xref: /openbmc/u-boot/drivers/ddr/altera/sequencer.c (revision 0a13a0fb7a2db238c1d4c4313d28455125e08e45)
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6 
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include <errno.h>
11 #include "sequencer.h"
12 #include "sequencer_auto.h"
13 #include "sequencer_auto_ac_init.h"
14 #include "sequencer_auto_inst_init.h"
15 #include "sequencer_defines.h"
16 
17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
18 	(struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
19 
20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
21 	(struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
22 
23 static struct socfpga_sdr_reg_file *sdr_reg_file =
24 	(struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
25 
26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
27 	(struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
28 
29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
30 	(struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
31 
32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
33 	(struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
34 
35 static struct socfpga_data_mgr *data_mgr =
36 	(struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
37 
38 static struct socfpga_sdr_ctrl *sdr_ctrl =
39 	(struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
40 
41 #define DELTA_D		1
42 
43 /*
44  * In order to reduce ROM size, most of the selectable calibration steps are
45  * decided at compile time based on the user's calibration mode selection,
46  * as captured by the STATIC_CALIB_STEPS selection below.
47  *
48  * However, to support simulation-time selection of fast simulation mode, where
49  * we skip everything except the bare minimum, we need a few of the steps to
50  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
51  * check, which is based on the rtl-supplied value, or we dynamically compute
52  * the value to use based on the dynamically-chosen calibration mode
53  */
54 
55 #define DLEVEL 0
56 #define STATIC_IN_RTL_SIM 0
57 #define STATIC_SKIP_DELAY_LOOPS 0
58 
59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
60 	STATIC_SKIP_DELAY_LOOPS)
61 
62 /* calibration steps requested by the rtl */
63 uint16_t dyn_calib_steps;
64 
65 /*
66  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
67  * instead of static, we use boolean logic to select between
68  * non-skip and skip values
69  *
70  * The mask is set to include all bits when not-skipping, but is
71  * zero when skipping
72  */
73 
74 uint16_t skip_delay_mask;	/* mask off bits when skipping/not-skipping */
75 
76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
77 	((non_skip_value) & skip_delay_mask)
78 
79 struct gbl_type *gbl;
80 struct param_type *param;
81 uint32_t curr_shadow_reg;
82 
83 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
84 	uint32_t write_group, uint32_t use_dm,
85 	uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
86 
87 static void set_failing_group_stage(uint32_t group, uint32_t stage,
88 	uint32_t substage)
89 {
90 	/*
91 	 * Only set the global stage if there was not been any other
92 	 * failing group
93 	 */
94 	if (gbl->error_stage == CAL_STAGE_NIL)	{
95 		gbl->error_substage = substage;
96 		gbl->error_stage = stage;
97 		gbl->error_group = group;
98 	}
99 }
100 
101 static void reg_file_set_group(u16 set_group)
102 {
103 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
104 }
105 
106 static void reg_file_set_stage(u8 set_stage)
107 {
108 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
109 }
110 
111 static void reg_file_set_sub_stage(u8 set_sub_stage)
112 {
113 	set_sub_stage &= 0xff;
114 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
115 }
116 
117 /**
118  * phy_mgr_initialize() - Initialize PHY Manager
119  *
120  * Initialize PHY Manager.
121  */
122 static void phy_mgr_initialize(void)
123 {
124 	u32 ratio;
125 
126 	debug("%s:%d\n", __func__, __LINE__);
127 	/* Calibration has control over path to memory */
128 	/*
129 	 * In Hard PHY this is a 2-bit control:
130 	 * 0: AFI Mux Select
131 	 * 1: DDIO Mux Select
132 	 */
133 	writel(0x3, &phy_mgr_cfg->mux_sel);
134 
135 	/* USER memory clock is not stable we begin initialization  */
136 	writel(0, &phy_mgr_cfg->reset_mem_stbl);
137 
138 	/* USER calibration status all set to zero */
139 	writel(0, &phy_mgr_cfg->cal_status);
140 
141 	writel(0, &phy_mgr_cfg->cal_debug_info);
142 
143 	/* Init params only if we do NOT skip calibration. */
144 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
145 		return;
146 
147 	ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
148 		RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
149 	param->read_correct_mask_vg = (1 << ratio) - 1;
150 	param->write_correct_mask_vg = (1 << ratio) - 1;
151 	param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
152 	param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
153 	ratio = RW_MGR_MEM_DATA_WIDTH /
154 		RW_MGR_MEM_DATA_MASK_WIDTH;
155 	param->dm_correct_mask = (1 << ratio) - 1;
156 }
157 
158 /**
159  * set_rank_and_odt_mask() - Set Rank and ODT mask
160  * @rank:	Rank mask
161  * @odt_mode:	ODT mode, OFF or READ_WRITE
162  *
163  * Set Rank and ODT mask (On-Die Termination).
164  */
165 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
166 {
167 	u32 odt_mask_0 = 0;
168 	u32 odt_mask_1 = 0;
169 	u32 cs_and_odt_mask;
170 
171 	if (odt_mode == RW_MGR_ODT_MODE_OFF) {
172 		odt_mask_0 = 0x0;
173 		odt_mask_1 = 0x0;
174 	} else {	/* RW_MGR_ODT_MODE_READ_WRITE */
175 		switch (RW_MGR_MEM_NUMBER_OF_RANKS) {
176 		case 1:	/* 1 Rank */
177 			/* Read: ODT = 0 ; Write: ODT = 1 */
178 			odt_mask_0 = 0x0;
179 			odt_mask_1 = 0x1;
180 			break;
181 		case 2:	/* 2 Ranks */
182 			if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
183 				/*
184 				 * - Dual-Slot , Single-Rank (1 CS per DIMM)
185 				 *   OR
186 				 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
187 				 *
188 				 * Since MEM_NUMBER_OF_RANKS is 2, they
189 				 * are both single rank with 2 CS each
190 				 * (special for RDIMM).
191 				 *
192 				 * Read: Turn on ODT on the opposite rank
193 				 * Write: Turn on ODT on all ranks
194 				 */
195 				odt_mask_0 = 0x3 & ~(1 << rank);
196 				odt_mask_1 = 0x3;
197 			} else {
198 				/*
199 				 * - Single-Slot , Dual-Rank (2 CS per DIMM)
200 				 *
201 				 * Read: Turn on ODT off on all ranks
202 				 * Write: Turn on ODT on active rank
203 				 */
204 				odt_mask_0 = 0x0;
205 				odt_mask_1 = 0x3 & (1 << rank);
206 			}
207 			break;
208 		case 4:	/* 4 Ranks */
209 			/* Read:
210 			 * ----------+-----------------------+
211 			 *           |         ODT           |
212 			 * Read From +-----------------------+
213 			 *   Rank    |  3  |  2  |  1  |  0  |
214 			 * ----------+-----+-----+-----+-----+
215 			 *     0     |  0  |  1  |  0  |  0  |
216 			 *     1     |  1  |  0  |  0  |  0  |
217 			 *     2     |  0  |  0  |  0  |  1  |
218 			 *     3     |  0  |  0  |  1  |  0  |
219 			 * ----------+-----+-----+-----+-----+
220 			 *
221 			 * Write:
222 			 * ----------+-----------------------+
223 			 *           |         ODT           |
224 			 * Write To  +-----------------------+
225 			 *   Rank    |  3  |  2  |  1  |  0  |
226 			 * ----------+-----+-----+-----+-----+
227 			 *     0     |  0  |  1  |  0  |  1  |
228 			 *     1     |  1  |  0  |  1  |  0  |
229 			 *     2     |  0  |  1  |  0  |  1  |
230 			 *     3     |  1  |  0  |  1  |  0  |
231 			 * ----------+-----+-----+-----+-----+
232 			 */
233 			switch (rank) {
234 			case 0:
235 				odt_mask_0 = 0x4;
236 				odt_mask_1 = 0x5;
237 				break;
238 			case 1:
239 				odt_mask_0 = 0x8;
240 				odt_mask_1 = 0xA;
241 				break;
242 			case 2:
243 				odt_mask_0 = 0x1;
244 				odt_mask_1 = 0x5;
245 				break;
246 			case 3:
247 				odt_mask_0 = 0x2;
248 				odt_mask_1 = 0xA;
249 				break;
250 			}
251 			break;
252 		}
253 	}
254 
255 	cs_and_odt_mask = (0xFF & ~(1 << rank)) |
256 			  ((0xFF & odt_mask_0) << 8) |
257 			  ((0xFF & odt_mask_1) << 16);
258 	writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
259 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
260 }
261 
262 /**
263  * scc_mgr_set() - Set SCC Manager register
264  * @off:	Base offset in SCC Manager space
265  * @grp:	Read/Write group
266  * @val:	Value to be set
267  *
268  * This function sets the SCC Manager (Scan Chain Control Manager) register.
