1 /* 2 * Copyright Altera Corporation (C) 2012-2015 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <common.h> 8 #include <asm/io.h> 9 #include <asm/arch/sdram.h> 10 #include "sequencer.h" 11 #include "sequencer_auto.h" 12 #include "sequencer_auto_ac_init.h" 13 #include "sequencer_auto_inst_init.h" 14 #include "sequencer_defines.h" 15 16 static void scc_mgr_load_dqs_for_write_group(uint32_t write_group); 17 18 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs = 19 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800); 20 21 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs = 22 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00); 23 24 static struct socfpga_sdr_reg_file *sdr_reg_file = 25 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS; 26 27 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr = 28 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00); 29 30 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd = 31 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS; 32 33 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg = 34 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40); 35 36 static struct socfpga_data_mgr *data_mgr = 37 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS; 38 39 static struct socfpga_sdr_ctrl *sdr_ctrl = 40 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS; 41 42 #define DELTA_D 1 43 44 /* 45 * In order to reduce ROM size, most of the selectable calibration steps are 46 * decided at compile time based on the user's calibration mode selection, 47 * as captured by the STATIC_CALIB_STEPS selection below. 48 * 49 * However, to support simulation-time selection of fast simulation mode, where 50 * we skip everything except the bare minimum, we need a few of the steps to 51 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the 52 * check, which is based on the rtl-supplied value, or we dynamically compute 53 * the value to use based on the dynamically-chosen calibration mode 54 */ 55 56 #define DLEVEL 0 57 #define STATIC_IN_RTL_SIM 0 58 #define STATIC_SKIP_DELAY_LOOPS 0 59 60 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \ 61 STATIC_SKIP_DELAY_LOOPS) 62 63 /* calibration steps requested by the rtl */ 64 uint16_t dyn_calib_steps; 65 66 /* 67 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option 68 * instead of static, we use boolean logic to select between 69 * non-skip and skip values 70 * 71 * The mask is set to include all bits when not-skipping, but is 72 * zero when skipping 73 */ 74 75 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */ 76 77 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \ 78 ((non_skip_value) & skip_delay_mask) 79 80 struct gbl_type *gbl; 81 struct param_type *param; 82 uint32_t curr_shadow_reg; 83 84 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 85 uint32_t write_group, uint32_t use_dm, 86 uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks); 87 88 static void set_failing_group_stage(uint32_t group, uint32_t stage, 89 uint32_t substage) 90 { 91 /* 92 * Only set the global stage if there was not been any other 93 * failing group 94 */ 95 if (gbl->error_stage == CAL_STAGE_NIL) { 96 gbl->error_substage = substage; 97 gbl->error_stage = stage; 98 gbl->error_group = group; 99 } 100 } 101 102 static void reg_file_set_group(u16 set_group) 103 { 104 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16); 105 } 106 107 static void reg_file_set_stage(u8 set_stage) 108 { 109 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff); 110 } 111 112 static void reg_file_set_sub_stage(u8 set_sub_stage) 113 { 114 set_sub_stage &= 0xff; 115 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8); 116 } 117 118 static void initialize(void) 119 { 120 debug("%s:%d\n", __func__, __LINE__); 121 /* USER calibration has control over path to memory */ 122 /* 123 * In Hard PHY this is a 2-bit control: 124 * 0: AFI Mux Select 125 * 1: DDIO Mux Select 126 */ 127 writel(0x3, &phy_mgr_cfg->mux_sel); 128 129 /* USER memory clock is not stable we begin initialization */ 130 writel(0, &phy_mgr_cfg->reset_mem_stbl); 131 132 /* USER calibration status all set to zero */ 133 writel(0, &phy_mgr_cfg->cal_status); 134 135 writel(0, &phy_mgr_cfg->cal_debug_info); 136 137 if ((dyn_calib_steps & CALIB_SKIP_ALL) != CALIB_SKIP_ALL) { 138 param->read_correct_mask_vg = ((uint32_t)1 << 139 (RW_MGR_MEM_DQ_PER_READ_DQS / 140 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1; 141 param->write_correct_mask_vg = ((uint32_t)1 << 142 (RW_MGR_MEM_DQ_PER_READ_DQS / 143 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1; 144 param->read_correct_mask = ((uint32_t)1 << 145 RW_MGR_MEM_DQ_PER_READ_DQS) - 1; 146 param->write_correct_mask = ((uint32_t)1 << 147 RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1; 148 param->dm_correct_mask = ((uint32_t)1 << 149 (RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH)) 150 - 1; 151 } 152 } 153 154 static void set_rank_and_odt_mask(uint32_t rank, uint32_t odt_mode) 155 { 156 uint32_t odt_mask_0 = 0; 157 uint32_t odt_mask_1 = 0; 158 uint32_t cs_and_odt_mask; 159 160 if (odt_mode == RW_MGR_ODT_MODE_READ_WRITE) { 161 if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) { 162 /* 163 * 1 Rank 164 * Read: ODT = 0 165 * Write: ODT = 1 166 */ 167 odt_mask_0 = 0x0; 168 odt_mask_1 = 0x1; 169 } else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) { 170 /* 2 Ranks */ 171 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) { 172 /* - Dual-Slot , Single-Rank 173 * (1 chip-select per DIMM) 174 * OR 175 * - RDIMM, 4 total CS (2 CS per DIMM) 176 * means 2 DIMM 177 * Since MEM_NUMBER_OF_RANKS is 2 they are 178 * both single rank 179 * with 2 CS each (special for RDIMM) 180 * Read: Turn on ODT on the opposite rank 181 * Write: Turn on ODT on all ranks 182 */ 183 odt_mask_0 = 0x3 & ~(1 << rank); 184 odt_mask_1 = 0x3; 185 } else { 186 /* 187 * USER - Single-Slot , Dual-rank DIMMs 188 * (2 chip-selects per DIMM) 189 * USER Read: Turn on ODT off on all ranks 190 * USER Write: Turn on ODT on active rank 191 */ 192 odt_mask_0 = 0x0; 193 odt_mask_1 = 0x3 & (1 << rank); 194 } 195 } else { 196 /* 4 Ranks 197 * Read: 198 * ----------+-----------------------+ 199 * | | 200 * | ODT | 201 * Read From +-----------------------+ 202 * Rank | 3 | 2 | 1 | 0 | 203 * ----------+-----+-----+-----+-----+ 204 * 0 | 0 | 1 | 0 | 0 | 205 * 1 | 1 | 0 | 0 | 0 | 206 * 2 | 0 | 0 | 0 | 1 | 207 * 3 | 0 | 0 | 1 | 0 | 208 * ----------+-----+-----+-----+-----+ 209 * 210 * Write: 211 * ----------+-----------------------+ 212 * | | 213 * | ODT | 214 * Write To +-----------------------+ 215 * Rank | 3 | 2 | 1 | 0 | 216 * ----------+-----+-----+-----+-----+ 217 * 0 | 0 | 1 | 0 | 1 | 218 * 1 | 1 | 0 | 1 | 0 | 219 * 2 | 0 | 1 | 0 | 1 | 220 * 3 | 1 | 0 | 1 | 0 | 221 * ----------+-----+-----+-----+-----+ 222 */ 223 switch (rank) { 224 case 0: 225 odt_mask_0 = 0x4; 226 odt_mask_1 = 0x5; 227 break; 228 case 1: 229 odt_mask_0 = 0x8; 230 odt_mask_1 = 0xA; 231 break; 232 case 2: 233 odt_mask_0 = 0x1; 234 odt_mask_1 = 0x5; 235 break; 236 case 3: 237 odt_mask_0 = 0x2; 238 odt_mask_1 = 0xA; 239 break; 240 } 241 } 242 } else { 243 odt_mask_0 = 0x0; 244 odt_mask_1 = 0x0; 245 } 246 247 cs_and_odt_mask = 248 (0xFF & ~(1 << rank)) | 249 ((0xFF & odt_mask_0) << 8) | 250 ((0xFF & odt_mask_1) << 16); 251 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS | 252 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 253 } 254 255 /** 256 * scc_mgr_set() - Set SCC Manager register 257 * @off: Base offset in SCC Manager space 258 * @grp: Read/Write group 259 * @val: Value to be set 260 * 261 * This function sets the SCC Manager (Scan Chain Control Manager) register. 262 */ 263 static void scc_mgr_set(u32 off, u32 grp, u32 val) 264 { 265 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2)); 266 } 267 268 /** 269 * scc_mgr_initialize() - Initialize SCC Manager registers 270 * 271 * Initialize SCC Manager registers. 272 */ 273 static void scc_mgr_initialize(void) 274 { 275 /* 276 * Clear register file for HPS. 16 (2^4) is the size of the 277 * full register file in the scc mgr: 278 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + 279 * MEM_IF_READ_DQS_WIDTH - 1); 280 */ 281 int i; 282 283 for (i = 0; i < 16; i++) { 284 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n", 285 __func__, __LINE__, i); 286 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i); 287 } 288 } 289 290 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase) 291 { 292 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase); 293 } 294 295 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay) 296 { 297 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay); 298 } 299 300 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase) 301 { 302 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase); 303 } 304 305 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay) 306 { 307 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay); 308 } 309 310 static void scc_mgr_set_dqs_io_in_delay(uint32_t write_group, uint32_t delay) 311 { 312 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 313 delay); 314 } 315 316 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay) 317 { 318 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay); 319 } 320 321 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay) 322 { 323 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay); 324 } 325 326 static void scc_mgr_set_dqs_out1_delay(uint32_t write_group, 327 uint32_t delay) 328 { 329 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 330 delay); 331 } 332 333 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay) 334 { 335 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, 336 RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm, 337 delay); 338 } 339 340 /* load up dqs config settings */ 341 static void scc_mgr_load_dqs(uint32_t dqs) 342 { 343 writel(dqs, &sdr_scc_mgr->dqs_ena); 344 } 345 346 /* load up dqs io config settings */ 347 static void scc_mgr_load_dqs_io(void) 348 { 349 writel(0, &sdr_scc_mgr->dqs_io_ena); 350 } 351 352 /* load up dq config settings */ 353 static void scc_mgr_load_dq(uint32_t dq_in_group) 354 { 355 writel(dq_in_group, &sdr_scc_mgr->dq_ena); 356 } 357 358 /* load up dm config settings */ 359 static void scc_mgr_load_dm(uint32_t dm) 360 { 361 writel(dm, &sdr_scc_mgr->dm_ena); 362 } 363 364 /** 365 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks 366 * @off: Base offset in SCC Manager space 367 * @grp: Read/Write group 368 * @val: Value to be set 369 * @update: If non-zero, trigger SCC Manager update for all ranks 370 * 371 * This function sets the SCC Manager (Scan Chain Control Manager) register 372 * and optionally triggers the SCC update for all ranks. 373 */ 374 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val, 375 const int update) 376 { 377 u32 r; 378 379 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 380 r += NUM_RANKS_PER_SHADOW_REG) { 381 scc_mgr_set(off, grp, val); 382 383 if (update || (r == 0)) { 384 writel(grp, &sdr_scc_mgr->dqs_ena); 385 writel(0, &sdr_scc_mgr->update); 386 } 387 } 388 } 389 390 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase) 391 { 392 /* 393 * USER although the h/w doesn't support different phases per 394 * shadow register, for simplicity our scc manager modeling 395 * keeps different phase settings per shadow reg, and it's 396 * important for us to keep them in sync to match h/w. 397 * for efficiency, the scan chain update should occur only 398 * once to sr0. 399 */ 400 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET, 401 read_group, phase, 0); 402 } 403 404 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group, 405 uint32_t phase) 406 { 407 /* 408 * USER although the h/w doesn't support different phases per 409 * shadow register, for simplicity our scc manager modeling 410 * keeps different phase settings per shadow reg, and it's 411 * important for us to keep them in sync to match h/w. 412 * for efficiency, the scan chain update should occur only 413 * once to sr0. 414 */ 415 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, 416 write_group, phase, 0); 417 } 418 419 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group, 420 uint32_t delay) 421 { 422 /* 423 * In shadow register mode, the T11 settings are stored in 424 * registers in the core, which are updated by the DQS_ENA 425 * signals. Not issuing the SCC_MGR_UPD command allows us to 426 * save lots of rank switching overhead, by calling 427 * select_shadow_regs_for_update with update_scan_chains 428 * set to 0. 429 */ 430 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET, 431 read_group, delay, 1); 432 writel(0, &sdr_scc_mgr->update); 433 } 434 435 static void scc_mgr_set_oct_out1_delay(uint32_t write_group, uint32_t delay) 436 { 437 uint32_t read_group; 438 uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_OCT_OUT1_DELAY_OFFSET; 439 440 /* 441 * Load the setting in the SCC manager 442 * Although OCT affects only write data, the OCT delay is controlled 443 * by the DQS logic block which is instantiated once per read group. 444 * For protocols where a write group consists of multiple read groups, 445 * the setting must be set multiple times. 446 */ 447 for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH / 448 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 449 read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH / 450 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; ++read_group) 451 writel(delay, addr + (read_group << 2)); 452 } 453 454 static void scc_mgr_set_hhp_extras(void) 455 { 456 /* 457 * Load the fixed setting in the SCC manager 458 * bits: 0:0 = 1'b1 - dqs bypass 459 * bits: 1:1 = 1'b1 - dq bypass 460 * bits: 4:2 = 3'b001 - rfifo_mode 461 * bits: 6:5 = 2'b01 - rfifo clock_select 462 * bits: 7:7 = 1'b0 - separate gating from ungating setting 463 * bits: 8:8 = 1'b0 - separate OE from Output delay setting 464 */ 465 uint32_t value = (0<<8) | (0<<7) | (1<<5) | (1<<2) | (1<<1) | (1<<0); 466 uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_HHP_GLOBALS_OFFSET; 467 468 writel(value, addr + SCC_MGR_HHP_EXTRAS_OFFSET); 469 } 470 471 /* 472 * USER Zero all DQS config 473 * TODO: maybe rename to scc_mgr_zero_dqs_config (or something) 474 */ 475 static void scc_mgr_zero_all(void) 476 { 477 uint32_t i, r; 478 479 /* 480 * USER Zero all DQS config settings, across all groups and all 481 * shadow registers 482 */ 483 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += 484 NUM_RANKS_PER_SHADOW_REG) { 485 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 486 /* 487 * The phases actually don't exist on a per-rank basis, 488 * but there's no harm updating them several times, so 489 * let's keep the code simple. 