throws away the 2 least 953 * significant bits 954 */ 955 956 /* Start with memory RESET activated */ 957 958 /* tINIT = 200us */ 959 960 /* 961 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles 962 * If a and b are the number of iteration in 2 nested loops 963 * it takes the following number of cycles to complete the operation: 964 * number_of_cycles = ((2 + n) * a + 2) * b 965 * where n is the number of instruction in the inner loop 966 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF, 967 * b = 6A 968 */ 969 rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL, 970 SEQ_TINIT_CNTR2_VAL, 971 RW_MGR_INIT_RESET_0_CKE_0); 972 973 /* Indicate that memory is stable. */ 974 writel(1, &phy_mgr_cfg->reset_mem_stbl); 975 976 /* 977 * transition the RESET to high 978 * Wait for 500us 979 */ 980 981 /* 982 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles 983 * If a and b are the number of iteration in 2 nested loops 984 * it takes the following number of cycles to complete the operation 985 * number_of_cycles = ((2 + n) * a + 2) * b 986 * where n is the number of instruction in the inner loop 987 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83, 988 * b = FF 989 */ 990 rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL, 991 SEQ_TRESET_CNTR2_VAL, 992 RW_MGR_INIT_RESET_1_CKE_0); 993 994 /* Bring up clock enable. */ 995 996 /* tXRP < 250 ck cycles */ 997 delay_for_n_mem_clocks(250); 998 999 rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET, 1000 0); 1001 } 1002 1003 /** 1004 * rw_mgr_mem_handoff() - Hand off the memory to user 1005 * 1006 * At the end of calibration we have to program the user settings in 1007 * and hand off the memory to the user. 1008 */ 1009 static void rw_mgr_mem_handoff(void) 1010 { 1011 rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1); 1012 /* 1013 * Need to wait tMOD (12CK or 15ns) time before issuing other 1014 * commands, but we will have plenty of NIOS cycles before actual 1015 * handoff so its okay. 1016 */ 1017 } 1018 1019 /** 1020 * rw_mgr_mem_calibrate_write_test_issue() - Issue write test command 1021 * @group: Write Group 1022 * @use_dm: Use DM 1023 * 1024 * Issue write test command. Two variants are provided, one that just tests 1025 * a write pattern and another that tests datamask functionality. 1026 */ 1027 static void rw_mgr_mem_calibrate_write_test_issue(u32 group, 1028 u32 test_dm) 1029 { 1030 const u32 quick_write_mode = 1031 (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) && 1032 ENABLE_SUPER_QUICK_CALIBRATION; 1033 u32 mcc_instruction; 1034 u32 rw_wl_nop_cycles; 1035 1036 /* 1037 * Set counter and jump addresses for the right 1038 * number of NOP cycles. 1039 * The number of supported NOP cycles can range from -1 to infinity 1040 * Three different cases are handled: 1041 * 1042 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping 1043 * mechanism will be used to insert the right number of NOPs 1044 * 1045 * 2. For a number of NOP cycles equals to 0, the micro-instruction 1046 * issuing the write command will jump straight to the 1047 * micro-instruction that turns on DQS (for DDRx), or outputs write 1048 * data (for RLD), skipping 1049 * the NOP micro-instruction all together 1050 * 1051 * 3. A number of NOP cycles equal to -1 indicates that DQS must be 1052 * turned on in the same micro-instruction that issues the write 1053 * command. Then we need 1054 * to directly jump to the micro-instruction that sends out the data 1055 * 1056 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters 1057 * (2 and 3). One jump-counter (0) is used to perform multiple 1058 * write-read operations. 1059 * one counter left to issue this command in "multiple-group" mode 1060 */ 1061 1062 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles; 1063 1064 if (rw_wl_nop_cycles == -1) { 1065 /* 1066 * CNTR 2 - We want to execute the special write operation that 1067 * turns on DQS right away and then skip directly to the 1068 * instruction that sends out the data. We set the counter to a 1069 * large number so that the jump is always taken. 1070 */ 1071 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 1072 1073 /* CNTR 3 - Not used */ 1074 if (test_dm) { 1075 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1; 1076 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA, 1077 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1078 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 1079 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1080 } else { 1081 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1; 1082 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA, 1083 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1084 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 1085 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1086 } 1087 } else if (rw_wl_nop_cycles == 0) { 1088 /* 1089 * CNTR 2 - We want to skip the NOP operation and go straight 1090 * to the DQS enable instruction. We set the counter to a large 1091 * number so that the jump is always taken. 1092 */ 1093 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 1094 1095 /* CNTR 3 - Not used */ 1096 if (test_dm) { 1097 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 1098 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS, 1099 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1100 } else { 1101 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 1102 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS, 1103 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1104 } 1105 } else { 1106 /* 1107 * CNTR 2 - In this case we want to execute the next instruction 1108 * and NOT take the jump. So we set the counter to 0. The jump 1109 * address doesn't count. 1110 */ 1111 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2); 1112 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1113 1114 /* 1115 * CNTR 3 - Set the nop counter to the number of cycles we 1116 * need to loop for, minus 1. 1117 */ 1118 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3); 1119 if (test_dm) { 1120 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 1121 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 1122 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1123 } else { 1124 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 1125 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 1126 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1127 } 1128 } 1129 1130 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1131 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1132 1133 if (quick_write_mode) 1134 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0); 1135 else 1136 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0); 1137 1138 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1139 1140 /* 1141 * CNTR 1 - This is used to ensure enough time elapses 1142 * for read data to come back. 1143 */ 1144 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1); 1145 1146 if (test_dm) { 1147 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT, 1148 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1149 } else { 1150 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT, 1151 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1152 } 1153 1154 writel(mcc_instruction, (SDR_PHYGRP_RWMGRGRP_ADDRESS | 1155 RW_MGR_RUN_SINGLE_GROUP_OFFSET) + 1156 (group << 2)); 1157 } 1158 1159 /** 1160 * rw_mgr_mem_calibrate_write_test() - Test writes, check for single/multiple pass 1161 * @rank_bgn: Rank number 1162 * @write_group: Write Group 1163 * @use_dm: Use DM 1164 * @all_correct: All bits must be correct in the mask 1165 * @bit_chk: Resulting bit mask after the test 1166 * @all_ranks: Test all ranks 1167 * 1168 * Test writes, can check for a single bit pass or multiple bit pass. 1169 */ 1170 static int 1171 rw_mgr_mem_calibrate_write_test(const u32 rank_bgn, const u32 write_group, 1172 const u32 use_dm, const u32 all_correct, 1173 u32 *bit_chk, const u32 all_ranks) 1174 { 1175 const u32 rank_end = all_ranks ? 1176 RW_MGR_MEM_NUMBER_OF_RANKS : 1177 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1178 const u32 shift_ratio = RW_MGR_MEM_DQ_PER_WRITE_DQS / 1179 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS; 1180 const u32 correct_mask_vg = param->write_correct_mask_vg; 1181 1182 u32 tmp_bit_chk, base_rw_mgr; 1183 int vg, r; 1184 1185 *bit_chk = param->write_correct_mask; 1186 1187 for (r = rank_bgn; r < rank_end; r++) { 1188 /* Request to skip the rank */ 1189 if (param->skip_ranks[r]) 1190 continue; 1191 1192 /* Set rank */ 1193 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1194 1195 tmp_bit_chk = 0; 1196 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS - 1; 1197 vg >= 0; vg--) { 1198 /* Reset the FIFOs to get pointers to known state. */ 1199 writel(0, &phy_mgr_cmd->fifo_reset); 1200 1201 rw_mgr_mem_calibrate_write_test_issue( 1202 write_group * 1203 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS + vg, 1204 use_dm); 1205 1206 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1207 tmp_bit_chk <<= shift_ratio; 1208 tmp_bit_chk |= (correct_mask_vg & ~(base_rw_mgr)); 1209 } 1210 1211 *bit_chk &= tmp_bit_chk; 1212 } 1213 1214 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1215 if (all_correct) { 1216 debug_cond(DLEVEL == 2, 1217 "write_test(%u,%u,ALL) : %u == %u => %i\n", 1218 write_group, use_dm, *bit_chk, 1219 param->write_correct_mask, 1220 *bit_chk == param->write_correct_mask); 1221 return *bit_chk == param->write_correct_mask; 1222 } else { 1223 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1224 debug_cond(DLEVEL == 2, 1225 "write_test(%u,%u,ONE) : %u != %i => %i\n", 1226 write_group, use_dm, *bit_chk, 0, *bit_chk != 0); 1227 return *bit_chk != 0x00; 1228 } 1229 } 1230 1231 /** 1232 * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns 1233 * @rank_bgn: Rank number 1234 * @group: Read/Write Group 1235 * @all_ranks: Test all ranks 1236 * 1237 * Performs a guaranteed read on the patterns we are going to use during a 1238 * read test to ensure memory works. 1239 */ 1240 static int 1241 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group, 1242 const u32 all_ranks) 1243 { 1244 const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1245 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1246 const u32 addr_offset = 1247 (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2; 1248 const u32 rank_end = all_ranks ? 