269  */
270 static void scc_mgr_set(u32 off, u32 grp, u32 val)
271 {
272 	writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
273 }
274 
275 /**
276  * scc_mgr_initialize() - Initialize SCC Manager registers
277  *
278  * Initialize SCC Manager registers.
279  */
280 static void scc_mgr_initialize(void)
281 {
282 	/*
283 	 * Clear register file for HPS. 16 (2^4) is the size of the
284 	 * full register file in the scc mgr:
285 	 *	RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
286 	 *                             MEM_IF_READ_DQS_WIDTH - 1);
287 	 */
288 	int i;
289 
290 	for (i = 0; i < 16; i++) {
291 		debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
292 			   __func__, __LINE__, i);
293 		scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
294 	}
295 }
296 
297 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
298 {
299 	scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
300 }
301 
302 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
303 {
304 	scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
305 }
306 
307 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
308 {
309 	scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
310 }
311 
312 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
313 {
314 	scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
315 }
316 
317 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
318 {
319 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
320 		    delay);
321 }
322 
323 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
324 {
325 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
326 }
327 
328 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
329 {
330 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
331 }
332 
333 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
334 {
335 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
336 		    delay);
337 }
338 
339 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
340 {
341 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
342 		    RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
343 		    delay);
344 }
345 
346 /* load up dqs config settings */
347 static void scc_mgr_load_dqs(uint32_t dqs)
348 {
349 	writel(dqs, &sdr_scc_mgr->dqs_ena);
350 }
351 
352 /* load up dqs io config settings */
353 static void scc_mgr_load_dqs_io(void)
354 {
355 	writel(0, &sdr_scc_mgr->dqs_io_ena);
356 }
357 
358 /* load up dq config settings */
359 static void scc_mgr_load_dq(uint32_t dq_in_group)
360 {
361 	writel(dq_in_group, &sdr_scc_mgr->dq_ena);
362 }
363 
364 /* load up dm config settings */
365 static void scc_mgr_load_dm(uint32_t dm)
366 {
367 	writel(dm, &sdr_scc_mgr->dm_ena);
368 }
369 
370 /**
371  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
372  * @off:	Base offset in SCC Manager space
373  * @grp:	Read/Write group
374  * @val:	Value to be set
375  * @update:	If non-zero, trigger SCC Manager update for all ranks
376  *
377  * This function sets the SCC Manager (Scan Chain Control Manager) register
378  * and optionally triggers the SCC update for all ranks.
379  */
380 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
381 				  const int update)
382 {
383 	u32 r;
384 
385 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
386 	     r += NUM_RANKS_PER_SHADOW_REG) {
387 		scc_mgr_set(off, grp, val);
388 
389 		if (update || (r == 0)) {
390 			writel(grp, &sdr_scc_mgr->dqs_ena);
391 			writel(0, &sdr_scc_mgr->update);
392 		}
393 	}
394 }
395 
396 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
397 {
398 	/*
399 	 * USER although the h/w doesn't support different phases per
400 	 * shadow register, for simplicity our scc manager modeling
401 	 * keeps different phase settings per shadow reg, and it's
402 	 * important for us to keep them in sync to match h/w.
403 	 * for efficiency, the scan chain update should occur only
404 	 * once to sr0.
405 	 */
406 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
407 			      read_group, phase, 0);
408 }
409 
410 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
411 						     uint32_t phase)
412 {
413 	/*
414 	 * USER although the h/w doesn't support different phases per
415 	 * shadow register, for simplicity our scc manager modeling
416 	 * keeps different phase settings per shadow reg, and it's
417 	 * important for us to keep them in sync to match h/w.
418 	 * for efficiency, the scan chain update should occur only
419 	 * once to sr0.
420 	 */
421 	scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
422 			      write_group, phase, 0);
423 }
424 
425 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
426 					       uint32_t delay)
427 {
428 	/*
429 	 * In shadow register mode, the T11 settings are stored in
430 	 * registers in the core, which are updated by the DQS_ENA
431 	 * signals. Not issuing the SCC_MGR_UPD command allows us to
432 	 * save lots of rank switching overhead, by calling
433 	 * select_shadow_regs_for_update with update_scan_chains
434 	 * set to 0.
435 	 */
436 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
437 			      read_group, delay, 1);
438 	writel(0, &sdr_scc_mgr->update);
439 }
440 
441 /**
442  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
443  * @write_group:	Write group
444  * @delay:		Delay value
445  *
446  * This function sets the OCT output delay in SCC manager.
447  */
448 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
449 {
450 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
451 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
452 	const int base = write_group * ratio;
453 	int i;
454 	/*
455 	 * Load the setting in the SCC manager
456 	 * Although OCT affects only write data, the OCT delay is controlled
457 	 * by the DQS logic block which is instantiated once per read group.
458 	 * For protocols where a write group consists of multiple read groups,
459 	 * the setting must be set multiple times.
460 	 */
461 	for (i = 0; i < ratio; i++)
462 		scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
463 }
464 
465 /**
466  * scc_mgr_set_hhp_extras() - Set HHP extras.
467  *
468  * Load the fixed setting in the SCC manager HHP extras.
469  */
470 static void scc_mgr_set_hhp_extras(void)
471 {
472 	/*
473 	 * Load the fixed setting in the SCC manager
474 	 * bits: 0:0 = 1'b1	- DQS bypass
475 	 * bits: 1:1 = 1'b1	- DQ bypass
476 	 * bits: 4:2 = 3'b001	- rfifo_mode
477 	 * bits: 6:5 = 2'b01	- rfifo clock_select
478 	 * bits: 7:7 = 1'b0	- separate gating from ungating setting
479 	 * bits: 8:8 = 1'b0	- separate OE from Output delay setting
480 	 */
481 	const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
482 			  (1 << 2) | (1 << 1) | (1 << 0);
483 	const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
484 			 SCC_MGR_HHP_GLOBALS_OFFSET |
485 			 SCC_MGR_HHP_EXTRAS_OFFSET;
486 
487 	debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
488 		   __func__, __LINE__);
489 	writel(value, addr);
490 	debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
491 		   __func__, __LINE__);
492 }
493 
494 /**
495  * scc_mgr_zero_all() - Zero all DQS config
496  *
497  * Zero all DQS config.
498  */
499 static void scc_mgr_zero_all(void)
500 {
501 	int i, r;
502 
503 	/*
504 	 * USER Zero all DQS config settings, across all groups and all
505 	 * shadow registers
506 	 */
507 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
508 	     r += NUM_RANKS_PER_SHADOW_REG) {
509 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
510 			/*
511 			 * The phases actually don't exist on a per-rank basis,
512 			 * but there's no harm updating them several times, so
513 			 * let's keep the code simple.
514 			 */
515 			scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
516 			scc_mgr_set_dqs_en_phase(i, 0);
517 			scc_mgr_set_dqs_en_delay(i, 0);
518 		}
519 
520 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
521 			scc_mgr_set_dqdqs_output_phase(i, 0);
522 			/* Arria V/Cyclone V don't have out2. */
523 			scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
524 		}
525 	}
526 
527 	/* Multicast to all DQS group enables. */
528 	writel(0xff, &sdr_scc_mgr->dqs_ena);
529 	writel(0, &sdr_scc_mgr->update);
530 }
531 
532 /**
533  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
534  * @write_group:	Write group
535  *
536  * Set bypass mode and trigger SCC update.