490 */ 491 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE); 492 scc_mgr_set_dqs_en_phase(i, 0); 493 scc_mgr_set_dqs_en_delay(i, 0); 494 } 495 496 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 497 scc_mgr_set_dqdqs_output_phase(i, 0); 498 /* av/cv don't have out2 */ 499 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE); 500 } 501 } 502 503 /* multicast to all DQS group enables */ 504 writel(0xff, &sdr_scc_mgr->dqs_ena); 505 writel(0, &sdr_scc_mgr->update); 506 } 507 508 static void scc_set_bypass_mode(uint32_t write_group, uint32_t mode) 509 { 510 /* mode = 0 : Do NOT bypass - Half Rate Mode */ 511 /* mode = 1 : Bypass - Full Rate Mode */ 512 513 /* only need to set once for all groups, pins, dq, dqs, dm */ 514 if (write_group == 0) { 515 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", __func__, 516 __LINE__); 517 scc_mgr_set_hhp_extras(); 518 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n", 519 __func__, __LINE__); 520 } 521 /* multicast to all DQ enables */ 522 writel(0xff, &sdr_scc_mgr->dq_ena); 523 writel(0xff, &sdr_scc_mgr->dm_ena); 524 525 /* update current DQS IO enable */ 526 writel(0, &sdr_scc_mgr->dqs_io_ena); 527 528 /* update the DQS logic */ 529 writel(write_group, &sdr_scc_mgr->dqs_ena); 530 531 /* hit update */ 532 writel(0, &sdr_scc_mgr->update); 533 } 534 535 static void scc_mgr_load_dqs_for_write_group(uint32_t write_group) 536 { 537 uint32_t read_group; 538 uint32_t addr = (u32)&sdr_scc_mgr->dqs_ena; 539 /* 540 * Although OCT affects only write data, the OCT delay is controlled 541 * by the DQS logic block which is instantiated once per read group. 542 * For protocols where a write group consists of multiple read groups, 543 * the setting must be scanned multiple times. 544 */ 545 for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH / 546 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 547 read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH / 548 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; ++read_group) 549 writel(read_group, addr); 550 } 551 552 static void scc_mgr_zero_group(uint32_t write_group, uint32_t test_begin, 553 int32_t out_only) 554 { 555 uint32_t i, r; 556 557 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += 558 NUM_RANKS_PER_SHADOW_REG) { 559 /* Zero all DQ config settings */ 560 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 561 scc_mgr_set_dq_out1_delay(i, 0); 562 if (!out_only) 563 scc_mgr_set_dq_in_delay(i, 0); 564 } 565 566 /* multicast to all DQ enables */ 567 writel(0xff, &sdr_scc_mgr->dq_ena); 568 569 /* Zero all DM config settings */ 570 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 571 scc_mgr_set_dm_out1_delay(i, 0); 572 } 573 574 /* multicast to all DM enables */ 575 writel(0xff, &sdr_scc_mgr->dm_ena); 576 577 /* zero all DQS io settings */ 578 if (!out_only) 579 scc_mgr_set_dqs_io_in_delay(write_group, 0); 580 /* av/cv don't have out2 */ 581 scc_mgr_set_dqs_out1_delay(write_group, IO_DQS_OUT_RESERVE); 582 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE); 583 scc_mgr_load_dqs_for_write_group(write_group); 584 585 /* multicast to all DQS IO enables (only 1) */ 586 writel(0, &sdr_scc_mgr->dqs_io_ena); 587 588 /* hit update to zero everything */ 589 writel(0, &sdr_scc_mgr->update); 590 } 591 } 592 593 /* 594 * apply and load a particular input delay for the DQ pins in a group 595 * group_bgn is the index of the first dq pin (in the write group) 596 */ 597 static void scc_mgr_apply_group_dq_in_delay(uint32_t write_group, 598 uint32_t group_bgn, uint32_t delay) 599 { 600 uint32_t i, p; 601 602 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 603 scc_mgr_set_dq_in_delay(p, delay); 604 scc_mgr_load_dq(p); 605 } 606 } 607 608 /* apply and load a particular output delay for the DQ pins in a group */ 609 static void scc_mgr_apply_group_dq_out1_delay(uint32_t write_group, 610 uint32_t group_bgn, 611 uint32_t delay1) 612 { 613 uint32_t i, p; 614 615 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 616 scc_mgr_set_dq_out1_delay(i, delay1); 617 scc_mgr_load_dq(i); 618 } 619 } 620 621 /* apply and load a particular output delay for the DM pins in a group */ 622 static void scc_mgr_apply_group_dm_out1_delay(uint32_t write_group, 623 uint32_t delay1) 624 { 625 uint32_t i; 626 627 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 628 scc_mgr_set_dm_out1_delay(i, delay1); 629 scc_mgr_load_dm(i); 630 } 631 } 632 633 634 /* apply and load delay on both DQS and OCT out1 */ 635 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group, 636 uint32_t delay) 637 { 638 scc_mgr_set_dqs_out1_delay(write_group, delay); 639 scc_mgr_load_dqs_io(); 640 641 scc_mgr_set_oct_out1_delay(write_group, delay); 642 scc_mgr_load_dqs_for_write_group(write_group); 643 } 644 645 /* apply a delay to the entire output side: DQ, DM, DQS, OCT */ 646 static void scc_mgr_apply_group_all_out_delay_add(uint32_t write_group, 647 uint32_t group_bgn, 648 uint32_t delay) 649 { 650 uint32_t i, p, new_delay; 651 652 /* dq shift */ 653 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 654 new_delay = READ_SCC_DQ_OUT2_DELAY; 655 new_delay += delay; 656 657 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 658 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQ[%u,%u]:\ 659 %u > %lu => %lu", __func__, __LINE__, 660 write_group, group_bgn, delay, i, p, new_delay, 661 (long unsigned int)IO_IO_OUT2_DELAY_MAX, 662 (long unsigned int)IO_IO_OUT2_DELAY_MAX); 663 new_delay = IO_IO_OUT2_DELAY_MAX; 664 } 665 666 scc_mgr_load_dq(i); 667 } 668 669 /* dm shift */ 670 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 671 new_delay = READ_SCC_DM_IO_OUT2_DELAY; 672 new_delay += delay; 673 674 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 675 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DM[%u]:\ 676 %u > %lu => %lu\n", __func__, __LINE__, 677 write_group, group_bgn, delay, i, new_delay, 678 (long unsigned int)IO_IO_OUT2_DELAY_MAX, 679 (long unsigned int)IO_IO_OUT2_DELAY_MAX); 680 new_delay = IO_IO_OUT2_DELAY_MAX; 681 } 682 683 scc_mgr_load_dm(i); 684 } 685 686 /* dqs shift */ 687 new_delay = READ_SCC_DQS_IO_OUT2_DELAY; 688 new_delay += delay; 689 690 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 691 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;" 692 " adding %u to OUT1\n", __func__, __LINE__, 693 write_group, group_bgn, delay, new_delay, 694 IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX, 695 new_delay - IO_IO_OUT2_DELAY_MAX); 696 scc_mgr_set_dqs_out1_delay(write_group, new_delay - 697 IO_IO_OUT2_DELAY_MAX); 698 new_delay = IO_IO_OUT2_DELAY_MAX; 699 } 700 701 scc_mgr_load_dqs_io(); 702 703 /* oct shift */ 704 new_delay = READ_SCC_OCT_OUT2_DELAY; 705 new_delay += delay; 706 707 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 708 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;" 709 " adding %u to OUT1\n", __func__, __LINE__, 710 write_group, group_bgn, delay, new_delay, 711 IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX, 712 new_delay - IO_IO_OUT2_DELAY_MAX); 713 scc_mgr_set_oct_out1_delay(write_group, new_delay - 714 IO_IO_OUT2_DELAY_MAX); 715 new_delay = IO_IO_OUT2_DELAY_MAX; 716 } 717 718 scc_mgr_load_dqs_for_write_group(write_group); 719 } 720 721 /* 722 * USER apply a delay to the entire output side (DQ, DM, DQS, OCT) 723 * and to all ranks 724 */ 725 static void scc_mgr_apply_group_all_out_delay_add_all_ranks( 726 uint32_t write_group, uint32_t group_bgn, uint32_t delay) 727 { 728 uint32_t r; 729 730 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 731 r += NUM_RANKS_PER_SHADOW_REG) { 732 scc_mgr_apply_group_all_out_delay_add(write_group, 733 group_bgn, delay); 734 writel(0, &sdr_scc_mgr->update); 735 } 736 } 737 738 /* optimization used to recover some slots in ddr3 inst_rom */ 739 /* could be applied to other protocols if we wanted to */ 740 static void set_jump_as_return(void) 741 { 742 /* 743 * to save space, we replace return with jump to special shared 744 * RETURN instruction so we set the counter to large value so that 745 * we always jump 746 */ 747 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0); 748 writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 749 } 750 751 /* 752 * should always use constants as argument to ensure all computations are 753 * performed at compile time 754 */ 755 static void delay_for_n_mem_clocks(const uint32_t clocks) 756 { 757 uint32_t afi_clocks; 758 uint8_t inner = 0; 759 uint8_t outer = 0; 760 uint16_t c_loop = 0; 761 762 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks); 763 764 765 afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO; 766 /* scale (rounding up) to get afi clocks */ 767 768 /* 769 * Note, we don't bother accounting for being off a little bit 770 * because of a few extra instructions in outer loops 771 * Note, the loops have a test at the end, and do the test before 772 * the decrement, and so always perform the loop 773 * 1 time more than the counter value 774 */ 775 if (afi_clocks == 0) { 776 ; 777 } else if (afi_clocks <= 0x100) { 778 inner = afi_clocks-1; 779 outer = 0; 780 c_loop = 0; 781 } else if (afi_clocks <= 0x10000) { 782 inner = 0xff; 783 outer = (afi_clocks-1) >> 8; 784 c_loop = 0; 785 } else { 786 inner = 0xff; 787 outer = 0xff; 788 c_loop = (afi_clocks-1) >> 16; 789 } 790 791 /* 792 * rom instructions are structured as follows: 793 * 794 * IDLE_LOOP2: jnz cntr0, TARGET_A 795 * IDLE_LOOP1: jnz cntr1, TARGET_B 796 * return 797 * 798 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and 799 * TARGET_B is set to IDLE_LOOP2 as well 800 * 801 * if we have no outer loop, though, then we can use IDLE_LOOP1 only, 802 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely 803 * 804 * a little confusing, but it helps save precious space in the inst_rom 805 * and sequencer rom and keeps the delays more accurate and reduces 806 * overhead 807 */ 808 if (afi_clocks <= 0x100) { 809 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 810 &sdr_rw_load_mgr_regs->load_cntr1); 811 812 writel(RW_MGR_IDLE_LOOP1, 813 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 814 815 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 816 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 817 } else { 818 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 819 &sdr_rw_load_mgr_regs->load_cntr0); 820 821 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), 822 &sdr_rw_load_mgr_regs->load_cntr1); 823 824 writel(RW_MGR_IDLE_LOOP2, 825 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 826 827 writel(RW_MGR_IDLE_LOOP2, 828 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 829 830 /* hack to get around compiler not being smart enough */ 831 if (afi_clocks <= 0x10000) { 832 /* only need to run once */ 833 writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS | 834 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 835 } else { 836 do { 837 writel(RW_MGR_IDLE_LOOP2, 838 SDR_PHYGRP_RWMGRGRP_ADDRESS | 839 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 840 } while (c_loop-- != 0); 841 } 842 } 843 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks); 844 } 845 846 static void rw_mgr_mem_initialize(void) 847 { 848 uint32_t r; 849 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 850 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 851 852 debug("%s:%d\n", __func__, __LINE__); 853 854 /* The reset / cke part of initialization is broadcasted to all ranks */ 855 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 856 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 857 858 /* 859 * Here's how you load register for a loop 860 * Counters are located @ 0x800 861 * Jump address are located @ 0xC00 862 * For both, registers 0 to 3 are selected using bits 3 and 2, like 863 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C 864 * I know this ain't pretty, but Avalon bus throws away the 2 least 865 * significant bits 866 */ 867 868 /* start with memory RESET activated */ 869 870 /* tINIT = 200us */ 871 872 /* 873 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles 874 * If a and b are the number of iteration in 2 nested loops 875 * it takes the following number of cycles to complete the operation: 876 * number_of_cycles = ((2 + n) * a + 2) * b 877 * where n is the number of instruction in the inner loop 878 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF, 879 * b = 6A 880 */ 881 882 /* Load counters */ 883 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR0_VAL), 884 &sdr_rw_load_mgr_regs->load_cntr0); 885 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR1_VAL), 886 &sdr_rw_load_mgr_regs->load_cntr1); 887 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR2_VAL), 888 &sdr_rw_load_mgr_regs->load_cntr2); 889 890 /* Load jump address */ 891 writel(RW_MGR_INIT_RESET_0_CKE_0, 892 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 893 writel(RW_MGR_INIT_RESET_0_CKE_0, 894 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 895 writel(RW_MGR_INIT_RESET_0_CKE_0, 896 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 897 898 /* Execute count instruction */ 899 writel(RW_MGR_INIT_RESET_0_CKE_0, grpaddr); 900 901 /* indicate that memory is stable */ 902 writel(1, &phy_mgr_cfg->reset_mem_stbl); 903 904 /* 905 * transition the RESET to high 906 * Wait for 500us 907 */ 908 909 /* 910 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles 911 * If a and b are the number of iteration in 2 nested loops 912 * it takes the following number of cycles to complete the operation 913 * number_of_cycles = ((2 + n) * a + 2) * b 914 * where n is the number of instruction in the inner loop 915 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83, 916 * b = FF 917 */ 918 919 /* Load counters */ 920 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR0_VAL), 921 &sdr_rw_load_mgr_regs->load_cntr0); 922 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR1_VAL), 923 &sdr_rw_load_mgr_regs->load_cntr1); 924 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR2_VAL), 925 &sdr_rw_load_mgr_regs->load_cntr2); 926 927 /* Load jump address */ 928 writel(RW_MGR_INIT_RESET_1_CKE_0, 929 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 930 writel(RW_MGR_INIT_RESET_1_CKE_0, 931 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 932 writel(RW_MGR_INIT_RESET_1_CKE_0, 933 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 934 935 writel(RW_MGR_INIT_RESET_1_CKE_0, grpaddr); 936 937 /* bring up clock enable */ 938 939 /* tXRP < 250 ck cycles */ 940 delay_for_n_mem_clocks(250); 941 942 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 943 if (param->skip_ranks[r]) { 944 /* request to skip the rank */ 945 continue; 946 } 947 948 /* set rank */ 949 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 950 951 /* 952 * USER Use Mirror-ed commands for odd ranks if address 953 * mirrorring is on 954 */ 955 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 956 set_jump_as_return(); 957 writel(RW_MGR_MRS2_MIRR, grpaddr); 958 delay_for_n_mem_clocks(4); 959 set_jump_as_return(); 960 writel(RW_MGR_MRS3_MIRR, grpaddr); 961 delay_for_n_mem_clocks(4); 962 set_jump_as_return(); 963 writel(RW_MGR_MRS1_MIRR, grpaddr); 964 delay_for_n_mem_clocks(4); 965 set_jump_as_return(); 966 writel(RW_MGR_MRS0_DLL_RESET_MIRR, grpaddr); 967 } else { 968 set_jump_as_return(); 969 writel(RW_MGR_MRS2, grpaddr); 970 delay_for_n_mem_clocks(4); 971 set_jump_as_return(); 972 writel(RW_MGR_MRS3, grpaddr); 973 