xref: /openbmc/u-boot/drivers/ddr/altera/sequencer.c (revision 0a61ee88)
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6 
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include <errno.h>
11 #include "sequencer.h"
12 
13 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
14 	(struct socfpga_sdr_rw_load_manager *)
15 		(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
16 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
17 	(struct socfpga_sdr_rw_load_jump_manager *)
18 		(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
19 static struct socfpga_sdr_reg_file *sdr_reg_file =
20 	(struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
21 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
22 	(struct socfpga_sdr_scc_mgr *)
23 		(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
24 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
25 	(struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
26 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
27 	(struct socfpga_phy_mgr_cfg *)
28 		(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
29 static struct socfpga_data_mgr *data_mgr =
30 	(struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
31 static struct socfpga_sdr_ctrl *sdr_ctrl =
32 	(struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
33 
34 const struct socfpga_sdram_rw_mgr_config *rwcfg;
35 const struct socfpga_sdram_io_config *iocfg;
36 const struct socfpga_sdram_misc_config *misccfg;
37 
38 #define DELTA_D		1
39 
40 /*
41  * In order to reduce ROM size, most of the selectable calibration steps are
42  * decided at compile time based on the user's calibration mode selection,
43  * as captured by the STATIC_CALIB_STEPS selection below.
44  *
45  * However, to support simulation-time selection of fast simulation mode, where
46  * we skip everything except the bare minimum, we need a few of the steps to
47  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
48  * check, which is based on the rtl-supplied value, or we dynamically compute
49  * the value to use based on the dynamically-chosen calibration mode
50  */
51 
52 #define DLEVEL 0
53 #define STATIC_IN_RTL_SIM 0
54 #define STATIC_SKIP_DELAY_LOOPS 0
55 
56 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
57 	STATIC_SKIP_DELAY_LOOPS)
58 
59 /* calibration steps requested by the rtl */
60 u16 dyn_calib_steps;
61 
62 /*
63  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
64  * instead of static, we use boolean logic to select between
65  * non-skip and skip values
66  *
67  * The mask is set to include all bits when not-skipping, but is
68  * zero when skipping
69  */
70 
71 u16 skip_delay_mask;	/* mask off bits when skipping/not-skipping */
72 
73 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
74 	((non_skip_value) & skip_delay_mask)
75 
76 struct gbl_type *gbl;
77 struct param_type *param;
78 
79 static void set_failing_group_stage(u32 group, u32 stage,
80 	u32 substage)
81 {
82 	/*
83 	 * Only set the global stage if there was not been any other
84 	 * failing group
85 	 */
86 	if (gbl->error_stage == CAL_STAGE_NIL)	{
87 		gbl->error_substage = substage;
88 		gbl->error_stage = stage;
89 		gbl->error_group = group;
90 	}
91 }
92 
93 static void reg_file_set_group(u16 set_group)
94 {
95 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
96 }
97 
98 static void reg_file_set_stage(u8 set_stage)
99 {
100 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
101 }
102 
103 static void reg_file_set_sub_stage(u8 set_sub_stage)
104 {
105 	set_sub_stage &= 0xff;
106 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
107 }
108 
109 /**
110  * phy_mgr_initialize() - Initialize PHY Manager
111  *
112  * Initialize PHY Manager.
113  */
114 static void phy_mgr_initialize(void)
115 {
116 	u32 ratio;
117 
118 	debug("%s:%d\n", __func__, __LINE__);
119 	/* Calibration has control over path to memory */
120 	/*
121 	 * In Hard PHY this is a 2-bit control:
122 	 * 0: AFI Mux Select
123 	 * 1: DDIO Mux Select
124 	 */
125 	writel(0x3, &phy_mgr_cfg->mux_sel);
126 
127 	/* USER memory clock is not stable we begin initialization  */
128 	writel(0, &phy_mgr_cfg->reset_mem_stbl);
129 
130 	/* USER calibration status all set to zero */
131 	writel(0, &phy_mgr_cfg->cal_status);
132 
133 	writel(0, &phy_mgr_cfg->cal_debug_info);
134 
135 	/* Init params only if we do NOT skip calibration. */
136 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
137 		return;
138 
139 	ratio = rwcfg->mem_dq_per_read_dqs /
140 		rwcfg->mem_virtual_groups_per_read_dqs;
141 	param->read_correct_mask_vg = (1 << ratio) - 1;
142 	param->write_correct_mask_vg = (1 << ratio) - 1;
143 	param->read_correct_mask = (1 << rwcfg->mem_dq_per_read_dqs) - 1;
144 	param->write_correct_mask = (1 << rwcfg->mem_dq_per_write_dqs) - 1;
145 }
146 
147 /**
148  * set_rank_and_odt_mask() - Set Rank and ODT mask
149  * @rank:	Rank mask
150  * @odt_mode:	ODT mode, OFF or READ_WRITE
151  *
152  * Set Rank and ODT mask (On-Die Termination).
153  */
154 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
155 {
156 	u32 odt_mask_0 = 0;
157 	u32 odt_mask_1 = 0;
158 	u32 cs_and_odt_mask;
159 
160 	if (odt_mode == RW_MGR_ODT_MODE_OFF) {
161 		odt_mask_0 = 0x0;
162 		odt_mask_1 = 0x0;
163 	} else {	/* RW_MGR_ODT_MODE_READ_WRITE */
164 		switch (rwcfg->mem_number_of_ranks) {
165 		case 1:	/* 1 Rank */
166 			/* Read: ODT = 0 ; Write: ODT = 1 */
167 			odt_mask_0 = 0x0;
168 			odt_mask_1 = 0x1;
169 			break;
170 		case 2:	/* 2 Ranks */
171 			if (rwcfg->mem_number_of_cs_per_dimm == 1) {
172 				/*
173 				 * - Dual-Slot , Single-Rank (1 CS per DIMM)
174 				 *   OR
175 				 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
176 				 *
177 				 * Since MEM_NUMBER_OF_RANKS is 2, they
178 				 * are both single rank with 2 CS each
179 				 * (special for RDIMM).
180 				 *
181 				 * Read: Turn on ODT on the opposite rank
182 				 * Write: Turn on ODT on all ranks
183 				 */
184 				odt_mask_0 = 0x3 & ~(1 << rank);
185 				odt_mask_1 = 0x3;
186 			} else {
187 				/*
188 				 * - Single-Slot , Dual-Rank (2 CS per DIMM)
189 				 *
190 				 * Read: Turn on ODT off on all ranks
191 				 * Write: Turn on ODT on active rank
192 				 */
193 				odt_mask_0 = 0x0;
194 				odt_mask_1 = 0x3 & (1 << rank);
195 			}
196 			break;
197 		case 4:	/* 4 Ranks */
198 			/* Read:
199 			 * ----------+-----------------------+
200 			 *           |         ODT           |
201 			 * Read From +-----------------------+
202 			 *   Rank    |  3  |  2  |  1  |  0  |
203 			 * ----------+-----+-----+-----+-----+
204 			 *     0     |  0  |  1  |  0  |  0  |
205 			 *     1     |  1  |  0  |  0  |  0  |
206 			 *     2     |  0  |  0  |  0  |  1  |
207 			 *     3     |  0  |  0  |  1  |  0  |
208 			 * ----------+-----+-----+-----+-----+
209 			 *
210 			 * Write:
211 			 * ----------+-----------------------+
212 			 *           |         ODT           |
213 			 * Write To  +-----------------------+
214 			 *   Rank    |  3  |  2  |  1  |  0  |
215 			 * ----------+-----+-----+-----+-----+
216 			 *     0     |  0  |  1  |  0  |  1  |
217 			 *     1     |  1  |  0  |  1  |  0  |
218 			 *     2     |  0  |  1  |  0  |  1  |
219 			 *     3     |  1  |  0  |  1  |  0  |
220 			 * ----------+-----+-----+-----+-----+
221 			 */
222 			switch (rank) {
223 			case 0:
224 				odt_mask_0 = 0x4;
225 				odt_mask_1 = 0x5;
226 				break;
227 			case 1:
228 				odt_mask_0 = 0x8;
229 				odt_mask_1 = 0xA;
230 				break;
231 			case 2:
232 				odt_mask_0 = 0x1;
233 				odt_mask_1 = 0x5;
234 				break;
235 			case 3:
236 				odt_mask_0 = 0x2;
237 				odt_mask_1 = 0xA;
238 				break;
239 			}
240 			break;
241 		}
242 	}
243 
244 	cs_and_odt_mask = (0xFF & ~(1 << rank)) |
245 			  ((0xFF & odt_mask_0) << 8) |
246 			  ((0xFF & odt_mask_1) << 16);
247 	writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
248 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
249 }
250 
251 /**
252  * scc_mgr_set() - Set SCC Manager register
253  * @off:	Base offset in SCC Manager space
254  * @grp:	Read/Write group
255  * @val:	Value to be set
256  *
257  * This function sets the SCC Manager (Scan Chain Control Manager) register.
258  */
259 static void scc_mgr_set(u32 off, u32 grp, u32 val)
260 {
261 	writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
262 }
263 
264 /**
265  * scc_mgr_initialize() - Initialize SCC Manager registers
266  *
267  * Initialize SCC Manager registers.
268  */
269 static void scc_mgr_initialize(void)
270 {
271 	/*
272 	 * Clear register file for HPS. 16 (2^4) is the size of the
273 	 * full register file in the scc mgr:
274 	 *	RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
275 	 *                             MEM_IF_READ_DQS_WIDTH - 1);
276 	 */
277 	int i;
278 
279 	for (i = 0; i < 16; i++) {
280 		debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
281 			   __func__, __LINE__, i);
282 		scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
283 	}
284 }
285 
286 static void scc_mgr_set_dqdqs_output_phase(u32 write_group, u32 phase)
287 {
288 	scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
289 }
290 
291 static void scc_mgr_set_dqs_bus_in_delay(u32 read_group, u32 delay)
292 {
293 	scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
294 }
295 
296 static void scc_mgr_set_dqs_en_phase(u32 read_group, u32 phase)
297 {
298 	scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
299 }
300 
301 static void scc_mgr_set_dqs_en_delay(u32 read_group, u32 delay)
302 {
303 	scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
304 }
305 
306 static void scc_mgr_set_dqs_io_in_delay(u32 delay)
307 {
308 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, rwcfg->mem_dq_per_write_dqs,
309 		    delay);
310 }
311 
312 static void scc_mgr_set_dq_in_delay(u32 dq_in_group, u32 delay)
313 {
314 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
315 }
316 
317 static void scc_mgr_set_dq_out1_delay(u32 dq_in_group, u32 delay)
318 {
319 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
320 }
321 
322 static void scc_mgr_set_dqs_out1_delay(u32 delay)
323 {
324 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, rwcfg->mem_dq_per_write_dqs,
325 		    delay);
326 }
327 
328 static void scc_mgr_set_dm_out1_delay(u32 dm, u32 delay)
329 {
330 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
331 		    rwcfg->mem_dq_per_write_dqs + 1 + dm,
332 		    delay);
333 }
334 
335 /* load up dqs config settings */
336 static void scc_mgr_load_dqs(u32 dqs)
337 {
338 	writel(dqs, &sdr_scc_mgr->dqs_ena);
339 }
340 
341 /* load up dqs io config settings */
342 static void scc_mgr_load_dqs_io(void)
343 {
344 	writel(0, &sdr_scc_mgr->dqs_io_ena);
345 }
346 
347 /* load up dq config settings */
348 static void scc_mgr_load_dq(u32 dq_in_group)
349 {
350 	writel(dq_in_group, &sdr_scc_mgr->dq_ena);
351 }
352 
353 /* load up dm config settings */
354 static void scc_mgr_load_dm(u32 dm)
355 {
356 	writel(dm, &sdr_scc_mgr->dm_ena);
357 }
358 
359 /**
360  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
361  * @off:	Base offset in SCC Manager space
362  * @grp:	Read/Write group
363  * @val:	Value to be set
364  * @update:	If non-zero, trigger SCC Manager update for all ranks
365  *
366  * This function sets the SCC Manager (Scan Chain Control Manager) register
367  * and optionally triggers the SCC update for all ranks.
368  */
369 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
370 				  const int update)
371 {
372 	u32 r;
373 
374 	for (r = 0; r < rwcfg->mem_number_of_ranks;
375 	     r += NUM_RANKS_PER_SHADOW_REG) {
376 		scc_mgr_set(off, grp, val);
377 
378 		if (update || (r == 0)) {
379 			writel(grp, &sdr_scc_mgr->dqs_ena);
380 			writel(0, &sdr_scc_mgr->update);
381 		}
382 	}
383 }
384 
385 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
386 {
387 	/*
388 	 * USER although the h/w doesn't support different phases per
389 	 * shadow register, for simplicity our scc manager modeling
390 	 * keeps different phase settings per shadow reg, and it's
391 	 * important for us to keep them in sync to match h/w.
392 	 * for efficiency, the scan chain update should occur only
393 	 * once to sr0.
394 	 */
395 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
396 			      read_group, phase, 0);
397 }
398 
399 static void scc_mgr_set_dqdqs_output_phase_all_ranks(u32 write_group,
400 						     u32 phase)
401 {
402 	/*
403 	 * USER although the h/w doesn't support different phases per
404 	 * shadow register, for simplicity our scc manager modeling
405 	 * keeps different phase settings per shadow reg, and it's
406 	 * important for us to keep them in sync to match h/w.
407 	 * for efficiency, the scan chain update should occur only
408 	 * once to sr0.
409 	 */
410 	scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
411 			      write_group, phase, 0);
412 }
413 
414 static void scc_mgr_set_dqs_en_delay_all_ranks(u32 read_group,
415 					       u32 delay)
416 {
417 	/*
418 	 * In shadow register mode, the T11 settings are stored in
419 	 * registers in the core, which are updated by the DQS_ENA
420 	 * signals. Not issuing the SCC_MGR_UPD command allows us to
421 	 * save lots of rank switching overhead, by calling
422 	 * select_shadow_regs_for_update with update_scan_chains
423 	 * set to 0.
424 	 */
425 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
426 			      read_group, delay, 1);
427 	writel(0, &sdr_scc_mgr->update);
428 }
429 
430 /**
431  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
432  * @write_group:	Write group
433  * @delay:		Delay value
434  *
435  * This function sets the OCT output delay in SCC manager.
436  */
437 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
438 {
439 	const int ratio = rwcfg->mem_if_read_dqs_width /
440 			  rwcfg->mem_if_write_dqs_width;
441 	const int base = write_group * ratio;
442 	int i;
443 	/*
444 	 * Load the setting in the SCC manager
445 	 * Although OCT affects only write data, the OCT delay is controlled
446 	 * by the DQS logic block which is instantiated once per read group.
447 	 * For protocols where a write group consists of multiple read groups,
448 	 * the setting must be set multiple times.
449 	 */
450 	for (i = 0; i < ratio; i++)
451 		scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
452 }
453 
454 /**
455  * scc_mgr_set_hhp_extras() - Set HHP extras.
456  *
457  * Load the fixed setting in the SCC manager HHP extras.
458  */
459 static void scc_mgr_set_hhp_extras(void)
460 {
461 	/*
462 	 * Load the fixed setting in the SCC manager
463 	 * bits: 0:0 = 1'b1	- DQS bypass
464 	 * bits: 1:1 = 1'b1	- DQ bypass
465 	 * bits: 4:2 = 3'b001	- rfifo_mode
466 	 * bits: 6:5 = 2'b01	- rfifo clock_select
467 	 * bits: 7:7 = 1'b0	- separate gating from ungating setting
468 	 * bits: 8:8 = 1'b0	- separate OE from Output delay setting
469 	 */
470 	const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
471 			  (1 << 2) | (1 << 1) | (1 << 0);
472 	const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
473 			 SCC_MGR_HHP_GLOBALS_OFFSET |
474 			 SCC_MGR_HHP_EXTRAS_OFFSET;
475 
476 	debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
477 		   __func__, __LINE__);
478 	writel(value, addr);
479 	debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
480 		   __func__, __LINE__);
481 }
482 
483 /**
484  * scc_mgr_zero_all() - Zero all DQS config
485  *
486  * Zero all DQS config.
487  */
488 static void scc_mgr_zero_all(void)
489 {
490 	int i, r;
491 
492 	/*
493 	 * USER Zero all DQS config settings, across all groups and all
494 	 * shadow registers
495 	 */
496 	for (r = 0; r < rwcfg->mem_number_of_ranks;
497 	     r += NUM_RANKS_PER_SHADOW_REG) {
498 		for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
499 			/*
500 			 * The phases actually don't exist on a per-rank basis,
501 			 * but there's no harm updating them several times, so
502 			 * let's keep the code simple.