537  */
538 static void scc_set_bypass_mode(const u32 write_group)
539 {
540 	/* Multicast to all DQ enables. */
541 	writel(0xff, &sdr_scc_mgr->dq_ena);
542 	writel(0xff, &sdr_scc_mgr->dm_ena);
543 
544 	/* Update current DQS IO enable. */
545 	writel(0, &sdr_scc_mgr->dqs_io_ena);
546 
547 	/* Update the DQS logic. */
548 	writel(write_group, &sdr_scc_mgr->dqs_ena);
549 
550 	/* Hit update. */
551 	writel(0, &sdr_scc_mgr->update);
552 }
553 
554 /**
555  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
556  * @write_group:	Write group
557  *
558  * Load DQS settings for Write Group, do not trigger SCC update.
559  */
560 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
561 {
562 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
563 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
564 	const int base = write_group * ratio;
565 	int i;
566 	/*
567 	 * Load the setting in the SCC manager
568 	 * Although OCT affects only write data, the OCT delay is controlled
569 	 * by the DQS logic block which is instantiated once per read group.
570 	 * For protocols where a write group consists of multiple read groups,
571 	 * the setting must be set multiple times.
572 	 */
573 	for (i = 0; i < ratio; i++)
574 		writel(base + i, &sdr_scc_mgr->dqs_ena);
575 }
576 
577 /**
578  * scc_mgr_zero_group() - Zero all configs for a group
579  *
580  * Zero DQ, DM, DQS and OCT configs for a group.
581  */
582 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
583 {
584 	int i, r;
585 
586 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
587 	     r += NUM_RANKS_PER_SHADOW_REG) {
588 		/* Zero all DQ config settings. */
589 		for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
590 			scc_mgr_set_dq_out1_delay(i, 0);
591 			if (!out_only)
592 				scc_mgr_set_dq_in_delay(i, 0);
593 		}
594 
595 		/* Multicast to all DQ enables. */
596 		writel(0xff, &sdr_scc_mgr->dq_ena);
597 
598 		/* Zero all DM config settings. */
599 		for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
600 			scc_mgr_set_dm_out1_delay(i, 0);
601 
602 		/* Multicast to all DM enables. */
603 		writel(0xff, &sdr_scc_mgr->dm_ena);
604 
605 		/* Zero all DQS IO settings. */
606 		if (!out_only)
607 			scc_mgr_set_dqs_io_in_delay(0);
608 
609 		/* Arria V/Cyclone V don't have out2. */
610 		scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
611 		scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
612 		scc_mgr_load_dqs_for_write_group(write_group);
613 
614 		/* Multicast to all DQS IO enables (only 1 in total). */
615 		writel(0, &sdr_scc_mgr->dqs_io_ena);
616 
617 		/* Hit update to zero everything. */
618 		writel(0, &sdr_scc_mgr->update);
619 	}
620 }
621 
622 /*
623  * apply and load a particular input delay for the DQ pins in a group
624  * group_bgn is the index of the first dq pin (in the write group)
625  */
626 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
627 {
628 	uint32_t i, p;
629 
630 	for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
631 		scc_mgr_set_dq_in_delay(p, delay);
632 		scc_mgr_load_dq(p);
633 	}
634 }
635 
636 /**
637  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
638  * @delay:		Delay value
639  *
640  * Apply and load a particular output delay for the DQ pins in a group.
641  */
642 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
643 {
644 	int i;
645 
646 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
647 		scc_mgr_set_dq_out1_delay(i, delay);
648 		scc_mgr_load_dq(i);
649 	}
650 }
651 
652 /* apply and load a particular output delay for the DM pins in a group */
653 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
654 {
655 	uint32_t i;
656 
657 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
658 		scc_mgr_set_dm_out1_delay(i, delay1);
659 		scc_mgr_load_dm(i);
660 	}
661 }
662 
663 
664 /* apply and load delay on both DQS and OCT out1 */
665 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
666 						    uint32_t delay)
667 {
668 	scc_mgr_set_dqs_out1_delay(delay);
669 	scc_mgr_load_dqs_io();
670 
671 	scc_mgr_set_oct_out1_delay(write_group, delay);
672 	scc_mgr_load_dqs_for_write_group(write_group);
673 }
674 
675 /**
676  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
677  * @write_group:	Write group
678  * @delay:		Delay value
679  *
680  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
681  */
682 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
683 						  const u32 delay)
684 {
685 	u32 i, new_delay;
686 
687 	/* DQ shift */
688 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
689 		scc_mgr_load_dq(i);
690 
691 	/* DM shift */
692 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
693 		scc_mgr_load_dm(i);
694 
695 	/* DQS shift */
696 	new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
697 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
698 		debug_cond(DLEVEL == 1,
699 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
700 			   __func__, __LINE__, write_group, delay, new_delay,
701 			   IO_IO_OUT2_DELAY_MAX,
702 			   new_delay - IO_IO_OUT2_DELAY_MAX);
703 		new_delay -= IO_IO_OUT2_DELAY_MAX;
704 		scc_mgr_set_dqs_out1_delay(new_delay);
705 	}
706 
707 	scc_mgr_load_dqs_io();
708 
709 	/* OCT shift */
710 	new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
711 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
712 		debug_cond(DLEVEL == 1,
713 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
714 			   __func__, __LINE__, write_group, delay,
715 			   new_delay, IO_IO_OUT2_DELAY_MAX,
716 			   new_delay - IO_IO_OUT2_DELAY_MAX);
717 		new_delay -= IO_IO_OUT2_DELAY_MAX;
718 		scc_mgr_set_oct_out1_delay(write_group, new_delay);
719 	}
720 
721 	scc_mgr_load_dqs_for_write_group(write_group);
722 }
723 
724 /**
725  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
726  * @write_group:	Write group
727  * @delay:		Delay value
728  *
729  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
730  */
731 static void
732 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
733 						const u32 delay)
734 {
735 	int r;
736 
737 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
738 	     r += NUM_RANKS_PER_SHADOW_REG) {
739 		scc_mgr_apply_group_all_out_delay_add(write_group, delay);
740 		writel(0, &sdr_scc_mgr->update);
741 	}
742 }
743 
744 /**
745  * set_jump_as_return() - Return instruction optimization
746  *
747  * Optimization used to recover some slots in ddr3 inst_rom could be
748  * applied to other protocols if we wanted to
749  */
750 static void set_jump_as_return(void)
751 {
752 	/*
753 	 * To save space, we replace return with jump to special shared
754 	 * RETURN instruction so we set the counter to large value so that
755 	 * we always jump.