1249 RW_MGR_MEM_NUMBER_OF_RANKS : 1250 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1251 const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 1252 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 1253 const u32 correct_mask_vg = param->read_correct_mask_vg; 1254 1255 u32 tmp_bit_chk, base_rw_mgr, bit_chk; 1256 int vg, r; 1257 int ret = 0; 1258 1259 bit_chk = param->read_correct_mask; 1260 1261 for (r = rank_bgn; r < rank_end; r++) { 1262 /* Request to skip the rank */ 1263 if (param->skip_ranks[r]) 1264 continue; 1265 1266 /* Set rank */ 1267 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1268 1269 /* Load up a constant bursts of read commands */ 1270 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1271 writel(RW_MGR_GUARANTEED_READ, 1272 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1273 1274 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1275 writel(RW_MGR_GUARANTEED_READ_CONT, 1276 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1277 1278 tmp_bit_chk = 0; 1279 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; 1280 vg >= 0; vg--) { 1281 /* Reset the FIFOs to get pointers to known state. */ 1282 writel(0, &phy_mgr_cmd->fifo_reset); 1283 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1284 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1285 writel(RW_MGR_GUARANTEED_READ, 1286 addr + addr_offset + (vg << 2)); 1287 1288 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1289 tmp_bit_chk <<= shift_ratio; 1290 tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr; 1291 } 1292 1293 bit_chk &= tmp_bit_chk; 1294 } 1295 1296 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1297 1298 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1299 1300 if (bit_chk != param->read_correct_mask) 1301 ret = -EIO; 1302 1303 debug_cond(DLEVEL == 1, 1304 "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n", 1305 __func__, __LINE__, group, bit_chk, 1306 param->read_correct_mask, ret); 1307 1308 return ret; 1309 } 1310 1311 /** 1312 * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test 1313 * @rank_bgn: Rank number 1314 * @all_ranks: Test all ranks 1315 * 1316 * Load up the patterns we are going to use during a read test. 1317 */ 1318 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn, 1319 const int all_ranks) 1320 { 1321 const u32 rank_end = all_ranks ? 1322 RW_MGR_MEM_NUMBER_OF_RANKS : 1323 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1324 u32 r; 1325 1326 debug("%s:%d\n", __func__, __LINE__); 1327 1328 for (r = rank_bgn; r < rank_end; r++) { 1329 if (param->skip_ranks[r]) 1330 /* request to skip the rank */ 1331 continue; 1332 1333 /* set rank */ 1334 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1335 1336 /* Load up a constant bursts */ 1337 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1338 1339 writel(RW_MGR_GUARANTEED_WRITE_WAIT0, 1340 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1341 1342 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1343 1344 writel(RW_MGR_GUARANTEED_WRITE_WAIT1, 1345 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1346 1347 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2); 1348 1349 writel(RW_MGR_GUARANTEED_WRITE_WAIT2, 1350 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1351 1352 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3); 1353 1354 writel(RW_MGR_GUARANTEED_WRITE_WAIT3, 1355 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1356 1357 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1358 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 1359 } 1360 1361 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1362 } 1363 1364 /** 1365 * rw_mgr_mem_calibrate_read_test() - Perform READ test on single rank 1366 * @rank_bgn: Rank number 1367 * @group: Read/Write group 1368 * @num_tries: Number of retries of the test 1369 * @all_correct: All bits must be correct in the mask 1370 * @bit_chk: Resulting bit mask after the test 1371 * @all_groups: Test all R/W groups 1372 * @all_ranks: Test all ranks 1373 * 1374 * Try a read and see if it returns correct data back. Test has dummy reads 1375 * inserted into the mix used to align DQS enable. Test has more thorough 1376 * checks than the regular read test. 1377 */ 1378 static int 1379 rw_mgr_mem_calibrate_read_test(const u32 rank_bgn, const u32 group, 1380 const u32 num_tries, const u32 all_correct, 1381 u32 *bit_chk, 1382 const u32 all_groups, const u32 all_ranks) 1383 { 1384 const u32 rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1385 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1386 const u32 quick_read_mode = 1387 ((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) && 1388 ENABLE_SUPER_QUICK_CALIBRATION); 1389 u32 correct_mask_vg = param->read_correct_mask_vg; 1390 u32 tmp_bit_chk; 1391 u32 base_rw_mgr; 1392 u32 addr; 1393 1394 int r, vg, ret; 1395 1396 *bit_chk = param->read_correct_mask; 1397 1398 for (r = rank_bgn; r < rank_end; r++) { 1399 if (param->skip_ranks[r]) 1400 /* request to skip the rank */ 1401 continue; 1402 1403 /* set rank */ 1404 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1405 1406 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1); 1407 1408 writel(RW_MGR_READ_B2B_WAIT1, 1409 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1410 1411 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2); 1412 writel(RW_MGR_READ_B2B_WAIT2, 1413 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1414 1415 if (quick_read_mode) 1416 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0); 1417 /* need at least two (1+1) reads to capture failures */ 1418 else if (all_groups) 1419 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0); 1420 else 1421 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0); 1422 1423 writel(RW_MGR_READ_B2B, 1424 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1425 if (all_groups) 1426 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH * 1427 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1, 1428 &sdr_rw_load_mgr_regs->load_cntr3); 1429 else 1430 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3); 1431 1432 writel(RW_MGR_READ_B2B, 1433 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1434 1435 tmp_bit_chk = 0; 1436 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; vg >= 0; 1437 vg--) { 1438 /* Reset the FIFOs to get pointers to known state. */ 1439 writel(0, &phy_mgr_cmd->fifo_reset); 1440 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1441 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1442 1443 if (all_groups) { 1444 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1445 RW_MGR_RUN_ALL_GROUPS_OFFSET; 1446 } else { 1447 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1448 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1449 } 1450 1451 writel(RW_MGR_READ_B2B, addr + 1452 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1453 vg) << 2)); 1454 1455 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1456 tmp_bit_chk <<= RW_MGR_MEM_DQ_PER_READ_DQS / 1457 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 1458 tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr); 1459 } 1460 1461 *bit_chk &= tmp_bit_chk; 1462 } 1463 1464 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1465 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1466 1467 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1468 1469 if (all_correct) { 1470 ret = (*bit_chk == param->read_correct_mask); 1471 debug_cond(DLEVEL == 2, 1472 "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n", 1473 __func__, __LINE__, group, all_groups, *bit_chk, 1474 param->read_correct_mask, ret); 1475 } else { 1476 ret = (*bit_chk != 0x00); 1477 debug_cond(DLEVEL == 2, 1478 "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n", 1479 __func__, __LINE__, group, all_groups, *bit_chk, 1480 0, ret); 1481 } 1482 1483 return ret; 1484 } 1485 1486 /** 1487 * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks 1488 * @grp: Read/Write group 1489 * @num_tries: Number of retries of the test 1490 * @all_correct: All bits must be correct in the mask 1491 * @all_groups: Test all R/W groups 1492 * 1493 * Perform a READ test across all memory ranks. 1494 */ 1495 static int 1496 rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries, 1497 const u32 all_correct, 1498 const u32 all_groups) 1499 { 1500 u32 bit_chk; 1501 return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct, 1502 &bit_chk, all_groups, 1); 1503 } 1504 1505 /** 1506 * rw_mgr_incr_vfifo() - Increase VFIFO value 1507 * @grp: Read/Write group 1508 * 1509 * Increase VFIFO value. 1510 */ 1511 static void rw_mgr_incr_vfifo(const u32 grp) 1512 { 1513 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy); 1514 } 1515 1516 /** 1517 * rw_mgr_decr_vfifo() - Decrease VFIFO value 1518 * @grp: Read/Write group 1519 * 1520 * Decrease VFIFO value. 1521 */ 1522 static void rw_mgr_decr_vfifo(const u32 grp) 1523 { 1524 u32 i; 1525 1526 for (i = 0; i < VFIFO_SIZE - 1; i++) 1527 rw_mgr_incr_vfifo(grp); 1528 } 1529 1530 /** 1531 * find_vfifo_failing_read() - Push VFIFO to get a failing read 1532 * @grp: Read/Write group 1533 * 1534 * Push VFIFO until a failing read happens. 1535 */ 1536 static int find_vfifo_failing_read(const u32 grp) 1537 { 1538 u32 v, ret, fail_cnt = 0; 1539 1540 for (v = 0; v < VFIFO_SIZE; v++) { 1541 debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n", 1542 __func__, __LINE__, v); 1543 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1544 PASS_ONE_BIT, 0); 1545 if (!ret) { 1546 fail_cnt++; 1547 1548 if (fail_cnt == 2) 1549 return v; 1550 } 1551 1552 /* Fiddle with FIFO. */ 1553 rw_mgr_incr_vfifo(grp); 1554 } 1555 1556 /* No failing read found! Something must have gone wrong. */ 1557 debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__); 1558 return 0; 1559 } 1560 1561 /** 1562 * sdr_find_phase_delay() - Find DQS enable phase or delay 1563 * @working: If 1, look for working phase/delay, if 0, look for non-working 1564 * @delay: If 1, look for delay, if 0, look for phase 1565 * @grp: Read/Write group 1566 * @work: Working window position 1567 * @work_inc: Working window increment 1568 * @pd: DQS Phase/Delay Iterator 1569 * 1570 * Find working or non-working DQS enable phase setting. 1571 */ 1572 static int sdr_find_phase_delay(int working, int delay, const u32 grp, 1573 u32 *work, const u32 work_inc, u32 *pd) 1574 { 1575 const u32 max = delay ? IO_DQS_EN_DELAY_MAX : IO_DQS_EN_PHASE_MAX; 1576 u32 ret; 1577 1578 for (; *pd <= max; (*pd)++) { 1579 if (delay) 1580 scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd); 1581 else 1582 scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd); 1583 1584 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1585 PASS_ONE_BIT, 0); 1586 if (!working) 1587 ret = !ret; 1588 1589 if (ret) 1590 return 0; 1591 1592 if (work) 1593 *work += work_inc; 1594 } 1595 1596 return -EINVAL; 1597 } 1598 /** 1599 * sdr_find_phase() - Find DQS enable phase 1600 * @working: If 1, look for working phase, if 0, look for non-working phase 1601 * @grp: Read/Write group 1602 * @work: Working window position 1603 * @i: Iterator 1604 * @p: DQS Phase Iterator 1605 * 1606 * Find working or non-working DQS enable phase setting. 1607 */ 1608 static int sdr_find_phase(int working, const u32 grp, u32 *work, 1609 u32 *i, u32 *p) 1610 { 1611 const u32 end = VFIFO_SIZE + (working ? 0 : 1); 1612 int ret; 1613 1614 for (; *i < end; (*i)++) { 1615 if (working) 1616 *p = 0; 1617 1618 ret = sdr_find_phase_delay(working, 0, grp, work, 1619 IO_DELAY_PER_OPA_TAP, p); 1620 if (!ret) 1621 return 0; 1622 1623 if (*p > IO_DQS_EN_PHASE_MAX) { 1624 /* Fiddle with FIFO. */ 1625 rw_mgr_incr_vfifo(grp); 1626 if (!working) 1627 *p = 0; 1628 } 1629 } 1630 1631 return -EINVAL; 1632 } 1633 1634 /** 1635 * sdr_working_phase() - Find working DQS enable phase 1636 * @grp: Read/Write group 1637 * @work_bgn: Working window start position 1638 * @d: dtaps output value 1639 * @p: DQS Phase Iterator 1640 * @i: Iterator 1641 * 1642 * Find working DQS enable phase setting. 