503 			 */
504 			scc_mgr_set_dqs_bus_in_delay(i, iocfg->dqs_in_reserve);
505 			scc_mgr_set_dqs_en_phase(i, 0);
506 			scc_mgr_set_dqs_en_delay(i, 0);
507 		}
508 
509 		for (i = 0; i < rwcfg->mem_if_write_dqs_width; i++) {
510 			scc_mgr_set_dqdqs_output_phase(i, 0);
511 			/* Arria V/Cyclone V don't have out2. */
512 			scc_mgr_set_oct_out1_delay(i, iocfg->dqs_out_reserve);
513 		}
514 	}
515 
516 	/* Multicast to all DQS group enables. */
517 	writel(0xff, &sdr_scc_mgr->dqs_ena);
518 	writel(0, &sdr_scc_mgr->update);
519 }
520 
521 /**
522  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
523  * @write_group:	Write group
524  *
525  * Set bypass mode and trigger SCC update.
526  */
527 static void scc_set_bypass_mode(const u32 write_group)
528 {
529 	/* Multicast to all DQ enables. */
530 	writel(0xff, &sdr_scc_mgr->dq_ena);
531 	writel(0xff, &sdr_scc_mgr->dm_ena);
532 
533 	/* Update current DQS IO enable. */
534 	writel(0, &sdr_scc_mgr->dqs_io_ena);
535 
536 	/* Update the DQS logic. */
537 	writel(write_group, &sdr_scc_mgr->dqs_ena);
538 
539 	/* Hit update. */
540 	writel(0, &sdr_scc_mgr->update);
541 }
542 
543 /**
544  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
545  * @write_group:	Write group
546  *
547  * Load DQS settings for Write Group, do not trigger SCC update.
548  */
549 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
550 {
551 	const int ratio = rwcfg->mem_if_read_dqs_width /
552 			  rwcfg->mem_if_write_dqs_width;
553 	const int base = write_group * ratio;
554 	int i;
555 	/*
556 	 * Load the setting in the SCC manager
557 	 * Although OCT affects only write data, the OCT delay is controlled
558 	 * by the DQS logic block which is instantiated once per read group.
559 	 * For protocols where a write group consists of multiple read groups,
560 	 * the setting must be set multiple times.
561 	 */
562 	for (i = 0; i < ratio; i++)
563 		writel(base + i, &sdr_scc_mgr->dqs_ena);
564 }
565 
566 /**
567  * scc_mgr_zero_group() - Zero all configs for a group
568  *
569  * Zero DQ, DM, DQS and OCT configs for a group.
570  */
571 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
572 {
573 	int i, r;
574 
575 	for (r = 0; r < rwcfg->mem_number_of_ranks;
576 	     r += NUM_RANKS_PER_SHADOW_REG) {
577 		/* Zero all DQ config settings. */
578 		for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
579 			scc_mgr_set_dq_out1_delay(i, 0);
580 			if (!out_only)
581 				scc_mgr_set_dq_in_delay(i, 0);
582 		}
583 
584 		/* Multicast to all DQ enables. */
585 		writel(0xff, &sdr_scc_mgr->dq_ena);
586 
587 		/* Zero all DM config settings. */
588 		for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
589 			scc_mgr_set_dm_out1_delay(i, 0);
590 
591 		/* Multicast to all DM enables. */
592 		writel(0xff, &sdr_scc_mgr->dm_ena);
593 
594 		/* Zero all DQS IO settings. */
595 		if (!out_only)
596 			scc_mgr_set_dqs_io_in_delay(0);
597 
598 		/* Arria V/Cyclone V don't have out2. */
599 		scc_mgr_set_dqs_out1_delay(iocfg->dqs_out_reserve);
600 		scc_mgr_set_oct_out1_delay(write_group, iocfg->dqs_out_reserve);
601 		scc_mgr_load_dqs_for_write_group(write_group);
602 
603 		/* Multicast to all DQS IO enables (only 1 in total). */
604 		writel(0, &sdr_scc_mgr->dqs_io_ena);
605 
606 		/* Hit update to zero everything. */
607 		writel(0, &sdr_scc_mgr->update);
608 	}
609 }
610 
611 /*
612  * apply and load a particular input delay for the DQ pins in a group
613  * group_bgn is the index of the first dq pin (in the write group)
614  */
615 static void scc_mgr_apply_group_dq_in_delay(u32 group_bgn, u32 delay)
616 {
617 	u32 i, p;
618 
619 	for (i = 0, p = group_bgn; i < rwcfg->mem_dq_per_read_dqs; i++, p++) {
620 		scc_mgr_set_dq_in_delay(p, delay);
621 		scc_mgr_load_dq(p);
622 	}
623 }
624 
625 /**
626  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
627  * @delay:		Delay value
628  *
629  * Apply and load a particular output delay for the DQ pins in a group.
630  */
631 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
632 {
633 	int i;
634 
635 	for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
636 		scc_mgr_set_dq_out1_delay(i, delay);
637 		scc_mgr_load_dq(i);
638 	}
639 }
640 
641 /* apply and load a particular output delay for the DM pins in a group */
642 static void scc_mgr_apply_group_dm_out1_delay(u32 delay1)
643 {
644 	u32 i;
645 
646 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
647 		scc_mgr_set_dm_out1_delay(i, delay1);
648 		scc_mgr_load_dm(i);
649 	}
650 }
651 
652 
653 /* apply and load delay on both DQS and OCT out1 */
654 static void scc_mgr_apply_group_dqs_io_and_oct_out1(u32 write_group,
655 						    u32 delay)
656 {
657 	scc_mgr_set_dqs_out1_delay(delay);
658 	scc_mgr_load_dqs_io();
659 
660 	scc_mgr_set_oct_out1_delay(write_group, delay);
661 	scc_mgr_load_dqs_for_write_group(write_group);
662 }
663 
664 /**
665  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
666  * @write_group:	Write group
667  * @delay:		Delay value
668  *
669  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
670  */
671 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
672 						  const u32 delay)
673 {
674 	u32 i, new_delay;
675 
676 	/* DQ shift */
677 	for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++)
678 		scc_mgr_load_dq(i);
679 
680 	/* DM shift */
681 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
682 		scc_mgr_load_dm(i);
683 
684 	/* DQS shift */
685 	new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
686 	if (new_delay > iocfg->io_out2_delay_max) {
687 		debug_cond(DLEVEL == 1,
688 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
689 			   __func__, __LINE__, write_group, delay, new_delay,
690 			   iocfg->io_out2_delay_max,
691 			   new_delay - iocfg->io_out2_delay_max);
692 		new_delay -= iocfg->io_out2_delay_max;
693 		scc_mgr_set_dqs_out1_delay(new_delay);
694 	}
695 
696 	scc_mgr_load_dqs_io();
697 
698 	/* OCT shift */
699 	new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
700 	if (new_delay > iocfg->io_out2_delay_max) {
701 		debug_cond(DLEVEL == 1,
702 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
703 			   __func__, __LINE__, write_group, delay,
704 			   new_delay, iocfg->io_out2_delay_max,
705 			   new_delay - iocfg->io_out2_delay_max);
706 		new_delay -= iocfg->io_out2_delay_max;
707 		scc_mgr_set_oct_out1_delay(write_group, new_delay);
708 	}
709 
710 	scc_mgr_load_dqs_for_write_group(write_group);
711 }
712 
713 /**
714  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
715  * @write_group:	Write group
716  * @delay:		Delay value
717  *
718  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
719  */
720 static void
721 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
722 						const u32 delay)
723 {
724 	int r;
725 
726 	for (r = 0; r < rwcfg->mem_number_of_ranks;
727 	     r += NUM_RANKS_PER_SHADOW_REG) {
728 		scc_mgr_apply_group_all_out_delay_add(write_group, delay);
729 		writel(0, &sdr_scc_mgr->update);
730 	}
731 }
732 
733 /**
734  * set_jump_as_return() - Return instruction optimization
735  *
736  * Optimization used to recover some slots in ddr3 inst_rom could be
737  * applied to other protocols if we wanted to
738  */
739 static void set_jump_as_return(void)
740 {
741 	/*
742 	 * To save space, we replace return with jump to special shared
743 	 * RETURN instruction so we set the counter to large value so that
744 	 * we always jump.
745 	 */
746 	writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
747 	writel(rwcfg->rreturn, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
748 }
749 
750 /**
751  * delay_for_n_mem_clocks() - Delay for N memory clocks
752  * @clocks:	Length of the delay
753  *
754  * Delay for N memory clocks.
755  */
756 static void delay_for_n_mem_clocks(const u32 clocks)
757 {
758 	u32 afi_clocks;
759 	u16 c_loop;
760 	u8 inner;
761 	u8 outer;
762 
763 	debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
764 
765 	/* Scale (rounding up) to get afi clocks. */
766 	afi_clocks = DIV_ROUND_UP(clocks, misccfg->afi_rate_ratio);
767 	if (afi_clocks)	/* Temporary underflow protection */
768 		afi_clocks--;
769 
770 	/*
771 	 * Note, we don't bother accounting for being off a little
772 	 * bit because of a few extra instructions in outer loops.
773 	 * Note, the loops have a test at the end, and do the test
774 	 * before the decrement, and so always perform the loop
775 	 * 1 time more than the counter value
776 	 */
777 	c_loop = afi_clocks >> 16;
778 	outer = c_loop ? 0xff : (afi_clocks >> 8);
779 	inner = outer ? 0xff : afi_clocks;
780 
781 	/*
782 	 * rom instructions are structured as follows:
783 	 *
784 	 *    IDLE_LOOP2: jnz cntr0, TARGET_A
785 	 *    IDLE_LOOP1: jnz cntr1, TARGET_B
786 	 *                return
787 	 *
788 	 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
789 	 * TARGET_B is set to IDLE_LOOP2 as well
790 	 *
791 	 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
792 	 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
793 	 *
794 	 * a little confusing, but it helps save precious space in the inst_rom
795 	 * and sequencer rom and keeps the delays more accurate and reduces
796 	 * overhead
797 	 */
798 	if (afi_clocks < 0x100) {
799 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
800 		       &sdr_rw_load_mgr_regs->load_cntr1);
801 
802 		writel(rwcfg->idle_loop1,
803 		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
804 
805 		writel(rwcfg->idle_loop1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
806 					  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
807 	} else {
808 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
809 		       &sdr_rw_load_mgr_regs->load_cntr0);
810 
811 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
812 		       &sdr_rw_load_mgr_regs->load_cntr1);
813 
814 		writel(rwcfg->idle_loop2,
815 		       &sdr_rw_load_jump_mgr_regs->load_jump_add0);
816 
817 		writel(rwcfg->idle_loop2,
818 		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
819 
820 		do {
821 			writel(rwcfg->idle_loop2,
822 			       SDR_PHYGRP_RWMGRGRP_ADDRESS |
823 			       RW_MGR_RUN_SINGLE_GROUP_OFFSET);
824 		} while (c_loop-- != 0);
825 	}
826 	debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
827 }
828 
829 /**
830  * rw_mgr_mem_init_load_regs() - Load instruction registers
831  * @cntr0:	Counter 0 value
832  * @cntr1:	Counter 1 value
833  * @cntr2:	Counter 2 value
834  * @jump:	Jump instruction value
835  *
836  * Load instruction registers.
837  */
838 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
839 {
840 	u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
841 			   RW_MGR_RUN_SINGLE_GROUP_OFFSET;
842 
843 	/* Load counters */
844 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
845 	       &sdr_rw_load_mgr_regs->load_cntr0);
846 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
847 	       &sdr_rw_load_mgr_regs->load_cntr1);
848 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
849 	       &sdr_rw_load_mgr_regs->load_cntr2);
850 
851 	/* Load jump address */
852 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
853 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
854 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
855 
856 	/* Execute count instruction */
857 	writel(jump, grpaddr);
858 }
859 
860 /**
861  * rw_mgr_mem_load_user() - Load user calibration values
862  * @fin1:	Final instruction 1
863  * @fin2:	Final instruction 2
864  * @precharge:	If 1, precharge the banks at the end
865  *
866  * Load user calibration values and optionally precharge the banks.
867  */
868 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
869 				 const int precharge)
870 {
871 	u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
872 		      RW_MGR_RUN_SINGLE_GROUP_OFFSET;
873 	u32 r;
874 
875 	for (r = 0; r < rwcfg->mem_number_of_ranks; r++) {
876 		/* set rank */
877 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
878 
879 		/* precharge all banks ... */
880 		if (precharge)
881 			writel(rwcfg->precharge_all, grpaddr);
882 
883 		/*
884 		 * USER Use Mirror-ed commands for odd ranks if address
885 		 * mirrorring is on
886 		 */
887 		if ((rwcfg->mem_address_mirroring >> r) & 0x1) {
888 			set_jump_as_return();
889 			writel(rwcfg->mrs2_mirr, grpaddr);
890 			delay_for_n_mem_clocks(4);
891 			set_jump_as_return();
892 			writel(rwcfg->mrs3_mirr, grpaddr);
893 			delay_for_n_mem_clocks(4);
894 			set_jump_as_return();
895 			writel(rwcfg->mrs1_mirr, grpaddr);
896 			delay_for_n_mem_clocks(4);
897 			set_jump_as_return();
898 			writel(fin1, grpaddr);
899 		} else {
900 			set_jump_as_return();
901 			writel(rwcfg->mrs2, grpaddr);
902 			delay_for_n_mem_clocks(4);
903 			set_jump_as_return();
904 			writel(rwcfg->mrs3, grpaddr);
905 			delay_for_n_mem_clocks(4);
906 			set_jump_as_return();
907 			writel(rwcfg->mrs1, grpaddr);
908 			set_jump_as_return();
909 			writel(fin2, grpaddr);
910 		}
911 
912 		if (precharge)
913 			continue;
914 
915 		set_jump_as_return();
916 		writel(rwcfg->zqcl, grpaddr);
917 
918 		/* tZQinit = tDLLK = 512 ck cycles */
919 		delay_for_n_mem_clocks(512);
920 	}
921 }
922 
923 /**
924  * rw_mgr_mem_initialize() - Initialize RW Manager
925  *
926  * Initialize RW Manager.
927  */
928 static void rw_mgr_mem_initialize(void)
929 {
930 	debug("%s:%d\n", __func__, __LINE__);
931 
932 	/* The reset / cke part of initialization is broadcasted to all ranks */
933 	writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
934 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
935 
936 	/*
937 	 * Here's how you load register for a loop
938 	 * Counters are located @ 0x800
939 	 * Jump address are located @ 0xC00
940 	 * For both, registers 0 to 3 are selected using bits 3 and 2, like
941 	 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
942 	 * I know this ain't pretty, but Avalon bus throws away the 2 least
943 	 * significant bits
944 	 */
945 
946 	/* Start with memory RESET activated */
947 
948 	/* tINIT = 200us */
949 
950 	/*
951 	 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
952 	 * If a and b are the number of iteration in 2 nested loops
953 	 * it takes the following number of cycles to complete the operation:
954 	 * number_of_cycles = ((2 + n) * a + 2) * b
955 	 * where n is the number of instruction in the inner loop
956 	 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
957 	 * b = 6A
958 	 */
959 	rw_mgr_mem_init_load_regs(misccfg->tinit_cntr0_val,
960 				  misccfg->tinit_cntr1_val,
961 				  misccfg->tinit_cntr2_val,
962 				  rwcfg->init_reset_0_cke_0);
963 
964 	/* Indicate that memory is stable. */
965 	writel(1, &phy_mgr_cfg->reset_mem_stbl);
966 
967 	/*
968 	 * transition the RESET to high
969 	 * Wait for 500us
970 	 */
971 
972 	/*
973 	 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
974 	 * If a and b are the number of iteration in 2 nested loops
975 	 * it takes the following number of cycles to complete the operation
976 	 * number_of_cycles = ((2 + n) * a + 2) * b
977 	 * where n is the number of instruction in the inner loop
978 	 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
979 	 * b = FF
980 	 */
981 	rw_mgr_mem_init_load_regs(misccfg->treset_cntr0_val,
982 				  misccfg->treset_cntr1_val,
983 				  misccfg->treset_cntr2_val,
984 				  rwcfg->init_reset_1_cke_0);
985 
986 	/* Bring up clock enable. */
987 
988 	/* tXRP < 250 ck cycles */
989 	delay_for_n_mem_clocks(250);
990 
991 	rw_mgr_mem_load_user(rwcfg->mrs0_dll_reset_mirr, rwcfg->mrs0_dll_reset,
992 			     0);
993 }
994 
995 /**
996  * rw_mgr_mem_handoff() - Hand off the memory to user
997  *
998  * At the end of calibration we have to program the user settings in
999  * and hand off the memory to the user.
1000  */
1001 static void rw_mgr_mem_handoff(void)
1002 {
1003 	rw_mgr_mem_load_user(rwcfg->mrs0_user_mirr, rwcfg->mrs0_user, 1);
1004 	/*
1005 	 * Need to wait tMOD (12CK or 15ns) time before issuing other
1006 	 * commands, but we will have plenty of NIOS cycles before actual
1007 	 * handoff so its okay.
1008 	 */
1009 }
1010 
1011 /**
1012  * rw_mgr_mem_calibrate_write_test_issue() - Issue write test command
1013  * @group:	Write Group
1014  * @use_dm:	Use DM
1015  *
1016  * Issue write test command. Two variants are provided, one that just tests
1017  * a write pattern and another that tests datamask functionality.