delay_for_n_mem_clocks(4); 974 set_jump_as_return(); 975 writel(RW_MGR_MRS1, grpaddr); 976 set_jump_as_return(); 977 writel(RW_MGR_MRS0_DLL_RESET, grpaddr); 978 } 979 set_jump_as_return(); 980 writel(RW_MGR_ZQCL, grpaddr); 981 982 /* tZQinit = tDLLK = 512 ck cycles */ 983 delay_for_n_mem_clocks(512); 984 } 985 } 986 987 /* 988 * At the end of calibration we have to program the user settings in, and 989 * USER hand off the memory to the user. 990 */ 991 static void rw_mgr_mem_handoff(void) 992 { 993 uint32_t r; 994 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 995 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 996 997 debug("%s:%d\n", __func__, __LINE__); 998 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 999 if (param->skip_ranks[r]) 1000 /* request to skip the rank */ 1001 continue; 1002 /* set rank */ 1003 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 1004 1005 /* precharge all banks ... */ 1006 writel(RW_MGR_PRECHARGE_ALL, grpaddr); 1007 1008 /* load up MR settings specified by user */ 1009 1010 /* 1011 * Use Mirror-ed commands for odd ranks if address 1012 * mirrorring is on 1013 */ 1014 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 1015 set_jump_as_return(); 1016 writel(RW_MGR_MRS2_MIRR, grpaddr); 1017 delay_for_n_mem_clocks(4); 1018 set_jump_as_return(); 1019 writel(RW_MGR_MRS3_MIRR, grpaddr); 1020 delay_for_n_mem_clocks(4); 1021 set_jump_as_return(); 1022 writel(RW_MGR_MRS1_MIRR, grpaddr); 1023 delay_for_n_mem_clocks(4); 1024 set_jump_as_return(); 1025 writel(RW_MGR_MRS0_USER_MIRR, grpaddr); 1026 } else { 1027 set_jump_as_return(); 1028 writel(RW_MGR_MRS2, grpaddr); 1029 delay_for_n_mem_clocks(4); 1030 set_jump_as_return(); 1031 writel(RW_MGR_MRS3, grpaddr); 1032 delay_for_n_mem_clocks(4); 1033 set_jump_as_return(); 1034 writel(RW_MGR_MRS1, grpaddr); 1035 delay_for_n_mem_clocks(4); 1036 set_jump_as_return(); 1037 writel(RW_MGR_MRS0_USER, grpaddr); 1038 } 1039 /* 1040 * USER need to wait tMOD (12CK or 15ns) time before issuing 1041 * other commands, but we will have plenty of NIOS cycles before 1042 * actual handoff so its okay. 1043 */ 1044 } 1045 } 1046 1047 /* 1048 * performs a guaranteed read on the patterns we are going to use during a 1049 * read test to ensure memory works 1050 */ 1051 static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn, 1052 uint32_t group, uint32_t num_tries, uint32_t *bit_chk, 1053 uint32_t all_ranks) 1054 { 1055 uint32_t r, vg; 1056 uint32_t correct_mask_vg; 1057 uint32_t tmp_bit_chk; 1058 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1059 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1060 uint32_t addr; 1061 uint32_t base_rw_mgr; 1062 1063 *bit_chk = param->read_correct_mask; 1064 correct_mask_vg = param->read_correct_mask_vg; 1065 1066 for (r = rank_bgn; r < rank_end; r++) { 1067 if (param->skip_ranks[r]) 1068 /* request to skip the rank */ 1069 continue; 1070 1071 /* set rank */ 1072 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1073 1074 /* Load up a constant bursts of read commands */ 1075 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1076 writel(RW_MGR_GUARANTEED_READ, 1077 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1078 1079 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1080 writel(RW_MGR_GUARANTEED_READ_CONT, 1081 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1082 1083 tmp_bit_chk = 0; 1084 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1085 /* reset the fifos to get pointers to known state */ 1086 1087 writel(0, &phy_mgr_cmd->fifo_reset); 1088 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1089 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1090 1091 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1092 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1093 1094 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1095 writel(RW_MGR_GUARANTEED_READ, addr + 1096 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1097 vg) << 2)); 1098 1099 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1100 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr)); 1101 1102 if (vg == 0) 1103 break; 1104 } 1105 *bit_chk &= tmp_bit_chk; 1106 } 1107 1108 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1109 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1110 1111 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1112 debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\ 1113 %lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask, 1114 (long unsigned int)(*bit_chk == param->read_correct_mask)); 1115 return *bit_chk == param->read_correct_mask; 1116 } 1117 1118 static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks 1119 (uint32_t group, uint32_t num_tries, uint32_t *bit_chk) 1120 { 1121 return rw_mgr_mem_calibrate_read_test_patterns(0, group, 1122 num_tries, bit_chk, 1); 1123 } 1124 1125 /* load up the patterns we are going to use during a read test */ 1126 static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn, 1127 uint32_t all_ranks) 1128 { 1129 uint32_t r; 1130 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1131 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1132 1133 debug("%s:%d\n", __func__, __LINE__); 1134 for (r = rank_bgn; r < rank_end; r++) { 1135 if (param->skip_ranks[r]) 1136 /* request to skip the rank */ 1137 continue; 1138 1139 /* set rank */ 1140 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1141 1142 /* Load up a constant bursts */ 1143 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1144 1145 writel(RW_MGR_GUARANTEED_WRITE_WAIT0, 1146 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1147 1148 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1149 1150 writel(RW_MGR_GUARANTEED_WRITE_WAIT1, 1151 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1152 1153 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2); 1154 1155 writel(RW_MGR_GUARANTEED_WRITE_WAIT2, 1156 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1157 1158 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3); 1159 1160 writel(RW_MGR_GUARANTEED_WRITE_WAIT3, 1161 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1162 1163 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1164 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 1165 } 1166 1167 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1168 } 1169 1170 /* 1171 * try a read and see if it returns correct data back. has dummy reads 1172 * inserted into the mix used to align dqs enable. has more thorough checks 1173 * than the regular read test. 1174 */ 1175 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group, 1176 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1177 uint32_t all_groups, uint32_t all_ranks) 1178 { 1179 uint32_t r, vg; 1180 uint32_t correct_mask_vg; 1181 uint32_t tmp_bit_chk; 1182 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1183 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1184 uint32_t addr; 1185 uint32_t base_rw_mgr; 1186 1187 *bit_chk = param->read_correct_mask; 1188 correct_mask_vg = param->read_correct_mask_vg; 1189 1190 uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) & 1191 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION); 1192 1193 for (r = rank_bgn; r < rank_end; r++) { 1194 if (param->skip_ranks[r]) 1195 /* request to skip the rank */ 1196 continue; 1197 1198 /* set rank */ 1199 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1200 1201 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1); 1202 1203 writel(RW_MGR_READ_B2B_WAIT1, 1204 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1205 1206 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2); 1207 writel(RW_MGR_READ_B2B_WAIT2, 1208 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1209 1210 if (quick_read_mode) 1211 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0); 1212 /* need at least two (1+1) reads to capture failures */ 1213 else if (all_groups) 1214 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0); 1215 else 1216 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0); 1217 1218 writel(RW_MGR_READ_B2B, 1219 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1220 if (all_groups) 1221 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH * 1222 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1, 1223 &sdr_rw_load_mgr_regs->load_cntr3); 1224 else 1225 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3); 1226 1227 writel(RW_MGR_READ_B2B, 1228 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1229 1230 tmp_bit_chk = 0; 1231 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1232 /* reset the fifos to get pointers to known state */ 1233 writel(0, &phy_mgr_cmd->fifo_reset); 1234 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1235 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1236 1237 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1238 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1239 1240 if (all_groups) 1241 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET; 1242 else 1243 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1244 1245 writel(RW_MGR_READ_B2B, addr + 1246 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1247 vg) << 2)); 1248 1249 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1250 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 1251 1252 if (vg == 0) 1253 break; 1254 } 1255 *bit_chk &= tmp_bit_chk; 1256 } 1257 1258 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1259 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1260 1261 if (all_correct) { 1262 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1263 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\ 1264 (%u == %u) => %lu", __func__, __LINE__, group, 1265 all_groups, *bit_chk, param->read_correct_mask, 1266 (long unsigned int)(*bit_chk == 1267 param->read_correct_mask)); 1268 return *bit_chk == param->read_correct_mask; 1269 } else { 1270 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1271 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\ 1272 (%u != %lu) => %lu\n", __func__, __LINE__, 1273 group, all_groups, *bit_chk, (long unsigned int)0, 1274 (long unsigned int)(*bit_chk != 0x00)); 1275 return *bit_chk != 0x00; 1276 } 1277 } 1278 1279 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group, 1280 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1281 uint32_t all_groups) 1282 { 1283 return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct, 1284 bit_chk, all_groups, 1); 1285 } 1286 1287 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v) 1288 { 1289 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy); 1290 (*v)++; 1291 } 1292 1293 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v) 1294 { 1295 uint32_t i; 1296 1297 for (i = 0; i < VFIFO_SIZE-1; i++) 1298 rw_mgr_incr_vfifo(grp, v); 1299 } 1300 1301 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk) 1302 { 1303 uint32_t v; 1304 uint32_t fail_cnt = 0; 1305 uint32_t test_status; 1306 1307 for (v = 0; v < VFIFO_SIZE; ) { 1308 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n", 1309 __func__, __LINE__, v); 1310 test_status = rw_mgr_mem_calibrate_read_test_all_ranks 1311 (grp, 1, PASS_ONE_BIT, bit_chk, 0); 1312 if (!test_status) { 1313 fail_cnt++; 1314 1315 if (fail_cnt == 2) 1316 break; 1317 } 1318 1319 /* fiddle with FIFO */ 1320 rw_mgr_incr_vfifo(grp, &v); 1321 } 1322 1323 if (v >= VFIFO_SIZE) { 1324 /* no failing read found!! Something must have gone wrong */ 1325 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n", 1326 __func__, __LINE__); 1327 return 0; 1328 } else { 1329 return v; 1330 } 1331 } 1332 1333 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk, 1334 uint32_t dtaps_per_ptap, uint32_t *work_bgn, 1335 uint32_t *v, uint32_t *d, uint32_t *p, 1336 uint32_t *i, uint32_t *max_working_cnt) 1337 { 1338 uint32_t found_begin = 0; 1339 uint32_t tmp_delay = 0; 1340 uint32_t test_status; 1341 1342 for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay += 1343 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1344 *work_bgn = tmp_delay; 1345 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1346 1347 for (*i = 0; *i < VFIFO_SIZE; (*i)++) { 1348 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn += 1349 IO_DELAY_PER_OPA_TAP) { 1350 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1351 1352 test_status = 1353 rw_mgr_mem_calibrate_read_test_all_ranks 1354 (*grp, 1, PASS_ONE_BIT, bit_chk, 0); 1355 1356 if (test_status) { 1357 *max_working_cnt = 1; 1358 found_begin = 1; 1359 break; 1360 } 1361 } 1362 1363 if (found_begin) 1364 break; 1365 1366 if (*p > IO_DQS_EN_PHASE_MAX) 1367 /* fiddle with FIFO */ 1368 rw_mgr_incr_vfifo(*grp, v); 1369 } 1370 1371 if (found_begin) 1372 break; 1373 } 1374 1375 if (*i >= VFIFO_SIZE) { 1376 /* cannot find working solution */ 1377 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\ 1378 ptap/dtap\n", __func__, __LINE__); 1379 return 0; 1380 } else { 1381 return 1; 1382 } 1383 } 1384 1385 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk, 1386 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1387 uint32_t *p, uint32_t *max_working_cnt) 1388 { 1389 uint32_t found_begin = 0; 1390 uint32_t tmp_delay; 1391 1392 /* Special case code for backing up a phase */ 1393 if (*p == 0) { 1394 *p = IO_DQS_EN_PHASE_MAX; 1395 rw_mgr_decr_vfifo(*grp, v); 1396 } else { 1397 (*p)--; 1398 } 1399 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP; 1400 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1401 1402 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; 1403 (*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1404 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1405 1406 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1, 1407 PASS_ONE_BIT, 1408 bit_chk, 0)) { 1409 found_begin = 1; 1410 *work_bgn = tmp_delay; 1411 break; 1412 } 1413 } 1414 1415 /* We have found a working dtap before the ptap found above */ 1416 if (found_begin == 1) 1417 (*max_working_cnt)++; 1418 1419 /* 1420 * Restore VFIFO to old state before we decremented it 1421 * (if needed). 