1643 */ 1644 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d, 1645 u32 *p, u32 *i) 1646 { 1647 const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / 1648 IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1649 int ret; 1650 1651 *work_bgn = 0; 1652 1653 for (*d = 0; *d <= dtaps_per_ptap; (*d)++) { 1654 *i = 0; 1655 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d); 1656 ret = sdr_find_phase(1, grp, work_bgn, i, p); 1657 if (!ret) 1658 return 0; 1659 *work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1660 } 1661 1662 /* Cannot find working solution */ 1663 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n", 1664 __func__, __LINE__); 1665 return -EINVAL; 1666 } 1667 1668 /** 1669 * sdr_backup_phase() - Find DQS enable backup phase 1670 * @grp: Read/Write group 1671 * @work_bgn: Working window start position 1672 * @p: DQS Phase Iterator 1673 * 1674 * Find DQS enable backup phase setting. 1675 */ 1676 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p) 1677 { 1678 u32 tmp_delay, d; 1679 int ret; 1680 1681 /* Special case code for backing up a phase */ 1682 if (*p == 0) { 1683 *p = IO_DQS_EN_PHASE_MAX; 1684 rw_mgr_decr_vfifo(grp); 1685 } else { 1686 (*p)--; 1687 } 1688 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP; 1689 scc_mgr_set_dqs_en_phase_all_ranks(grp, *p); 1690 1691 for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; d++) { 1692 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1693 1694 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1695 PASS_ONE_BIT, 0); 1696 if (ret) { 1697 *work_bgn = tmp_delay; 1698 break; 1699 } 1700 1701 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1702 } 1703 1704 /* Restore VFIFO to old state before we decremented it (if needed). */ 1705 (*p)++; 1706 if (*p > IO_DQS_EN_PHASE_MAX) { 1707 *p = 0; 1708 rw_mgr_incr_vfifo(grp); 1709 } 1710 1711 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1712 } 1713 1714 /** 1715 * sdr_nonworking_phase() - Find non-working DQS enable phase 1716 * @grp: Read/Write group 1717 * @work_end: Working window end position 1718 * @p: DQS Phase Iterator 1719 * @i: Iterator 1720 * 1721 * Find non-working DQS enable phase setting. 1722 */ 1723 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i) 1724 { 1725 int ret; 1726 1727 (*p)++; 1728 *work_end += IO_DELAY_PER_OPA_TAP; 1729 if (*p > IO_DQS_EN_PHASE_MAX) { 1730 /* Fiddle with FIFO. */ 1731 *p = 0; 1732 rw_mgr_incr_vfifo(grp); 1733 } 1734 1735 ret = sdr_find_phase(0, grp, work_end, i, p); 1736 if (ret) { 1737 /* Cannot see edge of failing read. */ 1738 debug_cond(DLEVEL == 2, "%s:%d: end: failed\n", 1739 __func__, __LINE__); 1740 } 1741 1742 return ret; 1743 } 1744 1745 /** 1746 * sdr_find_window_center() - Find center of the working DQS window. 1747 * @grp: Read/Write group 1748 * @work_bgn: First working settings 1749 * @work_end: Last working settings 1750 * 1751 * Find center of the working DQS enable window. 1752 */ 1753 static int sdr_find_window_center(const u32 grp, const u32 work_bgn, 1754 const u32 work_end) 1755 { 1756 u32 work_mid; 1757 int tmp_delay = 0; 1758 int i, p, d; 1759 1760 work_mid = (work_bgn + work_end) / 2; 1761 1762 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n", 1763 work_bgn, work_end, work_mid); 1764 /* Get the middle delay to be less than a VFIFO delay */ 1765 tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP; 1766 1767 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay); 1768 work_mid %= tmp_delay; 1769 debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid); 1770 1771 tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP); 1772 if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP) 1773 tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP; 1774 p = tmp_delay / IO_DELAY_PER_OPA_TAP; 1775 1776 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay); 1777 1778 d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP); 1779 if (d > IO_DQS_EN_DELAY_MAX) 1780 d = IO_DQS_EN_DELAY_MAX; 1781 tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1782 1783 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay); 1784 1785 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1786 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1787 1788 /* 1789 * push vfifo until we can successfully calibrate. We can do this 1790 * because the largest possible margin in 1 VFIFO cycle. 1791 */ 1792 for (i = 0; i < VFIFO_SIZE; i++) { 1793 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n"); 1794 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1795 PASS_ONE_BIT, 1796 0)) { 1797 debug_cond(DLEVEL == 2, 1798 "%s:%d center: found: ptap=%u dtap=%u\n", 1799 __func__, __LINE__, p, d); 1800 return 0; 1801 } 1802 1803 /* Fiddle with FIFO. */ 1804 rw_mgr_incr_vfifo(grp); 1805 } 1806 1807 debug_cond(DLEVEL == 2, "%s:%d center: failed.\n", 1808 __func__, __LINE__); 1809 return -EINVAL; 1810 } 1811 1812 /** 1813 * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use 1814 * @grp: Read/Write Group 1815 * 1816 * Find a good DQS enable to use. 1817 */ 1818 static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp) 1819 { 1820 u32 d, p, i; 1821 u32 dtaps_per_ptap; 1822 u32 work_bgn, work_end; 1823 u32 found_passing_read, found_failing_read, initial_failing_dtap; 1824 int ret; 1825 1826 debug("%s:%d %u\n", __func__, __LINE__, grp); 1827 1828 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 1829 1830 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1831 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); 1832 1833 /* Step 0: Determine number of delay taps for each phase tap. */ 1834 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1835 1836 /* Step 1: First push vfifo until we get a failing read. */ 1837 find_vfifo_failing_read(grp); 1838 1839 /* Step 2: Find first working phase, increment in ptaps. */ 1840 work_bgn = 0; 1841 ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i); 1842 if (ret) 1843 return ret; 1844 1845 work_end = work_bgn; 1846 1847 /* 1848 * If d is 0 then the working window covers a phase tap and we can 1849 * follow the old procedure. Otherwise, we've found the beginning 1850 * and we need to increment the dtaps until we find the end. 1851 */ 1852 if (d == 0) { 1853 /* 1854 * Step 3a: If we have room, back off by one and 1855 * increment in dtaps. 1856 */ 1857 sdr_backup_phase(grp, &work_bgn, &p); 1858 1859 /* 1860 * Step 4a: go forward from working phase to non working 1861 * phase, increment in ptaps. 1862 */ 1863 ret = sdr_nonworking_phase(grp, &work_end, &p, &i); 1864 if (ret) 1865 return ret; 1866 1867 /* Step 5a: Back off one from last, increment in dtaps. */ 1868 1869 /* Special case code for backing up a phase */ 1870 if (p == 0) { 1871 p = IO_DQS_EN_PHASE_MAX; 1872 rw_mgr_decr_vfifo(grp); 1873 } else { 1874 p = p - 1; 1875 } 1876 1877 work_end -= IO_DELAY_PER_OPA_TAP; 1878 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1879 1880 d = 0; 1881 1882 debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n", 1883 __func__, __LINE__, p); 1884 } 1885 1886 /* The dtap increment to find the failing edge is done here. */ 1887 sdr_find_phase_delay(0, 1, grp, &work_end, 1888 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, &d); 1889 1890 /* Go back to working dtap */ 1891 if (d != 0) 1892 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1893 1894 debug_cond(DLEVEL == 2, 1895 "%s:%d p/d: ptap=%u dtap=%u end=%u\n", 1896 __func__, __LINE__, p, d - 1, work_end); 1897 1898 if (work_end < work_bgn) { 1899 /* nil range */ 1900 debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n", 1901 __func__, __LINE__); 1902 return -EINVAL; 1903 } 1904 1905 debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n", 1906 __func__, __LINE__, work_bgn, work_end); 1907 1908 /* 1909 * We need to calculate the number of dtaps that equal a ptap. 1910 * To do that we'll back up a ptap and re-find the edge of the 1911 * window using dtaps 1912 */ 1913 debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n", 1914 __func__, __LINE__); 1915 1916 /* Special case code for backing up a phase */ 1917 if (p == 0) { 1918 p = IO_DQS_EN_PHASE_MAX; 1919 rw_mgr_decr_vfifo(grp); 1920 debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n", 1921 __func__, __LINE__, p); 1922 } else { 1923 p = p - 1; 1924 debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u", 1925 __func__, __LINE__, p); 1926 } 1927 1928 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1929 1930 /* 1931 * Increase dtap until we first see a passing read (in case the 1932 * window is smaller than a ptap), and then a failing read to 1933 * mark the edge of the window again. 1934 */ 1935 1936 /* Find a passing read. */ 1937 debug_cond(DLEVEL == 2, "%s:%d find passing read\n", 1938 __func__, __LINE__); 1939 1940 initial_failing_dtap = d; 1941 1942 found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d); 1943 if (found_passing_read) { 1944 /* Find a failing read. */ 1945 debug_cond(DLEVEL == 2, "%s:%d find failing read\n", 1946 __func__, __LINE__); 1947 d++; 1948 found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0, 1949 &d); 1950 } else { 1951 debug_cond(DLEVEL == 1, 1952 "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n", 1953 __func__, __LINE__); 1954 } 1955 1956 /* 1957 * The dynamically calculated dtaps_per_ptap is only valid if we 1958 * found a passing/failing read. If we didn't, it means d hit the max 1959 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its 1960 * statically calculated value. 1961 */ 1962 if (found_passing_read && found_failing_read) 1963 dtaps_per_ptap = d - initial_failing_dtap; 1964 1965 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 1966 debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u", 1967 __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap); 1968 1969 /* Step 6: Find the centre of the window. */ 1970 ret = sdr_find_window_center(grp, work_bgn, work_end); 1971 1972 return ret; 1973 } 1974 1975 /** 1976 * search_stop_check() - Check if the detected edge is valid 1977 * @write: Perform read (Stage 2) or write (Stage 3) calibration 1978 * @d: DQS delay 1979 * @rank_bgn: Rank number 1980 * @write_group: Write Group 1981 * @read_group: Read Group 1982 * @bit_chk: Resulting bit mask after the test 1983 * @sticky_bit_chk: Resulting sticky bit mask after the test 1984 * @use_read_test: Perform read test 1985 * 1986 * Test if the found edge is valid. 1987 */ 1988 static u32 search_stop_check(const int write, const int d, const int rank_bgn, 1989 const u32 write_group, const u32 read_group, 1990 u32 *bit_chk, u32 *sticky_bit_chk, 1991 const u32 use_read_test) 1992 { 1993 const u32 ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 1994 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 1995 const u32 correct_mask = write ? param->write_correct_mask : 1996 param->read_correct_mask; 1997 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS : 1998 RW_MGR_MEM_DQ_PER_READ_DQS; 1999 u32 ret; 2000 /* 2001 * Stop searching when the read test doesn't pass AND when 2002 * we've seen a passing read on every bit. 2003 */ 2004 if (write) { /* WRITE-ONLY */ 2005 ret = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2006 0, PASS_ONE_BIT, 2007 bit_chk, 0); 2008 } else if (use_read_test) { /* READ-ONLY */ 2009 ret = !