756 	 */
757 	writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
758 	writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
759 }
760 
761 /*
762  * should always use constants as argument to ensure all computations are
763  * performed at compile time
764  */
765 static void delay_for_n_mem_clocks(const uint32_t clocks)
766 {
767 	uint32_t afi_clocks;
768 	uint8_t inner = 0;
769 	uint8_t outer = 0;
770 	uint16_t c_loop = 0;
771 
772 	debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
773 
774 
775 	afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
776 	/* scale (rounding up) to get afi clocks */
777 
778 	/*
779 	 * Note, we don't bother accounting for being off a little bit
780 	 * because of a few extra instructions in outer loops
781 	 * Note, the loops have a test at the end, and do the test before
782 	 * the decrement, and so always perform the loop
783 	 * 1 time more than the counter value
784 	 */
785 	if (afi_clocks == 0) {
786 		;
787 	} else if (afi_clocks <= 0x100) {
788 		inner = afi_clocks-1;
789 		outer = 0;
790 		c_loop = 0;
791 	} else if (afi_clocks <= 0x10000) {
792 		inner = 0xff;
793 		outer = (afi_clocks-1) >> 8;
794 		c_loop = 0;
795 	} else {
796 		inner = 0xff;
797 		outer = 0xff;
798 		c_loop = (afi_clocks-1) >> 16;
799 	}
800 
801 	/*
802 	 * rom instructions are structured as follows:
803 	 *
804 	 *    IDLE_LOOP2: jnz cntr0, TARGET_A
805 	 *    IDLE_LOOP1: jnz cntr1, TARGET_B
806 	 *                return
807 	 *
808 	 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
809 	 * TARGET_B is set to IDLE_LOOP2 as well
810 	 *
811 	 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
812 	 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
813 	 *
814 	 * a little confusing, but it helps save precious space in the inst_rom
815 	 * and sequencer rom and keeps the delays more accurate and reduces
816 	 * overhead
817 	 */
818 	if (afi_clocks <= 0x100) {
819 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
820 			&sdr_rw_load_mgr_regs->load_cntr1);
821 
822 		writel(RW_MGR_IDLE_LOOP1,
823 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
824 
825 		writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
826 					  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
827 	} else {
828 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
829 			&sdr_rw_load_mgr_regs->load_cntr0);
830 
831 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
832 			&sdr_rw_load_mgr_regs->load_cntr1);
833 
834 		writel(RW_MGR_IDLE_LOOP2,
835 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
836 
837 		writel(RW_MGR_IDLE_LOOP2,
838 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
839 
840 		/* hack to get around compiler not being smart enough */
841 		if (afi_clocks <= 0x10000) {
842 			/* only need to run once */
843 			writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
844 						  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
845 		} else {
846 			do {
847 				writel(RW_MGR_IDLE_LOOP2,
848 					SDR_PHYGRP_RWMGRGRP_ADDRESS |
849 					RW_MGR_RUN_SINGLE_GROUP_OFFSET);
850 			} while (c_loop-- != 0);
851 		}
852 	}
853 	debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
854 }
855 
856 /**
857  * rw_mgr_mem_init_load_regs() - Load instruction registers
858  * @cntr0:	Counter 0 value
859  * @cntr1:	Counter 1 value
860  * @cntr2:	Counter 2 value
861  * @jump:	Jump instruction value
862  *
863  * Load instruction registers.
864  */
865 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
866 {
867 	uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
868 			   RW_MGR_RUN_SINGLE_GROUP_OFFSET;
869 
870 	/* Load counters */
871 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
872 	       &sdr_rw_load_mgr_regs->load_cntr0);
873 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
874 	       &sdr_rw_load_mgr_regs->load_cntr1);
875 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
876 	       &sdr_rw_load_mgr_regs->load_cntr2);
877 
878 	/* Load jump address */
879 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
880 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
881 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
882 
883 	/* Execute count instruction */
884 	writel(jump, grpaddr);
885 }
886 
887 /**
888  * rw_mgr_mem_load_user() - Load user calibration values
889  * @fin1:	Final instruction 1
890  * @fin2:	Final instruction 2
891  * @precharge:	If 1, precharge the banks at the end
892  *
893  * Load user calibration values and optionally precharge the banks.
894  */
895 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
896 				 const int precharge)
897 {
898 	u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
899 		      RW_MGR_RUN_SINGLE_GROUP_OFFSET;
900 	u32 r;
901 
902 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
903 		if (param->skip_ranks[r]) {
904 			/* request to skip the rank */
905 			continue;
906 		}
907 
908 		/* set rank */
909 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
910 
911 		/* precharge all banks ... */
912 		if (precharge)
913 			writel(RW_MGR_PRECHARGE_ALL, grpaddr);
914 
915 		/*
916 		 * USER Use Mirror-ed commands for odd ranks if address
917 		 * mirrorring is on
918 		 */
919 		if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
920 			set_jump_as_return();
921 			writel(RW_MGR_MRS2_MIRR, grpaddr);
922 			delay_for_n_mem_clocks(4);
923 			set_jump_as_return();
924 			writel(RW_MGR_MRS3_MIRR, grpaddr);
925 			delay_for_n_mem_clocks(4);
926 			set_jump_as_return();
927 			writel(RW_MGR_MRS1_MIRR, grpaddr);
928 			delay_for_n_mem_clocks(4);
929 			set_jump_as_return();
930 			writel(fin1, grpaddr);
931 		} else {
932 			set_jump_as_return();
933 			writel(RW_MGR_MRS2, grpaddr);
934 			delay_for_n_mem_clocks(4);
935 			set_jump_as_return();
936 			writel(RW_MGR_MRS3, grpaddr);
937 			delay_for_n_mem_clocks(4);
938 			set_jump_as_return();
939 			writel(RW_MGR_MRS1, grpaddr);
940 			set_jump_as_return();
941 			writel(fin2, grpaddr);
942 		}
943 
944 		if (precharge)
945 			continue;
946 
947 		set_jump_as_return();
948 		writel(RW_MGR_ZQCL, grpaddr);
949 
950 		/* tZQinit = tDLLK = 512 ck cycles */
951 		delay_for_n_mem_clocks(512);
952 	}
953 }
954 
955 /**
956  * rw_mgr_mem_initialize() - Initialize RW Manager
957  *
958  * Initialize RW Manager.
959  */
960 static void rw_mgr_mem_initialize(void)
961 {
962 	debug("%s:%d\n", __func__, __LINE__);
963 
964 	/* The reset / cke part of initialization is broadcasted to all ranks */
965 	writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
966 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
967 
968 	/*
969 	 * Here's how you load register for a loop
970 	 * Counters are located @ 0x800
971 	 * Jump address are located @ 0xC00
972 	 * For both, registers 0 to 3 are selected using bits 3 and 2, like
973 	 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
974 	 * I know this ain't pretty, but Avalon bus throws away the 2 least
975 	 * significant bits
976 	 */
977 
978 	/* Start with memory RESET activated */
979 
980 	/* tINIT = 200us */
981 
982 	/*
983 	 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
984 	 * If a and b are the number of iteration in 2 nested loops
985 	 * it takes the following number of cycles to complete the operation:
986 	 * number_of_cycles = ((2 + n) * a + 2) * b
987 	 * where n is the number of instruction in the inner loop
988 	 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
989 	 * b = 6A
990 	 */
991 	rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
992 				  SEQ_TINIT_CNTR2_VAL,
993 				  RW_MGR_INIT_RESET_0_CKE_0);
994 
995 	/* Indicate that memory is stable. */
996 	writel(1, &phy_mgr_cfg->reset_mem_stbl);
997 
998 	/*
999 	 * transition the RESET to high
1000 	 * Wait for 500us
1001 	 */
1002 
1003 	/*
1004 	 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
1005 	 * If a and b are the number of iteration in 2 nested loops
1006 	 * it takes the following number of cycles to complete the operation
1007 	 * number_of_cycles = ((2 + n) * a + 2) * b
1008 	 * where n is the number of instruction in the inner loop
1009 	 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
1010 	 * b = FF
1011 	 */
1012 	rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
1013 				  SEQ_TRESET_CNTR2_VAL,
1014 				  RW_MGR_INIT_RESET_1_CKE_0);
1015 
1016 	/* Bring up clock enable. */
1017 
1018 	/* tXRP < 250 ck cycles */
1019 	delay_for_n_mem_clocks(250);
1020 
1021 	rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
1022 			     0);
1023 }
1024 
1025 /*
1026  * At the end of calibration we have to program the user settings in, and
1027  * USER  hand off the memory to the user.
1028  */
1029 static void rw_mgr_mem_handoff(void)
1030 {
1031 	rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
1032 	/*
1033 	 * USER  need to wait tMOD (12CK or 15ns) time before issuing
1034 	 * other commands, but we will have plenty of NIOS cycles before
1035 	 * actual handoff so its okay.
1036 	 */
1037 }
1038 
1039 /**
1040  * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1041  * @rank_bgn:	Rank number
1042  * @group:	Read/Write Group
1043  * @all_ranks:	Test all ranks
1044  *
1045  * Performs a guaranteed read on the patterns we are going to use during a
1046  * read test to ensure memory works.