1018  */
1019 static void rw_mgr_mem_calibrate_write_test_issue(u32 group,
1020 						  u32 test_dm)
1021 {
1022 	const u32 quick_write_mode =
1023 		(STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) &&
1024 		misccfg->enable_super_quick_calibration;
1025 	u32 mcc_instruction;
1026 	u32 rw_wl_nop_cycles;
1027 
1028 	/*
1029 	 * Set counter and jump addresses for the right
1030 	 * number of NOP cycles.
1031 	 * The number of supported NOP cycles can range from -1 to infinity
1032 	 * Three different cases are handled:
1033 	 *
1034 	 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
1035 	 *    mechanism will be used to insert the right number of NOPs
1036 	 *
1037 	 * 2. For a number of NOP cycles equals to 0, the micro-instruction
1038 	 *    issuing the write command will jump straight to the
1039 	 *    micro-instruction that turns on DQS (for DDRx), or outputs write
1040 	 *    data (for RLD), skipping
1041 	 *    the NOP micro-instruction all together
1042 	 *
1043 	 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
1044 	 *    turned on in the same micro-instruction that issues the write
1045 	 *    command. Then we need
1046 	 *    to directly jump to the micro-instruction that sends out the data
1047 	 *
1048 	 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
1049 	 *       (2 and 3). One jump-counter (0) is used to perform multiple
1050 	 *       write-read operations.
1051 	 *       one counter left to issue this command in "multiple-group" mode
1052 	 */
1053 
1054 	rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
1055 
1056 	if (rw_wl_nop_cycles == -1) {
1057 		/*
1058 		 * CNTR 2 - We want to execute the special write operation that
1059 		 * turns on DQS right away and then skip directly to the
1060 		 * instruction that sends out the data. We set the counter to a
1061 		 * large number so that the jump is always taken.
1062 		 */
1063 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1064 
1065 		/* CNTR 3 - Not used */
1066 		if (test_dm) {
1067 			mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0_wl_1;
1068 			writel(rwcfg->lfsr_wr_rd_dm_bank_0_data,
1069 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1070 			writel(rwcfg->lfsr_wr_rd_dm_bank_0_nop,
1071 			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1072 		} else {
1073 			mcc_instruction = rwcfg->lfsr_wr_rd_bank_0_wl_1;
1074 			writel(rwcfg->lfsr_wr_rd_bank_0_data,
1075 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1076 			writel(rwcfg->lfsr_wr_rd_bank_0_nop,
1077 			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1078 		}
1079 	} else if (rw_wl_nop_cycles == 0) {
1080 		/*
1081 		 * CNTR 2 - We want to skip the NOP operation and go straight
1082 		 * to the DQS enable instruction. We set the counter to a large
1083 		 * number so that the jump is always taken.
1084 		 */
1085 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1086 
1087 		/* CNTR 3 - Not used */
1088 		if (test_dm) {
1089 			mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0;
1090 			writel(rwcfg->lfsr_wr_rd_dm_bank_0_dqs,
1091 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1092 		} else {
1093 			mcc_instruction = rwcfg->lfsr_wr_rd_bank_0;
1094 			writel(rwcfg->lfsr_wr_rd_bank_0_dqs,
1095 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1096 		}
1097 	} else {
1098 		/*
1099 		 * CNTR 2 - In this case we want to execute the next instruction
1100 		 * and NOT take the jump. So we set the counter to 0. The jump
1101 		 * address doesn't count.
1102 		 */
1103 		writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
1104 		writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1105 
1106 		/*
1107 		 * CNTR 3 - Set the nop counter to the number of cycles we
1108 		 * need to loop for, minus 1.
1109 		 */
1110 		writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
1111 		if (test_dm) {
1112 			mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0;
1113 			writel(rwcfg->lfsr_wr_rd_dm_bank_0_nop,
1114 			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1115 		} else {
1116 			mcc_instruction = rwcfg->lfsr_wr_rd_bank_0;
1117 			writel(rwcfg->lfsr_wr_rd_bank_0_nop,
1118 			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1119 		}
1120 	}
1121 
1122 	writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1123 		  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1124 
1125 	if (quick_write_mode)
1126 		writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
1127 	else
1128 		writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
1129 
1130 	writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1131 
1132 	/*
1133 	 * CNTR 1 - This is used to ensure enough time elapses
1134 	 * for read data to come back.
1135 	 */
1136 	writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
1137 
1138 	if (test_dm) {
1139 		writel(rwcfg->lfsr_wr_rd_dm_bank_0_wait,
1140 		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1141 	} else {
1142 		writel(rwcfg->lfsr_wr_rd_bank_0_wait,
1143 		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1144 	}
1145 
1146 	writel(mcc_instruction, (SDR_PHYGRP_RWMGRGRP_ADDRESS |
1147 				RW_MGR_RUN_SINGLE_GROUP_OFFSET) +
1148 				(group << 2));
1149 }
1150 
1151 /**
1152  * rw_mgr_mem_calibrate_write_test() - Test writes, check for single/multiple pass
1153  * @rank_bgn:		Rank number
1154  * @write_group:	Write Group
1155  * @use_dm:		Use DM
1156  * @all_correct:	All bits must be correct in the mask
1157  * @bit_chk:		Resulting bit mask after the test
1158  * @all_ranks:		Test all ranks
1159  *
1160  * Test writes, can check for a single bit pass or multiple bit pass.
1161  */
1162 static int
1163 rw_mgr_mem_calibrate_write_test(const u32 rank_bgn, const u32 write_group,
1164 				const u32 use_dm, const u32 all_correct,
1165 				u32 *bit_chk, const u32 all_ranks)
1166 {
1167 	const u32 rank_end = all_ranks ?
1168 				rwcfg->mem_number_of_ranks :
1169 				(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1170 	const u32 shift_ratio = rwcfg->mem_dq_per_write_dqs /
1171 				rwcfg->mem_virtual_groups_per_write_dqs;
1172 	const u32 correct_mask_vg = param->write_correct_mask_vg;
1173 
1174 	u32 tmp_bit_chk, base_rw_mgr;
1175 	int vg, r;
1176 
1177 	*bit_chk = param->write_correct_mask;
1178 
1179 	for (r = rank_bgn; r < rank_end; r++) {
1180 		/* Set rank */
1181 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1182 
1183 		tmp_bit_chk = 0;
1184 		for (vg = rwcfg->mem_virtual_groups_per_write_dqs - 1;
1185 		     vg >= 0; vg--) {
1186 			/* Reset the FIFOs to get pointers to known state. */
1187 			writel(0, &phy_mgr_cmd->fifo_reset);
1188 
1189 			rw_mgr_mem_calibrate_write_test_issue(
1190 				write_group *
1191 				rwcfg->mem_virtual_groups_per_write_dqs + vg,
1192 				use_dm);
1193 
1194 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1195 			tmp_bit_chk <<= shift_ratio;
1196 			tmp_bit_chk |= (correct_mask_vg & ~(base_rw_mgr));
1197 		}
1198 
1199 		*bit_chk &= tmp_bit_chk;
1200 	}
1201 
1202 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1203 	if (all_correct) {
1204 		debug_cond(DLEVEL == 2,
1205 			   "write_test(%u,%u,ALL) : %u == %u => %i\n",
1206 			   write_group, use_dm, *bit_chk,
1207 			   param->write_correct_mask,
1208 			   *bit_chk == param->write_correct_mask);
1209 		return *bit_chk == param->write_correct_mask;
1210 	} else {
1211 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1212 		debug_cond(DLEVEL == 2,
1213 			   "write_test(%u,%u,ONE) : %u != %i => %i\n",
1214 			   write_group, use_dm, *bit_chk, 0, *bit_chk != 0);
1215 		return *bit_chk != 0x00;
1216 	}
1217 }
1218 
1219 /**
1220  * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1221  * @rank_bgn:	Rank number
1222  * @group:	Read/Write Group
1223  * @all_ranks:	Test all ranks
1224  *
1225  * Performs a guaranteed read on the patterns we are going to use during a
1226  * read test to ensure memory works.
1227  */
1228 static int
1229 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1230 					const u32 all_ranks)
1231 {
1232 	const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1233 			 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1234 	const u32 addr_offset =
1235 			 (group * rwcfg->mem_virtual_groups_per_read_dqs) << 2;
1236 	const u32 rank_end = all_ranks ?
1237 				rwcfg->mem_number_of_ranks :
1238 				(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1239 	const u32 shift_ratio = rwcfg->mem_dq_per_read_dqs /
1240 				rwcfg->mem_virtual_groups_per_read_dqs;
1241 	const u32 correct_mask_vg = param->read_correct_mask_vg;
1242 
1243 	u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1244 	int vg, r;
1245 	int ret = 0;
1246 
1247 	bit_chk = param->read_correct_mask;
1248 
1249 	for (r = rank_bgn; r < rank_end; r++) {
1250 		/* Set rank */
1251 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1252 
1253 		/* Load up a constant bursts of read commands */
1254 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1255 		writel(rwcfg->guaranteed_read,
1256 		       &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1257 
1258 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1259 		writel(rwcfg->guaranteed_read_cont,
1260 		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1261 
1262 		tmp_bit_chk = 0;
1263 		for (vg = rwcfg->mem_virtual_groups_per_read_dqs - 1;
1264 		     vg >= 0; vg--) {
1265 			/* Reset the FIFOs to get pointers to known state. */
1266 			writel(0, &phy_mgr_cmd->fifo_reset);
1267 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1268 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1269 			writel(rwcfg->guaranteed_read,
1270 			       addr + addr_offset + (vg << 2));
1271 
1272 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1273 			tmp_bit_chk <<= shift_ratio;
1274 			tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1275 		}
1276 
1277 		bit_chk &= tmp_bit_chk;
1278 	}
1279 
1280 	writel(rwcfg->clear_dqs_enable, addr + (group << 2));
1281 
1282 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1283 
1284 	if (bit_chk != param->read_correct_mask)
1285 		ret = -EIO;
1286 
1287 	debug_cond(DLEVEL == 1,
1288 		   "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1289 		   __func__, __LINE__, group, bit_chk,
1290 		   param->read_correct_mask, ret);
1291 
1292 	return ret;
1293 }
1294 
1295 /**
1296  * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1297  * @rank_bgn:	Rank number
1298  * @all_ranks:	Test all ranks
1299  *
1300  * Load up the patterns we are going to use during a read test.
1301  */
1302 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1303 						    const int all_ranks)
1304 {
1305 	const u32 rank_end = all_ranks ?
1306 			rwcfg->mem_number_of_ranks :
1307 			(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1308 	u32 r;
1309 
1310 	debug("%s:%d\n", __func__, __LINE__);
1311 
1312 	for (r = rank_bgn; r < rank_end; r++) {
1313 		/* set rank */
1314 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1315 
1316 		/* Load up a constant bursts */
1317 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1318 
1319 		writel(rwcfg->guaranteed_write_wait0,
1320 		       &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1321 
1322 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1323 
1324 		writel(rwcfg->guaranteed_write_wait1,
1325 		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1326 
1327 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1328 
1329 		writel(rwcfg->guaranteed_write_wait2,
1330 		       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1331 
1332 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1333 
1334 		writel(rwcfg->guaranteed_write_wait3,
1335 		       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1336 
1337 		writel(rwcfg->guaranteed_write, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1338 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1339 	}
1340 
1341 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1342 }
1343 
1344 /**
1345  * rw_mgr_mem_calibrate_read_test() - Perform READ test on single rank
1346  * @rank_bgn:		Rank number
1347  * @group:		Read/Write group
1348  * @num_tries:		Number of retries of the test
1349  * @all_correct:	All bits must be correct in the mask
1350  * @bit_chk:		Resulting bit mask after the test
1351  * @all_groups:		Test all R/W groups
1352  * @all_ranks:		Test all ranks
1353  *
1354  * Try a read and see if it returns correct data back. Test has dummy reads
1355  * inserted into the mix used to align DQS enable. Test has more thorough
1356  * checks than the regular read test.
1357  */
1358 static int
1359 rw_mgr_mem_calibrate_read_test(const u32 rank_bgn, const u32 group,
1360 			       const u32 num_tries, const u32 all_correct,
1361 			       u32 *bit_chk,
1362 			       const u32 all_groups, const u32 all_ranks)
1363 {
1364 	const u32 rank_end = all_ranks ? rwcfg->mem_number_of_ranks :
1365 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1366 	const u32 quick_read_mode =
1367 		((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) &&
1368 		 misccfg->enable_super_quick_calibration);
1369 	u32 correct_mask_vg = param->read_correct_mask_vg;
1370 	u32 tmp_bit_chk;
1371 	u32 base_rw_mgr;
1372 	u32 addr;
1373 
1374 	int r, vg, ret;
1375 
1376 	*bit_chk = param->read_correct_mask;
1377 
1378 	for (r = rank_bgn; r < rank_end; r++) {
1379 		/* set rank */
1380 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1381 
1382 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1383 
1384 		writel(rwcfg->read_b2b_wait1,
1385 		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1386 
1387 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1388 		writel(rwcfg->read_b2b_wait2,
1389 		       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1390 
1391 		if (quick_read_mode)
1392 			writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1393 			/* need at least two (1+1) reads to capture failures */
1394 		else if (all_groups)
1395 			writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1396 		else
1397 			writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1398 
1399 		writel(rwcfg->read_b2b,
1400 		       &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1401 		if (all_groups)
1402 			writel(rwcfg->mem_if_read_dqs_width *
1403 			       rwcfg->mem_virtual_groups_per_read_dqs - 1,
1404 			       &sdr_rw_load_mgr_regs->load_cntr3);
1405 		else
1406 			writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1407 
1408 		writel(rwcfg->read_b2b,
1409 		       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1410 
1411 		tmp_bit_chk = 0;
1412 		for (vg = rwcfg->mem_virtual_groups_per_read_dqs - 1; vg >= 0;
1413 		     vg--) {
1414 			/* Reset the FIFOs to get pointers to known state. */
1415 			writel(0, &phy_mgr_cmd->fifo_reset);
1416 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1417 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1418 
1419 			if (all_groups) {
1420 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1421 				       RW_MGR_RUN_ALL_GROUPS_OFFSET;
1422 			} else {
1423 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1424 				       RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1425 			}
1426 
1427 			writel(rwcfg->read_b2b, addr +
1428 			       ((group *
1429 				 rwcfg->mem_virtual_groups_per_read_dqs +
1430 				 vg) << 2));
1431 
1432 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1433 			tmp_bit_chk <<= rwcfg->mem_dq_per_read_dqs /
1434 					rwcfg->mem_virtual_groups_per_read_dqs;
1435 			tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr);
1436 		}
1437 
1438 		*bit_chk &= tmp_bit_chk;
1439 	}
1440 
1441 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1442 	writel(rwcfg->clear_dqs_enable, addr + (group << 2));
1443 
1444 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1445 
1446 	if (all_correct) {
1447 		ret = (*bit_chk == param->read_correct_mask);
1448 		debug_cond(DLEVEL == 2,
1449 			   "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n",
1450 			   __func__, __LINE__, group, all_groups, *bit_chk,
1451 			   param->read_correct_mask, ret);
1452 	} else	{
1453 		ret = (*bit_chk != 0x00);
1454 		debug_cond(DLEVEL == 2,
1455 			   "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n",
1456 			   __func__, __LINE__, group, all_groups, *bit_chk,
1457 			   0, ret);
1458 	}
1459 
1460 	return ret;
1461 }
1462 
1463 /**
1464  * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks
1465  * @grp:		Read/Write group
1466  * @num_tries:		Number of retries of the test
1467  * @all_correct:	All bits must be correct in the mask
1468  * @all_groups:		Test all R/W groups
1469  *
1470  * Perform a READ test across all memory ranks.
1471  */
1472 static int
1473 rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries,
1474 					 const u32 all_correct,
1475 					 const u32 all_groups)
1476 {
1477 	u32 bit_chk;
1478 	return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct,
1479 					      &bit_chk, all_groups, 1);
1480 }
1481 
1482 /**
1483  * rw_mgr_incr_vfifo() - Increase VFIFO value
1484  * @grp:	Read/Write group
1485  *
1486  * Increase VFIFO value.
1487  */
1488 static void rw_mgr_incr_vfifo(const u32 grp)
1489 {
1490 	writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1491 }
1492 
1493 /**
1494  * rw_mgr_decr_vfifo() - Decrease VFIFO value
1495  * @grp:	Read/Write group
1496  *
1497  * Decrease VFIFO value.
1498  */
1499 static void rw_mgr_decr_vfifo(const u32 grp)
1500 {
1501 	u32 i;
1502 
1503 	for (i = 0; i < misccfg->read_valid_fifo_size - 1; i++)
1504 		rw_mgr_incr_vfifo(grp);
1505 }
1506 
1507 /**
1508  * find_vfifo_failing_read() - Push VFIFO to get a failing read
1509  * @grp:	Read/Write group
1510  *
1511  * Push VFIFO until a failing read happens.