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group, 2010 NUM_READ_PB_TESTS, 2011 PASS_ONE_BIT, bit_chk, 2012 0, 0); 2013 } else { /* READ-ONLY */ 2014 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0, 2015 PASS_ONE_BIT, bit_chk, 0); 2016 *bit_chk = *bit_chk >> (per_dqs * 2017 (read_group - (write_group * ratio))); 2018 ret = (*bit_chk == 0); 2019 } 2020 *sticky_bit_chk = *sticky_bit_chk | *bit_chk; 2021 ret = ret && (*sticky_bit_chk == correct_mask); 2022 debug_cond(DLEVEL == 2, 2023 "%s:%d center(left): dtap=%u => %u == %u && %u", 2024 __func__, __LINE__, d, 2025 *sticky_bit_chk, correct_mask, ret); 2026 return ret; 2027 } 2028 2029 /** 2030 * search_left_edge() - Find left edge of DQ/DQS working phase 2031 * @write: Perform read (Stage 2) or write (Stage 3) calibration 2032 * @rank_bgn: Rank number 2033 * @write_group: Write Group 2034 * @read_group: Read Group 2035 * @test_bgn: Rank number to begin the test 2036 * @sticky_bit_chk: Resulting sticky bit mask after the test 2037 * @left_edge: Left edge of the DQ/DQS phase 2038 * @right_edge: Right edge of the DQ/DQS phase 2039 * @use_read_test: Perform read test 2040 * 2041 * Find left edge of DQ/DQS working phase. 2042 */ 2043 static void search_left_edge(const int write, const int rank_bgn, 2044 const u32 write_group, const u32 read_group, const u32 test_bgn, 2045 u32 *sticky_bit_chk, 2046 int *left_edge, int *right_edge, const u32 use_read_test) 2047 { 2048 const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX; 2049 const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX; 2050 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS : 2051 RW_MGR_MEM_DQ_PER_READ_DQS; 2052 u32 stop, bit_chk; 2053 int i, d; 2054 2055 for (d = 0; d <= dqs_max; d++) { 2056 if (write) 2057 scc_mgr_apply_group_dq_out1_delay(d); 2058 else 2059 scc_mgr_apply_group_dq_in_delay(test_bgn, d); 2060 2061 writel(0, &sdr_scc_mgr->update); 2062 2063 stop = search_stop_check(write, d, rank_bgn, write_group, 2064 read_group, &bit_chk, sticky_bit_chk, 2065 use_read_test); 2066 if (stop == 1) 2067 break; 2068 2069 /* stop != 1 */ 2070 for (i = 0; i < per_dqs; i++) { 2071 if (bit_chk & 1) { 2072 /* 2073 * Remember a passing test as 2074 * the left_edge. 2075 */ 2076 left_edge[i] = d; 2077 } else { 2078 /* 2079 * If a left edge has not been seen 2080 * yet, then a future passing test 2081 * will mark this edge as the right 2082 * edge. 2083 */ 2084 if (left_edge[i] == delay_max + 1) 2085 right_edge[i] = -(d + 1); 2086 } 2087 bit_chk >>= 1; 2088 } 2089 } 2090 2091 /* Reset DQ delay chains to 0 */ 2092 if (write) 2093 scc_mgr_apply_group_dq_out1_delay(0); 2094 else 2095 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 2096 2097 *sticky_bit_chk = 0; 2098 for (i = per_dqs - 1; i >= 0; i--) { 2099 debug_cond(DLEVEL == 2, 2100 "%s:%d vfifo_center: left_edge[%u]: %d right_edge[%u]: %d\n", 2101 __func__, __LINE__, i, left_edge[i], 2102 i, right_edge[i]); 2103 2104 /* 2105 * Check for cases where we haven't found the left edge, 2106 * which makes our assignment of the the right edge invalid. 2107 * Reset it to the illegal value. 2108 */ 2109 if ((left_edge[i] == delay_max + 1) && 2110 (right_edge[i] != delay_max + 1)) { 2111 right_edge[i] = delay_max + 1; 2112 debug_cond(DLEVEL == 2, 2113 "%s:%d vfifo_center: reset right_edge[%u]: %d\n", 2114 __func__, __LINE__, i, right_edge[i]); 2115 } 2116 2117 /* 2118 * Reset sticky bit 2119 * READ: except for bits where we have seen both 2120 * the left and right edge. 2121 * WRITE: except for bits where we have seen the 2122 * left edge. 2123 */ 2124 *sticky_bit_chk <<= 1; 2125 if (write) { 2126 if (left_edge[i] != delay_max + 1) 2127 *sticky_bit_chk |= 1; 2128 } else { 2129 if ((left_edge[i] != delay_max + 1) && 2130 (right_edge[i] != delay_max + 1)) 2131 *sticky_bit_chk |= 1; 2132 } 2133 } 2134 2135 2136 } 2137 2138 /** 2139 * search_right_edge() - Find right edge of DQ/DQS working phase 2140 * @write: Perform read (Stage 2) or write (Stage 3) calibration 2141 * @rank_bgn: Rank number 2142 * @write_group: Write Group 2143 * @read_group: Read Group 2144 * @start_dqs: DQS start phase 2145 * @start_dqs_en: DQS enable start phase 2146 * @sticky_bit_chk: Resulting sticky bit mask after the test 2147 * @left_edge: Left edge of the DQ/DQS phase 2148 * @right_edge: Right edge of the DQ/DQS phase 2149 * @use_read_test: Perform read test 2150 * 2151 * Find right edge of DQ/DQS working phase. 2152 */ 2153 static int search_right_edge(const int write, const int rank_bgn, 2154 const u32 write_group, const u32 read_group, 2155 const int start_dqs, const int start_dqs_en, 2156 u32 *sticky_bit_chk, 2157 int *left_edge, int *right_edge, const u32 use_read_test) 2158 { 2159 const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX; 2160 const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX; 2161 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS : 2162 RW_MGR_MEM_DQ_PER_READ_DQS; 2163 u32 stop, bit_chk; 2164 int i, d; 2165 2166 for (d = 0; d <= dqs_max - start_dqs; d++) { 2167 if (write) { /* WRITE-ONLY */ 2168 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2169 d + start_dqs); 2170 } else { /* READ-ONLY */ 2171 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs); 2172 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2173 uint32_t delay = d + start_dqs_en; 2174 if (delay > IO_DQS_EN_DELAY_MAX) 2175 delay = IO_DQS_EN_DELAY_MAX; 2176 scc_mgr_set_dqs_en_delay(read_group, delay); 2177 } 2178 scc_mgr_load_dqs(read_group); 2179 } 2180 2181 writel(0, &sdr_scc_mgr->update); 2182 2183 stop = search_stop_check(write, d, rank_bgn, write_group, 2184 read_group, &bit_chk, sticky_bit_chk, 2185 use_read_test); 2186 if (stop == 1) { 2187 if (write && (d == 0)) { /* WRITE-ONLY */ 2188 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2189 /* 2190 * d = 0 failed, but it passed when 2191 * testing the left edge, so it must be 2192 * marginal, set it to -1 2193 */ 2194 if (right_edge[i] == delay_max + 1 && 2195 left_edge[i] != delay_max + 1) 2196 right_edge[i] = -1; 2197 } 2198 } 2199 break; 2200 } 2201 2202 /* stop != 1 */ 2203 for (i = 0; i < per_dqs; i++) { 2204 if (bit_chk & 1) { 2205 /* 2206 * Remember a passing test as 2207 * the right_edge. 2208 */ 2209 right_edge[i] = d; 2210 } else { 2211 if (d != 0) { 2212 /* 2213 * If a right edge has not 2214 * been seen yet, then a future 2215 * passing test will mark this 2216 * edge as the left edge. 2217 */ 2218 if (right_edge[i] == delay_max + 1) 2219 left_edge[i] = -(d + 1); 2220 } else { 2221 /* 2222 * d = 0 failed, but it passed 2223 * when testing the left edge, 2224 * so it must be marginal, set 2225 * it to -1 2226 */ 2227 if (right_edge[i] == delay_max + 1 && 2228 left_edge[i] != delay_max + 1) 2229 right_edge[i] = -1; 2230 /* 2231 * If a right edge has not been 2232 * seen yet, then a future 2233 * passing test will mark this 2234 * edge as the left edge. 2235 */ 2236 else if (right_edge[i] == delay_max + 1) 2237 left_edge[i] = -(d + 1); 2238 } 2239 } 2240 2241 debug_cond(DLEVEL == 2, "%s:%d center[r,d=%u]: ", 2242 __func__, __LINE__, d); 2243 debug_cond(DLEVEL == 2, 2244 "bit_chk_test=%i left_edge[%u]: %d ", 2245 bit_chk & 1, i, left_edge[i]); 2246 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2247 right_edge[i]); 2248 bit_chk >>= 1; 2249 } 2250 } 2251 2252 /* Check that all bits have a window */ 2253 for (i = 0; i < per_dqs; i++) { 2254 debug_cond(DLEVEL == 2, 2255 "%s:%d write_center: left_edge[%u]: %d right_edge[%u]: %d", 2256 __func__, __LINE__, i, left_edge[i], 2257 i, right_edge[i]); 2258 if ((left_edge[i] == dqs_max + 1) || 2259 (right_edge[i] == dqs_max + 1)) 2260 return i + 1; /* FIXME: If we fail, retval > 0 */ 2261 } 2262 2263 return 0; 2264 } 2265 2266 /** 2267 * get_window_mid_index() - Find the best middle setting of DQ/DQS phase 2268 * @write: Perform read (Stage 2) or write (Stage 3) calibration 2269 * @left_edge: Left edge of the DQ/DQS phase 2270 * @right_edge: Right edge of the DQ/DQS phase 2271 * @mid_min: Best DQ/DQS phase middle setting 2272 * 2273 * Find index and value of the middle of the DQ/DQS working phase. 2274 */ 2275 static int get_window_mid_index(const int write, int *left_edge, 2276 int *right_edge, int *mid_min) 2277 { 2278 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS : 2279 RW_MGR_MEM_DQ_PER_READ_DQS; 2280 int i, mid, min_index; 2281 2282 /* Find middle of window for each DQ bit */ 2283 *mid_min = left_edge[0] - right_edge[0]; 2284 min_index = 0; 2285 for (i = 1; i < per_dqs; i++) { 2286 mid = left_edge[i] - right_edge[i]; 2287 if (mid < *mid_min) { 2288 *mid_min = mid; 2289 min_index = i; 2290 } 2291 } 2292 2293 /* 2294 * -mid_min/2 represents the amount that we need to move DQS. 2295 * If mid_min is odd and positive we'll need to add one to make 2296 * sure the rounding in further calculations is correct (always 2297 * bias to the right), so just add 1 for all positive values. 2298 */ 2299 if (*mid_min > 0) 2300 (*mid_min)++; 2301 *mid_min = *mid_min / 2; 2302 2303 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: *mid_min=%d (index=%u)\n", 2304 __func__, __LINE__, *mid_min, min_index); 2305 return min_index; 2306 } 2307 2308 /** 2309 * center_dq_windows() - Center the DQ/DQS windows 2310 * @write: Perform read (Stage 2) or write (Stage 3) calibration 2311 * @left_edge: Left edge of the DQ/DQS phase 2312 * @right_edge: Right edge of the DQ/DQS phase 2313 * @mid_min: Adjusted DQ/DQS phase middle setting 2314 * @orig_mid_min: Original DQ/DQS phase middle setting 2315 * @min_index: DQ/DQS phase middle setting index 2316 * @test_bgn: Rank number to begin the test 2317 * @dq_margin: Amount of shift for the DQ 2318 * @dqs_margin: Amount of shift for the DQS 2319 * 2320 * Align the DQ/DQS windows in each group. 2321 */ 2322 static void center_dq_windows(const int write, int *left_edge, int *right_edge, 2323 const int mid_min, const int orig_mid_min, 2324 const int min_index, const int test_bgn, 2325 int *dq_margin, int *dqs_margin) 2326 { 2327 const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX; 2328 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS : 2329 RW_MGR_MEM_DQ_PER_READ_DQS; 2330 const u32 delay_off = write ? SCC_MGR_IO_OUT1_DELAY_OFFSET : 2331 SCC_MGR_IO_IN_DELAY_OFFSET; 2332 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | delay_off; 2333 2334 u32 temp_dq_io_delay1, temp_dq_io_delay2; 2335 int shift_dq, i, p; 2336 2337 /* Initialize data for export structures */ 2338 *dqs_margin = delay_max + 1; 2339 *dq_margin = delay_max + 1; 2340 2341 /* add delay to bring centre of all DQ windows to the same "level" */ 2342 for (i = 0, p = test_bgn; i < per_dqs; i++, p++) { 2343 /* Use values before divide by 2 to reduce round off error */ 2344 shift_dq = (left_edge[i] - right_edge[i] - 2345 (left_edge[min_index] - right_edge[min_index]))/2 + 2346 (orig_mid_min - mid_min); 2347 2348 debug_cond(DLEVEL == 2, 2349 "vfifo_center: before: shift_dq[%u]=%d\n", 2350 i, shift_dq); 2351 2352 temp_dq_io_delay1 = readl(addr + (p << 2)); 2353 temp_dq_io_delay2 = readl(addr + (i << 2)); 2354 2355 if (shift_dq + temp_dq_io_delay1 > delay_max) 2356 shift_dq = delay_max - temp_dq_io_delay2; 2357 else if (shift_dq + temp_dq_io_delay1 < 0) 2358 shift_dq = -temp_dq_io_delay1; 2359 2360 debug_cond(DLEVEL == 2, 2361 "vfifo_center: after: shift_dq[%u]=%d\n", 2362 i, shift_dq); 2363 2364 if (write) 2365 scc_mgr_set_dq_out1_delay(i, temp_dq_io_delay1 + shift_dq); 2366 else 2367 scc_mgr_set_dq_in_delay(p, temp_dq_io_delay1 + shift_dq); 2368 2369 scc_mgr_load_dq(p); 2370 2371 debug_cond(DLEVEL == 2, 2372 "vfifo_center: margin[%u]=[%d,%d]\n", i, 2373 left_edge[i] - shift_dq + (-mid_min), 2374 right_edge[i] + shift_dq - (-mid_min)); 2375 2376 /* To determine values for export structures */ 2377 if (left_edge[i] - shift_dq + (-mid_min) < *dq_margin) 2378 *dq_margin = left_edge[i] - shift_dq + (-mid_min); 2379 2380 if (right_edge[i] + shift_dq - (-mid_min) < *dqs_margin) 2381 *dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2382 } 2383 2384 } 2385 2386 /** 2387 * rw_mgr_mem_calibrate_vfifo_center() - Per-bit deskew DQ and centering 2388 * @rank_bgn: Rank number 2389 * @rw_group: Read/Write Group 2390 * @test_bgn: Rank at which the test begins 2391 * @use_read_test: Perform a read test 2392 * @update_fom: Update FOM 2393 * 2394 * Per-bit deskew DQ and centering. 