1047  */
1048 static int
1049 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1050 					const u32 all_ranks)
1051 {
1052 	const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1053 			 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1054 	const u32 addr_offset =
1055 			 (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2;
1056 	const u32 rank_end = all_ranks ?
1057 				RW_MGR_MEM_NUMBER_OF_RANKS :
1058 				(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1059 	const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
1060 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1061 	const u32 correct_mask_vg = param->read_correct_mask_vg;
1062 
1063 	u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1064 	int vg, r;
1065 	int ret = 0;
1066 
1067 	bit_chk = param->read_correct_mask;
1068 
1069 	for (r = rank_bgn; r < rank_end; r++) {
1070 		/* Request to skip the rank */
1071 		if (param->skip_ranks[r])
1072 			continue;
1073 
1074 		/* Set rank */
1075 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1076 
1077 		/* Load up a constant bursts of read commands */
1078 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1079 		writel(RW_MGR_GUARANTEED_READ,
1080 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1081 
1082 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1083 		writel(RW_MGR_GUARANTEED_READ_CONT,
1084 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1085 
1086 		tmp_bit_chk = 0;
1087 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1;
1088 		     vg >= 0; vg--) {
1089 			/* Reset the FIFOs to get pointers to known state. */
1090 			writel(0, &phy_mgr_cmd->fifo_reset);
1091 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1092 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1093 			writel(RW_MGR_GUARANTEED_READ,
1094 			       addr + addr_offset + (vg << 2));
1095 
1096 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1097 			tmp_bit_chk <<= shift_ratio;
1098 			tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1099 		}
1100 
1101 		bit_chk &= tmp_bit_chk;
1102 	}
1103 
1104 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1105 
1106 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1107 
1108 	if (bit_chk != param->read_correct_mask)
1109 		ret = -EIO;
1110 
1111 	debug_cond(DLEVEL == 1,
1112 		   "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1113 		   __func__, __LINE__, group, bit_chk,
1114 		   param->read_correct_mask, ret);
1115 
1116 	return ret;
1117 }
1118 
1119 /**
1120  * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1121  * @rank_bgn:	Rank number
1122  * @all_ranks:	Test all ranks
1123  *
1124  * Load up the patterns we are going to use during a read test.
1125  */
1126 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1127 						    const int all_ranks)
1128 {
1129 	const u32 rank_end = all_ranks ?
1130 			RW_MGR_MEM_NUMBER_OF_RANKS :
1131 			(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1132 	u32 r;
1133 
1134 	debug("%s:%d\n", __func__, __LINE__);
1135 
1136 	for (r = rank_bgn; r < rank_end; r++) {
1137 		if (param->skip_ranks[r])
1138 			/* request to skip the rank */
1139 			continue;
1140 
1141 		/* set rank */
1142 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1143 
1144 		/* Load up a constant bursts */
1145 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1146 
1147 		writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1148 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1149 
1150 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1151 
1152 		writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1153 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1154 
1155 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1156 
1157 		writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1158 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1159 
1160 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1161 
1162 		writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1163 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1164 
1165 		writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1166 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1167 	}
1168 
1169 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1170 }
1171 
1172 /*
1173  * try a read and see if it returns correct data back. has dummy reads
1174  * inserted into the mix used to align dqs enable. has more thorough checks
1175  * than the regular read test.
1176  */
1177 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
1178 	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1179 	uint32_t all_groups, uint32_t all_ranks)
1180 {
1181 	uint32_t r, vg;
1182 	uint32_t correct_mask_vg;
1183 	uint32_t tmp_bit_chk;
1184 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1185 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1186 	uint32_t addr;
1187 	uint32_t base_rw_mgr;
1188 
1189 	*bit_chk = param->read_correct_mask;
1190 	correct_mask_vg = param->read_correct_mask_vg;
1191 
1192 	uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
1193 		CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
1194 
1195 	for (r = rank_bgn; r < rank_end; r++) {
1196 		if (param->skip_ranks[r])
1197 			/* request to skip the rank */
1198 			continue;
1199 
1200 		/* set rank */
1201 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1202 
1203 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1204 
1205 		writel(RW_MGR_READ_B2B_WAIT1,
1206 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1207 
1208 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1209 		writel(RW_MGR_READ_B2B_WAIT2,
1210 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1211 
1212 		if (quick_read_mode)
1213 			writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1214 			/* need at least two (1+1) reads to capture failures */
1215 		else if (all_groups)
1216 			writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1217 		else
1218 			writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1219 
1220 		writel(RW_MGR_READ_B2B,
1221 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1222 		if (all_groups)
1223 			writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1224 			       RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1225 			       &sdr_rw_load_mgr_regs->load_cntr3);
1226 		else
1227 			writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1228 
1229 		writel(RW_MGR_READ_B2B,
1230 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1231 
1232 		tmp_bit_chk = 0;
1233 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1234 			/* reset the fifos to get pointers to known state */
1235 			writel(0, &phy_mgr_cmd->fifo_reset);
1236 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1237 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1238 
1239 			tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1240 				/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1241 
1242 			if (all_groups)
1243 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
1244 			else
1245 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1246 
1247 			writel(RW_MGR_READ_B2B, addr +
1248 			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1249 			       vg) << 2));
1250 
1251 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1252 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
1253 
1254 			if (vg == 0)
1255 				break;
1256 		}
1257 		*bit_chk &= tmp_bit_chk;
1258 	}
1259 
1260 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1261 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1262 
1263 	if (all_correct) {
1264 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1265 		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
1266 			   (%u == %u) => %lu", __func__, __LINE__, group,
1267 			   all_groups, *bit_chk, param->read_correct_mask,
1268 			   (long unsigned int)(*bit_chk ==
1269 			   param->read_correct_mask));
1270 		return *bit_chk == param->read_correct_mask;
1271 	} else	{
1272 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1273 		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
1274 			   (%u != %lu) => %lu\n", __func__, __LINE__,
1275 			   group, all_groups, *bit_chk, (long unsigned int)0,
1276 			   (long unsigned int)(*bit_chk != 0x00));
1277 		return *bit_chk != 0x00;
1278 	}
1279 }
1280 
1281 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
1282 	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1283 	uint32_t all_groups)
1284 {
1285 	return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
1286 					      bit_chk, all_groups, 1);
1287 }
1288 
1289 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
1290 {
1291 	writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1292 	(*v)++;
1293 }
1294 
1295 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v)
1296 {
1297 	uint32_t i;
1298 
1299 	for (i = 0; i < VFIFO_SIZE-1; i++)
1300 		rw_mgr_incr_vfifo(grp, v);
1301 }
1302 
1303 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk)
1304 {
1305 	uint32_t  v;
1306 	uint32_t fail_cnt = 0;
1307 	uint32_t test_status;
1308 
1309 	for (v = 0; v < VFIFO_SIZE; ) {
1310 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n",
1311 			   __func__, __LINE__, v);
1312 		test_status = rw_mgr_mem_calibrate_read_test_all_ranks
1313 			(grp, 1, PASS_ONE_BIT, bit_chk, 0);
1314 		if (!test_status) {
1315 			fail_cnt++;
1316 
1317 			if (fail_cnt == 2)
1318 				break;
1319 		}
1320 
1321 		/* fiddle with FIFO */
1322 		rw_mgr_incr_vfifo(grp, &v);
1323 	}
1324 
1325 	if (v >= VFIFO_SIZE) {
1326 		/* no failing read found!! Something must have gone wrong */
1327 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n",
1328 			   __func__, __LINE__);
1329 		return 0;
1330 	} else {
1331 		return v;
1332 	}
1333 }
1334 
1335 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk,
1336 			      uint32_t dtaps_per_ptap, uint32_t *work_bgn,
1337 			      uint32_t *v, uint32_t *d, uint32_t *p,
1338 			      uint32_t *i, uint32_t *max_working_cnt)
1339 {
1340 	uint32_t found_begin = 0;
1341 	uint32_t tmp_delay = 0;
1342 	uint32_t test_status;
1343 
1344 	for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay +=
1345 		IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1346 		*work_bgn = tmp_delay;
1347 		scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1348 
1349 		for (*i = 0; *i < VFIFO_SIZE; (*i)++) {
1350 			for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn +=
1351 				IO_DELAY_PER_OPA_TAP) {
1352 				scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1353 
1354 				test_status =
1355 				rw_mgr_mem_calibrate_read_test_all_ranks
1356 				(*grp, 1, PASS_ONE_BIT, bit_chk, 0);
1357 
1358 				if (test_status) {
1359 					*max_working_cnt = 1;
1360 					found_begin = 1;
1361 					break;
1362 				}
1363 			}
1364 
1365 			if (found_begin)
1366 				break;
1367 
1368 			if (*p > IO_DQS_EN_PHASE_MAX)
1369 				/* fiddle with FIFO */
1370 				rw_mgr_incr_vfifo(*grp, v);
1371 		}
1372 
1373 		if (found_begin)
1374 			break;
1375 	}
1376 
1377 	if (*i >= VFIFO_SIZE) {
1378 		/* cannot find working solution */
1379 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\
1380 			   ptap/dtap\n", __func__, __LINE__);
1381 		return 0;
1382 	} else {
1383 		return 1;
1384 	}
1385 }
1386 
1387 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk,
1388 			     uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1389 			     uint32_t *p, uint32_t *max_working_cnt)
1390 {
1391 	uint32_t found_begin = 0;
1392 	uint32_t tmp_delay;
1393 
1394 	/* Special case code for backing up a phase */
1395 	if (*p == 0) {
1396 		*p = IO_DQS_EN_PHASE_MAX;
1397 		rw_mgr_decr_vfifo(*grp, v);
1398 	} else {
1399 		(*p)--;
1400 	}
1401 	tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1402 	scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1403 
1404 	for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn;
1405 		(*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1406 		scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1407 
1408 		if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1409 							     PASS_ONE_BIT,
1410 							     bit_chk, 0)) {
1411 			found_begin = 1;
1412 			*work_bgn = tmp_delay;
1413 			break;
1414 		}
1415 	}
1416 
1417 	/* We have found a working dtap before the ptap found above */
1418 	if (found_begin == 1)
1419 		(*max_working_cnt)++;
1420 
1421 	/*
1422 	 * Restore VFIFO to old state before we decremented it
1423 	 * (if needed).