1422 */ 1423 (*p)++; 1424 if (*p > IO_DQS_EN_PHASE_MAX) { 1425 *p = 0; 1426 rw_mgr_incr_vfifo(*grp, v); 1427 } 1428 1429 scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0); 1430 } 1431 1432 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk, 1433 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1434 uint32_t *p, uint32_t *i, uint32_t *max_working_cnt, 1435 uint32_t *work_end) 1436 { 1437 uint32_t found_end = 0; 1438 1439 (*p)++; 1440 *work_end += IO_DELAY_PER_OPA_TAP; 1441 if (*p > IO_DQS_EN_PHASE_MAX) { 1442 /* fiddle with FIFO */ 1443 *p = 0; 1444 rw_mgr_incr_vfifo(*grp, v); 1445 } 1446 1447 for (; *i < VFIFO_SIZE + 1; (*i)++) { 1448 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end 1449 += IO_DELAY_PER_OPA_TAP) { 1450 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1451 1452 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1453 (*grp, 1, PASS_ONE_BIT, bit_chk, 0)) { 1454 found_end = 1; 1455 break; 1456 } else { 1457 (*max_working_cnt)++; 1458 } 1459 } 1460 1461 if (found_end) 1462 break; 1463 1464 if (*p > IO_DQS_EN_PHASE_MAX) { 1465 /* fiddle with FIFO */ 1466 rw_mgr_incr_vfifo(*grp, v); 1467 *p = 0; 1468 } 1469 } 1470 1471 if (*i >= VFIFO_SIZE + 1) { 1472 /* cannot see edge of failing read */ 1473 debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\ 1474 failed\n", __func__, __LINE__); 1475 return 0; 1476 } else { 1477 return 1; 1478 } 1479 } 1480 1481 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk, 1482 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1483 uint32_t *p, uint32_t *work_mid, 1484 uint32_t *work_end) 1485 { 1486 int i; 1487 int tmp_delay = 0; 1488 1489 *work_mid = (*work_bgn + *work_end) / 2; 1490 1491 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n", 1492 *work_bgn, *work_end, *work_mid); 1493 /* Get the middle delay to be less than a VFIFO delay */ 1494 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; 1495 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP) 1496 ; 1497 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay); 1498 while (*work_mid > tmp_delay) 1499 *work_mid -= tmp_delay; 1500 debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid); 1501 1502 tmp_delay = 0; 1503 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid; 1504 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP) 1505 ; 1506 tmp_delay -= IO_DELAY_PER_OPA_TAP; 1507 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay); 1508 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++, 1509 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) 1510 ; 1511 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay); 1512 1513 scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1); 1514 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1515 1516 /* 1517 * push vfifo until we can successfully calibrate. We can do this 1518 * because the largest possible margin in 1 VFIFO cycle. 1519 */ 1520 for (i = 0; i < VFIFO_SIZE; i++) { 1521 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n", 1522 *v); 1523 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1, 1524 PASS_ONE_BIT, 1525 bit_chk, 0)) { 1526 break; 1527 } 1528 1529 /* fiddle with FIFO */ 1530 rw_mgr_incr_vfifo(*grp, v); 1531 } 1532 1533 if (i >= VFIFO_SIZE) { 1534 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \ 1535 failed\n", __func__, __LINE__); 1536 return 0; 1537 } else { 1538 return 1; 1539 } 1540 } 1541 1542 /* find a good dqs enable to use */ 1543 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp) 1544 { 1545 uint32_t v, d, p, i; 1546 uint32_t max_working_cnt; 1547 uint32_t bit_chk; 1548 uint32_t dtaps_per_ptap; 1549 uint32_t work_bgn, work_mid, work_end; 1550 uint32_t found_passing_read, found_failing_read, initial_failing_dtap; 1551 1552 debug("%s:%d %u\n", __func__, __LINE__, grp); 1553 1554 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 1555 1556 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1557 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); 1558 1559 /* ************************************************************** */ 1560 /* * Step 0 : Determine number of delay taps for each phase tap * */ 1561 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1562 1563 /* ********************************************************* */ 1564 /* * Step 1 : First push vfifo until we get a failing read * */ 1565 v = find_vfifo_read(grp, &bit_chk); 1566 1567 max_working_cnt = 0; 1568 1569 /* ******************************************************** */ 1570 /* * step 2: find first working phase, increment in ptaps * */ 1571 work_bgn = 0; 1572 if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d, 1573 &p, &i, &max_working_cnt) == 0) 1574 return 0; 1575 1576 work_end = work_bgn; 1577 1578 /* 1579 * If d is 0 then the working window covers a phase tap and 1580 * we can follow the old procedure otherwise, we've found the beginning, 1581 * and we need to increment the dtaps until we find the end. 1582 */ 1583 if (d == 0) { 1584 /* ********************************************************* */ 1585 /* * step 3a: if we have room, back off by one and 1586 increment in dtaps * */ 1587 1588 sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1589 &max_working_cnt); 1590 1591 /* ********************************************************* */ 1592 /* * step 4a: go forward from working phase to non working 1593 phase, increment in ptaps * */ 1594 if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1595 &i, &max_working_cnt, &work_end) == 0) 1596 return 0; 1597 1598 /* ********************************************************* */ 1599 /* * step 5a: back off one from last, increment in dtaps * */ 1600 1601 /* Special case code for backing up a phase */ 1602 if (p == 0) { 1603 p = IO_DQS_EN_PHASE_MAX; 1604 rw_mgr_decr_vfifo(grp, &v); 1605 } else { 1606 p = p - 1; 1607 } 1608 1609 work_end -= IO_DELAY_PER_OPA_TAP; 1610 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1611 1612 /* * The actual increment of dtaps is done outside of 1613 the if/else loop to share code */ 1614 d = 0; 1615 1616 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \ 1617 vfifo=%u ptap=%u\n", __func__, __LINE__, 1618 v, p); 1619 } else { 1620 /* ******************************************************* */ 1621 /* * step 3-5b: Find the right edge of the window using 1622 delay taps * */ 1623 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \ 1624 ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__, 1625 v, p, d, work_bgn); 1626 1627 work_end = work_bgn; 1628 1629 /* * The actual increment of dtaps is done outside of the 1630 if/else loop to share code */ 1631 1632 /* Only here to counterbalance a subtract later on which is 1633 not needed if this branch of the algorithm is taken */ 1634 max_working_cnt++; 1635 } 1636 1637 /* The dtap increment to find the failing edge is done here */ 1638 for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end += 1639 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1640 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1641 end-2: dtap=%u\n", __func__, __LINE__, d); 1642 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1643 1644 if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1645 PASS_ONE_BIT, 1646 &bit_chk, 0)) { 1647 break; 1648 } 1649 } 1650 1651 /* Go back to working dtap */ 1652 if (d != 0) 1653 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1654 1655 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \ 1656 ptap=%u dtap=%u end=%u\n", __func__, __LINE__, 1657 v, p, d-1, work_end); 1658 1659 if (work_end < work_bgn) { 1660 /* nil range */ 1661 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \ 1662 failed\n", __func__, __LINE__); 1663 return 0; 1664 } 1665 1666 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n", 1667 __func__, __LINE__, work_bgn, work_end); 1668 1669 /* *************************************************************** */ 1670 /* 1671 * * We need to calculate the number of dtaps that equal a ptap 1672 * * To do that we'll back up a ptap and re-find the edge of the 1673 * * window using dtaps 1674 */ 1675 1676 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \ 1677 for tracking\n", __func__, __LINE__); 1678 1679 /* Special case code for backing up a phase */ 1680 if (p == 0) { 1681 p = IO_DQS_EN_PHASE_MAX; 1682 rw_mgr_decr_vfifo(grp, &v); 1683 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1684 cycle/phase: v=%u p=%u\n", __func__, __LINE__, 1685 v, p); 1686 } else { 1687 p = p - 1; 1688 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1689 phase only: v=%u p=%u", __func__, __LINE__, 1690 v, p); 1691 } 1692 1693 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1694 1695 /* 1696 * Increase dtap until we first see a passing read (in case the 1697 * window is smaller than a ptap), 1698 * and then a failing read to mark the edge of the window again 1699 */ 1700 1701 /* Find a passing read */ 1702 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n", 1703 __func__, __LINE__); 1704 found_passing_read = 0; 1705 found_failing_read = 0; 1706 initial_failing_dtap = d; 1707 for (; d <= IO_DQS_EN_DELAY_MAX; d++) { 1708 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \ 1709 read d=%u\n", __func__, __LINE__, d); 1710 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1711 1712 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1713 PASS_ONE_BIT, 1714 &bit_chk, 0)) { 1715 found_passing_read = 1; 1716 break; 1717 } 1718 } 1719 1720 if (found_passing_read) { 1721 /* Find a failing read */ 1722 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \ 1723 read\n", __func__, __LINE__); 1724 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) { 1725 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1726 testing read d=%u\n", __func__, __LINE__, d); 1727 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1728 1729 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1730 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { 1731 found_failing_read = 1; 1732 break; 1733 } 1734 } 1735 } else { 1736 debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \ 1737 calculate dtaps", __func__, __LINE__); 1738 debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n"); 1739 } 1740 1741 /* 1742 * The dynamically calculated dtaps_per_ptap is only valid if we 1743 * found a passing/failing read. If we didn't, it means d hit the max 1744 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its 1745 * statically calculated value. 1746 */ 1747 if (found_passing_read && found_failing_read) 1748 dtaps_per_ptap = d - initial_failing_dtap; 1749 1750 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 1751 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \ 1752 - %u = %u", __func__, __LINE__, d, 1753 initial_failing_dtap, dtaps_per_ptap); 1754 1755 /* ******************************************** */ 1756 /* * step 6: Find the centre of the window * */ 1757 if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1758 &work_mid, &work_end) == 0) 1759 return 0; 1760 1761 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \ 1762 vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__, 1763 v, p-1, d); 1764 return 1; 1765 } 1766 1767 /* 1768 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different 1769 * dq_in_delay values 1770 */ 1771 static uint32_t 1772 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay 1773 (uint32_t write_group, uint32_t read_group, uint32_t test_bgn) 1774 { 1775 uint32_t found; 1776 uint32_t i; 1777 uint32_t p; 1778 uint32_t d; 1779 uint32_t r; 1780 1781 const uint32_t delay_step = IO_IO_IN_DELAY_MAX / 1782 (RW_MGR_MEM_DQ_PER_READ_DQS-1); 1783 /* we start at zero, so have one less dq to devide among */ 1784 1785 debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group, 1786 test_bgn); 1787 1788 /* try different dq_in_delays since the dq path is shorter than dqs */ 1789 1790 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 1791 r += NUM_RANKS_PER_SHADOW_REG) { 1792 for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; 1793 i++, p++, d += delay_step) { 1794 debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\ 1795 vfifo_find_dqs_", __func__, __LINE__); 1796 debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ", 1797 write_group, read_group); 1798 debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d); 1799 scc_mgr_set_dq_in_delay(p, d); 1800 scc_mgr_load_dq(p); 1801 } 1802 writel(0, &sdr_scc_mgr->update); 1803 } 1804 1805 found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group); 1806 1807 debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\ 1808 en_phase_sweep_dq", __func__, __LINE__); 1809 debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \ 1810 chain to zero\n", write_group, read_group, found); 1811 1812 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 1813 r += NUM_RANKS_PER_SHADOW_REG) { 1814 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; 1815 i++, p++) { 1816 scc_mgr_set_dq_in_delay(p, 0); 1817 scc_mgr_load_dq(p); 1818 } 1819 writel(0, &sdr_scc_mgr->update); 1820 } 1821 1822 return found; 1823 } 1824 1825 /* per-bit deskew DQ and center */ 1826 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn, 1827 uint32_t write_group, uint32_t read_group, uint32_t test_bgn, 1828 uint32_t use_read_test, uint32_t update_fom) 1829 { 1830 uint32_t i, p, d, min_index; 1831 /* 1832 * Store these as signed since there are comparisons with 1833 * signed numbers. 1834 */ 1835 uint32_t bit_chk; 1836 uint32_t sticky_bit_chk; 1837 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1838 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1839 int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS]; 1840 int32_t mid; 1841 int32_t orig_mid_min, mid_min; 1842 int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs, 1843 final_dqs_en; 1844 int32_t dq_margin, dqs_margin; 1845 uint32_t stop; 1846 uint32_t temp_dq_in_delay1, temp_dq_in_delay2; 1847 uint32_t addr; 1848 1849 debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn); 1850 1851 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET; 1852 start_dqs = readl(addr + (read_group << 2)); 1853 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 1854 start_dqs_en = readl(addr + ((read_group << 2) 1855 - IO_DQS_EN_DELAY_OFFSET)); 1856 1857 /* set the left and right edge of each bit to an illegal value */ 1858 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */ 1859 sticky_bit_chk = 0; 1860 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1861 left_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1862 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1863 } 1864 1865 /* Search for the left edge of the window for each bit */ 1866 for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) { 1867 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d); 1868 1869 writel(0, &sdr_scc_mgr->update); 1870 1871 /* 1872 * Stop searching when the read test doesn't pass AND when 1873 * we've seen a passing read on every bit. 1874 */ 1875 if (use_read_test) { 1876 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1877 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1878 &bit_chk, 0, 0); 1879 } else { 1880 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1881 0, PASS_ONE_BIT, 1882 &bit_chk, 0); 1883 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1884 (read_group - (write_group * 1885 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1886 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1887 stop = (bit_chk == 0); 1888 } 1889 sticky_bit_chk = sticky_bit_chk | bit_chk; 1890 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1891 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \ 1892 && %u", __func__, __LINE__, d, 1893 sticky_bit_chk, 1894 param->read_correct_mask, stop); 1895 1896 if (stop == 1) { 1897 break; 1898 } else { 1899 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1900 if (bit_chk & 1) { 1901 /* Remember a passing test as the 1902 left_edge */ 1903 left_edge[i] = d; 1904 } else { 1905 /* If a left edge has not been seen yet, 1906 then a future passing test will mark 1907 this edge as the right edge */ 1908 if (left_edge[i] == 1909 IO_IO_IN_DELAY_MAX + 1) { 1910 right_edge[i] = -(d + 1); 1911 } 1912 } 1913 bit_chk = bit_chk >> 1; 1914 } 1915 } 1916 } 1917 1918 /* Reset DQ delay chains to 0 */ 1919 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, 0); 1920 sticky_bit_chk = 0; 1921 for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) { 1922 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 1923 %d right_edge[%u]: %d\n", __func__, __LINE__, 1924 i, left_edge[i], i, right_edge[i]); 1925 1926 /* 1927 * Check for cases where we haven't found the left edge, 1928 * which makes our assignment of the the right edge invalid. 