1512  */
1513 static int find_vfifo_failing_read(const u32 grp)
1514 {
1515 	u32 v, ret, fail_cnt = 0;
1516 
1517 	for (v = 0; v < misccfg->read_valid_fifo_size; v++) {
1518 		debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n",
1519 			   __func__, __LINE__, v);
1520 		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1521 						PASS_ONE_BIT, 0);
1522 		if (!ret) {
1523 			fail_cnt++;
1524 
1525 			if (fail_cnt == 2)
1526 				return v;
1527 		}
1528 
1529 		/* Fiddle with FIFO. */
1530 		rw_mgr_incr_vfifo(grp);
1531 	}
1532 
1533 	/* No failing read found! Something must have gone wrong. */
1534 	debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__);
1535 	return 0;
1536 }
1537 
1538 /**
1539  * sdr_find_phase_delay() - Find DQS enable phase or delay
1540  * @working:	If 1, look for working phase/delay, if 0, look for non-working
1541  * @delay:	If 1, look for delay, if 0, look for phase
1542  * @grp:	Read/Write group
1543  * @work:	Working window position
1544  * @work_inc:	Working window increment
1545  * @pd:		DQS Phase/Delay Iterator
1546  *
1547  * Find working or non-working DQS enable phase setting.
1548  */
1549 static int sdr_find_phase_delay(int working, int delay, const u32 grp,
1550 				u32 *work, const u32 work_inc, u32 *pd)
1551 {
1552 	const u32 max = delay ? iocfg->dqs_en_delay_max :
1553 				iocfg->dqs_en_phase_max;
1554 	u32 ret;
1555 
1556 	for (; *pd <= max; (*pd)++) {
1557 		if (delay)
1558 			scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd);
1559 		else
1560 			scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd);
1561 
1562 		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1563 					PASS_ONE_BIT, 0);
1564 		if (!working)
1565 			ret = !ret;
1566 
1567 		if (ret)
1568 			return 0;
1569 
1570 		if (work)
1571 			*work += work_inc;
1572 	}
1573 
1574 	return -EINVAL;
1575 }
1576 /**
1577  * sdr_find_phase() - Find DQS enable phase
1578  * @working:	If 1, look for working phase, if 0, look for non-working phase
1579  * @grp:	Read/Write group
1580  * @work:	Working window position
1581  * @i:		Iterator
1582  * @p:		DQS Phase Iterator
1583  *
1584  * Find working or non-working DQS enable phase setting.
1585  */
1586 static int sdr_find_phase(int working, const u32 grp, u32 *work,
1587 			  u32 *i, u32 *p)
1588 {
1589 	const u32 end = misccfg->read_valid_fifo_size + (working ? 0 : 1);
1590 	int ret;
1591 
1592 	for (; *i < end; (*i)++) {
1593 		if (working)
1594 			*p = 0;
1595 
1596 		ret = sdr_find_phase_delay(working, 0, grp, work,
1597 					   iocfg->delay_per_opa_tap, p);
1598 		if (!ret)
1599 			return 0;
1600 
1601 		if (*p > iocfg->dqs_en_phase_max) {
1602 			/* Fiddle with FIFO. */
1603 			rw_mgr_incr_vfifo(grp);
1604 			if (!working)
1605 				*p = 0;
1606 		}
1607 	}
1608 
1609 	return -EINVAL;
1610 }
1611 
1612 /**
1613  * sdr_working_phase() - Find working DQS enable phase
1614  * @grp:	Read/Write group
1615  * @work_bgn:	Working window start position
1616  * @d:		dtaps output value
1617  * @p:		DQS Phase Iterator
1618  * @i:		Iterator
1619  *
1620  * Find working DQS enable phase setting.
1621  */
1622 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d,
1623 			     u32 *p, u32 *i)
1624 {
1625 	const u32 dtaps_per_ptap = iocfg->delay_per_opa_tap /
1626 				   iocfg->delay_per_dqs_en_dchain_tap;
1627 	int ret;
1628 
1629 	*work_bgn = 0;
1630 
1631 	for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
1632 		*i = 0;
1633 		scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
1634 		ret = sdr_find_phase(1, grp, work_bgn, i, p);
1635 		if (!ret)
1636 			return 0;
1637 		*work_bgn += iocfg->delay_per_dqs_en_dchain_tap;
1638 	}
1639 
1640 	/* Cannot find working solution */
1641 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
1642 		   __func__, __LINE__);
1643 	return -EINVAL;
1644 }
1645 
1646 /**
1647  * sdr_backup_phase() - Find DQS enable backup phase
1648  * @grp:	Read/Write group
1649  * @work_bgn:	Working window start position
1650  * @p:		DQS Phase Iterator
1651  *
1652  * Find DQS enable backup phase setting.
1653  */
1654 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p)
1655 {
1656 	u32 tmp_delay, d;
1657 	int ret;
1658 
1659 	/* Special case code for backing up a phase */
1660 	if (*p == 0) {
1661 		*p = iocfg->dqs_en_phase_max;
1662 		rw_mgr_decr_vfifo(grp);
1663 	} else {
1664 		(*p)--;
1665 	}
1666 	tmp_delay = *work_bgn - iocfg->delay_per_opa_tap;
1667 	scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1668 
1669 	for (d = 0; d <= iocfg->dqs_en_delay_max && tmp_delay < *work_bgn;
1670 	     d++) {
1671 		scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1672 
1673 		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1674 					PASS_ONE_BIT, 0);
1675 		if (ret) {
1676 			*work_bgn = tmp_delay;
1677 			break;
1678 		}
1679 
1680 		tmp_delay += iocfg->delay_per_dqs_en_dchain_tap;
1681 	}
1682 
1683 	/* Restore VFIFO to old state before we decremented it (if needed). */
1684 	(*p)++;
1685 	if (*p > iocfg->dqs_en_phase_max) {
1686 		*p = 0;
1687 		rw_mgr_incr_vfifo(grp);
1688 	}
1689 
1690 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1691 }
1692 
1693 /**
1694  * sdr_nonworking_phase() - Find non-working DQS enable phase
1695  * @grp:	Read/Write group
1696  * @work_end:	Working window end position
1697  * @p:		DQS Phase Iterator
1698  * @i:		Iterator
1699  *
1700  * Find non-working DQS enable phase setting.
1701  */
1702 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i)
1703 {
1704 	int ret;
1705 
1706 	(*p)++;
1707 	*work_end += iocfg->delay_per_opa_tap;
1708 	if (*p > iocfg->dqs_en_phase_max) {
1709 		/* Fiddle with FIFO. */
1710 		*p = 0;
1711 		rw_mgr_incr_vfifo(grp);
1712 	}
1713 
1714 	ret = sdr_find_phase(0, grp, work_end, i, p);
1715 	if (ret) {
1716 		/* Cannot see edge of failing read. */
1717 		debug_cond(DLEVEL == 2, "%s:%d: end: failed\n",
1718 			   __func__, __LINE__);
1719 	}
1720 
1721 	return ret;
1722 }
1723 
1724 /**
1725  * sdr_find_window_center() - Find center of the working DQS window.
1726  * @grp:	Read/Write group
1727  * @work_bgn:	First working settings
1728  * @work_end:	Last working settings
1729  *
1730  * Find center of the working DQS enable window.
1731  */
1732 static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
1733 				  const u32 work_end)
1734 {
1735 	u32 work_mid;
1736 	int tmp_delay = 0;
1737 	int i, p, d;
1738 
1739 	work_mid = (work_bgn + work_end) / 2;
1740 
1741 	debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1742 		   work_bgn, work_end, work_mid);
1743 	/* Get the middle delay to be less than a VFIFO delay */
1744 	tmp_delay = (iocfg->dqs_en_phase_max + 1) * iocfg->delay_per_opa_tap;
1745 
1746 	debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1747 	work_mid %= tmp_delay;
1748 	debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid);
1749 
1750 	tmp_delay = rounddown(work_mid, iocfg->delay_per_opa_tap);
1751 	if (tmp_delay > iocfg->dqs_en_phase_max * iocfg->delay_per_opa_tap)
1752 		tmp_delay = iocfg->dqs_en_phase_max * iocfg->delay_per_opa_tap;
1753 	p = tmp_delay / iocfg->delay_per_opa_tap;
1754 
1755 	debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
1756 
1757 	d = DIV_ROUND_UP(work_mid - tmp_delay,
1758 			 iocfg->delay_per_dqs_en_dchain_tap);
1759 	if (d > iocfg->dqs_en_delay_max)
1760 		d = iocfg->dqs_en_delay_max;
1761 	tmp_delay += d * iocfg->delay_per_dqs_en_dchain_tap;
1762 
1763 	debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
1764 
1765 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1766 	scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1767 
1768 	/*
1769 	 * push vfifo until we can successfully calibrate. We can do this
1770 	 * because the largest possible margin in 1 VFIFO cycle.
1771 	 */
1772 	for (i = 0; i < misccfg->read_valid_fifo_size; i++) {
1773 		debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n");
1774 		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1775 							     PASS_ONE_BIT,
1776 							     0)) {
1777 			debug_cond(DLEVEL == 2,
1778 				   "%s:%d center: found: ptap=%u dtap=%u\n",
1779 				   __func__, __LINE__, p, d);
1780 			return 0;
1781 		}
1782 
1783 		/* Fiddle with FIFO. */
1784 		rw_mgr_incr_vfifo(grp);
1785 	}
1786 
1787 	debug_cond(DLEVEL == 2, "%s:%d center: failed.\n",
1788 		   __func__, __LINE__);
1789 	return -EINVAL;
1790 }
1791 
1792 /**
1793  * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use
1794  * @grp:	Read/Write Group
1795  *
1796  * Find a good DQS enable to use.
1797  */
1798 static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp)
1799 {
1800 	u32 d, p, i;
1801 	u32 dtaps_per_ptap;
1802 	u32 work_bgn, work_end;
1803 	u32 found_passing_read, found_failing_read = 0, initial_failing_dtap;
1804 	int ret;
1805 
1806 	debug("%s:%d %u\n", __func__, __LINE__, grp);
1807 
1808 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1809 
1810 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1811 	scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1812 
1813 	/* Step 0: Determine number of delay taps for each phase tap. */
1814 	dtaps_per_ptap = iocfg->delay_per_opa_tap /
1815 			 iocfg->delay_per_dqs_en_dchain_tap;
1816 
1817 	/* Step 1: First push vfifo until we get a failing read. */
1818 	find_vfifo_failing_read(grp);
1819 
1820 	/* Step 2: Find first working phase, increment in ptaps. */
1821 	work_bgn = 0;
1822 	ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i);
1823 	if (ret)
1824 		return ret;
1825 
1826 	work_end = work_bgn;
1827 
1828 	/*
1829 	 * If d is 0 then the working window covers a phase tap and we can
1830 	 * follow the old procedure. Otherwise, we've found the beginning
1831 	 * and we need to increment the dtaps until we find the end.
1832 	 */
1833 	if (d == 0) {
1834 		/*
1835 		 * Step 3a: If we have room, back off by one and
1836 		 *          increment in dtaps.
1837 		 */
1838 		sdr_backup_phase(grp, &work_bgn, &p);
1839 
1840 		/*
1841 		 * Step 4a: go forward from working phase to non working
1842 		 * phase, increment in ptaps.
1843 		 */
1844 		ret = sdr_nonworking_phase(grp, &work_end, &p, &i);
1845 		if (ret)
1846 			return ret;
1847 
1848 		/* Step 5a: Back off one from last, increment in dtaps. */
1849 
1850 		/* Special case code for backing up a phase */
1851 		if (p == 0) {
1852 			p = iocfg->dqs_en_phase_max;
1853 			rw_mgr_decr_vfifo(grp);
1854 		} else {
1855 			p = p - 1;
1856 		}
1857 
1858 		work_end -= iocfg->delay_per_opa_tap;
1859 		scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1860 
1861 		d = 0;
1862 
1863 		debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n",
1864 			   __func__, __LINE__, p);
1865 	}
1866 
1867 	/* The dtap increment to find the failing edge is done here. */
1868 	sdr_find_phase_delay(0, 1, grp, &work_end,
1869 			     iocfg->delay_per_dqs_en_dchain_tap, &d);
1870 
1871 	/* Go back to working dtap */
1872 	if (d != 0)
1873 		work_end -= iocfg->delay_per_dqs_en_dchain_tap;
1874 
1875 	debug_cond(DLEVEL == 2,
1876 		   "%s:%d p/d: ptap=%u dtap=%u end=%u\n",
1877 		   __func__, __LINE__, p, d - 1, work_end);
1878 
1879 	if (work_end < work_bgn) {
1880 		/* nil range */
1881 		debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n",
1882 			   __func__, __LINE__);
1883 		return -EINVAL;
1884 	}
1885 
1886 	debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n",
1887 		   __func__, __LINE__, work_bgn, work_end);
1888 
1889 	/*
1890 	 * We need to calculate the number of dtaps that equal a ptap.
1891 	 * To do that we'll back up a ptap and re-find the edge of the
1892 	 * window using dtaps
1893 	 */
1894 	debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n",
1895 		   __func__, __LINE__);
1896 
1897 	/* Special case code for backing up a phase */
1898 	if (p == 0) {
1899 		p = iocfg->dqs_en_phase_max;
1900 		rw_mgr_decr_vfifo(grp);
1901 		debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n",
1902 			   __func__, __LINE__, p);
1903 	} else {
1904 		p = p - 1;
1905 		debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u",
1906 			   __func__, __LINE__, p);
1907 	}
1908 
1909 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1910 
1911 	/*
1912 	 * Increase dtap until we first see a passing read (in case the
1913 	 * window is smaller than a ptap), and then a failing read to
1914 	 * mark the edge of the window again.
1915 	 */
1916 
1917 	/* Find a passing read. */
1918 	debug_cond(DLEVEL == 2, "%s:%d find passing read\n",
1919 		   __func__, __LINE__);
1920 
1921 	initial_failing_dtap = d;
1922 
1923 	found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d);
1924 	if (found_passing_read) {
1925 		/* Find a failing read. */
1926 		debug_cond(DLEVEL == 2, "%s:%d find failing read\n",
1927 			   __func__, __LINE__);
1928 		d++;
1929 		found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0,
1930 							   &d);
1931 	} else {
1932 		debug_cond(DLEVEL == 1,
1933 			   "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n",
1934 			   __func__, __LINE__);
1935 	}
1936 
1937 	/*
1938 	 * The dynamically calculated dtaps_per_ptap is only valid if we
1939 	 * found a passing/failing read. If we didn't, it means d hit the max
1940 	 * (iocfg->dqs_en_delay_max). Otherwise, dtaps_per_ptap retains its
1941 	 * statically calculated value.
1942 	 */
1943 	if (found_passing_read && found_failing_read)
1944 		dtaps_per_ptap = d - initial_failing_dtap;
1945 
1946 	writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1947 	debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u",
1948 		   __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap);
1949 
1950 	/* Step 6: Find the centre of the window. */
1951 	ret = sdr_find_window_center(grp, work_bgn, work_end);
1952 
1953 	return ret;
1954 }
1955 
1956 /**
1957  * search_stop_check() - Check if the detected edge is valid
1958  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
1959  * @d:			DQS delay
1960  * @rank_bgn:		Rank number
1961  * @write_group:	Write Group
1962  * @read_group:		Read Group
1963  * @bit_chk:		Resulting bit mask after the test
1964  * @sticky_bit_chk:	Resulting sticky bit mask after the test
1965  * @use_read_test:	Perform read test
1966  *
1967  * Test if the found edge is valid.
1968  */
1969 static u32 search_stop_check(const int write, const int d, const int rank_bgn,
1970 			     const u32 write_group, const u32 read_group,
1971 			     u32 *bit_chk, u32 *sticky_bit_chk,
1972 			     const u32 use_read_test)
1973 {
1974 	const u32 ratio = rwcfg->mem_if_read_dqs_width /
1975 			  rwcfg->mem_if_write_dqs_width;
1976 	const u32 correct_mask = write ? param->write_correct_mask :
1977 					 param->read_correct_mask;
1978 	const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
1979 				    rwcfg->mem_dq_per_read_dqs;
1980 	u32 ret;
1981 	/*
1982 	 * Stop searching when the read test doesn't pass AND when
1983 	 * we've seen a passing read on every bit.