2395 */ 2396 static int rw_mgr_mem_calibrate_vfifo_center(const u32 rank_bgn, 2397 const u32 rw_group, const u32 test_bgn, 2398 const int use_read_test, const int update_fom) 2399 { 2400 const u32 addr = 2401 SDR_PHYGRP_SCCGRP_ADDRESS + SCC_MGR_DQS_IN_DELAY_OFFSET + 2402 (rw_group << 2); 2403 /* 2404 * Store these as signed since there are comparisons with 2405 * signed numbers. 2406 */ 2407 uint32_t sticky_bit_chk; 2408 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 2409 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 2410 int32_t orig_mid_min, mid_min; 2411 int32_t new_dqs, start_dqs, start_dqs_en, final_dqs_en; 2412 int32_t dq_margin, dqs_margin; 2413 int i, min_index; 2414 int ret; 2415 2416 debug("%s:%d: %u %u", __func__, __LINE__, rw_group, test_bgn); 2417 2418 start_dqs = readl(addr); 2419 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2420 start_dqs_en = readl(addr - IO_DQS_EN_DELAY_OFFSET); 2421 2422 /* set the left and right edge of each bit to an illegal value */ 2423 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */ 2424 sticky_bit_chk = 0; 2425 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2426 left_edge[i] = IO_IO_IN_DELAY_MAX + 1; 2427 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 2428 } 2429 2430 /* Search for the left edge of the window for each bit */ 2431 search_left_edge(0, rank_bgn, rw_group, rw_group, test_bgn, 2432 &sticky_bit_chk, 2433 left_edge, right_edge, use_read_test); 2434 2435 2436 /* Search for the right edge of the window for each bit */ 2437 ret = search_right_edge(0, rank_bgn, rw_group, rw_group, 2438 start_dqs, start_dqs_en, 2439 &sticky_bit_chk, 2440 left_edge, right_edge, use_read_test); 2441 if (ret) { 2442 /* 2443 * Restore delay chain settings before letting the loop 2444 * in rw_mgr_mem_calibrate_vfifo to retry different 2445 * dqs/ck relationships. 2446 */ 2447 scc_mgr_set_dqs_bus_in_delay(rw_group, start_dqs); 2448 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2449 scc_mgr_set_dqs_en_delay(rw_group, start_dqs_en); 2450 2451 scc_mgr_load_dqs(rw_group); 2452 writel(0, &sdr_scc_mgr->update); 2453 2454 debug_cond(DLEVEL == 1, 2455 "%s:%d vfifo_center: failed to find edge [%u]: %d %d", 2456 __func__, __LINE__, i, left_edge[i], right_edge[i]); 2457 if (use_read_test) { 2458 set_failing_group_stage(rw_group * 2459 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2460 CAL_STAGE_VFIFO, 2461 CAL_SUBSTAGE_VFIFO_CENTER); 2462 } else { 2463 set_failing_group_stage(rw_group * 2464 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2465 CAL_STAGE_VFIFO_AFTER_WRITES, 2466 CAL_SUBSTAGE_VFIFO_CENTER); 2467 } 2468 return -EIO; 2469 } 2470 2471 min_index = get_window_mid_index(0, left_edge, right_edge, &mid_min); 2472 2473 /* Determine the amount we can change DQS (which is -mid_min) */ 2474 orig_mid_min = mid_min; 2475 new_dqs = start_dqs - mid_min; 2476 if (new_dqs > IO_DQS_IN_DELAY_MAX) 2477 new_dqs = IO_DQS_IN_DELAY_MAX; 2478 else if (new_dqs < 0) 2479 new_dqs = 0; 2480 2481 mid_min = start_dqs - new_dqs; 2482 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n", 2483 mid_min, new_dqs); 2484 2485 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2486 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX) 2487 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX; 2488 else if (start_dqs_en - mid_min < 0) 2489 mid_min += start_dqs_en - mid_min; 2490 } 2491 new_dqs = start_dqs - mid_min; 2492 2493 debug_cond(DLEVEL == 1, 2494 "vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d\n", 2495 start_dqs, 2496 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1, 2497 new_dqs, mid_min); 2498 2499 /* Add delay to bring centre of all DQ windows to the same "level". */ 2500 center_dq_windows(0, left_edge, right_edge, mid_min, orig_mid_min, 2501 min_index, test_bgn, &dq_margin, &dqs_margin); 2502 2503 /* Move DQS-en */ 2504 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2505 final_dqs_en = start_dqs_en - mid_min; 2506 scc_mgr_set_dqs_en_delay(rw_group, final_dqs_en); 2507 scc_mgr_load_dqs(rw_group); 2508 } 2509 2510 /* Move DQS */ 2511 scc_mgr_set_dqs_bus_in_delay(rw_group, new_dqs); 2512 scc_mgr_load_dqs(rw_group); 2513 debug_cond(DLEVEL == 2, 2514 "%s:%d vfifo_center: dq_margin=%d dqs_margin=%d", 2515 __func__, __LINE__, dq_margin, dqs_margin); 2516 2517 /* 2518 * Do not remove this line as it makes sure all of our decisions 2519 * have been applied. Apply the update bit. 2520 */ 2521 writel(0, &sdr_scc_mgr->update); 2522 2523 if ((dq_margin < 0) || (dqs_margin < 0)) 2524 return -EINVAL; 2525 2526 return 0; 2527 } 2528 2529 /** 2530 * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device 2531 * @rw_group: Read/Write Group 2532 * @phase: DQ/DQS phase 2533 * 2534 * Because initially no communication ca be reliably performed with the memory 2535 * device, the sequencer uses a guaranteed write mechanism to write data into 2536 * the memory device. 2537 */ 2538 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group, 2539 const u32 phase) 2540 { 2541 int ret; 2542 2543 /* Set a particular DQ/DQS phase. */ 2544 scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase); 2545 2546 debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n", 2547 __func__, __LINE__, rw_group, phase); 2548 2549 /* 2550 * Altera EMI_RM 2015.05.04 :: Figure 1-25 2551 * Load up the patterns used by read calibration using the 2552 * current DQDQS phase. 2553 */ 2554 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2555 2556 if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ) 2557 return 0; 2558 2559 /* 2560 * Altera EMI_RM 2015.05.04 :: Figure 1-26 2561 * Back-to-Back reads of the patterns used for calibration. 2562 */ 2563 ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1); 2564 if (ret) 2565 debug_cond(DLEVEL == 1, 2566 "%s:%d Guaranteed read test failed: g=%u p=%u\n", 2567 __func__, __LINE__, rw_group, phase); 2568 return ret; 2569 } 2570 2571 /** 2572 * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration 2573 * @rw_group: Read/Write Group 2574 * @test_bgn: Rank at which the test begins 2575 * 2576 * DQS enable calibration ensures reliable capture of the DQ signal without 2577 * glitches on the DQS line. 2578 */ 2579 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group, 2580 const u32 test_bgn) 2581 { 2582 /* 2583 * Altera EMI_RM 2015.05.04 :: Figure 1-27 2584 * DQS and DQS Eanble Signal Relationships. 2585 */ 2586 2587 /* We start at zero, so have one less dq to devide among */ 2588 const u32 delay_step = IO_IO_IN_DELAY_MAX / 2589 (RW_MGR_MEM_DQ_PER_READ_DQS - 1); 2590 int ret; 2591 u32 i, p, d, r; 2592 2593 debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn); 2594 2595 /* Try different dq_in_delays since the DQ path is shorter than DQS. */ 2596 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 2597 r += NUM_RANKS_PER_SHADOW_REG) { 2598 for (i = 0, p = test_bgn, d = 0; 2599 i < RW_MGR_MEM_DQ_PER_READ_DQS; 2600 i++, p++, d += delay_step) { 2601 debug_cond(DLEVEL == 1, 2602 "%s:%d: g=%u r=%u i=%u p=%u d=%u\n", 2603 __func__, __LINE__, rw_group, r, i, p, d); 2604 2605 scc_mgr_set_dq_in_delay(p, d); 2606 scc_mgr_load_dq(p); 2607 } 2608 2609 writel(0, &sdr_scc_mgr->update); 2610 } 2611 2612 /* 2613 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different 2614 * dq_in_delay values 2615 */ 2616 ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group); 2617 2618 debug_cond(DLEVEL == 1, 2619 "%s:%d: g=%u found=%u; Reseting delay chain to zero\n", 2620 __func__, __LINE__, rw_group, !ret); 2621 2622 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 2623 r += NUM_RANKS_PER_SHADOW_REG) { 2624 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 2625 writel(0, &sdr_scc_mgr->update); 2626 } 2627 2628 return ret; 2629 } 2630 2631 /** 2632 * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS 2633 * @rw_group: Read/Write Group 2634 * @test_bgn: Rank at which the test begins 2635 * @use_read_test: Perform a read test 2636 * @update_fom: Update FOM 2637 * 2638 * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads 2639 * within a group. 2640 */ 2641 static int 2642 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn, 2643 const int use_read_test, 2644 const int update_fom) 2645 2646 { 2647 int ret, grp_calibrated; 2648 u32 rank_bgn, sr; 2649 2650 /* 2651 * Altera EMI_RM 2015.05.04 :: Figure 1-28 2652 * Read per-bit deskew can be done on a per shadow register basis. 2653 */ 2654 grp_calibrated = 1; 2655 for (rank_bgn = 0, sr = 0; 2656 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2657 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 2658 /* Check if this set of ranks should be skipped entirely. */ 2659 if (param->skip_shadow_regs[sr]) 2660 continue; 2661 2662 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group, 2663 test_bgn, 2664 use_read_test, 2665 update_fom); 2666 if (!ret) 2667 continue; 2668 2669 grp_calibrated = 0; 2670 } 2671 2672 if (!grp_calibrated) 2673 return -EIO; 2674 2675 return 0; 2676 } 2677 2678 /** 2679 * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO 2680 * @rw_group: Read/Write Group 2681 * @test_bgn: Rank at which the test begins 2682 * 2683 * Stage 1: Calibrate the read valid prediction FIFO. 2684 * 2685 * This function implements UniPHY calibration Stage 1, as explained in 2686 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 2687 * 2688 * - read valid prediction will consist of finding: 2689 * - DQS enable phase and DQS enable delay (DQS Enable Calibration) 2690 * - DQS input phase and DQS input delay (DQ/DQS Centering) 2691 * - we also do a per-bit deskew on the DQ lines. 