1929 * Reset it to the illegal value. 1930 */ 1931 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && ( 1932 right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1933 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1934 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \ 1935 right_edge[%u]: %d\n", __func__, __LINE__, 1936 i, right_edge[i]); 1937 } 1938 1939 /* 1940 * Reset sticky bit (except for bits where we have seen 1941 * both the left and right edge). 1942 */ 1943 sticky_bit_chk = sticky_bit_chk << 1; 1944 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) && 1945 (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1946 sticky_bit_chk = sticky_bit_chk | 1; 1947 } 1948 1949 if (i == 0) 1950 break; 1951 } 1952 1953 /* Search for the right edge of the window for each bit */ 1954 for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) { 1955 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs); 1956 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 1957 uint32_t delay = d + start_dqs_en; 1958 if (delay > IO_DQS_EN_DELAY_MAX) 1959 delay = IO_DQS_EN_DELAY_MAX; 1960 scc_mgr_set_dqs_en_delay(read_group, delay); 1961 } 1962 scc_mgr_load_dqs(read_group); 1963 1964 writel(0, &sdr_scc_mgr->update); 1965 1966 /* 1967 * Stop searching when the read test doesn't pass AND when 1968 * we've seen a passing read on every bit. 1969 */ 1970 if (use_read_test) { 1971 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1972 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1973 &bit_chk, 0, 0); 1974 } else { 1975 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1976 0, PASS_ONE_BIT, 1977 &bit_chk, 0); 1978 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1979 (read_group - (write_group * 1980 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1981 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1982 stop = (bit_chk == 0); 1983 } 1984 sticky_bit_chk = sticky_bit_chk | bit_chk; 1985 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1986 1987 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \ 1988 %u && %u", __func__, __LINE__, d, 1989 sticky_bit_chk, param->read_correct_mask, stop); 1990 1991 if (stop == 1) { 1992 break; 1993 } else { 1994 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1995 if (bit_chk & 1) { 1996 /* Remember a passing test as 1997 the right_edge */ 1998 right_edge[i] = d; 1999 } else { 2000 if (d != 0) { 2001 /* If a right edge has not been 2002 seen yet, then a future passing 2003 test will mark this edge as the 2004 left edge */ 2005 if (right_edge[i] == 2006 IO_IO_IN_DELAY_MAX + 1) { 2007 left_edge[i] = -(d + 1); 2008 } 2009 } else { 2010 /* d = 0 failed, but it passed 2011 when testing the left edge, 2012 so it must be marginal, 2013 set it to -1 */ 2014 if (right_edge[i] == 2015 IO_IO_IN_DELAY_MAX + 1 && 2016 left_edge[i] != 2017 IO_IO_IN_DELAY_MAX 2018 + 1) { 2019 right_edge[i] = -1; 2020 } 2021 /* If a right edge has not been 2022 seen yet, then a future passing 2023 test will mark this edge as the 2024 left edge */ 2025 else if (right_edge[i] == 2026 IO_IO_IN_DELAY_MAX + 2027 1) { 2028 left_edge[i] = -(d + 1); 2029 } 2030 } 2031 } 2032 2033 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\ 2034 d=%u]: ", __func__, __LINE__, d); 2035 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ", 2036 (int)(bit_chk & 1), i, left_edge[i]); 2037 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2038 right_edge[i]); 2039 bit_chk = bit_chk >> 1; 2040 } 2041 } 2042 } 2043 2044 /* Check that all bits have a window */ 2045 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2046 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 2047 %d right_edge[%u]: %d", __func__, __LINE__, 2048 i, left_edge[i], i, right_edge[i]); 2049 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i] 2050 == IO_IO_IN_DELAY_MAX + 1)) { 2051 /* 2052 * Restore delay chain settings before letting the loop 2053 * in rw_mgr_mem_calibrate_vfifo to retry different 2054 * dqs/ck relationships. 2055 */ 2056 scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs); 2057 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2058 scc_mgr_set_dqs_en_delay(read_group, 2059 start_dqs_en); 2060 } 2061 scc_mgr_load_dqs(read_group); 2062 writel(0, &sdr_scc_mgr->update); 2063 2064 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \ 2065 find edge [%u]: %d %d", __func__, __LINE__, 2066 i, left_edge[i], right_edge[i]); 2067 if (use_read_test) { 2068 set_failing_group_stage(read_group * 2069 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2070 CAL_STAGE_VFIFO, 2071 CAL_SUBSTAGE_VFIFO_CENTER); 2072 } else { 2073 set_failing_group_stage(read_group * 2074 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2075 CAL_STAGE_VFIFO_AFTER_WRITES, 2076 CAL_SUBSTAGE_VFIFO_CENTER); 2077 } 2078 return 0; 2079 } 2080 } 2081 2082 /* Find middle of window for each DQ bit */ 2083 mid_min = left_edge[0] - right_edge[0]; 2084 min_index = 0; 2085 for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2086 mid = left_edge[i] - right_edge[i]; 2087 if (mid < mid_min) { 2088 mid_min = mid; 2089 min_index = i; 2090 } 2091 } 2092 2093 /* 2094 * -mid_min/2 represents the amount that we need to move DQS. 2095 * If mid_min is odd and positive we'll need to add one to 2096 * make sure the rounding in further calculations is correct 2097 * (always bias to the right), so just add 1 for all positive values. 2098 */ 2099 if (mid_min > 0) 2100 mid_min++; 2101 2102 mid_min = mid_min / 2; 2103 2104 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n", 2105 __func__, __LINE__, mid_min, min_index); 2106 2107 /* Determine the amount we can change DQS (which is -mid_min) */ 2108 orig_mid_min = mid_min; 2109 new_dqs = start_dqs - mid_min; 2110 if (new_dqs > IO_DQS_IN_DELAY_MAX) 2111 new_dqs = IO_DQS_IN_DELAY_MAX; 2112 else if (new_dqs < 0) 2113 new_dqs = 0; 2114 2115 mid_min = start_dqs - new_dqs; 2116 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n", 2117 mid_min, new_dqs); 2118 2119 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2120 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX) 2121 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX; 2122 else if (start_dqs_en - mid_min < 0) 2123 mid_min += start_dqs_en - mid_min; 2124 } 2125 new_dqs = start_dqs - mid_min; 2126 2127 debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \ 2128 new_dqs=%d mid_min=%d\n", start_dqs, 2129 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1, 2130 new_dqs, mid_min); 2131 2132 /* Initialize data for export structures */ 2133 dqs_margin = IO_IO_IN_DELAY_MAX + 1; 2134 dq_margin = IO_IO_IN_DELAY_MAX + 1; 2135 2136 /* add delay to bring centre of all DQ windows to the same "level" */ 2137 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 2138 /* Use values before divide by 2 to reduce round off error */ 2139 shift_dq = (left_edge[i] - right_edge[i] - 2140 (left_edge[min_index] - right_edge[min_index]))/2 + 2141 (orig_mid_min - mid_min); 2142 2143 debug_cond(DLEVEL == 2, "vfifo_center: before: \ 2144 shift_dq[%u]=%d\n", i, shift_dq); 2145 2146 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET; 2147 temp_dq_in_delay1 = readl(addr + (p << 2)); 2148 temp_dq_in_delay2 = readl(addr + (i << 2)); 2149 2150 if (shift_dq + (int32_t)temp_dq_in_delay1 > 2151 (int32_t)IO_IO_IN_DELAY_MAX) { 2152 shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2; 2153 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) { 2154 shift_dq = -(int32_t)temp_dq_in_delay1; 2155 } 2156 debug_cond(DLEVEL == 2, "vfifo_center: after: \ 2157 shift_dq[%u]=%d\n", i, shift_dq); 2158 final_dq[i] = temp_dq_in_delay1 + shift_dq; 2159 scc_mgr_set_dq_in_delay(p, final_dq[i]); 2160 scc_mgr_load_dq(p); 2161 2162 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i, 2163 left_edge[i] - shift_dq + (-mid_min), 2164 right_edge[i] + shift_dq - (-mid_min)); 2165 /* To determine values for export structures */ 2166 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2167 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2168 2169 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2170 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2171 } 2172 2173 final_dqs = new_dqs; 2174 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2175 final_dqs_en = start_dqs_en - mid_min; 2176 2177 /* Move DQS-en */ 2178 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2179 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en); 2180 scc_mgr_load_dqs(read_group); 2181 } 2182 2183 /* Move DQS */ 2184 scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs); 2185 scc_mgr_load_dqs(read_group); 2186 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \ 2187 dqs_margin=%d", __func__, __LINE__, 2188 dq_margin, dqs_margin); 2189 2190 /* 2191 * Do not remove this line as it makes sure all of our decisions 2192 * have been applied. Apply the update bit. 2193 */ 2194 writel(0, &sdr_scc_mgr->update); 2195 2196 return (dq_margin >= 0) && (dqs_margin >= 0); 2197 } 2198 2199 /* 2200 * calibrate the read valid prediction FIFO. 2201 * 2202 * - read valid prediction will consist of finding a good DQS enable phase, 2203 * DQS enable delay, DQS input phase, and DQS input delay. 2204 * - we also do a per-bit deskew on the DQ lines. 2205 */ 2206 static uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t read_group, 2207 uint32_t test_bgn) 2208 { 2209 uint32_t p, d, rank_bgn, sr; 2210 uint32_t dtaps_per_ptap; 2211 uint32_t tmp_delay; 2212 uint32_t bit_chk; 2213 uint32_t grp_calibrated; 2214 uint32_t write_group, write_test_bgn; 2215 uint32_t failed_substage; 2216 2217 debug("%s:%d: %u %u\n", __func__, __LINE__, read_group, test_bgn); 2218 2219 /* update info for sims */ 2220 reg_file_set_stage(CAL_STAGE_VFIFO); 2221 2222 write_group = read_group; 2223 write_test_bgn = test_bgn; 2224 2225 /* USER Determine number of delay taps for each phase tap */ 2226 dtaps_per_ptap = 0; 2227 tmp_delay = 0; 2228 while (tmp_delay < IO_DELAY_PER_OPA_TAP) { 2229 dtaps_per_ptap++; 2230 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 2231 } 2232 dtaps_per_ptap--; 2233 tmp_delay = 0; 2234 2235 /* update info for sims */ 2236 reg_file_set_group(read_group); 2237 2238 grp_calibrated = 0; 2239 2240 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ); 2241 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ; 2242 2243 for (d = 0; d <= dtaps_per_ptap && grp_calibrated == 0; d += 2) { 2244 /* 2245 * In RLDRAMX we may be messing the delay of pins in 2246 * the same write group but outside of the current read 2247 * the group, but that's ok because we haven't 2248 * calibrated output side yet. 2249 */ 2250 if (d > 0) { 2251 scc_mgr_apply_group_all_out_delay_add_all_ranks 2252 (write_group, write_test_bgn, d); 2253 } 2254 2255 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0; 2256 p++) { 2257 /* set a particular dqdqs phase */ 2258 scc_mgr_set_dqdqs_output_phase_all_ranks(read_group, p); 2259 2260 debug_cond(DLEVEL == 1, "%s:%d calibrate_vfifo: g=%u \ 2261 p=%u d=%u\n", __func__, __LINE__, 2262 read_group, p, d); 2263 2264 /* 2265 * Load up the patterns used by read calibration 2266 * using current DQDQS phase. 2267 */ 2268 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2269 if (!(gbl->phy_debug_mode_flags & 2270 PHY_DEBUG_DISABLE_GUARANTEED_READ)) { 2271 if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks 2272 (read_group, 1, &bit_chk)) { 2273 debug_cond(DLEVEL == 1, "%s:%d Guaranteed read test failed:", 2274 __func__, __LINE__); 2275 debug_cond(DLEVEL == 1, " g=%u p=%u d=%u\n", 2276 read_group, p, d); 2277 break; 2278 } 2279 } 2280 2281 /* case:56390 */ 2282 grp_calibrated = 1; 2283 if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay 2284 (write_group, read_group, test_bgn)) { 2285 /* 2286 * USER Read per-bit deskew can be done on a 2287 * per shadow register basis. 2288 */ 2289 for (rank_bgn = 0, sr = 0; 2290 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2291 rank_bgn += NUM_RANKS_PER_SHADOW_REG, 2292 ++sr) { 2293 /* 2294 * Determine if this set of ranks 2295 * should be skipped entirely. 2296 */ 2297 if (!param->skip_shadow_regs[sr]) { 2298 /* 2299 * If doing read after write 2300 * calibration, do not update 2301 * FOM, now - do it then. 2302 */ 2303 if (!rw_mgr_mem_calibrate_vfifo_center 2304 (rank_bgn, write_group, 2305 read_group, test_bgn, 1, 0)) { 2306 grp_calibrated = 0; 2307 failed_substage = 2308 CAL_SUBSTAGE_VFIFO_CENTER; 2309 } 2310 } 2311 } 2312 } else { 2313 grp_calibrated = 0; 2314 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE; 2315 } 2316 } 2317 } 2318 2319 if (grp_calibrated == 0) { 2320 set_failing_group_stage(write_group, CAL_STAGE_VFIFO, 2321 failed_substage); 2322 return 0; 2323 } 2324 2325 /* 2326 * Reset the delay chains back to zero if they have moved > 1 2327 * (check for > 1 because loop will increase d even when pass in 2328 * first case). 2329 */ 2330 if (d > 2) 2331 scc_mgr_zero_group(write_group, write_test_bgn, 1); 2332 2333 return 1; 2334 } 2335 2336 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */ 2337 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group, 2338 uint32_t test_bgn) 2339 { 2340 uint32_t rank_bgn, sr; 2341 uint32_t grp_calibrated; 2342 uint32_t write_group; 2343 2344 debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn); 2345 2346 /* update info for sims */ 2347 2348 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES); 2349 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 2350 2351 write_group = read_group; 2352 2353 /* update info for sims */ 2354 reg_file_set_group(read_group); 2355 2356 grp_calibrated = 1; 2357 /* Read per-bit deskew can be done on a per shadow register basis */ 2358 for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2359 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) { 2360 /* Determine if this set of ranks should be skipped entirely */ 2361 if (!param->skip_shadow_regs[sr]) { 2362 /* This is the last calibration round, update FOM here */ 2363 if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn, 2364 write_group, 2365 read_group, 2366 test_bgn, 0, 2367 1)) { 2368 grp_calibrated = 0; 2369 } 2370 } 2371 } 2372 2373 2374 if (grp_calibrated == 0) { 2375 set_failing_group_stage(write_group, 2376 CAL_STAGE_VFIFO_AFTER_WRITES, 2377 CAL_SUBSTAGE_VFIFO_CENTER); 2378 return 0; 2379 } 2380 2381 return 1; 2382 } 2383 2384 /* Calibrate LFIFO to find smallest read latency */ 2385 static uint32_t rw_mgr_mem_calibrate_lfifo(void) 2386 { 2387 uint32_t found_one; 2388 uint32_t bit_chk; 2389 2390 debug("%s:%d\n", __func__, __LINE__); 2391 2392 /* update info for sims */ 2393 reg_file_set_stage(CAL_STAGE_LFIFO); 2394 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY); 2395 2396 /* Load up the patterns used by read calibration for all ranks */ 2397 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2398 found_one = 0; 2399 2400 do { 2401 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2402 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u", 2403 __func__, __LINE__, gbl->curr_read_lat); 2404 2405 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, 2406 NUM_READ_TESTS, 2407 PASS_ALL_BITS, 2408 &bit_chk, 1)) { 2409 break; 2410 } 2411 2412 found_one = 1; 2413 /* reduce read latency and see if things are working */ 2414 /* correctly */ 2415 gbl->curr_read_lat--; 2416 } while (gbl->curr_read_lat > 0); 2417 2418 /* reset the fifos to get pointers to known state */ 2419 2420 writel(0, &phy_mgr_cmd->fifo_reset); 2421 2422 if (found_one) { 2423 /* add a fudge factor to the read latency that was determined */ 2424 gbl->curr_read_lat += 2; 2425 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2426 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \ 2427 read_lat=%u\n", __func__, __LINE__, 2428 gbl->curr_read_lat); 2429 return 1; 2430 } else { 2431 set_failing_group_stage(0xff, CAL_STAGE_LFIFO, 2432 CAL_SUBSTAGE_READ_LATENCY); 2433 2434 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \ 2435 read_lat=%u\n", __func__, __LINE__, 2436 gbl->curr_read_lat); 2437 return 0; 2438 } 2439 } 2440 2441 /* 2442 * issue write test command. 