1424 	 */
1425 	(*p)++;
1426 	if (*p > IO_DQS_EN_PHASE_MAX) {
1427 		*p = 0;
1428 		rw_mgr_incr_vfifo(*grp, v);
1429 	}
1430 
1431 	scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0);
1432 }
1433 
1434 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk,
1435 			     uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1436 			     uint32_t *p, uint32_t *i, uint32_t *max_working_cnt,
1437 			     uint32_t *work_end)
1438 {
1439 	uint32_t found_end = 0;
1440 
1441 	(*p)++;
1442 	*work_end += IO_DELAY_PER_OPA_TAP;
1443 	if (*p > IO_DQS_EN_PHASE_MAX) {
1444 		/* fiddle with FIFO */
1445 		*p = 0;
1446 		rw_mgr_incr_vfifo(*grp, v);
1447 	}
1448 
1449 	for (; *i < VFIFO_SIZE + 1; (*i)++) {
1450 		for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end
1451 			+= IO_DELAY_PER_OPA_TAP) {
1452 			scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1453 
1454 			if (!rw_mgr_mem_calibrate_read_test_all_ranks
1455 				(*grp, 1, PASS_ONE_BIT, bit_chk, 0)) {
1456 				found_end = 1;
1457 				break;
1458 			} else {
1459 				(*max_working_cnt)++;
1460 			}
1461 		}
1462 
1463 		if (found_end)
1464 			break;
1465 
1466 		if (*p > IO_DQS_EN_PHASE_MAX) {
1467 			/* fiddle with FIFO */
1468 			rw_mgr_incr_vfifo(*grp, v);
1469 			*p = 0;
1470 		}
1471 	}
1472 
1473 	if (*i >= VFIFO_SIZE + 1) {
1474 		/* cannot see edge of failing read */
1475 		debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\
1476 			   failed\n", __func__, __LINE__);
1477 		return 0;
1478 	} else {
1479 		return 1;
1480 	}
1481 }
1482 
1483 /**
1484  * sdr_find_window_center() - Find center of the working DQS window.
1485  * @grp:	Read/Write group
1486  * @work_bgn:	First working settings
1487  * @work_end:	Last working settings
1488  * @val:	VFIFO value
1489  *
1490  * Find center of the working DQS enable window.
1491  */
1492 static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
1493 				  const u32 work_end, const u32 val)
1494 {
1495 	u32 bit_chk, work_mid, v = val;
1496 	int tmp_delay = 0;
1497 	int i, p, d;
1498 
1499 	work_mid = (work_bgn + work_end) / 2;
1500 
1501 	debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1502 		   work_bgn, work_end, work_mid);
1503 	/* Get the middle delay to be less than a VFIFO delay */
1504 	tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP;
1505 
1506 	debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1507 	work_mid %= tmp_delay;
1508 	debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid);
1509 
1510 	tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP);
1511 	if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP)
1512 		tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP;
1513 	p = tmp_delay / IO_DELAY_PER_OPA_TAP;
1514 
1515 	debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
1516 
1517 	d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP);
1518 	if (d > IO_DQS_EN_DELAY_MAX)
1519 		d = IO_DQS_EN_DELAY_MAX;
1520 	tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1521 
1522 	debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
1523 
1524 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1525 	scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1526 
1527 	/*
1528 	 * push vfifo until we can successfully calibrate. We can do this
1529 	 * because the largest possible margin in 1 VFIFO cycle.
1530 	 */
1531 	for (i = 0; i < VFIFO_SIZE; i++) {
1532 		debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n",
1533 			   v);
1534 		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1535 							     PASS_ONE_BIT,
1536 							     &bit_chk, 0)) {
1537 			debug_cond(DLEVEL == 2,
1538 				   "%s:%d center: found: vfifo=%u ptap=%u dtap=%u\n",
1539 				   __func__, __LINE__, v, p, d);
1540 			return 0;
1541 		}
1542 
1543 		/* Fiddle with FIFO. */
1544 		rw_mgr_incr_vfifo(grp, &v);
1545 	}
1546 
1547 	debug_cond(DLEVEL == 2, "%s:%d center: failed.\n",
1548 		   __func__, __LINE__);
1549 	return -EINVAL;
1550 }
1551 
1552 /* find a good dqs enable to use */
1553 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
1554 {
1555 	uint32_t v, d, p, i;
1556 	uint32_t max_working_cnt;
1557 	uint32_t bit_chk;
1558 	uint32_t dtaps_per_ptap;
1559 	uint32_t work_bgn, work_end;
1560 	uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
1561 
1562 	debug("%s:%d %u\n", __func__, __LINE__, grp);
1563 
1564 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1565 
1566 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1567 	scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1568 
1569 	/* ************************************************************** */
1570 	/* * Step 0 : Determine number of delay taps for each phase tap * */
1571 	dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1572 
1573 	/* ********************************************************* */
1574 	/* * Step 1 : First push vfifo until we get a failing read * */
1575 	v = find_vfifo_read(grp, &bit_chk);
1576 
1577 	max_working_cnt = 0;
1578 
1579 	/* ******************************************************** */
1580 	/* * step 2: find first working phase, increment in ptaps * */
1581 	work_bgn = 0;
1582 	if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d,
1583 				&p, &i, &max_working_cnt) == 0)
1584 		return 0;
1585 
1586 	work_end = work_bgn;
1587 
1588 	/*
1589 	 * If d is 0 then the working window covers a phase tap and
1590 	 * we can follow the old procedure otherwise, we've found the beginning,
1591 	 * and we need to increment the dtaps until we find the end.