2692 */ 2693 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn) 2694 { 2695 uint32_t p, d; 2696 uint32_t dtaps_per_ptap; 2697 uint32_t failed_substage; 2698 2699 int ret; 2700 2701 debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn); 2702 2703 /* Update info for sims */ 2704 reg_file_set_group(rw_group); 2705 reg_file_set_stage(CAL_STAGE_VFIFO); 2706 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ); 2707 2708 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ; 2709 2710 /* USER Determine number of delay taps for each phase tap. */ 2711 dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, 2712 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1; 2713 2714 for (d = 0; d <= dtaps_per_ptap; d += 2) { 2715 /* 2716 * In RLDRAMX we may be messing the delay of pins in 2717 * the same write rw_group but outside of the current read 2718 * the rw_group, but that's ok because we haven't calibrated 2719 * output side yet. 2720 */ 2721 if (d > 0) { 2722 scc_mgr_apply_group_all_out_delay_add_all_ranks( 2723 rw_group, d); 2724 } 2725 2726 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) { 2727 /* 1) Guaranteed Write */ 2728 ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p); 2729 if (ret) 2730 break; 2731 2732 /* 2) DQS Enable Calibration */ 2733 ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group, 2734 test_bgn); 2735 if (ret) { 2736 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE; 2737 continue; 2738 } 2739 2740 /* 3) Centering DQ/DQS */ 2741 /* 2742 * If doing read after write calibration, do not update 2743 * FOM now. Do it then. 2744 */ 2745 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, 2746 test_bgn, 1, 0); 2747 if (ret) { 2748 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER; 2749 continue; 2750 } 2751 2752 /* All done. */ 2753 goto cal_done_ok; 2754 } 2755 } 2756 2757 /* Calibration Stage 1 failed. */ 2758 set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage); 2759 return 0; 2760 2761 /* Calibration Stage 1 completed OK. */ 2762 cal_done_ok: 2763 /* 2764 * Reset the delay chains back to zero if they have moved > 1 2765 * (check for > 1 because loop will increase d even when pass in 2766 * first case). 2767 */ 2768 if (d > 2) 2769 scc_mgr_zero_group(rw_group, 1); 2770 2771 return 1; 2772 } 2773 2774 /** 2775 * rw_mgr_mem_calibrate_vfifo_end() - DQ/DQS Centering. 2776 * @rw_group: Read/Write Group 2777 * @test_bgn: Rank at which the test begins 2778 * 2779 * Stage 3: DQ/DQS Centering. 2780 * 2781 * This function implements UniPHY calibration Stage 3, as explained in 2782 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 2783 */ 2784 static int rw_mgr_mem_calibrate_vfifo_end(const u32 rw_group, 2785 const u32 test_bgn) 2786 { 2787 int ret; 2788 2789 debug("%s:%d %u %u", __func__, __LINE__, rw_group, test_bgn); 2790 2791 /* Update info for sims. */ 2792 reg_file_set_group(rw_group); 2793 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES); 2794 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 2795 2796 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, test_bgn, 0, 1); 2797 if (ret) 2798 set_failing_group_stage(rw_group, 2799 CAL_STAGE_VFIFO_AFTER_WRITES, 2800 CAL_SUBSTAGE_VFIFO_CENTER); 2801 return ret; 2802 } 2803 2804 /** 2805 * rw_mgr_mem_calibrate_lfifo() - Minimize latency 2806 * 2807 * Stage 4: Minimize latency. 2808 * 2809 * This function implements UniPHY calibration Stage 4, as explained in 2810 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 2811 * Calibrate LFIFO to find smallest read latency. 2812 */ 2813 static uint32_t rw_mgr_mem_calibrate_lfifo(void) 2814 { 2815 int found_one = 0; 2816 2817 debug("%s:%d\n", __func__, __LINE__); 2818 2819 /* Update info for sims. */ 2820 reg_file_set_stage(CAL_STAGE_LFIFO); 2821 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY); 2822 2823 /* Load up the patterns used by read calibration for all ranks */ 2824 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2825 2826 do { 2827 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2828 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u", 2829 __func__, __LINE__, gbl->curr_read_lat); 2830 2831 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, NUM_READ_TESTS, 2832 PASS_ALL_BITS, 1)) 2833 break; 2834 2835 found_one = 1; 2836 /* 2837 * Reduce read latency and see if things are 2838 * working correctly. 2839 */ 2840 gbl->curr_read_lat--; 2841 } while (gbl->curr_read_lat > 0); 2842 2843 /* Reset the fifos to get pointers to known state. */ 2844 writel(0, &phy_mgr_cmd->fifo_reset); 2845 2846 if (found_one) { 2847 /* Add a fudge factor to the read latency that was determined */ 2848 gbl->curr_read_lat += 2; 2849 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2850 debug_cond(DLEVEL == 2, 2851 "%s:%d lfifo: success: using read_lat=%u\n", 2852 __func__, __LINE__, gbl->curr_read_lat); 2853 } else { 2854 set_failing_group_stage(0xff, CAL_STAGE_LFIFO, 2855 CAL_SUBSTAGE_READ_LATENCY); 2856 2857 debug_cond(DLEVEL == 2, 2858 "%s:%d lfifo: failed at initial read_lat=%u\n", 2859 __func__, __LINE__, gbl->curr_read_lat); 2860 } 2861 2862 return found_one; 2863 } 2864 2865 /** 2866 * search_window() - Search for the/part of the window with DM/DQS shift 2867 * @search_dm: If 1, search for the DM shift, if 0, search for DQS shift 2868 * @rank_bgn: Rank number 2869 * @write_group: Write Group 2870 * @bgn_curr: Current window begin 2871 * @end_curr: Current window end 2872 * @bgn_best: Current best window begin 2873 * @end_best: Current best window end 2874 * @win_best: Size of the best window 2875 * @new_dqs: New DQS value (only applicable if search_dm = 0). 2876 * 2877 * Search for the/part of the window with DM/DQS shift. 2878 */ 2879 static void search_window(const int search_dm, 2880 const u32 rank_bgn, const u32 write_group, 2881 int *bgn_curr, int *end_curr, int *bgn_best, 2882 int *end_best, int *win_best, int new_dqs) 2883 { 2884 u32 bit_chk; 2885 const int max = IO_IO_OUT1_DELAY_MAX - new_dqs; 2886 int d, di; 2887 2888 /* Search for the/part of the window with DM/DQS shift. */ 2889 for (di = max; di >= 0; di -= DELTA_D) { 2890 if (search_dm) { 2891 d = di; 2892 scc_mgr_apply_group_dm_out1_delay(d); 2893 } else { 2894 /* For DQS, we go from 0...max */ 2895 d = max - di; 2896 /* 2897 * Note: This only shifts DQS, so are we limiting ourselve to 2898 * width of DQ unnecessarily. 2899 */ 2900 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2901 d + new_dqs); 2902 } 2903 2904 writel(0, &sdr_scc_mgr->update); 2905 2906 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 2907 PASS_ALL_BITS, &bit_chk, 2908 0)) { 2909 /* Set current end of the window. */ 2910 *end_curr = search_dm ? -d : d; 2911 2912 /* 2913 * If a starting edge of our window has not been seen 2914 * this is our current start of the DM window. 2915 */ 2916 if (*bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 2917 *bgn_curr = search_dm ? -d : d; 2918 2919 /* 2920 * If current window is bigger than best seen. 2921 * Set best seen to be current window. 2922 */ 2923 if ((*end_curr - *bgn_curr + 1) > *win_best) { 2924 *win_best = *end_curr - *bgn_curr + 1; 2925 *bgn_best = *bgn_curr; 2926 *end_best = *end_curr; 2927 } 2928 } else { 2929 /* We just saw a failing test. Reset temp edge. */ 2930 *bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2931 *end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2932 2933 /* Early exit is only applicable to DQS. */ 2934 if (search_dm) 2935 continue; 2936 2937 /* 2938 * Early exit optimization: if the remaining delay 2939 * chain space is less than already seen largest 2940 * window we can exit. 2941 */ 2942 if (*win_best - 1 > IO_IO_OUT1_DELAY_MAX - new_dqs - d) 2943 break; 2944 } 2945 } 2946 } 2947 2948 /* 2949 * rw_mgr_mem_calibrate_writes_center() - Center all windows 2950 * @rank_bgn: Rank number 2951 * @write_group: Write group 2952 * @test_bgn: Rank at which the test begins 2953 * 2954 * Center all windows. Do per-bit-deskew to possibly increase size of 2955 * certain windows. 2956 */ 2957 static int 2958 rw_mgr_mem_calibrate_writes_center(const u32 rank_bgn, const u32 write_group, 2959 const u32 test_bgn) 2960 { 2961 int i; 2962 u32 sticky_bit_chk; 2963 u32 min_index; 2964 int left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2965 int right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2966 int mid; 2967 int mid_min, orig_mid_min; 2968 int new_dqs, start_dqs; 2969 int dq_margin, dqs_margin, dm_margin; 2970 int bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2971 int end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2972 int bgn_best = IO_IO_OUT1_DELAY_MAX + 1; 2973 int end_best = IO_IO_OUT1_DELAY_MAX + 1; 2974 int win_best = 0; 2975 2976 int ret; 2977 2978 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn); 2979 2980 dm_margin = 0; 2981 2982 start_dqs = readl((SDR_PHYGRP_SCCGRP_ADDRESS | 2983 SCC_MGR_IO_OUT1_DELAY_OFFSET) + 2984 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 2985 2986 /* Per-bit deskew. */ 2987 2988 /* 2989 * Set the left and right edge of each bit to an illegal value. 2990 * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 2991 */ 2992 sticky_bit_chk = 0; 2993 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2994 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2995 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2996 } 2997 2998 /* Search for the left edge of the window for each bit. */ 2999 search_left_edge(1, rank_bgn, write_group, 0, test_bgn, 3000 &sticky_bit_chk, 3001 left_edge, right_edge, 0); 3002 3003 /* Search for the right edge of the window for each bit. */ 3004 ret = search_right_edge(1, rank_bgn, write_group, 0, 3005 start_dqs, 0, 3006 &sticky_bit_chk, 3007 left_edge, right_edge, 0); 3008 if (ret) { 3009 set_failing_group_stage(test_bgn + ret - 1, CAL_STAGE_WRITES, 3010 CAL_SUBSTAGE_WRITES_CENTER); 3011 return -EINVAL; 3012 } 3013 3014 min_index = get_window_mid_index(1, left_edge, right_edge, &mid_min); 3015 3016 /* Determine the amount we can change DQS (which is -mid_min). */ 3017 orig_mid_min = mid_min; 3018 new_dqs = start_dqs; 3019 mid_min = 0; 3020 debug_cond(DLEVEL == 1, 3021 "%s:%d write_center: start_dqs=%d new_dqs=%d mid_min=%d\n", 3022 __func__, __LINE__, start_dqs, new_dqs, mid_min); 3023 3024 /* Add delay to bring centre of all DQ windows to the same "level". */ 3025 center_dq_windows(1, left_edge, right_edge, mid_min, orig_mid_min, 3026 min_index, 0, &dq_margin, &dqs_margin); 3027 3028 /* Move DQS */ 3029 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3030 writel(0, &sdr_scc_mgr->update); 3031 3032 /* Centre DM */ 3033 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__); 3034 3035 /* 3036 * Set the left and right edge of each bit to an illegal value. 3037 * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 3038 */ 3039 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 3040 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 3041 3042 /* Search for the/part of the window with DM shift. */ 3043 search_window(1, rank_bgn, write_group, &bgn_curr, &end_curr, 3044 &bgn_best, &end_best, &win_best, 0); 3045 3046 /* Reset DM delay chains to 0. */ 3047 scc_mgr_apply_group_dm_out1_delay(0); 3048 3049 /* 3050 * Check to see if the current window nudges up aganist 0 delay. 3051 * If so we need to continue the search by shifting DQS otherwise DQS 3052 * search begins as a new search. 