1984 	 */
1985 	if (write) {			/* WRITE-ONLY */
1986 		ret = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1987 							 0, PASS_ONE_BIT,
1988 							 bit_chk, 0);
1989 	} else if (use_read_test) {	/* READ-ONLY */
1990 		ret = !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group,
1991 							NUM_READ_PB_TESTS,
1992 							PASS_ONE_BIT, bit_chk,
1993 							0, 0);
1994 	} else {			/* READ-ONLY */
1995 		rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0,
1996 						PASS_ONE_BIT, bit_chk, 0);
1997 		*bit_chk = *bit_chk >> (per_dqs *
1998 			(read_group - (write_group * ratio)));
1999 		ret = (*bit_chk == 0);
2000 	}
2001 	*sticky_bit_chk = *sticky_bit_chk | *bit_chk;
2002 	ret = ret && (*sticky_bit_chk == correct_mask);
2003 	debug_cond(DLEVEL == 2,
2004 		   "%s:%d center(left): dtap=%u => %u == %u && %u",
2005 		   __func__, __LINE__, d,
2006 		   *sticky_bit_chk, correct_mask, ret);
2007 	return ret;
2008 }
2009 
2010 /**
2011  * search_left_edge() - Find left edge of DQ/DQS working phase
2012  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
2013  * @rank_bgn:		Rank number
2014  * @write_group:	Write Group
2015  * @read_group:		Read Group
2016  * @test_bgn:		Rank number to begin the test
2017  * @sticky_bit_chk:	Resulting sticky bit mask after the test
2018  * @left_edge:		Left edge of the DQ/DQS phase
2019  * @right_edge:		Right edge of the DQ/DQS phase
2020  * @use_read_test:	Perform read test
2021  *
2022  * Find left edge of DQ/DQS working phase.
2023  */
2024 static void search_left_edge(const int write, const int rank_bgn,
2025 	const u32 write_group, const u32 read_group, const u32 test_bgn,
2026 	u32 *sticky_bit_chk,
2027 	int *left_edge, int *right_edge, const u32 use_read_test)
2028 {
2029 	const u32 delay_max = write ? iocfg->io_out1_delay_max :
2030 				      iocfg->io_in_delay_max;
2031 	const u32 dqs_max = write ? iocfg->io_out1_delay_max :
2032 				    iocfg->dqs_in_delay_max;
2033 	const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2034 				    rwcfg->mem_dq_per_read_dqs;
2035 	u32 stop, bit_chk;
2036 	int i, d;
2037 
2038 	for (d = 0; d <= dqs_max; d++) {
2039 		if (write)
2040 			scc_mgr_apply_group_dq_out1_delay(d);
2041 		else
2042 			scc_mgr_apply_group_dq_in_delay(test_bgn, d);
2043 
2044 		writel(0, &sdr_scc_mgr->update);
2045 
2046 		stop = search_stop_check(write, d, rank_bgn, write_group,
2047 					 read_group, &bit_chk, sticky_bit_chk,
2048 					 use_read_test);
2049 		if (stop == 1)
2050 			break;
2051 
2052 		/* stop != 1 */
2053 		for (i = 0; i < per_dqs; i++) {
2054 			if (bit_chk & 1) {
2055 				/*
2056 				 * Remember a passing test as
2057 				 * the left_edge.
2058 				 */
2059 				left_edge[i] = d;
2060 			} else {
2061 				/*
2062 				 * If a left edge has not been seen
2063 				 * yet, then a future passing test
2064 				 * will mark this edge as the right
2065 				 * edge.
2066 				 */
2067 				if (left_edge[i] == delay_max + 1)
2068 					right_edge[i] = -(d + 1);
2069 			}
2070 			bit_chk >>= 1;
2071 		}
2072 	}
2073 
2074 	/* Reset DQ delay chains to 0 */
2075 	if (write)
2076 		scc_mgr_apply_group_dq_out1_delay(0);
2077 	else
2078 		scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2079 
2080 	*sticky_bit_chk = 0;
2081 	for (i = per_dqs - 1; i >= 0; i--) {
2082 		debug_cond(DLEVEL == 2,
2083 			   "%s:%d vfifo_center: left_edge[%u]: %d right_edge[%u]: %d\n",
2084 			   __func__, __LINE__, i, left_edge[i],
2085 			   i, right_edge[i]);
2086 
2087 		/*
2088 		 * Check for cases where we haven't found the left edge,
2089 		 * which makes our assignment of the the right edge invalid.
2090 		 * Reset it to the illegal value.
2091 		 */
2092 		if ((left_edge[i] == delay_max + 1) &&
2093 		    (right_edge[i] != delay_max + 1)) {
2094 			right_edge[i] = delay_max + 1;
2095 			debug_cond(DLEVEL == 2,
2096 				   "%s:%d vfifo_center: reset right_edge[%u]: %d\n",
2097 				   __func__, __LINE__, i, right_edge[i]);
2098 		}
2099 
2100 		/*
2101 		 * Reset sticky bit
2102 		 * READ: except for bits where we have seen both
2103 		 *       the left and right edge.
2104 		 * WRITE: except for bits where we have seen the
2105 		 *        left edge.
2106 		 */
2107 		*sticky_bit_chk <<= 1;
2108 		if (write) {
2109 			if (left_edge[i] != delay_max + 1)
2110 				*sticky_bit_chk |= 1;
2111 		} else {
2112 			if ((left_edge[i] != delay_max + 1) &&
2113 			    (right_edge[i] != delay_max + 1))
2114 				*sticky_bit_chk |= 1;
2115 		}
2116 	}
2117 }
2118 
2119 /**
2120  * search_right_edge() - Find right edge of DQ/DQS working phase
2121  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
2122  * @rank_bgn:		Rank number
2123  * @write_group:	Write Group
2124  * @read_group:		Read Group
2125  * @start_dqs:		DQS start phase
2126  * @start_dqs_en:	DQS enable start phase
2127  * @sticky_bit_chk:	Resulting sticky bit mask after the test
2128  * @left_edge:		Left edge of the DQ/DQS phase
2129  * @right_edge:		Right edge of the DQ/DQS phase
2130  * @use_read_test:	Perform read test
2131  *
2132  * Find right edge of DQ/DQS working phase.
2133  */
2134 static int search_right_edge(const int write, const int rank_bgn,
2135 	const u32 write_group, const u32 read_group,
2136 	const int start_dqs, const int start_dqs_en,
2137 	u32 *sticky_bit_chk,
2138 	int *left_edge, int *right_edge, const u32 use_read_test)
2139 {
2140 	const u32 delay_max = write ? iocfg->io_out1_delay_max :
2141 				      iocfg->io_in_delay_max;
2142 	const u32 dqs_max = write ? iocfg->io_out1_delay_max :
2143 				    iocfg->dqs_in_delay_max;
2144 	const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2145 				    rwcfg->mem_dq_per_read_dqs;
2146 	u32 stop, bit_chk;
2147 	int i, d;
2148 
2149 	for (d = 0; d <= dqs_max - start_dqs; d++) {
2150 		if (write) {	/* WRITE-ONLY */
2151 			scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2152 								d + start_dqs);
2153 		} else {	/* READ-ONLY */
2154 			scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
2155 			if (iocfg->shift_dqs_en_when_shift_dqs) {
2156 				u32 delay = d + start_dqs_en;
2157 				if (delay > iocfg->dqs_en_delay_max)
2158 					delay = iocfg->dqs_en_delay_max;
2159 				scc_mgr_set_dqs_en_delay(read_group, delay);
2160 			}
2161 			scc_mgr_load_dqs(read_group);
2162 		}
2163 
2164 		writel(0, &sdr_scc_mgr->update);
2165 
2166 		stop = search_stop_check(write, d, rank_bgn, write_group,
2167 					 read_group, &bit_chk, sticky_bit_chk,
2168 					 use_read_test);
2169 		if (stop == 1) {
2170 			if (write && (d == 0)) {	/* WRITE-ONLY */
2171 				for (i = 0; i < rwcfg->mem_dq_per_write_dqs;
2172 				     i++) {
2173 					/*
2174 					 * d = 0 failed, but it passed when
2175 					 * testing the left edge, so it must be
2176 					 * marginal, set it to -1
2177 					 */
2178 					if (right_edge[i] == delay_max + 1 &&
2179 					    left_edge[i] != delay_max + 1)
2180 						right_edge[i] = -1;
2181 				}
2182 			}
2183 			break;
2184 		}
2185 
2186 		/* stop != 1 */
2187 		for (i = 0; i < per_dqs; i++) {
2188 			if (bit_chk & 1) {
2189 				/*
2190 				 * Remember a passing test as
2191 				 * the right_edge.
2192 				 */
2193 				right_edge[i] = d;
2194 			} else {
2195 				if (d != 0) {
2196 					/*
2197 					 * If a right edge has not
2198 					 * been seen yet, then a future
2199 					 * passing test will mark this
2200 					 * edge as the left edge.
2201 					 */
2202 					if (right_edge[i] == delay_max + 1)
2203 						left_edge[i] = -(d + 1);
2204 				} else {
2205 					/*
2206 					 * d = 0 failed, but it passed
2207 					 * when testing the left edge,
2208 					 * so it must be marginal, set
2209 					 * it to -1
2210 					 */
2211 					if (right_edge[i] == delay_max + 1 &&
2212 					    left_edge[i] != delay_max + 1)
2213 						right_edge[i] = -1;
2214 					/*
2215 					 * If a right edge has not been
2216 					 * seen yet, then a future
2217 					 * passing test will mark this
2218 					 * edge as the left edge.
2219 					 */
2220 					else if (right_edge[i] == delay_max + 1)
2221 						left_edge[i] = -(d + 1);
2222 				}
2223 			}
2224 
2225 			debug_cond(DLEVEL == 2, "%s:%d center[r,d=%u]: ",
2226 				   __func__, __LINE__, d);
2227 			debug_cond(DLEVEL == 2,
2228 				   "bit_chk_test=%i left_edge[%u]: %d ",
2229 				   bit_chk & 1, i, left_edge[i]);
2230 			debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2231 				   right_edge[i]);
2232 			bit_chk >>= 1;
2233 		}
2234 	}
2235 
2236 	/* Check that all bits have a window */
2237 	for (i = 0; i < per_dqs; i++) {
2238 		debug_cond(DLEVEL == 2,
2239 			   "%s:%d write_center: left_edge[%u]: %d right_edge[%u]: %d",
2240 			   __func__, __LINE__, i, left_edge[i],
2241 			   i, right_edge[i]);
2242 		if ((left_edge[i] == dqs_max + 1) ||
2243 		    (right_edge[i] == dqs_max + 1))
2244 			return i + 1;	/* FIXME: If we fail, retval > 0 */
2245 	}
2246 
2247 	return 0;
2248 }
2249 
2250 /**
2251  * get_window_mid_index() - Find the best middle setting of DQ/DQS phase
2252  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
2253  * @left_edge:		Left edge of the DQ/DQS phase
2254  * @right_edge:		Right edge of the DQ/DQS phase
2255  * @mid_min:		Best DQ/DQS phase middle setting
2256  *
2257  * Find index and value of the middle of the DQ/DQS working phase.
2258  */
2259 static int get_window_mid_index(const int write, int *left_edge,
2260 				int *right_edge, int *mid_min)
2261 {
2262 	const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2263 				    rwcfg->mem_dq_per_read_dqs;
2264 	int i, mid, min_index;
2265 
2266 	/* Find middle of window for each DQ bit */
2267 	*mid_min = left_edge[0] - right_edge[0];
2268 	min_index = 0;
2269 	for (i = 1; i < per_dqs; i++) {
2270 		mid = left_edge[i] - right_edge[i];
2271 		if (mid < *mid_min) {
2272 			*mid_min = mid;
2273 			min_index = i;
2274 		}
2275 	}
2276 
2277 	/*
2278 	 * -mid_min/2 represents the amount that we need to move DQS.
2279 	 * If mid_min is odd and positive we'll need to add one to make
2280 	 * sure the rounding in further calculations is correct (always
2281 	 * bias to the right), so just add 1 for all positive values.
2282 	 */
2283 	if (*mid_min > 0)
2284 		(*mid_min)++;
2285 	*mid_min = *mid_min / 2;
2286 
2287 	debug_cond(DLEVEL == 1, "%s:%d vfifo_center: *mid_min=%d (index=%u)\n",
2288 		   __func__, __LINE__, *mid_min, min_index);
2289 	return min_index;
2290 }
2291 
2292 /**
2293  * center_dq_windows() - Center the DQ/DQS windows
2294  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
2295  * @left_edge:		Left edge of the DQ/DQS phase
2296  * @right_edge:		Right edge of the DQ/DQS phase
2297  * @mid_min:		Adjusted DQ/DQS phase middle setting
2298  * @orig_mid_min:	Original DQ/DQS phase middle setting
2299  * @min_index:		DQ/DQS phase middle setting index
2300  * @test_bgn:		Rank number to begin the test
2301  * @dq_margin:		Amount of shift for the DQ
2302  * @dqs_margin:		Amount of shift for the DQS
2303  *
2304  * Align the DQ/DQS windows in each group.
2305  */
2306 static void center_dq_windows(const int write, int *left_edge, int *right_edge,
2307 			      const int mid_min, const int orig_mid_min,
2308 			      const int min_index, const int test_bgn,
2309 			      int *dq_margin, int *dqs_margin)
2310 {
2311 	const u32 delay_max = write ? iocfg->io_out1_delay_max :
2312 				      iocfg->io_in_delay_max;
2313 	const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2314 				    rwcfg->mem_dq_per_read_dqs;
2315 	const u32 delay_off = write ? SCC_MGR_IO_OUT1_DELAY_OFFSET :
2316 				      SCC_MGR_IO_IN_DELAY_OFFSET;
2317 	const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | delay_off;
2318 
2319 	u32 temp_dq_io_delay1, temp_dq_io_delay2;
2320 	int shift_dq, i, p;
2321 
2322 	/* Initialize data for export structures */
2323 	*dqs_margin = delay_max + 1;
2324 	*dq_margin  = delay_max + 1;
2325 
2326 	/* add delay to bring centre of all DQ windows to the same "level" */
2327 	for (i = 0, p = test_bgn; i < per_dqs; i++, p++) {
2328 		/* Use values before divide by 2 to reduce round off error */
2329 		shift_dq = (left_edge[i] - right_edge[i] -
2330 			(left_edge[min_index] - right_edge[min_index]))/2  +
2331 			(orig_mid_min - mid_min);
2332 
2333 		debug_cond(DLEVEL == 2,
2334 			   "vfifo_center: before: shift_dq[%u]=%d\n",
2335 			   i, shift_dq);
2336 
2337 		temp_dq_io_delay1 = readl(addr + (p << 2));
2338 		temp_dq_io_delay2 = readl(addr + (i << 2));
2339 
2340 		if (shift_dq + temp_dq_io_delay1 > delay_max)
2341 			shift_dq = delay_max - temp_dq_io_delay2;
2342 		else if (shift_dq + temp_dq_io_delay1 < 0)
2343 			shift_dq = -temp_dq_io_delay1;
2344 
2345 		debug_cond(DLEVEL == 2,
2346 			   "vfifo_center: after: shift_dq[%u]=%d\n",
2347 			   i, shift_dq);
2348 
2349 		if (write)
2350 			scc_mgr_set_dq_out1_delay(i,
2351 						  temp_dq_io_delay1 + shift_dq);
2352 		else
2353 			scc_mgr_set_dq_in_delay(p,
2354 						temp_dq_io_delay1 + shift_dq);
2355 
2356 		scc_mgr_load_dq(p);
2357 
2358 		debug_cond(DLEVEL == 2,
2359 			   "vfifo_center: margin[%u]=[%d,%d]\n", i,
2360 			   left_edge[i] - shift_dq + (-mid_min),
2361 			   right_edge[i] + shift_dq - (-mid_min));
2362 
2363 		/* To determine values for export structures */
2364 		if (left_edge[i] - shift_dq + (-mid_min) < *dq_margin)
2365 			*dq_margin = left_edge[i] - shift_dq + (-mid_min);
2366 
2367 		if (right_edge[i] + shift_dq - (-mid_min) < *dqs_margin)
2368 			*dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2369 	}
2370 }
2371 
2372 /**
2373  * rw_mgr_mem_calibrate_vfifo_center() - Per-bit deskew DQ and centering
2374  * @rank_bgn:		Rank number
2375  * @rw_group:		Read/Write Group
2376  * @test_bgn:		Rank at which the test begins
2377  * @use_read_test:	Perform a read test
2378  * @update_fom:		Update FOM
2379  *
2380  * Per-bit deskew DQ and centering.
2381  */
2382 static int rw_mgr_mem_calibrate_vfifo_center(const u32 rank_bgn,
2383 			const u32 rw_group, const u32 test_bgn,
2384 			const int use_read_test, const int update_fom)
2385 {
2386 	const u32 addr =
2387 		SDR_PHYGRP_SCCGRP_ADDRESS + SCC_MGR_DQS_IN_DELAY_OFFSET +
2388 		(rw_group << 2);
2389 	/*
2390 	 * Store these as signed since there are comparisons with
2391 	 * signed numbers.