1592 	 */
1593 	if (d == 0) {
1594 		/* ********************************************************* */
1595 		/* * step 3a: if we have room, back off by one and
1596 		increment in dtaps * */
1597 
1598 		sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1599 				 &max_working_cnt);
1600 
1601 		/* ********************************************************* */
1602 		/* * step 4a: go forward from working phase to non working
1603 		phase, increment in ptaps * */
1604 		if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1605 					 &i, &max_working_cnt, &work_end) == 0)
1606 			return 0;
1607 
1608 		/* ********************************************************* */
1609 		/* * step 5a:  back off one from last, increment in dtaps  * */
1610 
1611 		/* Special case code for backing up a phase */
1612 		if (p == 0) {
1613 			p = IO_DQS_EN_PHASE_MAX;
1614 			rw_mgr_decr_vfifo(grp, &v);
1615 		} else {
1616 			p = p - 1;
1617 		}
1618 
1619 		work_end -= IO_DELAY_PER_OPA_TAP;
1620 		scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1621 
1622 		/* * The actual increment of dtaps is done outside of
1623 		the if/else loop to share code */
1624 		d = 0;
1625 
1626 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \
1627 			   vfifo=%u ptap=%u\n", __func__, __LINE__,
1628 			   v, p);
1629 	} else {
1630 		/* ******************************************************* */
1631 		/* * step 3-5b:  Find the right edge of the window using
1632 		delay taps   * */
1633 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \
1634 			   ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__,
1635 			   v, p, d, work_bgn);
1636 
1637 		work_end = work_bgn;
1638 
1639 		/* * The actual increment of dtaps is done outside of the
1640 		if/else loop to share code */
1641 
1642 		/* Only here to counterbalance a subtract later on which is
1643 		not needed if this branch of the algorithm is taken */
1644 		max_working_cnt++;
1645 	}
1646 
1647 	/* The dtap increment to find the failing edge is done here */
1648 	for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
1649 		IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1650 			debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1651 				   end-2: dtap=%u\n", __func__, __LINE__, d);
1652 			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1653 
1654 			if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1655 								      PASS_ONE_BIT,
1656 								      &bit_chk, 0)) {
1657 				break;
1658 			}
1659 	}
1660 
1661 	/* Go back to working dtap */
1662 	if (d != 0)
1663 		work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1664 
1665 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \
1666 		   ptap=%u dtap=%u end=%u\n", __func__, __LINE__,
1667 		   v, p, d-1, work_end);
1668 
1669 	if (work_end < work_bgn) {
1670 		/* nil range */
1671 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \
1672 			   failed\n", __func__, __LINE__);
1673 		return 0;
1674 	}
1675 
1676 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n",
1677 		   __func__, __LINE__, work_bgn, work_end);
1678 
1679 	/* *************************************************************** */
1680 	/*
1681 	 * * We need to calculate the number of dtaps that equal a ptap
1682 	 * * To do that we'll back up a ptap and re-find the edge of the
1683 	 * * window using dtaps
1684 	 */
1685 
1686 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \
1687 		   for tracking\n", __func__, __LINE__);
1688 
1689 	/* Special case code for backing up a phase */
1690 	if (p == 0) {
1691 		p = IO_DQS_EN_PHASE_MAX;
1692 		rw_mgr_decr_vfifo(grp, &v);
1693 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1694 			   cycle/phase: v=%u p=%u\n", __func__, __LINE__,
1695 			   v, p);
1696 	} else {
1697 		p = p - 1;
1698 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1699 			   phase only: v=%u p=%u", __func__, __LINE__,
1700 			   v, p);
1701 	}
1702 
1703 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1704 
1705 	/*
1706 	 * Increase dtap until we first see a passing read (in case the
1707 	 * window is smaller than a ptap),
1708 	 * and then a failing read to mark the edge of the window again
1709 	 */
1710 
1711 	/* Find a passing read */
1712 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n",
1713 		   __func__, __LINE__);
1714 	found_passing_read = 0;
1715 	found_failing_read = 0;
1716 	initial_failing_dtap = d;
1717 	for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
1718 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \
1719 			   read d=%u\n", __func__, __LINE__, d);
1720 		scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1721 
1722 		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1723 							     PASS_ONE_BIT,
1724 							     &bit_chk, 0)) {
1725 			found_passing_read = 1;
1726 			break;
1727 		}
1728 	}
1729 
1730 	if (found_passing_read) {
1731 		/* Find a failing read */
1732 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \
1733 			   read\n", __func__, __LINE__);
1734 		for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
1735 			debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1736 				   testing read d=%u\n", __func__, __LINE__, d);
1737 			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1738 
1739 			if (!rw_mgr_mem_calibrate_read_test_all_ranks
1740 				(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
1741 				found_failing_read = 1;
1742 				break;
1743 			}
1744 		}
1745 	} else {
1746 		debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \
1747 			   calculate dtaps", __func__, __LINE__);
1748 		debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n");
1749 	}
1750 
1751 	/*
1752 	 * The dynamically calculated dtaps_per_ptap is only valid if we
1753 	 * found a passing/failing read. If we didn't, it means d hit the max
1754 	 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1755 	 * statically calculated value.
1756 	 */
1757 	if (found_passing_read && found_failing_read)
1758 		dtaps_per_ptap = d - initial_failing_dtap;
1759 
1760 	writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1761 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \
1762 		   - %u = %u",  __func__, __LINE__, d,
1763 		   initial_failing_dtap, dtaps_per_ptap);
1764 
1765 	/* ******************************************** */
1766 	/* * step 6:  Find the centre of the window   * */
1767 	if (sdr_find_window_centre(grp, work_bgn, work_end, v))
1768 		return 0; /* FIXME: Old code, return 0 means failure :-( */
1769 
1770 	return 1;
1771 }
1772 
1773 /* per-bit deskew DQ and center */
1774 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
1775 	uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
1776 	uint32_t use_read_test, uint32_t update_fom)
1777 {
1778 	uint32_t i, p, d, min_index;
1779 	/*
1780 	 * Store these as signed since there are comparisons with
1781 	 * signed numbers.
1782 	 */
1783 	uint32_t bit_chk;
1784 	uint32_t sticky_bit_chk;
1785 	int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1786 	int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1787 	int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
1788 	int32_t mid;
1789 	int32_t orig_mid_min, mid_min;
1790 	int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
1791 		final_dqs_en;
1792 	int32_t dq_margin, dqs_margin;
1793 	uint32_t stop;
1794 	uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
1795 	uint32_t addr;
1796 
1797 	debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
1798 
1799 	addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
1800 	start_dqs = readl(addr + (read_group << 2));
1801 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
1802 		start_dqs_en = readl(addr + ((read_group << 2)
1803 				     - IO_DQS_EN_DELAY_OFFSET));
1804 
1805 	/* set the left and right edge of each bit to an illegal value */
1806 	/* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
1807 	sticky_bit_chk = 0;
1808 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1809 		left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
1810 		right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1811 	}
1812 
1813 	/* Search for the left edge of the window for each bit */
1814 	for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
1815 		scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
1816 
1817 		writel(0, &sdr_scc_mgr->update);
1818 
1819 		/*
1820 		 * Stop searching when the read test doesn't pass AND when
1821 		 * we've seen a passing read on every bit.
1822 		 */
1823 		if (use_read_test) {
1824 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1825 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1826 				&bit_chk, 0, 0);
1827 		} else {
1828 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1829 							0, PASS_ONE_BIT,
1830 							&bit_chk, 0);
1831 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1832 				(read_group - (write_group *
1833 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
1834 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1835 			stop = (bit_chk == 0);
1836 		}
1837 		sticky_bit_chk = sticky_bit_chk | bit_chk;
1838 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
1839 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
1840 			   && %u", __func__, __LINE__, d,
1841 			   sticky_bit_chk,
1842 			param->read_correct_mask, stop);
1843 
1844 		if (stop == 1) {
1845 			break;
1846 		} else {
1847 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1848 				if (bit_chk & 1) {
1849 					/* Remember a passing test as the
1850 					left_edge */
1851 					left_edge[i] = d;
1852 				} else {
1853 					/* If a left edge has not been seen yet,
1854 					then a future passing test will mark
1855 					this edge as the right edge */
1856 					if (left_edge[i] ==
1857 						IO_IO_IN_DELAY_MAX + 1) {
1858 						right_edge[i] = -(d + 1);
1859 					}
1860 				}
1861 				bit_chk = bit_chk >> 1;
1862 			}
1863 		}
1864 	}
1865 
1866 	/* Reset DQ delay chains to 0 */
1867 	scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
1868 	sticky_bit_chk = 0;
1869 	for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
1870 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1871 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
1872 			   i, left_edge[i], i, right_edge[i]);
1873 
1874 		/*
1875 		 * Check for cases where we haven't found the left edge,
1876 		 * which makes our assignment of the the right edge invalid.