3053 */ 3054 if (end_curr != 0) { 3055 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3056 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3057 } 3058 3059 /* Search for the/part of the window with DQS shifts. */ 3060 search_window(0, rank_bgn, write_group, &bgn_curr, &end_curr, 3061 &bgn_best, &end_best, &win_best, new_dqs); 3062 3063 /* Assign left and right edge for cal and reporting. */ 3064 left_edge[0] = -1 * bgn_best; 3065 right_edge[0] = end_best; 3066 3067 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", 3068 __func__, __LINE__, left_edge[0], right_edge[0]); 3069 3070 /* Move DQS (back to orig). */ 3071 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3072 3073 /* Move DM */ 3074 3075 /* Find middle of window for the DM bit. */ 3076 mid = (left_edge[0] - right_edge[0]) / 2; 3077 3078 /* Only move right, since we are not moving DQS/DQ. */ 3079 if (mid < 0) 3080 mid = 0; 3081 3082 /* dm_marign should fail if we never find a window. */ 3083 if (win_best == 0) 3084 dm_margin = -1; 3085 else 3086 dm_margin = left_edge[0] - mid; 3087 3088 scc_mgr_apply_group_dm_out1_delay(mid); 3089 writel(0, &sdr_scc_mgr->update); 3090 3091 debug_cond(DLEVEL == 2, 3092 "%s:%d dm_calib: left=%d right=%d mid=%d dm_margin=%d\n", 3093 __func__, __LINE__, left_edge[0], right_edge[0], 3094 mid, dm_margin); 3095 /* Export values. */ 3096 gbl->fom_out += dq_margin + dqs_margin; 3097 3098 debug_cond(DLEVEL == 2, 3099 "%s:%d write_center: dq_margin=%d dqs_margin=%d dm_margin=%d\n", 3100 __func__, __LINE__, dq_margin, dqs_margin, dm_margin); 3101 3102 /* 3103 * Do not remove this line as it makes sure all of our 3104 * decisions have been applied. 3105 */ 3106 writel(0, &sdr_scc_mgr->update); 3107 3108 if ((dq_margin < 0) || (dqs_margin < 0) || (dm_margin < 0)) 3109 return -EINVAL; 3110 3111 return 0; 3112 } 3113 3114 /** 3115 * rw_mgr_mem_calibrate_writes() - Write Calibration Part One 3116 * @rank_bgn: Rank number 3117 * @group: Read/Write Group 3118 * @test_bgn: Rank at which the test begins 3119 * 3120 * Stage 2: Write Calibration Part One. 3121 * 3122 * This function implements UniPHY calibration Stage 2, as explained in 3123 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 3124 */ 3125 static int rw_mgr_mem_calibrate_writes(const u32 rank_bgn, const u32 group, 3126 const u32 test_bgn) 3127 { 3128 int ret; 3129 3130 /* Update info for sims */ 3131 debug("%s:%d %u %u\n", __func__, __LINE__, group, test_bgn); 3132 3133 reg_file_set_group(group); 3134 reg_file_set_stage(CAL_STAGE_WRITES); 3135 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER); 3136 3137 ret = rw_mgr_mem_calibrate_writes_center(rank_bgn, group, test_bgn); 3138 if (ret) 3139 set_failing_group_stage(group, CAL_STAGE_WRITES, 3140 CAL_SUBSTAGE_WRITES_CENTER); 3141 3142 return ret; 3143 } 3144 3145 /** 3146 * mem_precharge_and_activate() - Precharge all banks and activate 3147 * 3148 * Precharge all banks and activate row 0 in bank "000..." and bank "111...". 3149 */ 3150 static void mem_precharge_and_activate(void) 3151 { 3152 int r; 3153 3154 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 3155 /* Test if the rank should be skipped. */ 3156 if (param->skip_ranks[r]) 3157 continue; 3158 3159 /* Set rank. */ 3160 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 3161 3162 /* Precharge all banks. */ 3163 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3164 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3165 3166 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0); 3167 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1, 3168 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 3169 3170 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1); 3171 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2, 3172 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 3173 3174 /* Activate rows. */ 3175 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3176 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3177 } 3178 } 3179 3180 /** 3181 * mem_init_latency() - Configure memory RLAT and WLAT settings 3182 * 3183 * Configure memory RLAT and WLAT parameters. 3184 */ 3185 static void mem_init_latency(void) 3186 { 3187 /* 3188 * For AV/CV, LFIFO is hardened and always runs at full rate 3189 * so max latency in AFI clocks, used here, is correspondingly 3190 * smaller. 3191 */ 3192 const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1; 3193 u32 rlat, wlat; 3194 3195 debug("%s:%d\n", __func__, __LINE__); 3196 3197 /* 3198 * Read in write latency. 3199 * WL for Hard PHY does not include additive latency. 3200 */ 3201 wlat = readl(&data_mgr->t_wl_add); 3202 wlat += readl(&data_mgr->mem_t_add); 3203 3204 gbl->rw_wl_nop_cycles = wlat - 1; 3205 3206 /* Read in readl latency. */ 3207 rlat = readl(&data_mgr->t_rl_add); 3208 3209 /* Set a pretty high read latency initially. */ 3210 gbl->curr_read_lat = rlat + 16; 3211 if (gbl->curr_read_lat > max_latency) 3212 gbl->curr_read_lat = max_latency; 3213 3214 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3215 3216 /* Advertise write latency. */ 3217 writel(wlat, &phy_mgr_cfg->afi_wlat); 3218 } 3219 3220 /** 3221 * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings 3222 * 3223 * Set VFIFO and LFIFO to instant-on settings in skip calibration mode. 3224 */ 3225 static void mem_skip_calibrate(void) 3226 { 3227 uint32_t vfifo_offset; 3228 uint32_t i, j, r; 3229 3230 debug("%s:%d\n", __func__, __LINE__); 3231 /* Need to update every shadow register set used by the interface */ 3232 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 3233 r += NUM_RANKS_PER_SHADOW_REG) { 3234 /* 3235 * Set output phase alignment settings appropriate for 3236 * skip calibration. 3237 */ 3238 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3239 scc_mgr_set_dqs_en_phase(i, 0); 3240 #if IO_DLL_CHAIN_LENGTH == 6 3241 scc_mgr_set_dqdqs_output_phase(i, 6); 3242 #else 3243 scc_mgr_set_dqdqs_output_phase(i, 7); 3244 #endif 3245 /* 3246 * Case:33398 3247 * 3248 * Write data arrives to the I/O two cycles before write 3249 * latency is reached (720 deg). 3250 * -> due to bit-slip in a/c bus 3251 * -> to allow board skew where dqs is longer than ck 3252 * -> how often can this happen!? 3253 * -> can claim back some ptaps for high freq 3254 * support if we can relax this, but i digress... 3255 * 3256 * The write_clk leads mem_ck by 90 deg 3257 * The minimum ptap of the OPA is 180 deg 3258 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay 3259 * The write_clk is always delayed by 2 ptaps 3260 * 3261 * Hence, to make DQS aligned to CK, we need to delay 3262 * DQS by: 3263 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH)) 3264 * 3265 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH) 3266 * gives us the number of ptaps, which simplies to: 3267 * 3268 * (1.25 * IO_DLL_CHAIN_LENGTH - 2) 3269 */ 3270 scc_mgr_set_dqdqs_output_phase(i, 3271 1.25 * IO_DLL_CHAIN_LENGTH - 2); 3272 } 3273 writel(0xff, &sdr_scc_mgr->dqs_ena); 3274 writel(0xff, &sdr_scc_mgr->dqs_io_ena); 3275 3276 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 3277 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3278 SCC_MGR_GROUP_COUNTER_OFFSET); 3279 } 3280 writel(0xff, &sdr_scc_mgr->dq_ena); 3281 writel(0xff, &sdr_scc_mgr->dm_ena); 3282 writel(0, &sdr_scc_mgr->update); 3283 } 3284 3285 /* Compensate for simulation model behaviour */ 3286 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3287 scc_mgr_set_dqs_bus_in_delay(i, 10); 3288 scc_mgr_load_dqs(i); 3289 } 3290 writel(0, &sdr_scc_mgr->update); 3291 3292 /* 3293 * ArriaV has hard FIFOs that can only be initialized by incrementing 3294 * in sequencer. 3295 */ 3296 vfifo_offset = CALIB_VFIFO_OFFSET; 3297 for (j = 0; j < vfifo_offset; j++) 3298 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy); 3299 writel(0, &phy_mgr_cmd->fifo_reset); 3300 3301 /* 3302 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal 3303 * setting from generation-time constant. 3304 */ 3305 gbl->curr_read_lat = CALIB_LFIFO_OFFSET; 3306 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3307 } 3308 3309 /** 3310 * mem_calibrate() - Memory calibration entry point. 3311 * 3312 * Perform memory calibration. 3313 */ 3314 static uint32_t mem_calibrate(void) 3315 { 3316 uint32_t i; 3317 uint32_t rank_bgn, sr; 3318 uint32_t write_group, write_test_bgn; 3319 uint32_t read_group, read_test_bgn; 3320 uint32_t run_groups, current_run; 3321 uint32_t failing_groups = 0; 3322 uint32_t group_failed = 0; 3323 3324 const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 3325 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 3326 3327 debug("%s:%d\n", __func__, __LINE__); 3328 3329 /* Initialize the data settings */ 3330 gbl->error_substage = CAL_SUBSTAGE_NIL; 3331 gbl->error_stage = CAL_STAGE_NIL; 3332 gbl->error_group = 0xff; 3333 gbl->fom_in = 0; 3334 gbl->fom_out = 0; 3335 3336 /* Initialize WLAT and RLAT. */ 3337 mem_init_latency(); 3338 3339 /* Initialize bit slips. */ 3340 mem_precharge_and_activate(); 3341 3342 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3343 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3344 SCC_MGR_GROUP_COUNTER_OFFSET); 3345 /* Only needed once to set all groups, pins, DQ, DQS, DM. */ 3346 if (i == 0) 3347 scc_mgr_set_hhp_extras(); 3348 3349 scc_set_bypass_mode(i); 3350 } 3351 3352 /* Calibration is skipped. */ 3353 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) { 3354 /* 3355 * Set VFIFO and LFIFO to instant-on settings in skip 3356 * calibration mode. 3357 */ 3358 mem_skip_calibrate(); 3359 3360 /* 3361 * Do not remove this line as it makes sure all of our 3362 * decisions have been applied. 3363 */ 3364 writel(0, &sdr_scc_mgr->update); 3365 return 1; 3366 } 3367 3368 /* Calibration is not skipped. */ 3369 for (i = 0; i < NUM_CALIB_REPEAT; i++) { 3370 /* 3371 * Zero all delay chain/phase settings for all 3372 * groups and all shadow register sets. 3373 */ 3374 scc_mgr_zero_all(); 3375 3376 run_groups = ~param->skip_groups; 3377 3378 for (write_group = 0, write_test_bgn = 0; write_group 3379 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++, 3380 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) { 3381 3382 /* Initialize the group failure */ 3383 group_failed = 0; 3384 3385 current_run = run_groups & ((1 << 3386 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1); 3387 run_groups = run_groups >> 3388 RW_MGR_NUM_DQS_PER_WRITE_GROUP; 3389 3390 if (current_run == 0) 3391 continue; 3392 3393 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS | 3394 SCC_MGR_GROUP_COUNTER_OFFSET); 3395 scc_mgr_zero_group(write_group, 0); 3396 3397 for (read_group = write_group * rwdqs_ratio, 3398 read_test_bgn = 0; 3399 read_group < (write_group + 1) * rwdqs_ratio; 3400 read_group++, 3401 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3402 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO) 3403 continue; 3404 3405 /* Calibrate the VFIFO */ 3406 if (rw_mgr_mem_calibrate_vfifo(read_group, 3407 read_test_bgn)) 3408 continue; 3409 3410 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3411 return 0; 3412 3413 /* The group failed, we're done. */ 3414 goto grp_failed; 3415 } 3416 3417 /* Calibrate the output side */ 3418 for (rank_bgn = 0, sr = 0; 3419 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 3420 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 3421 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3422 continue; 3423 3424 /* Not needed in quick mode! */ 3425 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) 3426 continue; 3427 3428 /* 3429 * Determine if this set of ranks 3430 * should be skipped entirely. 