2392 	 */
2393 	u32 sticky_bit_chk;
2394 	int32_t left_edge[rwcfg->mem_dq_per_read_dqs];
2395 	int32_t right_edge[rwcfg->mem_dq_per_read_dqs];
2396 	int32_t orig_mid_min, mid_min;
2397 	int32_t new_dqs, start_dqs, start_dqs_en = 0, final_dqs_en;
2398 	int32_t dq_margin, dqs_margin;
2399 	int i, min_index;
2400 	int ret;
2401 
2402 	debug("%s:%d: %u %u", __func__, __LINE__, rw_group, test_bgn);
2403 
2404 	start_dqs = readl(addr);
2405 	if (iocfg->shift_dqs_en_when_shift_dqs)
2406 		start_dqs_en = readl(addr - iocfg->dqs_en_delay_offset);
2407 
2408 	/* set the left and right edge of each bit to an illegal value */
2409 	/* use (iocfg->io_in_delay_max + 1) as an illegal value */
2410 	sticky_bit_chk = 0;
2411 	for (i = 0; i < rwcfg->mem_dq_per_read_dqs; i++) {
2412 		left_edge[i]  = iocfg->io_in_delay_max + 1;
2413 		right_edge[i] = iocfg->io_in_delay_max + 1;
2414 	}
2415 
2416 	/* Search for the left edge of the window for each bit */
2417 	search_left_edge(0, rank_bgn, rw_group, rw_group, test_bgn,
2418 			 &sticky_bit_chk,
2419 			 left_edge, right_edge, use_read_test);
2420 
2421 
2422 	/* Search for the right edge of the window for each bit */
2423 	ret = search_right_edge(0, rank_bgn, rw_group, rw_group,
2424 				start_dqs, start_dqs_en,
2425 				&sticky_bit_chk,
2426 				left_edge, right_edge, use_read_test);
2427 	if (ret) {
2428 		/*
2429 		 * Restore delay chain settings before letting the loop
2430 		 * in rw_mgr_mem_calibrate_vfifo to retry different
2431 		 * dqs/ck relationships.
2432 		 */
2433 		scc_mgr_set_dqs_bus_in_delay(rw_group, start_dqs);
2434 		if (iocfg->shift_dqs_en_when_shift_dqs)
2435 			scc_mgr_set_dqs_en_delay(rw_group, start_dqs_en);
2436 
2437 		scc_mgr_load_dqs(rw_group);
2438 		writel(0, &sdr_scc_mgr->update);
2439 
2440 		debug_cond(DLEVEL == 1,
2441 			   "%s:%d vfifo_center: failed to find edge [%u]: %d %d",
2442 			   __func__, __LINE__, i, left_edge[i], right_edge[i]);
2443 		if (use_read_test) {
2444 			set_failing_group_stage(rw_group *
2445 				rwcfg->mem_dq_per_read_dqs + i,
2446 				CAL_STAGE_VFIFO,
2447 				CAL_SUBSTAGE_VFIFO_CENTER);
2448 		} else {
2449 			set_failing_group_stage(rw_group *
2450 				rwcfg->mem_dq_per_read_dqs + i,
2451 				CAL_STAGE_VFIFO_AFTER_WRITES,
2452 				CAL_SUBSTAGE_VFIFO_CENTER);
2453 		}
2454 		return -EIO;
2455 	}
2456 
2457 	min_index = get_window_mid_index(0, left_edge, right_edge, &mid_min);
2458 
2459 	/* Determine the amount we can change DQS (which is -mid_min) */
2460 	orig_mid_min = mid_min;
2461 	new_dqs = start_dqs - mid_min;
2462 	if (new_dqs > iocfg->dqs_in_delay_max)
2463 		new_dqs = iocfg->dqs_in_delay_max;
2464 	else if (new_dqs < 0)
2465 		new_dqs = 0;
2466 
2467 	mid_min = start_dqs - new_dqs;
2468 	debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2469 		   mid_min, new_dqs);
2470 
2471 	if (iocfg->shift_dqs_en_when_shift_dqs) {
2472 		if (start_dqs_en - mid_min > iocfg->dqs_en_delay_max)
2473 			mid_min += start_dqs_en - mid_min -
2474 				   iocfg->dqs_en_delay_max;
2475 		else if (start_dqs_en - mid_min < 0)
2476 			mid_min += start_dqs_en - mid_min;
2477 	}
2478 	new_dqs = start_dqs - mid_min;
2479 
2480 	debug_cond(DLEVEL == 1,
2481 		   "vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d\n",
2482 		   start_dqs,
2483 		   iocfg->shift_dqs_en_when_shift_dqs ? start_dqs_en : -1,
2484 		   new_dqs, mid_min);
2485 
2486 	/* Add delay to bring centre of all DQ windows to the same "level". */
2487 	center_dq_windows(0, left_edge, right_edge, mid_min, orig_mid_min,
2488 			  min_index, test_bgn, &dq_margin, &dqs_margin);
2489 
2490 	/* Move DQS-en */
2491 	if (iocfg->shift_dqs_en_when_shift_dqs) {
2492 		final_dqs_en = start_dqs_en - mid_min;
2493 		scc_mgr_set_dqs_en_delay(rw_group, final_dqs_en);
2494 		scc_mgr_load_dqs(rw_group);
2495 	}
2496 
2497 	/* Move DQS */
2498 	scc_mgr_set_dqs_bus_in_delay(rw_group, new_dqs);
2499 	scc_mgr_load_dqs(rw_group);
2500 	debug_cond(DLEVEL == 2,
2501 		   "%s:%d vfifo_center: dq_margin=%d dqs_margin=%d",
2502 		   __func__, __LINE__, dq_margin, dqs_margin);
2503 
2504 	/*
2505 	 * Do not remove this line as it makes sure all of our decisions
2506 	 * have been applied. Apply the update bit.
2507 	 */
2508 	writel(0, &sdr_scc_mgr->update);
2509 
2510 	if ((dq_margin < 0) || (dqs_margin < 0))
2511 		return -EINVAL;
2512 
2513 	return 0;
2514 }
2515 
2516 /**
2517  * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2518  * @rw_group:	Read/Write Group
2519  * @phase:	DQ/DQS phase
2520  *
2521  * Because initially no communication ca be reliably performed with the memory
2522  * device, the sequencer uses a guaranteed write mechanism to write data into
2523  * the memory device.
2524  */
2525 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2526 						 const u32 phase)
2527 {
2528 	int ret;
2529 
2530 	/* Set a particular DQ/DQS phase. */
2531 	scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2532 
2533 	debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
2534 		   __func__, __LINE__, rw_group, phase);
2535 
2536 	/*
2537 	 * Altera EMI_RM 2015.05.04 :: Figure 1-25
2538 	 * Load up the patterns used by read calibration using the
2539 	 * current DQDQS phase.
2540 	 */
2541 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2542 
2543 	if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2544 		return 0;
2545 
2546 	/*
2547 	 * Altera EMI_RM 2015.05.04 :: Figure 1-26
2548 	 * Back-to-Back reads of the patterns used for calibration.
2549 	 */
2550 	ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2551 	if (ret)
2552 		debug_cond(DLEVEL == 1,
2553 			   "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2554 			   __func__, __LINE__, rw_group, phase);
2555 	return ret;
2556 }
2557 
2558 /**
2559  * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2560  * @rw_group:	Read/Write Group
2561  * @test_bgn:	Rank at which the test begins
2562  *
2563  * DQS enable calibration ensures reliable capture of the DQ signal without
2564  * glitches on the DQS line.
2565  */
2566 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2567 						       const u32 test_bgn)
2568 {
2569 	/*
2570 	 * Altera EMI_RM 2015.05.04 :: Figure 1-27
2571 	 * DQS and DQS Eanble Signal Relationships.
2572 	 */
2573 
2574 	/* We start at zero, so have one less dq to devide among */
2575 	const u32 delay_step = iocfg->io_in_delay_max /
2576 			       (rwcfg->mem_dq_per_read_dqs - 1);
2577 	int ret;
2578 	u32 i, p, d, r;
2579 
2580 	debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2581 
2582 	/* Try different dq_in_delays since the DQ path is shorter than DQS. */
2583 	for (r = 0; r < rwcfg->mem_number_of_ranks;
2584 	     r += NUM_RANKS_PER_SHADOW_REG) {
2585 		for (i = 0, p = test_bgn, d = 0;
2586 		     i < rwcfg->mem_dq_per_read_dqs;
2587 		     i++, p++, d += delay_step) {
2588 			debug_cond(DLEVEL == 1,
2589 				   "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2590 				   __func__, __LINE__, rw_group, r, i, p, d);
2591 
2592 			scc_mgr_set_dq_in_delay(p, d);
2593 			scc_mgr_load_dq(p);
2594 		}
2595 
2596 		writel(0, &sdr_scc_mgr->update);
2597 	}
2598 
2599 	/*
2600 	 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2601 	 * dq_in_delay values
2602 	 */
2603 	ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
2604 
2605 	debug_cond(DLEVEL == 1,
2606 		   "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
2607 		   __func__, __LINE__, rw_group, !ret);
2608 
2609 	for (r = 0; r < rwcfg->mem_number_of_ranks;
2610 	     r += NUM_RANKS_PER_SHADOW_REG) {
2611 		scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2612 		writel(0, &sdr_scc_mgr->update);
2613 	}
2614 
2615 	return ret;
2616 }
2617 
2618 /**
2619  * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2620  * @rw_group:		Read/Write Group
2621  * @test_bgn:		Rank at which the test begins
2622  * @use_read_test:	Perform a read test
2623  * @update_fom:		Update FOM
2624  *
2625  * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2626  * within a group.
2627  */
2628 static int
2629 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2630 				      const int use_read_test,
2631 				      const int update_fom)
2632 
2633 {
2634 	int ret, grp_calibrated;
2635 	u32 rank_bgn, sr;
2636 
2637 	/*
2638 	 * Altera EMI_RM 2015.05.04 :: Figure 1-28
2639 	 * Read per-bit deskew can be done on a per shadow register basis.
2640 	 */
2641 	grp_calibrated = 1;
2642 	for (rank_bgn = 0, sr = 0;
2643 	     rank_bgn < rwcfg->mem_number_of_ranks;
2644 	     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2645 		ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2646 							test_bgn,
2647 							use_read_test,
2648 							update_fom);
2649 		if (!ret)
2650 			continue;
2651 
2652 		grp_calibrated = 0;
2653 	}
2654 
2655 	if (!grp_calibrated)
2656 		return -EIO;
2657 
2658 	return 0;
2659 }
2660 
2661 /**
2662  * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2663  * @rw_group:		Read/Write Group
2664  * @test_bgn:		Rank at which the test begins
2665  *
2666  * Stage 1: Calibrate the read valid prediction FIFO.
2667  *
2668  * This function implements UniPHY calibration Stage 1, as explained in
2669  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2670  *
2671  * - read valid prediction will consist of finding:
2672  *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2673  *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
2674  *  - we also do a per-bit deskew on the DQ lines.
2675  */
2676 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2677 {
2678 	u32 p, d;
2679 	u32 dtaps_per_ptap;
2680 	u32 failed_substage;
2681 
2682 	int ret;
2683 
2684 	debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2685 
2686 	/* Update info for sims */
2687 	reg_file_set_group(rw_group);
2688 	reg_file_set_stage(CAL_STAGE_VFIFO);
2689 	reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2690 
2691 	failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2692 
2693 	/* USER Determine number of delay taps for each phase tap. */
2694 	dtaps_per_ptap = DIV_ROUND_UP(iocfg->delay_per_opa_tap,
2695 				      iocfg->delay_per_dqs_en_dchain_tap) - 1;
2696 
2697 	for (d = 0; d <= dtaps_per_ptap; d += 2) {
2698 		/*
2699 		 * In RLDRAMX we may be messing the delay of pins in
2700 		 * the same write rw_group but outside of the current read
2701 		 * the rw_group, but that's ok because we haven't calibrated
2702 		 * output side yet.
2703 		 */
2704 		if (d > 0) {
2705 			scc_mgr_apply_group_all_out_delay_add_all_ranks(
2706 								rw_group, d);
2707 		}
2708 
2709 		for (p = 0; p <= iocfg->dqdqs_out_phase_max; p++) {
2710 			/* 1) Guaranteed Write */
2711 			ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2712 			if (ret)
2713 				break;
2714 
2715 			/* 2) DQS Enable Calibration */
2716 			ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2717 									  test_bgn);
2718 			if (ret) {
2719 				failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2720 				continue;
2721 			}
2722 
2723 			/* 3) Centering DQ/DQS */
2724 			/*
2725 			 * If doing read after write calibration, do not update
2726 			 * FOM now. Do it then.
2727 			 */
2728 			ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2729 								test_bgn, 1, 0);
2730 			if (ret) {
2731 				failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2732 				continue;
2733 			}
2734 
2735 			/* All done. */
2736 			goto cal_done_ok;
2737 		}
2738 	}
2739 
2740 	/* Calibration Stage 1 failed. */
2741 	set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2742 	return 0;
2743 
2744 	/* Calibration Stage 1 completed OK. */
2745 cal_done_ok:
2746 	/*
2747 	 * Reset the delay chains back to zero if they have moved > 1
2748 	 * (check for > 1 because loop will increase d even when pass in
2749 	 * first case).
2750 	 */
2751 	if (d > 2)
2752 		scc_mgr_zero_group(rw_group, 1);
2753 
2754 	return 1;
2755 }
2756 
2757 /**
2758  * rw_mgr_mem_calibrate_vfifo_end() - DQ/DQS Centering.
2759  * @rw_group:		Read/Write Group
2760  * @test_bgn:		Rank at which the test begins
2761  *
2762  * Stage 3: DQ/DQS Centering.
2763  *
2764  * This function implements UniPHY calibration Stage 3, as explained in
2765  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2766  */
2767 static int rw_mgr_mem_calibrate_vfifo_end(const u32 rw_group,
2768 					  const u32 test_bgn)
2769 {
2770 	int ret;
2771 
2772 	debug("%s:%d %u %u", __func__, __LINE__, rw_group, test_bgn);
2773 
2774 	/* Update info for sims. */
2775 	reg_file_set_group(rw_group);
2776 	reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2777 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2778 
2779 	ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, test_bgn, 0, 1);
2780 	if (ret)
2781 		set_failing_group_stage(rw_group,
2782 					CAL_STAGE_VFIFO_AFTER_WRITES,
2783 					CAL_SUBSTAGE_VFIFO_CENTER);
2784 	return ret;
2785 }
2786 
2787 /**
2788  * rw_mgr_mem_calibrate_lfifo() - Minimize latency
2789  *
2790  * Stage 4: Minimize latency.
2791  *
2792  * This function implements UniPHY calibration Stage 4, as explained in
2793  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2794  * Calibrate LFIFO to find smallest read latency.
2795  */
2796 static u32 rw_mgr_mem_calibrate_lfifo(void)
2797 {
2798 	int found_one = 0;
2799 
2800 	debug("%s:%d\n", __func__, __LINE__);
2801 
2802 	/* Update info for sims. */
2803 	reg_file_set_stage(CAL_STAGE_LFIFO);
2804 	reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2805 
2806 	/* Load up the patterns used by read calibration for all ranks */
2807 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2808 
2809 	do {
2810 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2811 		debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2812 			   __func__, __LINE__, gbl->curr_read_lat);
2813 
2814 		if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, NUM_READ_TESTS,
2815 							      PASS_ALL_BITS, 1))
2816 			break;
2817 
2818 		found_one = 1;
2819 		/*
2820 		 * Reduce read latency and see if things are
2821 		 * working correctly.
2822 		 */
2823 		gbl->curr_read_lat--;
2824 	} while (gbl->curr_read_lat > 0);
2825 
2826 	/* Reset the fifos to get pointers to known state. */
2827 	writel(0, &phy_mgr_cmd->fifo_reset);
2828 
2829 	if (found_one) {
2830 		/* Add a fudge factor to the read latency that was determined */
2831 		gbl->curr_read_lat += 2;
2832 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2833 		debug_cond(DLEVEL == 2,
2834 			   "%s:%d lfifo: success: using read_lat=%u\n",
2835 			   __func__, __LINE__, gbl->curr_read_lat);
2836 	} else {
2837 		set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2838 					CAL_SUBSTAGE_READ_LATENCY);
2839 
2840 		debug_cond(DLEVEL == 2,
2841 			   "%s:%d lfifo: failed at initial read_lat=%u\n",
2842 			   __func__, __LINE__, gbl->curr_read_lat);
2843 	}
2844 
2845 	return found_one;
2846 }
2847 
2848 /**
2849  * search_window() - Search for the/part of the window with DM/DQS shift
2850  * @search_dm:		If 1, search for the DM shift, if 0, search for DQS shift
2851  * @rank_bgn:		Rank number
2852  * @write_group:	Write Group
2853  * @bgn_curr:		Current window begin
2854  * @end_curr:		Current window end
2855  * @bgn_best:		Current best window begin
2856  * @end_best:		Current best window end
2857  * @win_best:		Size of the best window
2858  * @new_dqs:		New DQS value (only applicable if search_dm = 0).
2859  *
2860  * Search for the/part of the window with DM/DQS shift.