2443 * two variants are provided. one that just tests a write pattern and 2444 * another that tests datamask functionality. 2445 */ 2446 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group, 2447 uint32_t test_dm) 2448 { 2449 uint32_t mcc_instruction; 2450 uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) && 2451 ENABLE_SUPER_QUICK_CALIBRATION); 2452 uint32_t rw_wl_nop_cycles; 2453 uint32_t addr; 2454 2455 /* 2456 * Set counter and jump addresses for the right 2457 * number of NOP cycles. 2458 * The number of supported NOP cycles can range from -1 to infinity 2459 * Three different cases are handled: 2460 * 2461 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping 2462 * mechanism will be used to insert the right number of NOPs 2463 * 2464 * 2. For a number of NOP cycles equals to 0, the micro-instruction 2465 * issuing the write command will jump straight to the 2466 * micro-instruction that turns on DQS (for DDRx), or outputs write 2467 * data (for RLD), skipping 2468 * the NOP micro-instruction all together 2469 * 2470 * 3. A number of NOP cycles equal to -1 indicates that DQS must be 2471 * turned on in the same micro-instruction that issues the write 2472 * command. Then we need 2473 * to directly jump to the micro-instruction that sends out the data 2474 * 2475 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters 2476 * (2 and 3). One jump-counter (0) is used to perform multiple 2477 * write-read operations. 2478 * one counter left to issue this command in "multiple-group" mode 2479 */ 2480 2481 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles; 2482 2483 if (rw_wl_nop_cycles == -1) { 2484 /* 2485 * CNTR 2 - We want to execute the special write operation that 2486 * turns on DQS right away and then skip directly to the 2487 * instruction that sends out the data. We set the counter to a 2488 * large number so that the jump is always taken. 2489 */ 2490 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2491 2492 /* CNTR 3 - Not used */ 2493 if (test_dm) { 2494 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1; 2495 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA, 2496 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2497 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2498 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2499 } else { 2500 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1; 2501 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA, 2502 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2503 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2504 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2505 } 2506 } else if (rw_wl_nop_cycles == 0) { 2507 /* 2508 * CNTR 2 - We want to skip the NOP operation and go straight 2509 * to the DQS enable instruction. We set the counter to a large 2510 * number so that the jump is always taken. 2511 */ 2512 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2513 2514 /* CNTR 3 - Not used */ 2515 if (test_dm) { 2516 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2517 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS, 2518 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2519 } else { 2520 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2521 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS, 2522 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2523 } 2524 } else { 2525 /* 2526 * CNTR 2 - In this case we want to execute the next instruction 2527 * and NOT take the jump. So we set the counter to 0. The jump 2528 * address doesn't count. 2529 */ 2530 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2); 2531 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2532 2533 /* 2534 * CNTR 3 - Set the nop counter to the number of cycles we 2535 * need to loop for, minus 1. 2536 */ 2537 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3); 2538 if (test_dm) { 2539 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2540 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2541 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2542 } else { 2543 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2544 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2545 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2546 } 2547 } 2548 2549 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 2550 RW_MGR_RESET_READ_DATAPATH_OFFSET); 2551 2552 if (quick_write_mode) 2553 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0); 2554 else 2555 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0); 2556 2557 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 2558 2559 /* 2560 * CNTR 1 - This is used to ensure enough time elapses 2561 * for read data to come back. 2562 */ 2563 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1); 2564 2565 if (test_dm) { 2566 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT, 2567 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2568 } else { 2569 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT, 2570 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2571 } 2572 2573 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 2574 writel(mcc_instruction, addr + (group << 2)); 2575 } 2576 2577 /* Test writes, can check for a single bit pass or multiple bit pass */ 2578 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 2579 uint32_t write_group, uint32_t use_dm, uint32_t all_correct, 2580 uint32_t *bit_chk, uint32_t all_ranks) 2581 { 2582 uint32_t r; 2583 uint32_t correct_mask_vg; 2584 uint32_t tmp_bit_chk; 2585 uint32_t vg; 2586 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 2587 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 2588 uint32_t addr_rw_mgr; 2589 uint32_t base_rw_mgr; 2590 2591 *bit_chk = param->write_correct_mask; 2592 correct_mask_vg = param->write_correct_mask_vg; 2593 2594 for (r = rank_bgn; r < rank_end; r++) { 2595 if (param->skip_ranks[r]) { 2596 /* request to skip the rank */ 2597 continue; 2598 } 2599 2600 /* set rank */ 2601 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 2602 2603 tmp_bit_chk = 0; 2604 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS; 2605 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) { 2606 /* reset the fifos to get pointers to known state */ 2607 writel(0, &phy_mgr_cmd->fifo_reset); 2608 2609 tmp_bit_chk = tmp_bit_chk << 2610 (RW_MGR_MEM_DQ_PER_WRITE_DQS / 2611 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 2612 rw_mgr_mem_calibrate_write_test_issue(write_group * 2613 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg, 2614 use_dm); 2615 2616 base_rw_mgr = readl(addr_rw_mgr); 2617 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 2618 if (vg == 0) 2619 break; 2620 } 2621 *bit_chk &= tmp_bit_chk; 2622 } 2623 2624 if (all_correct) { 2625 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2626 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \ 2627 %u => %lu", write_group, use_dm, 2628 *bit_chk, param->write_correct_mask, 2629 (long unsigned int)(*bit_chk == 2630 param->write_correct_mask)); 2631 return *bit_chk == param->write_correct_mask; 2632 } else { 2633 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2634 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ", 2635 write_group, use_dm, *bit_chk); 2636 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0, 2637 (long unsigned int)(*bit_chk != 0)); 2638 return *bit_chk != 0x00; 2639 } 2640 } 2641 2642 /* 2643 * center all windows. do per-bit-deskew to possibly increase size of 2644 * certain windows. 2645 */ 2646 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn, 2647 uint32_t write_group, uint32_t test_bgn) 2648 { 2649 uint32_t i, p, min_index; 2650 int32_t d; 2651 /* 2652 * Store these as signed since there are comparisons with 2653 * signed numbers. 2654 */ 2655 uint32_t bit_chk; 2656 uint32_t sticky_bit_chk; 2657 int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2658 int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2659 int32_t mid; 2660 int32_t mid_min, orig_mid_min; 2661 int32_t new_dqs, start_dqs, shift_dq; 2662 int32_t dq_margin, dqs_margin, dm_margin; 2663 uint32_t stop; 2664 uint32_t temp_dq_out1_delay; 2665 uint32_t addr; 2666 2667 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn); 2668 2669 dm_margin = 0; 2670 2671 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2672 start_dqs = readl(addr + 2673 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 2674 2675 /* per-bit deskew */ 2676 2677 /* 2678 * set the left and right edge of each bit to an illegal value 2679 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 2680 */ 2681 sticky_bit_chk = 0; 2682 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2683 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2684 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2685 } 2686 2687 /* Search for the left edge of the window for each bit */ 2688 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) { 2689 scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, d); 2690 2691 writel(0, &sdr_scc_mgr->update); 2692 2693 /* 2694 * Stop searching when the read test doesn't pass AND when 2695 * we've seen a passing read on every bit. 2696 */ 2697 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2698 0, PASS_ONE_BIT, &bit_chk, 0); 2699 sticky_bit_chk = sticky_bit_chk | bit_chk; 2700 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2701 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \ 2702 == %u && %u [bit_chk= %u ]\n", 2703 d, sticky_bit_chk, param->write_correct_mask, 2704 stop, bit_chk); 2705 2706 if (stop == 1) { 2707 break; 2708 } else { 2709 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2710 if (bit_chk & 1) { 2711 /* 2712 * Remember a passing test as the 2713 * left_edge. 2714 */ 2715 left_edge[i] = d; 2716 } else { 2717 /* 2718 * If a left edge has not been seen 2719 * yet, then a future passing test will 2720 * mark this edge as the right edge. 2721 */ 2722 if (left_edge[i] == 2723 IO_IO_OUT1_DELAY_MAX + 1) { 2724 right_edge[i] = -(d + 1); 2725 } 2726 } 2727 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d); 2728 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2729 (int)(bit_chk & 1), i, left_edge[i]); 2730 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2731 right_edge[i]); 2732 bit_chk = bit_chk >> 1; 2733 } 2734 } 2735 } 2736 2737 /* Reset DQ delay chains to 0 */ 2738 scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, 0); 2739 sticky_bit_chk = 0; 2740 for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) { 2741 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2742 %d right_edge[%u]: %d\n", __func__, __LINE__, 2743 i, left_edge[i], i, right_edge[i]); 2744 2745 /* 2746 * Check for cases where we haven't found the left edge, 2747 * which makes our assignment of the the right edge invalid. 2748 * Reset it to the illegal value. 2749 */ 2750 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) && 2751 (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) { 2752 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2753 debug_cond(DLEVEL == 2, "%s:%d write_center: reset \ 2754 right_edge[%u]: %d\n", __func__, __LINE__, 2755 i, right_edge[i]); 2756 } 2757 2758 /* 2759 * Reset sticky bit (except for bits where we have 2760 * seen the left edge). 2761 */ 2762 sticky_bit_chk = sticky_bit_chk << 1; 2763 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) 2764 sticky_bit_chk = sticky_bit_chk | 1; 2765 2766 if (i == 0) 2767 break; 2768 } 2769 2770 /* Search for the right edge of the window for each bit */ 2771 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) { 2772 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2773 d + start_dqs); 2774 2775 writel(0, &sdr_scc_mgr->update); 2776 2777 /* 2778 * Stop searching when the read test doesn't pass AND when 2779 * we've seen a passing read on every bit. 2780 */ 2781 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2782 0, PASS_ONE_BIT, &bit_chk, 0); 2783 2784 sticky_bit_chk = sticky_bit_chk | bit_chk; 2785 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2786 2787 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \ 2788 %u && %u\n", d, sticky_bit_chk, 2789 param->write_correct_mask, stop); 2790 2791 if (stop == 1) { 2792 if (d == 0) { 2793 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; 2794 i++) { 2795 /* d = 0 failed, but it passed when 2796 testing the left edge, so it must be 2797 marginal, set it to -1 */ 2798 if (right_edge[i] == 2799 IO_IO_OUT1_DELAY_MAX + 1 && 2800 left_edge[i] != 2801 IO_IO_OUT1_DELAY_MAX + 1) { 2802 right_edge[i] = -1; 2803 } 2804 } 2805 } 2806 break; 2807 } else { 2808 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2809 if (bit_chk & 1) { 2810 /* 2811 * Remember a passing test as 2812 * the right_edge. 2813 */ 2814 right_edge[i] = d; 2815 } else { 2816 if (d != 0) { 2817 /* 2818 * If a right edge has not 2819 * been seen yet, then a future 2820 * passing test will mark this 2821 * edge as the left edge. 2822 */ 2823 if (right_edge[i] == 2824 IO_IO_OUT1_DELAY_MAX + 1) 2825 left_edge[i] = -(d + 1); 2826 } else { 2827 /* 2828 * d = 0 failed, but it passed 2829 * when testing the left edge, 2830 * so it must be marginal, set 2831 * it to -1. 