3431 */ 3432 if (param->skip_shadow_regs[sr]) 3433 continue; 3434 3435 /* Calibrate WRITEs */ 3436 if (!rw_mgr_mem_calibrate_writes(rank_bgn, 3437 write_group, write_test_bgn)) 3438 continue; 3439 3440 group_failed = 1; 3441 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3442 return 0; 3443 } 3444 3445 /* Some group failed, we're done. */ 3446 if (group_failed) 3447 goto grp_failed; 3448 3449 for (read_group = write_group * rwdqs_ratio, 3450 read_test_bgn = 0; 3451 read_group < (write_group + 1) * rwdqs_ratio; 3452 read_group++, 3453 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3454 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3455 continue; 3456 3457 if (!rw_mgr_mem_calibrate_vfifo_end(read_group, 3458 read_test_bgn)) 3459 continue; 3460 3461 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3462 return 0; 3463 3464 /* The group failed, we're done. */ 3465 goto grp_failed; 3466 } 3467 3468 /* No group failed, continue as usual. */ 3469 continue; 3470 3471 grp_failed: /* A group failed, increment the counter. */ 3472 failing_groups++; 3473 } 3474 3475 /* 3476 * USER If there are any failing groups then report 3477 * the failure. 3478 */ 3479 if (failing_groups != 0) 3480 return 0; 3481 3482 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO) 3483 continue; 3484 3485 /* 3486 * If we're skipping groups as part of debug, 3487 * don't calibrate LFIFO. 3488 */ 3489 if (param->skip_groups != 0) 3490 continue; 3491 3492 /* Calibrate the LFIFO */ 3493 if (!rw_mgr_mem_calibrate_lfifo()) 3494 return 0; 3495 } 3496 3497 /* 3498 * Do not remove this line as it makes sure all of our decisions 3499 * have been applied. 3500 */ 3501 writel(0, &sdr_scc_mgr->update); 3502 return 1; 3503 } 3504 3505 /** 3506 * run_mem_calibrate() - Perform memory calibration 3507 * 3508 * This function triggers the entire memory calibration procedure. 3509 */ 3510 static int run_mem_calibrate(void) 3511 { 3512 int pass; 3513 3514 debug("%s:%d\n", __func__, __LINE__); 3515 3516 /* Reset pass/fail status shown on afi_cal_success/fail */ 3517 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status); 3518 3519 /* Stop tracking manager. */ 3520 clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3521 3522 phy_mgr_initialize(); 3523 rw_mgr_mem_initialize(); 3524 3525 /* Perform the actual memory calibration. */ 3526 pass = mem_calibrate(); 3527 3528 mem_precharge_and_activate(); 3529 writel(0, &phy_mgr_cmd->fifo_reset); 3530 3531 /* Handoff. */ 3532 rw_mgr_mem_handoff(); 3533 /* 3534 * In Hard PHY this is a 2-bit control: 3535 * 0: AFI Mux Select 3536 * 1: DDIO Mux Select 3537 */ 3538 writel(0x2, &phy_mgr_cfg->mux_sel); 3539 3540 /* Start tracking manager. */ 3541 setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3542 3543 return pass; 3544 } 3545 3546 /** 3547 * debug_mem_calibrate() - Report result of memory calibration 3548 * @pass: Value indicating whether calibration passed or failed 3549 * 3550 * This function reports the results of the memory calibration 3551 * and writes debug information into the register file. 3552 */ 3553 static void debug_mem_calibrate(int pass) 3554 { 3555 uint32_t debug_info; 3556 3557 if (pass) { 3558 printf("%s: CALIBRATION PASSED\n", __FILE__); 3559 3560 gbl->fom_in /= 2; 3561 gbl->fom_out /= 2; 3562 3563 if (gbl->fom_in > 0xff) 3564 gbl->fom_in = 0xff; 3565 3566 if (gbl->fom_out > 0xff) 3567 gbl->fom_out = 0xff; 3568 3569 /* Update the FOM in the register file */ 3570 debug_info = gbl->fom_in; 3571 debug_info |= gbl->fom_out << 8; 3572 writel(debug_info, &sdr_reg_file->fom); 3573 3574 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3575 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status); 3576 } else { 3577 printf("%s: CALIBRATION FAILED\n", __FILE__); 3578 3579 debug_info = gbl->error_stage; 3580 debug_info |= gbl->error_substage << 8; 3581 debug_info |= gbl->error_group << 16; 3582 3583 writel(debug_info, &sdr_reg_file->failing_stage); 3584 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3585 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status); 3586 3587 /* Update the failing group/stage in the register file */ 3588 debug_info = gbl->error_stage; 3589 debug_info |= gbl->error_substage << 8; 3590 debug_info |= gbl->error_group << 16; 3591 writel(debug_info, &sdr_reg_file->failing_stage); 3592 } 3593 3594 printf("%s: Calibration complete\n", __FILE__); 3595 } 3596 3597 /** 3598 * hc_initialize_rom_data() - Initialize ROM data 3599 * 3600 * Initialize ROM data. 3601 */ 3602 static void hc_initialize_rom_data(void) 3603 { 3604 u32 i, addr; 3605 3606 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET; 3607 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++) 3608 writel(inst_rom_init[i], addr + (i << 2)); 3609 3610 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET; 3611 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++) 3612 writel(ac_rom_init[i], addr + (i << 2)); 3613 } 3614 3615 /** 3616 * initialize_reg_file() - Initialize SDR register file 3617 * 3618 * Initialize SDR register file. 3619 */ 3620 static void initialize_reg_file(void) 3621 { 3622 /* Initialize the register file with the correct data */ 3623 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature); 3624 writel(0, &sdr_reg_file->debug_data_addr); 3625 writel(0, &sdr_reg_file->cur_stage); 3626 writel(0, &sdr_reg_file->fom); 3627 writel(0, &sdr_reg_file->failing_stage); 3628 writel(0, &sdr_reg_file->debug1); 3629 writel(0, &sdr_reg_file->debug2); 3630 } 3631 3632 /** 3633 * initialize_hps_phy() - Initialize HPS PHY 3634 * 3635 * Initialize HPS PHY. 3636 */ 3637 static void initialize_hps_phy(void) 3638 { 3639 uint32_t reg; 3640 /* 3641 * Tracking also gets configured here because it's in the 3642 * same register. 3643 */ 3644 uint32_t trk_sample_count = 7500; 3645 uint32_t trk_long_idle_sample_count = (10 << 16) | 100; 3646 /* 3647 * Format is number of outer loops in the 16 MSB, sample 3648 * count in 16 LSB. 3649 */ 3650 3651 reg = 0; 3652 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2); 3653 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1); 3654 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1); 3655 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1); 3656 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0); 3657 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1); 3658 /* 3659 * This field selects the intrinsic latency to RDATA_EN/FULL path. 3660 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles. 3661 */ 3662 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0); 3663 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET( 3664 trk_sample_count); 3665 writel(reg, &sdr_ctrl->phy_ctrl0); 3666 3667 reg = 0; 3668 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET( 3669 trk_sample_count >> 3670 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH); 3671 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET( 3672 trk_long_idle_sample_count); 3673 writel(reg, &sdr_ctrl->phy_ctrl1); 3674 3675 reg = 0; 3676 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET( 3677 trk_long_idle_sample_count >> 3678 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH); 3679 writel(reg, &sdr_ctrl->phy_ctrl2); 3680 } 3681 3682 /** 3683 * initialize_tracking() - Initialize tracking 3684 * 3685 * Initialize the register file with usable initial data. 3686 */ 3687 static void initialize_tracking(void) 3688 { 3689 /* 3690 * Initialize the register file with the correct data. 3691 * Compute usable version of value in case we skip full 3692 * computation later. 3693 */ 3694 writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1, 3695 &sdr_reg_file->dtaps_per_ptap); 3696 3697 /* trk_sample_count */ 3698 writel(7500, &sdr_reg_file->trk_sample_count); 3699 3700 /* longidle outer loop [15:0] */ 3701 writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle); 3702 3703 /* 3704 * longidle sample count [31:24] 3705 * trfc, worst case of 933Mhz 4Gb [23:16] 3706 * trcd, worst case [15:8] 3707 * vfifo wait [7:0] 3708 */ 3709 writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0), 3710 &sdr_reg_file->delays); 3711 3712 /* mux delay */ 3713 writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) | 3714 (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0), 3715 &sdr_reg_file->trk_rw_mgr_addr); 3716 3717 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, 3718 &sdr_reg_file->trk_read_dqs_width); 3719 3720 /* trefi [7:0] */ 3721 writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0), 3722 &sdr_reg_file->trk_rfsh); 3723 } 3724 3725 int sdram_calibration_full(void) 3726 { 3727 struct param_type my_param; 3728 struct gbl_type my_gbl; 3729 uint32_t pass; 3730 3731 memset(&my_param, 0, sizeof(my_param)); 3732 memset(&my_gbl, 0, sizeof(my_gbl)); 3733 3734 param = &my_param; 3735 gbl = &my_gbl; 3736 3737 /* Set the calibration enabled by default */ 3738 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT; 3739 /* 3740 * Only sweep all groups (regardless of fail state) by default 3741 * Set enabled read test by default. 3742 */ 3743 #if DISABLE_GUARANTEED_READ 3744 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ; 3745 #endif 3746 /* Initialize the register file */ 3747 initialize_reg_file(); 3748 3749 /* Initialize any PHY CSR */ 3750 initialize_hps_phy(); 3751 3752 scc_mgr_initialize(); 3753 3754 initialize_tracking(); 3755 3756 printf("%s: Preparing to start memory calibration\n", __FILE__); 3757 3758 debug("%s:%d\n", __func__, __LINE__); 3759 debug_cond(DLEVEL == 1, 3760 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ", 3761 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM, 3762 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS, 3763 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS, 3764 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 3765 debug_cond(DLEVEL == 1, 3766 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ", 3767 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3768 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH, 3769 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP); 3770 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u", 3771 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH); 3772 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ", 3773 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX, 3774 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX); 3775 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ", 3776 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX, 3777 IO_IO_OUT2_DELAY_MAX); 3778 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n", 3779 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE); 3780 3781 hc_initialize_rom_data(); 3782 3783 /* update info for sims */ 3784 reg_file_set_stage(CAL_STAGE_NIL); 3785 reg_file_set_group(0); 3786 3787 /* 3788 * Load global needed for those actions that require 3789 * some dynamic calibration support. 3790 */ 3791 dyn_calib_steps = STATIC_CALIB_STEPS; 3792 /* 3793 * Load global to allow dynamic selection of delay loop settings 3794 * based on calibration mode. 3795 */ 3796 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS)) 3797 skip_delay_mask = 0xff; 3798 else 3799 skip_delay_mask = 0x0; 3800 3801 pass = run_mem_calibrate(); 3802 debug_mem_calibrate(pass); 3803 return pass; 3804 } 3805