2861  */
2862 static void search_window(const int search_dm,
2863 			  const u32 rank_bgn, const u32 write_group,
2864 			  int *bgn_curr, int *end_curr, int *bgn_best,
2865 			  int *end_best, int *win_best, int new_dqs)
2866 {
2867 	u32 bit_chk;
2868 	const int max = iocfg->io_out1_delay_max - new_dqs;
2869 	int d, di;
2870 
2871 	/* Search for the/part of the window with DM/DQS shift. */
2872 	for (di = max; di >= 0; di -= DELTA_D) {
2873 		if (search_dm) {
2874 			d = di;
2875 			scc_mgr_apply_group_dm_out1_delay(d);
2876 		} else {
2877 			/* For DQS, we go from 0...max */
2878 			d = max - di;
2879 			/*
2880 			 * Note: This only shifts DQS, so are we limiting
2881 			 *       ourselves to width of DQ unnecessarily.
2882 			 */
2883 			scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2884 								d + new_dqs);
2885 		}
2886 
2887 		writel(0, &sdr_scc_mgr->update);
2888 
2889 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2890 						    PASS_ALL_BITS, &bit_chk,
2891 						    0)) {
2892 			/* Set current end of the window. */
2893 			*end_curr = search_dm ? -d : d;
2894 
2895 			/*
2896 			 * If a starting edge of our window has not been seen
2897 			 * this is our current start of the DM window.
2898 			 */
2899 			if (*bgn_curr == iocfg->io_out1_delay_max + 1)
2900 				*bgn_curr = search_dm ? -d : d;
2901 
2902 			/*
2903 			 * If current window is bigger than best seen.
2904 			 * Set best seen to be current window.
2905 			 */
2906 			if ((*end_curr - *bgn_curr + 1) > *win_best) {
2907 				*win_best = *end_curr - *bgn_curr + 1;
2908 				*bgn_best = *bgn_curr;
2909 				*end_best = *end_curr;
2910 			}
2911 		} else {
2912 			/* We just saw a failing test. Reset temp edge. */
2913 			*bgn_curr = iocfg->io_out1_delay_max + 1;
2914 			*end_curr = iocfg->io_out1_delay_max + 1;
2915 
2916 			/* Early exit is only applicable to DQS. */
2917 			if (search_dm)
2918 				continue;
2919 
2920 			/*
2921 			 * Early exit optimization: if the remaining delay
2922 			 * chain space is less than already seen largest
2923 			 * window we can exit.
2924 			 */
2925 			if (*win_best - 1 > iocfg->io_out1_delay_max - new_dqs - d)
2926 				break;
2927 		}
2928 	}
2929 }
2930 
2931 /*
2932  * rw_mgr_mem_calibrate_writes_center() - Center all windows
2933  * @rank_bgn:		Rank number
2934  * @write_group:	Write group
2935  * @test_bgn:		Rank at which the test begins
2936  *
2937  * Center all windows. Do per-bit-deskew to possibly increase size of
2938  * certain windows.
2939  */
2940 static int
2941 rw_mgr_mem_calibrate_writes_center(const u32 rank_bgn, const u32 write_group,
2942 				   const u32 test_bgn)
2943 {
2944 	int i;
2945 	u32 sticky_bit_chk;
2946 	u32 min_index;
2947 	int left_edge[rwcfg->mem_dq_per_write_dqs];
2948 	int right_edge[rwcfg->mem_dq_per_write_dqs];
2949 	int mid;
2950 	int mid_min, orig_mid_min;
2951 	int new_dqs, start_dqs;
2952 	int dq_margin, dqs_margin, dm_margin;
2953 	int bgn_curr = iocfg->io_out1_delay_max + 1;
2954 	int end_curr = iocfg->io_out1_delay_max + 1;
2955 	int bgn_best = iocfg->io_out1_delay_max + 1;
2956 	int end_best = iocfg->io_out1_delay_max + 1;
2957 	int win_best = 0;
2958 
2959 	int ret;
2960 
2961 	debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2962 
2963 	dm_margin = 0;
2964 
2965 	start_dqs = readl((SDR_PHYGRP_SCCGRP_ADDRESS |
2966 			  SCC_MGR_IO_OUT1_DELAY_OFFSET) +
2967 			  (rwcfg->mem_dq_per_write_dqs << 2));
2968 
2969 	/* Per-bit deskew. */
2970 
2971 	/*
2972 	 * Set the left and right edge of each bit to an illegal value.
2973 	 * Use (iocfg->io_out1_delay_max + 1) as an illegal value.
2974 	 */
2975 	sticky_bit_chk = 0;
2976 	for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
2977 		left_edge[i]  = iocfg->io_out1_delay_max + 1;
2978 		right_edge[i] = iocfg->io_out1_delay_max + 1;
2979 	}
2980 
2981 	/* Search for the left edge of the window for each bit. */
2982 	search_left_edge(1, rank_bgn, write_group, 0, test_bgn,
2983 			 &sticky_bit_chk,
2984 			 left_edge, right_edge, 0);
2985 
2986 	/* Search for the right edge of the window for each bit. */
2987 	ret = search_right_edge(1, rank_bgn, write_group, 0,
2988 				start_dqs, 0,
2989 				&sticky_bit_chk,
2990 				left_edge, right_edge, 0);
2991 	if (ret) {
2992 		set_failing_group_stage(test_bgn + ret - 1, CAL_STAGE_WRITES,
2993 					CAL_SUBSTAGE_WRITES_CENTER);
2994 		return -EINVAL;
2995 	}
2996 
2997 	min_index = get_window_mid_index(1, left_edge, right_edge, &mid_min);
2998 
2999 	/* Determine the amount we can change DQS (which is -mid_min). */
3000 	orig_mid_min = mid_min;
3001 	new_dqs = start_dqs;
3002 	mid_min = 0;
3003 	debug_cond(DLEVEL == 1,
3004 		   "%s:%d write_center: start_dqs=%d new_dqs=%d mid_min=%d\n",
3005 		   __func__, __LINE__, start_dqs, new_dqs, mid_min);
3006 
3007 	/* Add delay to bring centre of all DQ windows to the same "level". */
3008 	center_dq_windows(1, left_edge, right_edge, mid_min, orig_mid_min,
3009 			  min_index, 0, &dq_margin, &dqs_margin);
3010 
3011 	/* Move DQS */
3012 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3013 	writel(0, &sdr_scc_mgr->update);
3014 
3015 	/* Centre DM */
3016 	debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3017 
3018 	/*
3019 	 * Set the left and right edge of each bit to an illegal value.
3020 	 * Use (iocfg->io_out1_delay_max + 1) as an illegal value.
3021 	 */
3022 	left_edge[0]  = iocfg->io_out1_delay_max + 1;
3023 	right_edge[0] = iocfg->io_out1_delay_max + 1;
3024 
3025 	/* Search for the/part of the window with DM shift. */
3026 	search_window(1, rank_bgn, write_group, &bgn_curr, &end_curr,
3027 		      &bgn_best, &end_best, &win_best, 0);
3028 
3029 	/* Reset DM delay chains to 0. */
3030 	scc_mgr_apply_group_dm_out1_delay(0);
3031 
3032 	/*
3033 	 * Check to see if the current window nudges up aganist 0 delay.
3034 	 * If so we need to continue the search by shifting DQS otherwise DQS
3035 	 * search begins as a new search.
3036 	 */
3037 	if (end_curr != 0) {
3038 		bgn_curr = iocfg->io_out1_delay_max + 1;
3039 		end_curr = iocfg->io_out1_delay_max + 1;
3040 	}
3041 
3042 	/* Search for the/part of the window with DQS shifts. */
3043 	search_window(0, rank_bgn, write_group, &bgn_curr, &end_curr,
3044 		      &bgn_best, &end_best, &win_best, new_dqs);
3045 
3046 	/* Assign left and right edge for cal and reporting. */
3047 	left_edge[0] = -1 * bgn_best;
3048 	right_edge[0] = end_best;
3049 
3050 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n",
3051 		   __func__, __LINE__, left_edge[0], right_edge[0]);
3052 
3053 	/* Move DQS (back to orig). */
3054 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3055 
3056 	/* Move DM */
3057 
3058 	/* Find middle of window for the DM bit. */
3059 	mid = (left_edge[0] - right_edge[0]) / 2;
3060 
3061 	/* Only move right, since we are not moving DQS/DQ. */
3062 	if (mid < 0)
3063 		mid = 0;
3064 
3065 	/* dm_marign should fail if we never find a window. */
3066 	if (win_best == 0)
3067 		dm_margin = -1;
3068 	else
3069 		dm_margin = left_edge[0] - mid;
3070 
3071 	scc_mgr_apply_group_dm_out1_delay(mid);
3072 	writel(0, &sdr_scc_mgr->update);
3073 
3074 	debug_cond(DLEVEL == 2,
3075 		   "%s:%d dm_calib: left=%d right=%d mid=%d dm_margin=%d\n",
3076 		   __func__, __LINE__, left_edge[0], right_edge[0],
3077 		   mid, dm_margin);
3078 	/* Export values. */
3079 	gbl->fom_out += dq_margin + dqs_margin;
3080 
3081 	debug_cond(DLEVEL == 2,
3082 		   "%s:%d write_center: dq_margin=%d dqs_margin=%d dm_margin=%d\n",
3083 		   __func__, __LINE__, dq_margin, dqs_margin, dm_margin);
3084 
3085 	/*
3086 	 * Do not remove this line as it makes sure all of our
3087 	 * decisions have been applied.
3088 	 */
3089 	writel(0, &sdr_scc_mgr->update);
3090 
3091 	if ((dq_margin < 0) || (dqs_margin < 0) || (dm_margin < 0))
3092 		return -EINVAL;
3093 
3094 	return 0;
3095 }
3096 
3097 /**
3098  * rw_mgr_mem_calibrate_writes() - Write Calibration Part One
3099  * @rank_bgn:		Rank number
3100  * @group:		Read/Write Group
3101  * @test_bgn:		Rank at which the test begins
3102  *
3103  * Stage 2: Write Calibration Part One.
3104  *
3105  * This function implements UniPHY calibration Stage 2, as explained in
3106  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
3107  */
3108 static int rw_mgr_mem_calibrate_writes(const u32 rank_bgn, const u32 group,
3109 				       const u32 test_bgn)
3110 {
3111 	int ret;
3112 
3113 	/* Update info for sims */
3114 	debug("%s:%d %u %u\n", __func__, __LINE__, group, test_bgn);
3115 
3116 	reg_file_set_group(group);
3117 	reg_file_set_stage(CAL_STAGE_WRITES);
3118 	reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3119 
3120 	ret = rw_mgr_mem_calibrate_writes_center(rank_bgn, group, test_bgn);
3121 	if (ret)
3122 		set_failing_group_stage(group, CAL_STAGE_WRITES,
3123 					CAL_SUBSTAGE_WRITES_CENTER);
3124 
3125 	return ret;
3126 }
3127 
3128 /**
3129  * mem_precharge_and_activate() - Precharge all banks and activate
3130  *
3131  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3132  */
3133 static void mem_precharge_and_activate(void)
3134 {
3135 	int r;
3136 
3137 	for (r = 0; r < rwcfg->mem_number_of_ranks; r++) {
3138 		/* Set rank. */
3139 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3140 
3141 		/* Precharge all banks. */
3142 		writel(rwcfg->precharge_all, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3143 					     RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3144 
3145 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3146 		writel(rwcfg->activate_0_and_1_wait1,
3147 		       &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3148 
3149 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3150 		writel(rwcfg->activate_0_and_1_wait2,
3151 		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3152 
3153 		/* Activate rows. */
3154 		writel(rwcfg->activate_0_and_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3155 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3156 	}
3157 }
3158 
3159 /**
3160  * mem_init_latency() - Configure memory RLAT and WLAT settings
3161  *
3162  * Configure memory RLAT and WLAT parameters.
3163  */
3164 static void mem_init_latency(void)
3165 {
3166 	/*
3167 	 * For AV/CV, LFIFO is hardened and always runs at full rate
3168 	 * so max latency in AFI clocks, used here, is correspondingly
3169 	 * smaller.
3170 	 */
3171 	const u32 max_latency = (1 << misccfg->max_latency_count_width) - 1;
3172 	u32 rlat, wlat;
3173 
3174 	debug("%s:%d\n", __func__, __LINE__);
3175 
3176 	/*
3177 	 * Read in write latency.
3178 	 * WL for Hard PHY does not include additive latency.
3179 	 */
3180 	wlat = readl(&data_mgr->t_wl_add);
3181 	wlat += readl(&data_mgr->mem_t_add);
3182 
3183 	gbl->rw_wl_nop_cycles = wlat - 1;
3184 
3185 	/* Read in readl latency. */
3186 	rlat = readl(&data_mgr->t_rl_add);
3187 
3188 	/* Set a pretty high read latency initially. */
3189 	gbl->curr_read_lat = rlat + 16;
3190 	if (gbl->curr_read_lat > max_latency)
3191 		gbl->curr_read_lat = max_latency;
3192 
3193 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3194 
3195 	/* Advertise write latency. */
3196 	writel(wlat, &phy_mgr_cfg->afi_wlat);
3197 }
3198 
3199 /**
3200  * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3201  *
3202  * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3203  */
3204 static void mem_skip_calibrate(void)
3205 {
3206 	u32 vfifo_offset;
3207 	u32 i, j, r;
3208 
3209 	debug("%s:%d\n", __func__, __LINE__);
3210 	/* Need to update every shadow register set used by the interface */
3211 	for (r = 0; r < rwcfg->mem_number_of_ranks;
3212 	     r += NUM_RANKS_PER_SHADOW_REG) {
3213 		/*
3214 		 * Set output phase alignment settings appropriate for
3215 		 * skip calibration.
3216 		 */
3217 		for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
3218 			scc_mgr_set_dqs_en_phase(i, 0);
3219 			if (iocfg->dll_chain_length == 6)
3220 				scc_mgr_set_dqdqs_output_phase(i, 6);
3221 			else
3222 				scc_mgr_set_dqdqs_output_phase(i, 7);
3223 			/*
3224 			 * Case:33398
3225 			 *
3226 			 * Write data arrives to the I/O two cycles before write
3227 			 * latency is reached (720 deg).
3228 			 *   -> due to bit-slip in a/c bus
3229 			 *   -> to allow board skew where dqs is longer than ck
3230 			 *      -> how often can this happen!?
3231 			 *      -> can claim back some ptaps for high freq
3232 			 *       support if we can relax this, but i digress...
3233 			 *
3234 			 * The write_clk leads mem_ck by 90 deg
3235 			 * The minimum ptap of the OPA is 180 deg
3236 			 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3237 			 * The write_clk is always delayed by 2 ptaps
3238 			 *
3239 			 * Hence, to make DQS aligned to CK, we need to delay
3240 			 * DQS by:
3241 			 *    (720 - 90 - 180 - 2) *
3242 			 *      (360 / iocfg->dll_chain_length)
3243 			 *
3244 			 * Dividing the above by (360 / iocfg->dll_chain_length)
3245 			 * gives us the number of ptaps, which simplies to:
3246 			 *
3247 			 *    (1.25 * iocfg->dll_chain_length - 2)
3248 			 */
3249 			scc_mgr_set_dqdqs_output_phase(i,
3250 				       ((125 * iocfg->dll_chain_length) / 100) - 2);
3251 		}
3252 		writel(0xff, &sdr_scc_mgr->dqs_ena);
3253 		writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3254 
3255 		for (i = 0; i < rwcfg->mem_if_write_dqs_width; i++) {
3256 			writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3257 				  SCC_MGR_GROUP_COUNTER_OFFSET);
3258 		}
3259 		writel(0xff, &sdr_scc_mgr->dq_ena);
3260 		writel(0xff, &sdr_scc_mgr->dm_ena);
3261 		writel(0, &sdr_scc_mgr->update);
3262 	}
3263 
3264 	/* Compensate for simulation model behaviour */
3265 	for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
3266 		scc_mgr_set_dqs_bus_in_delay(i, 10);
3267 		scc_mgr_load_dqs(i);
3268 	}
3269 	writel(0, &sdr_scc_mgr->update);
3270 
3271 	/*
3272 	 * ArriaV has hard FIFOs that can only be initialized by incrementing
3273 	 * in sequencer.
3274 	 */
3275 	vfifo_offset = misccfg->calib_vfifo_offset;
3276 	for (j = 0; j < vfifo_offset; j++)
3277 		writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3278 	writel(0, &phy_mgr_cmd->fifo_reset);
3279 
3280 	/*
3281 	 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3282 	 * setting from generation-time constant.
3283 	 */
3284 	gbl->curr_read_lat = misccfg->calib_lfifo_offset;
3285 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3286 }
3287 
3288 /**
3289  * mem_calibrate() - Memory calibration entry point.
3290  *
3291  * Perform memory calibration.