2832 */ 2833 if (right_edge[i] == 2834 IO_IO_OUT1_DELAY_MAX + 1 && 2835 left_edge[i] != 2836 IO_IO_OUT1_DELAY_MAX + 1) 2837 right_edge[i] = -1; 2838 /* 2839 * If a right edge has not been 2840 * seen yet, then a future 2841 * passing test will mark this 2842 * edge as the left edge. 2843 */ 2844 else if (right_edge[i] == 2845 IO_IO_OUT1_DELAY_MAX + 2846 1) 2847 left_edge[i] = -(d + 1); 2848 } 2849 } 2850 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d); 2851 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2852 (int)(bit_chk & 1), i, left_edge[i]); 2853 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2854 right_edge[i]); 2855 bit_chk = bit_chk >> 1; 2856 } 2857 } 2858 } 2859 2860 /* Check that all bits have a window */ 2861 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2862 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2863 %d right_edge[%u]: %d", __func__, __LINE__, 2864 i, left_edge[i], i, right_edge[i]); 2865 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) || 2866 (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) { 2867 set_failing_group_stage(test_bgn + i, 2868 CAL_STAGE_WRITES, 2869 CAL_SUBSTAGE_WRITES_CENTER); 2870 return 0; 2871 } 2872 } 2873 2874 /* Find middle of window for each DQ bit */ 2875 mid_min = left_edge[0] - right_edge[0]; 2876 min_index = 0; 2877 for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2878 mid = left_edge[i] - right_edge[i]; 2879 if (mid < mid_min) { 2880 mid_min = mid; 2881 min_index = i; 2882 } 2883 } 2884 2885 /* 2886 * -mid_min/2 represents the amount that we need to move DQS. 2887 * If mid_min is odd and positive we'll need to add one to 2888 * make sure the rounding in further calculations is correct 2889 * (always bias to the right), so just add 1 for all positive values. 2890 */ 2891 if (mid_min > 0) 2892 mid_min++; 2893 mid_min = mid_min / 2; 2894 debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__, 2895 __LINE__, mid_min); 2896 2897 /* Determine the amount we can change DQS (which is -mid_min) */ 2898 orig_mid_min = mid_min; 2899 new_dqs = start_dqs; 2900 mid_min = 0; 2901 debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \ 2902 mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min); 2903 /* Initialize data for export structures */ 2904 dqs_margin = IO_IO_OUT1_DELAY_MAX + 1; 2905 dq_margin = IO_IO_OUT1_DELAY_MAX + 1; 2906 2907 /* add delay to bring centre of all DQ windows to the same "level" */ 2908 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 2909 /* Use values before divide by 2 to reduce round off error */ 2910 shift_dq = (left_edge[i] - right_edge[i] - 2911 (left_edge[min_index] - right_edge[min_index]))/2 + 2912 (orig_mid_min - mid_min); 2913 2914 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \ 2915 [%u]=%d\n", __func__, __LINE__, i, shift_dq); 2916 2917 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2918 temp_dq_out1_delay = readl(addr + (i << 2)); 2919 if (shift_dq + (int32_t)temp_dq_out1_delay > 2920 (int32_t)IO_IO_OUT1_DELAY_MAX) { 2921 shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay; 2922 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) { 2923 shift_dq = -(int32_t)temp_dq_out1_delay; 2924 } 2925 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n", 2926 i, shift_dq); 2927 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq); 2928 scc_mgr_load_dq(i); 2929 2930 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i, 2931 left_edge[i] - shift_dq + (-mid_min), 2932 right_edge[i] + shift_dq - (-mid_min)); 2933 /* To determine values for export structures */ 2934 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2935 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2936 2937 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2938 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2939 } 2940 2941 /* Move DQS */ 2942 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 2943 writel(0, &sdr_scc_mgr->update); 2944 2945 /* Centre DM */ 2946 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__); 2947 2948 /* 2949 * set the left and right edge of each bit to an illegal value, 2950 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value, 2951 */ 2952 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 2953 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 2954 int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2955 int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2956 int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1; 2957 int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1; 2958 int32_t win_best = 0; 2959 2960 /* Search for the/part of the window with DM shift */ 2961 for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) { 2962 scc_mgr_apply_group_dm_out1_delay(write_group, d); 2963 writel(0, &sdr_scc_mgr->update); 2964 2965 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 2966 PASS_ALL_BITS, &bit_chk, 2967 0)) { 2968 /* USE Set current end of the window */ 2969 end_curr = -d; 2970 /* 2971 * If a starting edge of our window has not been seen 2972 * this is our current start of the DM window. 2973 */ 2974 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 2975 bgn_curr = -d; 2976 2977 /* 2978 * If current window is bigger than best seen. 2979 * Set best seen to be current window. 2980 */ 2981 if ((end_curr-bgn_curr+1) > win_best) { 2982 win_best = end_curr-bgn_curr+1; 2983 bgn_best = bgn_curr; 2984 end_best = end_curr; 2985 } 2986 } else { 2987 /* We just saw a failing test. Reset temp edge */ 2988 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2989 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2990 } 2991 } 2992 2993 2994 /* Reset DM delay chains to 0 */ 2995 scc_mgr_apply_group_dm_out1_delay(write_group, 0); 2996 2997 /* 2998 * Check to see if the current window nudges up aganist 0 delay. 2999 * If so we need to continue the search by shifting DQS otherwise DQS 3000 * search begins as a new search. */ 3001 if (end_curr != 0) { 3002 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3003 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3004 } 3005 3006 /* Search for the/part of the window with DQS shifts */ 3007 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) { 3008 /* 3009 * Note: This only shifts DQS, so are we limiting ourselve to 3010 * width of DQ unnecessarily. 3011 */ 3012 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 3013 d + new_dqs); 3014 3015 writel(0, &sdr_scc_mgr->update); 3016 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3017 PASS_ALL_BITS, &bit_chk, 3018 0)) { 3019 /* USE Set current end of the window */ 3020 end_curr = d; 3021 /* 3022 * If a beginning edge of our window has not been seen 3023 * this is our current begin of the DM window. 3024 */ 3025 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3026 bgn_curr = d; 3027 3028 /* 3029 * If current window is bigger than best seen. Set best 3030 * seen to be current window. 3031 */ 3032 if ((end_curr-bgn_curr+1) > win_best) { 3033 win_best = end_curr-bgn_curr+1; 3034 bgn_best = bgn_curr; 3035 end_best = end_curr; 3036 } 3037 } else { 3038 /* We just saw a failing test. Reset temp edge */ 3039 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3040 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3041 3042 /* Early exit optimization: if ther remaining delay 3043 chain space is less than already seen largest window 3044 we can exit */ 3045 if ((win_best-1) > 3046 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) { 3047 break; 3048 } 3049 } 3050 } 3051 3052 /* assign left and right edge for cal and reporting; */ 3053 left_edge[0] = -1*bgn_best; 3054 right_edge[0] = end_best; 3055 3056 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__, 3057 __LINE__, left_edge[0], right_edge[0]); 3058 3059 /* Move DQS (back to orig) */ 3060 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3061 3062 /* Move DM */ 3063 3064 /* Find middle of window for the DM bit */ 3065 mid = (left_edge[0] - right_edge[0]) / 2; 3066 3067 /* only move right, since we are not moving DQS/DQ */ 3068 if (mid < 0) 3069 mid = 0; 3070 3071 /* dm_marign should fail if we never find a window */ 3072 if (win_best == 0) 3073 dm_margin = -1; 3074 else 3075 dm_margin = left_edge[0] - mid; 3076 3077 scc_mgr_apply_group_dm_out1_delay(write_group, mid); 3078 writel(0, &sdr_scc_mgr->update); 3079 3080 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \ 3081 dm_margin=%d\n", __func__, __LINE__, left_edge[0], 3082 right_edge[0], mid, dm_margin); 3083 /* Export values */ 3084 gbl->fom_out += dq_margin + dqs_margin; 3085 3086 debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \ 3087 dqs_margin=%d dm_margin=%d\n", __func__, __LINE__, 3088 dq_margin, dqs_margin, dm_margin); 3089 3090 /* 3091 * Do not remove this line as it makes sure all of our 3092 * decisions have been applied. 3093 */ 3094 writel(0, &sdr_scc_mgr->update); 3095 return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0); 3096 } 3097 3098 /* calibrate the write operations */ 3099 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g, 3100 uint32_t test_bgn) 3101 { 3102 /* update info for sims */ 3103 debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn); 3104 3105 reg_file_set_stage(CAL_STAGE_WRITES); 3106 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER); 3107 3108 reg_file_set_group(g); 3109 3110 if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) { 3111 set_failing_group_stage(g, CAL_STAGE_WRITES, 3112 CAL_SUBSTAGE_WRITES_CENTER); 3113 return 0; 3114 } 3115 3116 return 1; 3117 } 3118 3119 /* precharge all banks and activate row 0 in bank "000..." and bank "111..." */ 3120 static void mem_precharge_and_activate(void) 3121 { 3122 uint32_t r; 3123 3124 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 3125 if (param->skip_ranks[r]) { 3126 /* request to skip the rank */ 3127 continue; 3128 } 3129 3130 /* set rank */ 3131 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 3132 3133 /* precharge all banks ... */ 3134 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3135 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3136 3137 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0); 3138 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1, 3139 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 3140 3141 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1); 3142 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2, 3143 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 3144 3145 /* activate rows */ 3146 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3147 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3148 } 3149 } 3150 3151 /* Configure various memory related parameters. */ 3152 static void mem_config(void) 3153 { 3154 uint32_t rlat, wlat; 3155 uint32_t rw_wl_nop_cycles; 3156 uint32_t max_latency; 3157 3158 debug("%s:%d\n", __func__, __LINE__); 3159 /* read in write and read latency */ 3160 wlat = readl(&data_mgr->t_wl_add); 3161 wlat += readl(&data_mgr->mem_t_add); 3162 3163 /* WL for hard phy does not include additive latency */ 3164 3165 /* 3166 * add addtional write latency to offset the address/command extra 3167 * clock cycle. We change the AC mux setting causing AC to be delayed 3168 * by one mem clock cycle. Only do this for DDR3 3169 */ 3170 wlat = wlat + 1; 3171 3172 rlat = readl(&data_mgr->t_rl_add); 3173 3174 rw_wl_nop_cycles = wlat - 2; 3175 gbl->rw_wl_nop_cycles = rw_wl_nop_cycles; 3176 3177 /* 3178 * For AV/CV, lfifo is hardened and always runs at full rate so 3179 * max latency in AFI clocks, used here, is correspondingly smaller. 3180 */ 3181 max_latency = (1<<MAX_LATENCY_COUNT_WIDTH)/1 - 1; 3182 /* configure for a burst length of 8 */ 3183 3184 /* write latency */ 3185 /* Adjust Write Latency for Hard PHY */ 3186 wlat = wlat + 1; 3187 3188 /* set a pretty high read latency initially */ 3189 gbl->curr_read_lat = rlat + 16; 3190 3191 if (gbl->curr_read_lat > max_latency) 3192 gbl->curr_read_lat = max_latency; 3193 3194 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3195 3196 /* advertise write latency */ 3197 gbl->curr_write_lat = wlat; 3198 writel(wlat - 2, &phy_mgr_cfg->afi_wlat); 3199 3200 /* initialize bit slips */ 3201 mem_precharge_and_activate(); 3202 } 3203 3204 /* Set VFIFO and LFIFO to instant-on settings in skip calibration mode */ 3205 static void mem_skip_calibrate(void) 3206 { 3207 uint32_t vfifo_offset; 3208 uint32_t i, j, r; 3209 3210 debug("%s:%d\n", __func__, __LINE__); 3211 /* Need to update every shadow register set used by the interface */ 3212 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 3213 r += NUM_RANKS_PER_SHADOW_REG) { 3214 /* 3215 * Set output phase alignment settings appropriate for 3216 * skip calibration. 3217 */ 3218 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3219 scc_mgr_set_dqs_en_phase(i, 0); 3220 #if IO_DLL_CHAIN_LENGTH == 6 3221 scc_mgr_set_dqdqs_output_phase(i, 6); 3222 #else 3223 scc_mgr_set_dqdqs_output_phase(i, 7); 3224 #endif 3225 /* 3226 * Case:33398 3227 * 3228 * Write data arrives to the I/O two cycles before write 3229 * latency is reached (720 deg). 3230 * -> due to bit-slip in a/c bus 3231 * -> to allow board skew where dqs is longer than ck 3232 * -> how often can this happen!? 3233 * -> can claim back some ptaps for high freq 3234 * support if we can relax this, but i digress... 3235 * 3236 * The write_clk leads mem_ck by 90 deg 3237 * The minimum ptap of the OPA is 180 deg 3238 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay 3239 * The write_clk is always delayed by 2 ptaps 3240 * 3241 * Hence, to make DQS aligned to CK, we need to delay 3242 * DQS by: 3243 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH)) 3244 * 3245 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH) 3246 * gives us the number of ptaps, which simplies to: 3247 * 3248 * (1.25 * IO_DLL_CHAIN_LENGTH - 2) 3249 */ 3250 scc_mgr_set_dqdqs_output_phase(i, (1.25 * 3251 IO_DLL_CHAIN_LENGTH - 2)); 3252 } 3253 writel(0xff, &sdr_scc_mgr->dqs_ena); 3254 writel(0xff, &sdr_scc_mgr->dqs_io_ena); 3255 3256 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 3257 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3258 SCC_MGR_GROUP_COUNTER_OFFSET); 3259 } 3260 writel(0xff, &sdr_scc_mgr->dq_ena); 3261 writel(0xff, &sdr_scc_mgr->dm_ena); 3262 writel(0, &sdr_scc_mgr->update); 3263 } 3264 3265 /* Compensate for simulation model behaviour */ 3266 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3267 scc_mgr_set_dqs_bus_in_delay(i, 10); 3268 scc_mgr_load_dqs(i); 3269 } 3270 writel(0, &sdr_scc_mgr->update); 3271 3272 /* 3273 * ArriaV has hard FIFOs that can only be initialized by incrementing 3274 * in sequencer. 3275 */ 3276 vfifo_offset = CALIB_VFIFO_OFFSET; 3277 for (j = 0; j < vfifo_offset; j++) { 3278 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy); 3279 } 3280 writel(0, &phy_mgr_cmd->fifo_reset); 3281 3282 /* 3283 * For ACV with hard lfifo, we get the skip-cal setting from 3284 * generation-time constant. 3285 */ 3286 gbl->curr_read_lat = CALIB_LFIFO_OFFSET; 3287 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3288 } 3289 3290 /* Memory calibration entry point */ 3291 static uint32_t mem_calibrate(void) 3292 { 3293 uint32_t i; 3294 uint32_t rank_bgn, sr; 3295 uint32_t write_group, write_test_bgn; 3296 uint32_t read_group, read_test_bgn; 3297 uint32_t run_groups, current_run; 3298 uint32_t failing_groups = 0; 3299 uint32_t group_failed = 0; 3300 uint32_t sr_failed = 0; 3301 3302 debug("%s:%d\n", __func__, __LINE__); 3303 /* Initialize the data settings */ 3304 3305 gbl->error_substage = CAL_SUBSTAGE_NIL; 3306 gbl->error_stage = CAL_STAGE_NIL; 3307 gbl->error_group = 0xff; 3308 gbl->fom_in = 0; 3309 gbl->fom_out = 0; 3310 3311 mem_config(); 3312 3313 uint32_t bypass_mode = 0x1; 3314 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3315 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3316 SCC_MGR_GROUP_COUNTER_OFFSET); 3317 scc_set_bypass_mode(i, bypass_mode); 3318 } 3319 3320 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) { 3321 /* 3322 * Set VFIFO and LFIFO to instant-on settings in skip 3323 * calibration mode. 3324 */ 3325 mem_skip_calibrate(); 3326 } else { 3327 for (i = 0; i < NUM_CALIB_REPEAT; i++) { 3328 /* 3329 * Zero all delay chain/phase settings for all 3330 * groups and all shadow register sets. 3331 */ 3332 scc_mgr_zero_all(); 3333 3334 run_groups = ~param->skip_groups; 3335 3336 for (write_group = 0, write_test_bgn = 0; write_group 3337 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++, 3338 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) { 3339 /* Initialized the group failure */ 3340 group_failed = 0; 3341 3342 current_run = run_groups & ((1 << 3343 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1); 3344 run_groups = run_groups >> 3345 RW_MGR_NUM_DQS_PER_WRITE_GROUP; 3346 3347 if (current_run == 0) 3348 continue; 3349 3350 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS | 3351 SCC_MGR_GROUP_COUNTER_OFFSET); 3352 scc_mgr_zero_group(write_group, write_test_bgn, 3353 0); 3354 3355 for (read_group = write_group * 3356 RW_MGR_MEM_IF_READ_DQS_WIDTH / 3357 RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3358 read_test_bgn = 0; 3359 read_group < (write_group + 1) * 3360 RW_MGR_MEM_IF_READ_DQS_WIDTH / 3361 RW_MGR_MEM_IF_WRITE_DQS_WIDTH && 3362 group_failed == 0; 3363 read_group++, read_test_bgn += 3364 RW_MGR_MEM_DQ_PER_READ_DQS) { 3365 /* Calibrate the VFIFO */ 3366 if (!((STATIC_CALIB_STEPS) & 3367 CALIB_SKIP_VFIFO)) { 3368 if (!rw_mgr_mem_calibrate_vfifo 3369 (read_group, 3370 read_test_bgn)) { 3371 group_failed = 1; 3372 3373 if (!(gbl-> 3374 phy_debug_mode_flags & 3375 PHY_DEBUG_SWEEP_ALL_GROUPS)) { 3376 return 0; 3377 } 3378 } 3379 } 3380 } 3381 3382 /* Calibrate the output side */ 3383 if (group_failed == 0) { 3384 for (rank_bgn = 0, sr = 0; rank_bgn 3385 < RW_MGR_MEM_NUMBER_OF_RANKS; 3386 rank_bgn += 3387 NUM_RANKS_PER_SHADOW_REG, 3388 ++sr) { 3389 sr_failed = 0; 3390 if (!((STATIC_CALIB_STEPS) & 3391 CALIB_SKIP_WRITES)) { 3392 if ((STATIC_CALIB_STEPS) 3393 & CALIB_SKIP_DELAY_SWEEPS) { 3394 /* not needed in quick mode! */ 3395 } else { 3396 /* 3397 * Determine if this set of 3398 * ranks should be skipped 3399 * entirely. 3400 */ 3401 if (!param->skip_shadow_regs[sr]) { 3402 if (!rw_mgr_mem_calibrate_writes 3403 (rank_bgn, write_group, 3404 write_test_bgn)) { 3405 sr_failed = 1; 3406 if (!(gbl-> 3407 phy_debug_mode_flags & 3408 PHY_DEBUG_SWEEP_ALL_GROUPS)) { 3409 return 0; 3410 } 3411 } 3412 } 3413 } 3414 } 3415 if (sr_failed != 0) 3416 group_failed = 1; 3417 } 3418 } 3419 3420 if (group_failed == 0) { 3421 for (read_group = write_group * 3422 RW_MGR_MEM_IF_READ_DQS_WIDTH / 3423 RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3424 read_test_bgn = 0; 3425 read_group < (write_group + 1) 3426 * RW_MGR_MEM_IF_READ_DQS_WIDTH 3427 / RW_MGR_MEM_IF_WRITE_DQS_WIDTH && 3428 group_failed == 0; 3429 read_group++, read_test_bgn += 3430 RW_MGR_MEM_DQ_PER_READ_DQS) { 3431 if (!((STATIC_CALIB_STEPS) & 3432 CALIB_SKIP_WRITES)) { 3433 if (!rw_mgr_mem_calibrate_vfifo_end 3434 (read_group, read_test_bgn)) { 3435 group_failed = 1; 3436 3437 if (!(gbl->phy_debug_mode_flags 3438 & PHY_DEBUG_SWEEP_ALL_GROUPS)) { 3439 return 0; 3440 } 3441 } 3442 } 3443 } 3444 } 3445 3446 if (group_failed != 0) 3447 failing_groups++; 3448 } 3449 3450 /* 3451 * USER If there are any failing groups then report 3452 * the failure. 3453 */ 3454 if (failing_groups != 0) 3455 return 0; 3456 3457 /* Calibrate the LFIFO */ 3458 if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_LFIFO)) { 3459 /* 3460 * If we're skipping groups as part of debug, 3461 * don't calibrate LFIFO. 3462 */ 3463 if (param->skip_groups == 0) { 3464 if (!rw_mgr_mem_calibrate_lfifo()) 3465 return 0; 3466 } 3467 } 3468 } 3469 } 3470 3471 /* 3472 * Do not remove this line as it makes sure all of our decisions 3473 * have been applied. 3474 */ 3475 writel(0, &sdr_scc_mgr->update); 3476 return 1; 3477 } 3478 3479 static uint32_t run_mem_calibrate(void) 3480 { 3481 uint32_t pass; 3482 uint32_t debug_info; 3483 3484 debug("%s:%d\n", __func__, __LINE__); 3485 3486 /* Reset pass/fail status shown on afi_cal_success/fail */ 3487 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status); 3488 3489 /* stop tracking manger */ 3490 uint32_t ctrlcfg = readl(&sdr_ctrl->ctrl_cfg); 3491 3492 writel(ctrlcfg & 0xFFBFFFFF, &sdr_ctrl->ctrl_cfg); 3493 3494 initialize(); 3495 rw_mgr_mem_initialize(); 3496 3497 pass = mem_calibrate(); 3498 3499 mem_precharge_and_activate(); 3500 writel(0, &phy_mgr_cmd->fifo_reset); 3501 3502 /* 3503 * Handoff: 3504 * Don't return control of the PHY back to AFI when in debug mode. 3505 */ 3506 if ((gbl->phy_debug_mode_flags & PHY_DEBUG_IN_DEBUG_MODE) == 0) { 3507 rw_mgr_mem_handoff(); 3508 /* 3509 * In Hard PHY this is a 2-bit control: 3510 * 0: AFI Mux Select 3511 * 1: DDIO Mux Select 3512 */ 3513 writel(0x2, &phy_mgr_cfg->mux_sel); 3514 } 3515 3516 writel(ctrlcfg, &sdr_ctrl->ctrl_cfg); 3517 3518 if (pass) { 3519 printf("%s: CALIBRATION PASSED\n", __FILE__); 3520 3521 gbl->fom_in /= 2; 3522 gbl->fom_out /= 2; 3523 3524 if (gbl->fom_in > 0xff) 3525 gbl->fom_in = 0xff; 3526 3527 if (gbl->fom_out > 0xff) 3528 gbl->fom_out = 0xff; 3529 3530 /* Update the FOM in the register file */ 3531 debug_info = gbl->fom_in; 3532 debug_info |= gbl->fom_out << 8; 3533 writel(debug_info, &sdr_reg_file->fom); 3534 3535 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3536 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status); 3537 } else { 3538 printf("%s: CALIBRATION FAILED\n", __FILE__); 3539 3540 debug_info = gbl->error_stage; 3541 debug_info |= gbl->error_substage << 8; 3542 debug_info |= gbl->error_group << 16; 3543 3544 writel(debug_info, &sdr_reg_file->failing_stage); 3545 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3546 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status); 3547 3548 /* Update the failing group/stage in the register file */ 3549 debug_info = gbl->error_stage; 3550 debug_info |= gbl->error_substage << 8; 3551 debug_info |= gbl->error_group << 16; 3552 writel(debug_info, &sdr_reg_file->failing_stage); 3553 } 3554 3555 return pass; 3556 } 3557 3558 /** 3559 * hc_initialize_rom_data() - Initialize ROM data 3560 * 3561 * Initialize ROM data. 3562 */ 3563 static void hc_initialize_rom_data(void) 3564 { 3565 u32 i, addr; 3566 3567 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET; 3568 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++) 3569 writel(inst_rom_init[i], addr + (i << 2)); 3570 3571 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET; 3572 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++) 3573 writel(ac_rom_init[i], addr + (i << 2)); 3574 } 3575 3576 /** 3577 * initialize_reg_file() - Initialize SDR register file 3578 * 3579 * Initialize SDR register file. 3580 */ 3581 static void initialize_reg_file(void) 3582 { 3583 /* Initialize the register file with the correct data */ 3584 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature); 3585 writel(0, &sdr_reg_file->debug_data_addr); 3586 writel(0, &sdr_reg_file->cur_stage); 3587 writel(0, &sdr_reg_file->fom); 3588 writel(0, &sdr_reg_file->failing_stage); 3589 writel(0, &sdr_reg_file->debug1); 3590 writel(0, &sdr_reg_file->debug2); 3591 } 3592 3593 /** 3594 * initialize_hps_phy() - Initialize HPS PHY 3595 * 3596 * Initialize HPS PHY. 3597 */ 3598 static void initialize_hps_phy(void) 3599 { 3600 uint32_t reg; 3601 /* 3602 * Tracking also gets configured here because it's in the 3603 * same register. 3604 */ 3605 uint32_t trk_sample_count = 7500; 3606 uint32_t trk_long_idle_sample_count = (10 << 16) | 100; 3607 /* 3608 * Format is number of outer loops in the 16 MSB, sample 3609 * count in 16 LSB. 3610 */ 3611 3612 reg = 0; 3613 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2); 3614 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1); 3615 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1); 3616 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1); 3617 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0); 3618 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1); 3619 /* 3620 * This field selects the intrinsic latency to RDATA_EN/FULL path. 3621 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles. 3622 */ 3623 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0); 3624 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET( 3625 trk_sample_count); 3626 writel(reg, &sdr_ctrl->phy_ctrl0); 3627 3628 reg = 0; 3629 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET( 3630 trk_sample_count >> 3631 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH); 3632 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET( 3633 trk_long_idle_sample_count); 3634 writel(reg, &sdr_ctrl->phy_ctrl1); 3635 3636 reg = 0; 3637 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET( 3638 trk_long_idle_sample_count >> 3639 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH); 3640 writel(reg, &sdr_ctrl->phy_ctrl2); 3641 } 3642 3643 static void initialize_tracking(void) 3644 { 3645 uint32_t concatenated_longidle = 0x0; 3646 uint32_t concatenated_delays = 0x0; 3647 uint32_t concatenated_rw_addr = 0x0; 3648 uint32_t concatenated_refresh = 0x0; 3649 uint32_t trk_sample_count = 7500; 3650 uint32_t dtaps_per_ptap; 3651 uint32_t tmp_delay; 3652 3653 /* 3654 * compute usable version of value in case we skip full 3655 * computation later 3656 */ 3657 dtaps_per_ptap = 0; 3658 tmp_delay = 0; 3659 while (tmp_delay < IO_DELAY_PER_OPA_TAP) { 3660 dtaps_per_ptap++; 3661 tmp_delay += IO_DELAY_PER_DCHAIN_TAP; 3662 } 3663 dtaps_per_ptap--; 3664 3665 concatenated_longidle = concatenated_longidle ^ 10; 3666 /*longidle outer loop */ 3667 concatenated_longidle = concatenated_longidle << 16; 3668 concatenated_longidle = concatenated_longidle ^ 100; 3669 /*longidle sample count */ 3670 concatenated_delays = concatenated_delays ^ 243; 3671 /* trfc, worst case of 933Mhz 4Gb */ 3672 concatenated_delays = concatenated_delays << 8; 3673 concatenated_delays = concatenated_delays ^ 14; 3674 /* trcd, worst case */ 3675 concatenated_delays = concatenated_delays << 8; 3676 concatenated_delays = concatenated_delays ^ 10; 3677 /* vfifo wait */ 3678 concatenated_delays = concatenated_delays << 8; 3679 concatenated_delays = concatenated_delays ^ 4; 3680 /* mux delay */ 3681 3682 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_IDLE; 3683 concatenated_rw_addr = concatenated_rw_addr << 8; 3684 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_ACTIVATE_1; 3685 concatenated_rw_addr = concatenated_rw_addr << 8; 3686 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_SGLE_READ; 3687 concatenated_rw_addr = concatenated_rw_addr << 8; 3688 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_PRECHARGE_ALL; 3689 3690 concatenated_refresh = concatenated_refresh ^ RW_MGR_REFRESH_ALL; 3691 concatenated_refresh = concatenated_refresh << 24; 3692 concatenated_refresh = concatenated_refresh ^ 1000; /* trefi */ 3693 3694 /* Initialize the register file with the correct data */ 3695 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 3696 writel(trk_sample_count, &sdr_reg_file->trk_sample_count); 3697 writel(concatenated_longidle, &sdr_reg_file->trk_longidle); 3698 writel(concatenated_delays, &sdr_reg_file->delays); 3699 writel(concatenated_rw_addr, &sdr_reg_file->trk_rw_mgr_addr); 3700 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, &sdr_reg_file->trk_read_dqs_width); 3701 writel(concatenated_refresh, &sdr_reg_file->trk_rfsh); 3702 } 3703 3704 int sdram_calibration_full(void) 3705 { 3706 struct param_type my_param; 3707 struct gbl_type my_gbl; 3708 uint32_t pass; 3709 uint32_t i; 3710 3711 param = &my_param; 3712 gbl = &my_gbl; 3713 3714 /* Initialize the debug mode flags */ 3715 gbl->phy_debug_mode_flags = 0; 3716 /* Set the calibration enabled by default */ 3717 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT; 3718 /* 3719 * Only sweep all groups (regardless of fail state) by default 3720 * Set enabled read test by default. 3721 */ 3722 #if DISABLE_GUARANTEED_READ 3723 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ; 3724 #endif 3725 /* Initialize the register file */ 3726 initialize_reg_file(); 3727 3728 /* Initialize any PHY CSR */ 3729 initialize_hps_phy(); 3730 3731 scc_mgr_initialize(); 3732 3733 initialize_tracking(); 3734 3735 /* USER Enable all ranks, groups */ 3736 for (i = 0; i < RW_MGR_MEM_NUMBER_OF_RANKS; i++) 3737 param->skip_ranks[i] = 0; 3738 for (i = 0; i < NUM_SHADOW_REGS; ++i) 3739 param->skip_shadow_regs[i] = 0; 3740 param->skip_groups = 0; 3741 3742 printf("%s: Preparing to start memory calibration\n", __FILE__); 3743 3744 debug("%s:%d\n", __func__, __LINE__); 3745 debug_cond(DLEVEL == 1, 3746 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ", 3747 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM, 3748 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS, 3749 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS, 3750 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 3751 debug_cond(DLEVEL == 1, 3752 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ", 3753 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3754 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH, 3755 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP); 3756 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u", 3757 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH); 3758 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ", 3759 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX, 3760 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX); 3761 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ", 3762 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX, 3763 IO_IO_OUT2_DELAY_MAX); 3764 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n", 3765 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE); 3766 3767 hc_initialize_rom_data(); 3768 3769 /* update info for sims */ 3770 reg_file_set_stage(CAL_STAGE_NIL); 3771 reg_file_set_group(0); 3772 3773 /* 3774 * Load global needed for those actions that require 3775 * some dynamic calibration support. 3776 */ 3777 dyn_calib_steps = STATIC_CALIB_STEPS; 3778 /* 3779 * Load global to allow dynamic selection of delay loop settings 3780 * based on calibration mode. 3781 */ 3782 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS)) 3783 skip_delay_mask = 0xff; 3784 else 3785 skip_delay_mask = 0x0; 3786 3787 pass = run_mem_calibrate(); 3788 3789 printf("%s: Calibration complete\n", __FILE__); 3790 return pass; 3791 } 3792