3292  */
3293 static u32 mem_calibrate(void)
3294 {
3295 	u32 i;
3296 	u32 rank_bgn, sr;
3297 	u32 write_group, write_test_bgn;
3298 	u32 read_group, read_test_bgn;
3299 	u32 run_groups, current_run;
3300 	u32 failing_groups = 0;
3301 	u32 group_failed = 0;
3302 
3303 	const u32 rwdqs_ratio = rwcfg->mem_if_read_dqs_width /
3304 				rwcfg->mem_if_write_dqs_width;
3305 
3306 	debug("%s:%d\n", __func__, __LINE__);
3307 
3308 	/* Initialize the data settings */
3309 	gbl->error_substage = CAL_SUBSTAGE_NIL;
3310 	gbl->error_stage = CAL_STAGE_NIL;
3311 	gbl->error_group = 0xff;
3312 	gbl->fom_in = 0;
3313 	gbl->fom_out = 0;
3314 
3315 	/* Initialize WLAT and RLAT. */
3316 	mem_init_latency();
3317 
3318 	/* Initialize bit slips. */
3319 	mem_precharge_and_activate();
3320 
3321 	for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
3322 		writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3323 			  SCC_MGR_GROUP_COUNTER_OFFSET);
3324 		/* Only needed once to set all groups, pins, DQ, DQS, DM. */
3325 		if (i == 0)
3326 			scc_mgr_set_hhp_extras();
3327 
3328 		scc_set_bypass_mode(i);
3329 	}
3330 
3331 	/* Calibration is skipped. */
3332 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3333 		/*
3334 		 * Set VFIFO and LFIFO to instant-on settings in skip
3335 		 * calibration mode.
3336 		 */
3337 		mem_skip_calibrate();
3338 
3339 		/*
3340 		 * Do not remove this line as it makes sure all of our
3341 		 * decisions have been applied.
3342 		 */
3343 		writel(0, &sdr_scc_mgr->update);
3344 		return 1;
3345 	}
3346 
3347 	/* Calibration is not skipped. */
3348 	for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3349 		/*
3350 		 * Zero all delay chain/phase settings for all
3351 		 * groups and all shadow register sets.
3352 		 */
3353 		scc_mgr_zero_all();
3354 
3355 		run_groups = ~0;
3356 
3357 		for (write_group = 0, write_test_bgn = 0; write_group
3358 			< rwcfg->mem_if_write_dqs_width; write_group++,
3359 			write_test_bgn += rwcfg->mem_dq_per_write_dqs) {
3360 			/* Initialize the group failure */
3361 			group_failed = 0;
3362 
3363 			current_run = run_groups & ((1 <<
3364 				RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3365 			run_groups = run_groups >>
3366 				RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3367 
3368 			if (current_run == 0)
3369 				continue;
3370 
3371 			writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3372 					    SCC_MGR_GROUP_COUNTER_OFFSET);
3373 			scc_mgr_zero_group(write_group, 0);
3374 
3375 			for (read_group = write_group * rwdqs_ratio,
3376 			     read_test_bgn = 0;
3377 			     read_group < (write_group + 1) * rwdqs_ratio;
3378 			     read_group++,
3379 			     read_test_bgn += rwcfg->mem_dq_per_read_dqs) {
3380 				if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3381 					continue;
3382 
3383 				/* Calibrate the VFIFO */
3384 				if (rw_mgr_mem_calibrate_vfifo(read_group,
3385 							       read_test_bgn))
3386 					continue;
3387 
3388 				if (!(gbl->phy_debug_mode_flags &
3389 				      PHY_DEBUG_SWEEP_ALL_GROUPS))
3390 					return 0;
3391 
3392 				/* The group failed, we're done. */
3393 				goto grp_failed;
3394 			}
3395 
3396 			/* Calibrate the output side */
3397 			for (rank_bgn = 0, sr = 0;
3398 			     rank_bgn < rwcfg->mem_number_of_ranks;
3399 			     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3400 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3401 					continue;
3402 
3403 				/* Not needed in quick mode! */
3404 				if (STATIC_CALIB_STEPS &
3405 				    CALIB_SKIP_DELAY_SWEEPS)
3406 					continue;
3407 
3408 				/* Calibrate WRITEs */
3409 				if (!rw_mgr_mem_calibrate_writes(rank_bgn,
3410 								 write_group,
3411 								 write_test_bgn))
3412 					continue;
3413 
3414 				group_failed = 1;
3415 				if (!(gbl->phy_debug_mode_flags &
3416 				      PHY_DEBUG_SWEEP_ALL_GROUPS))
3417 					return 0;
3418 			}
3419 
3420 			/* Some group failed, we're done. */
3421 			if (group_failed)
3422 				goto grp_failed;
3423 
3424 			for (read_group = write_group * rwdqs_ratio,
3425 			     read_test_bgn = 0;
3426 			     read_group < (write_group + 1) * rwdqs_ratio;
3427 			     read_group++,
3428 			     read_test_bgn += rwcfg->mem_dq_per_read_dqs) {
3429 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3430 					continue;
3431 
3432 				if (!rw_mgr_mem_calibrate_vfifo_end(read_group,
3433 								    read_test_bgn))
3434 					continue;
3435 
3436 				if (!(gbl->phy_debug_mode_flags &
3437 				      PHY_DEBUG_SWEEP_ALL_GROUPS))
3438 					return 0;
3439 
3440 				/* The group failed, we're done. */
3441 				goto grp_failed;
3442 			}
3443 
3444 			/* No group failed, continue as usual. */
3445 			continue;
3446 
3447 grp_failed:		/* A group failed, increment the counter. */
3448 			failing_groups++;
3449 		}
3450 
3451 		/*
3452 		 * USER If there are any failing groups then report
3453 		 * the failure.
3454 		 */
3455 		if (failing_groups != 0)
3456 			return 0;
3457 
3458 		if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3459 			continue;
3460 
3461 		/* Calibrate the LFIFO */
3462 		if (!rw_mgr_mem_calibrate_lfifo())
3463 			return 0;
3464 	}
3465 
3466 	/*
3467 	 * Do not remove this line as it makes sure all of our decisions
3468 	 * have been applied.
3469 	 */
3470 	writel(0, &sdr_scc_mgr->update);
3471 	return 1;
3472 }
3473 
3474 /**
3475  * run_mem_calibrate() - Perform memory calibration
3476  *
3477  * This function triggers the entire memory calibration procedure.
3478  */
3479 static int run_mem_calibrate(void)
3480 {
3481 	int pass;
3482 
3483 	debug("%s:%d\n", __func__, __LINE__);
3484 
3485 	/* Reset pass/fail status shown on afi_cal_success/fail */
3486 	writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3487 
3488 	/* Stop tracking manager. */
3489 	clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3490 
3491 	phy_mgr_initialize();
3492 	rw_mgr_mem_initialize();
3493 
3494 	/* Perform the actual memory calibration. */
3495 	pass = mem_calibrate();
3496 
3497 	mem_precharge_and_activate();
3498 	writel(0, &phy_mgr_cmd->fifo_reset);
3499 
3500 	/* Handoff. */
3501 	rw_mgr_mem_handoff();
3502 	/*
3503 	 * In Hard PHY this is a 2-bit control:
3504 	 * 0: AFI Mux Select
3505 	 * 1: DDIO Mux Select
3506 	 */
3507 	writel(0x2, &phy_mgr_cfg->mux_sel);
3508 
3509 	/* Start tracking manager. */
3510 	setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3511 
3512 	return pass;
3513 }
3514 
3515 /**
3516  * debug_mem_calibrate() - Report result of memory calibration
3517  * @pass:	Value indicating whether calibration passed or failed
3518  *
3519  * This function reports the results of the memory calibration
3520  * and writes debug information into the register file.
3521  */
3522 static void debug_mem_calibrate(int pass)
3523 {
3524 	u32 debug_info;
3525 
3526 	if (pass) {
3527 		printf("%s: CALIBRATION PASSED\n", __FILE__);
3528 
3529 		gbl->fom_in /= 2;
3530 		gbl->fom_out /= 2;
3531 
3532 		if (gbl->fom_in > 0xff)
3533 			gbl->fom_in = 0xff;
3534 
3535 		if (gbl->fom_out > 0xff)
3536 			gbl->fom_out = 0xff;
3537 
3538 		/* Update the FOM in the register file */
3539 		debug_info = gbl->fom_in;
3540 		debug_info |= gbl->fom_out << 8;
3541 		writel(debug_info, &sdr_reg_file->fom);
3542 
3543 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3544 		writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3545 	} else {
3546 		printf("%s: CALIBRATION FAILED\n", __FILE__);
3547 
3548 		debug_info = gbl->error_stage;
3549 		debug_info |= gbl->error_substage << 8;
3550 		debug_info |= gbl->error_group << 16;
3551 
3552 		writel(debug_info, &sdr_reg_file->failing_stage);
3553 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3554 		writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3555 
3556 		/* Update the failing group/stage in the register file */
3557 		debug_info = gbl->error_stage;
3558 		debug_info |= gbl->error_substage << 8;
3559 		debug_info |= gbl->error_group << 16;
3560 		writel(debug_info, &sdr_reg_file->failing_stage);
3561 	}
3562 
3563 	printf("%s: Calibration complete\n", __FILE__);
3564 }
3565 
3566 /**
3567  * hc_initialize_rom_data() - Initialize ROM data
3568  *
3569  * Initialize ROM data.
3570  */
3571 static void hc_initialize_rom_data(void)
3572 {
3573 	unsigned int nelem = 0;
3574 	const u32 *rom_init;
3575 	u32 i, addr;
3576 
3577 	socfpga_get_seq_inst_init(&rom_init, &nelem);
3578 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3579 	for (i = 0; i < nelem; i++)
3580 		writel(rom_init[i], addr + (i << 2));
3581 
3582 	socfpga_get_seq_ac_init(&rom_init, &nelem);
3583 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3584 	for (i = 0; i < nelem; i++)
3585 		writel(rom_init[i], addr + (i << 2));
3586 }
3587 
3588 /**
3589  * initialize_reg_file() - Initialize SDR register file
3590  *
3591  * Initialize SDR register file.
3592  */
3593 static void initialize_reg_file(void)
3594 {
3595 	/* Initialize the register file with the correct data */
3596 	writel(misccfg->reg_file_init_seq_signature, &sdr_reg_file->signature);
3597 	writel(0, &sdr_reg_file->debug_data_addr);
3598 	writel(0, &sdr_reg_file->cur_stage);
3599 	writel(0, &sdr_reg_file->fom);
3600 	writel(0, &sdr_reg_file->failing_stage);
3601 	writel(0, &sdr_reg_file->debug1);
3602 	writel(0, &sdr_reg_file->debug2);
3603 }
3604 
3605 /**
3606  * initialize_hps_phy() - Initialize HPS PHY
3607  *
3608  * Initialize HPS PHY.
3609  */
3610 static void initialize_hps_phy(void)
3611 {
3612 	u32 reg;
3613 	/*
3614 	 * Tracking also gets configured here because it's in the
3615 	 * same register.
3616 	 */
3617 	u32 trk_sample_count = 7500;
3618 	u32 trk_long_idle_sample_count = (10 << 16) | 100;
3619 	/*
3620 	 * Format is number of outer loops in the 16 MSB, sample
3621 	 * count in 16 LSB.
3622 	 */
3623 
3624 	reg = 0;
3625 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3626 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3627 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3628 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3629 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3630 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3631 	/*
3632 	 * This field selects the intrinsic latency to RDATA_EN/FULL path.
3633 	 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3634 	 */
3635 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3636 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3637 		trk_sample_count);
3638 	writel(reg, &sdr_ctrl->phy_ctrl0);
3639 
3640 	reg = 0;
3641 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3642 		trk_sample_count >>
3643 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3644 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3645 		trk_long_idle_sample_count);
3646 	writel(reg, &sdr_ctrl->phy_ctrl1);
3647 
3648 	reg = 0;
3649 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3650 		trk_long_idle_sample_count >>
3651 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3652 	writel(reg, &sdr_ctrl->phy_ctrl2);
3653 }
3654 
3655 /**
3656  * initialize_tracking() - Initialize tracking
3657  *
3658  * Initialize the register file with usable initial data.
3659  */
3660 static void initialize_tracking(void)
3661 {
3662 	/*
3663 	 * Initialize the register file with the correct data.
3664 	 * Compute usable version of value in case we skip full
3665 	 * computation later.
3666 	 */
3667 	writel(DIV_ROUND_UP(iocfg->delay_per_opa_tap,
3668 			    iocfg->delay_per_dchain_tap) - 1,
3669 	       &sdr_reg_file->dtaps_per_ptap);
3670 
3671 	/* trk_sample_count */
3672 	writel(7500, &sdr_reg_file->trk_sample_count);
3673 
3674 	/* longidle outer loop [15:0] */
3675 	writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3676 
3677 	/*
3678 	 * longidle sample count [31:24]
3679 	 * trfc, worst case of 933Mhz 4Gb [23:16]
3680 	 * trcd, worst case [15:8]
3681 	 * vfifo wait [7:0]
3682 	 */
3683 	writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3684 	       &sdr_reg_file->delays);
3685 
3686 	/* mux delay */
3687 	writel((rwcfg->idle << 24) | (rwcfg->activate_1 << 16) |
3688 	       (rwcfg->sgle_read << 8) | (rwcfg->precharge_all << 0),
3689 	       &sdr_reg_file->trk_rw_mgr_addr);
3690 
3691 	writel(rwcfg->mem_if_read_dqs_width,
3692 	       &sdr_reg_file->trk_read_dqs_width);
3693 
3694 	/* trefi [7:0] */
3695 	writel((rwcfg->refresh_all << 24) | (1000 << 0),
3696 	       &sdr_reg_file->trk_rfsh);
3697 }
3698 
3699 int sdram_calibration_full(void)
3700 {
3701 	struct param_type my_param;
3702 	struct gbl_type my_gbl;
3703 	u32 pass;
3704 
3705 	memset(&my_param, 0, sizeof(my_param));
3706 	memset(&my_gbl, 0, sizeof(my_gbl));
3707 
3708 	param = &my_param;
3709 	gbl = &my_gbl;
3710 
3711 	rwcfg = socfpga_get_sdram_rwmgr_config();
3712 	iocfg = socfpga_get_sdram_io_config();
3713 	misccfg = socfpga_get_sdram_misc_config();
3714 
3715 	/* Set the calibration enabled by default */
3716 	gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3717 	/*
3718 	 * Only sweep all groups (regardless of fail state) by default
3719 	 * Set enabled read test by default.
3720 	 */
3721 #if DISABLE_GUARANTEED_READ
3722 	gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3723 #endif
3724 	/* Initialize the register file */
3725 	initialize_reg_file();
3726 
3727 	/* Initialize any PHY CSR */
3728 	initialize_hps_phy();
3729 
3730 	scc_mgr_initialize();
3731 
3732 	initialize_tracking();
3733 
3734 	printf("%s: Preparing to start memory calibration\n", __FILE__);
3735 
3736 	debug("%s:%d\n", __func__, __LINE__);
3737 	debug_cond(DLEVEL == 1,
3738 		   "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3739 		   rwcfg->mem_number_of_ranks, rwcfg->mem_number_of_cs_per_dimm,
3740 		   rwcfg->mem_dq_per_read_dqs, rwcfg->mem_dq_per_write_dqs,
3741 		   rwcfg->mem_virtual_groups_per_read_dqs,
3742 		   rwcfg->mem_virtual_groups_per_write_dqs);
3743 	debug_cond(DLEVEL == 1,
3744 		   "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3745 		   rwcfg->mem_if_read_dqs_width, rwcfg->mem_if_write_dqs_width,
3746 		   rwcfg->mem_data_width, rwcfg->mem_data_mask_width,
3747 		   iocfg->delay_per_opa_tap, iocfg->delay_per_dchain_tap);
3748 	debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3749 		   iocfg->delay_per_dqs_en_dchain_tap, iocfg->dll_chain_length);
3750 	debug_cond(DLEVEL == 1,
3751 		   "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3752 		   iocfg->dqs_en_phase_max, iocfg->dqdqs_out_phase_max,
3753 		   iocfg->dqs_en_delay_max, iocfg->dqs_in_delay_max);
3754 	debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3755 		   iocfg->io_in_delay_max, iocfg->io_out1_delay_max,
3756 		   iocfg->io_out2_delay_max);
3757 	debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3758 		   iocfg->dqs_in_reserve, iocfg->dqs_out_reserve);
3759 
3760 	hc_initialize_rom_data();
3761 
3762 	/* update info for sims */
3763 	reg_file_set_stage(CAL_STAGE_NIL);
3764 	reg_file_set_group(0);
3765 
3766 	/*
3767 	 * Load global needed for those actions that require
3768 	 * some dynamic calibration support.
3769 	 */
3770 	dyn_calib_steps = STATIC_CALIB_STEPS;
3771 	/*
3772 	 * Load global to allow dynamic selection of delay loop settings
3773 	 * based on calibration mode.
3774 	 */
3775 	if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3776 		skip_delay_mask = 0xff;
3777 	else
3778 		skip_delay_mask = 0x0;
3779 
3780 	pass = run_mem_calibrate();
3781 	debug_mem_calibrate(pass);
3782 	return pass;
3783 }
3784