1877 		 * Reset it to the illegal value.
1878 		 */
1879 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
1880 			right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1881 			right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1882 			debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
1883 				   right_edge[%u]: %d\n", __func__, __LINE__,
1884 				   i, right_edge[i]);
1885 		}
1886 
1887 		/*
1888 		 * Reset sticky bit (except for bits where we have seen
1889 		 * both the left and right edge).
1890 		 */
1891 		sticky_bit_chk = sticky_bit_chk << 1;
1892 		if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
1893 		    (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1894 			sticky_bit_chk = sticky_bit_chk | 1;
1895 		}
1896 
1897 		if (i == 0)
1898 			break;
1899 	}
1900 
1901 	/* Search for the right edge of the window for each bit */
1902 	for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
1903 		scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
1904 		if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1905 			uint32_t delay = d + start_dqs_en;
1906 			if (delay > IO_DQS_EN_DELAY_MAX)
1907 				delay = IO_DQS_EN_DELAY_MAX;
1908 			scc_mgr_set_dqs_en_delay(read_group, delay);
1909 		}
1910 		scc_mgr_load_dqs(read_group);
1911 
1912 		writel(0, &sdr_scc_mgr->update);
1913 
1914 		/*
1915 		 * Stop searching when the read test doesn't pass AND when
1916 		 * we've seen a passing read on every bit.
1917 		 */
1918 		if (use_read_test) {
1919 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1920 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1921 				&bit_chk, 0, 0);
1922 		} else {
1923 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1924 							0, PASS_ONE_BIT,
1925 							&bit_chk, 0);
1926 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1927 				(read_group - (write_group *
1928 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
1929 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1930 			stop = (bit_chk == 0);
1931 		}
1932 		sticky_bit_chk = sticky_bit_chk | bit_chk;
1933 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
1934 
1935 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
1936 			   %u && %u", __func__, __LINE__, d,
1937 			   sticky_bit_chk, param->read_correct_mask, stop);
1938 
1939 		if (stop == 1) {
1940 			break;
1941 		} else {
1942 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1943 				if (bit_chk & 1) {
1944 					/* Remember a passing test as
1945 					the right_edge */
1946 					right_edge[i] = d;
1947 				} else {
1948 					if (d != 0) {
1949 						/* If a right edge has not been
1950 						seen yet, then a future passing
1951 						test will mark this edge as the
1952 						left edge */
1953 						if (right_edge[i] ==
1954 						IO_IO_IN_DELAY_MAX + 1) {
1955 							left_edge[i] = -(d + 1);
1956 						}
1957 					} else {
1958 						/* d = 0 failed, but it passed
1959 						when testing the left edge,
1960 						so it must be marginal,
1961 						set it to -1 */
1962 						if (right_edge[i] ==
1963 							IO_IO_IN_DELAY_MAX + 1 &&
1964 							left_edge[i] !=
1965 							IO_IO_IN_DELAY_MAX
1966 							+ 1) {
1967 							right_edge[i] = -1;
1968 						}
1969 						/* If a right edge has not been
1970 						seen yet, then a future passing
1971 						test will mark this edge as the
1972 						left edge */
1973 						else if (right_edge[i] ==
1974 							IO_IO_IN_DELAY_MAX +
1975 							1) {
1976 							left_edge[i] = -(d + 1);
1977 						}
1978 					}
1979 				}
1980 
1981 				debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
1982 					   d=%u]: ", __func__, __LINE__, d);
1983 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
1984 					   (int)(bit_chk & 1), i, left_edge[i]);
1985 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
1986 					   right_edge[i]);
1987 				bit_chk = bit_chk >> 1;
1988 			}
1989 		}
1990 	}
1991 
1992 	/* Check that all bits have a window */
1993 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1994 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1995 			   %d right_edge[%u]: %d", __func__, __LINE__,
1996 			   i, left_edge[i], i, right_edge[i]);
1997 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
1998 			== IO_IO_IN_DELAY_MAX + 1)) {
1999 			/*
2000 			 * Restore delay chain settings before letting the loop
2001 			 * in rw_mgr_mem_calibrate_vfifo to retry different
2002 			 * dqs/ck relationships.
2003 			 */
2004 			scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
2005 			if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2006 				scc_mgr_set_dqs_en_delay(read_group,
2007 							 start_dqs_en);
2008 			}
2009 			scc_mgr_load_dqs(read_group);
2010 			writel(0, &sdr_scc_mgr->update);
2011 
2012 			debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
2013 				   find edge [%u]: %d %d", __func__, __LINE__,
2014 				   i, left_edge[i], right_edge[i]);
2015 			if (use_read_test) {
2016 				set_failing_group_stage(read_group *
2017 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
2018 					CAL_STAGE_VFIFO,
2019 					CAL_SUBSTAGE_VFIFO_CENTER);
2020 			} else {
2021 				set_failing_group_stage(read_group *
2022 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
2023 					CAL_STAGE_VFIFO_AFTER_WRITES,
2024 					CAL_SUBSTAGE_VFIFO_CENTER);
2025 			}
2026 			return 0;
2027 		}
2028 	}
2029 
2030 	/* Find middle of window for each DQ bit */
2031 	mid_min = left_edge[0] - right_edge[0];
2032 	min_index = 0;
2033 	for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2034 		mid = left_edge[i] - right_edge[i];
2035 		if (mid < mid_min) {
2036 			mid_min = mid;
2037 			min_index = i;
2038 		}
2039 	}
2040 
2041 	/*
2042 	 * -mid_min/2 represents the amount that we need to move DQS.
2043 	 * If mid_min is odd and positive we'll need to add one to
2044 	 * make sure the rounding in further calculations is correct
2045 	 * (always bias to the right), so just add 1 for all positive values.
2046 	 */
2047 	if (mid_min > 0)
2048 		mid_min++;
2049 
2050 	mid_min = mid_min / 2;
2051 
2052 	debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2053 		   __func__, __LINE__, mid_min, min_index);
2054 
2055 	/* Determine the amount we can change DQS (which is -mid_min) */
2056 	orig_mid_min = mid_min;
2057 	new_dqs = start_dqs - mid_min;
2058 	if (new_dqs > IO_DQS_IN_DELAY_MAX)
2059 		new_dqs = IO_DQS_IN_DELAY_MAX;
2060 	else if (new_dqs < 0)
2061 		new_dqs = 0;
2062 
2063 	mid_min = start_dqs - new_dqs;
2064 	debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2065 		   mid_min, new_dqs);
2066 
2067 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2068 		if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2069 			mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2070 		else if (start_dqs_en - mid_min < 0)
2071 			mid_min += start_dqs_en - mid_min;
2072 	}
2073 	new_dqs = start_dqs - mid_min;
2074 
2075 	debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2076 		   new_dqs=%d mid_min=%d\n", start_dqs,
2077 		   IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2078 		   new_dqs, mid_min);
2079 
2080 	/* Initialize data for export structures */
2081 	dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2082 	dq_margin  = IO_IO_IN_DELAY_MAX + 1;
2083 
2084 	/* add delay to bring centre of all DQ windows to the same "level" */
2085 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2086 		/* Use values before divide by 2 to reduce round off error */
2087 		shift_dq = (left_edge[i] - right_edge[i] -
2088 			(left_edge[min_index] - right_edge[min_index]))/2  +
2089 			(orig_mid_min - mid_min);
2090 
2091 		debug_cond(DLEVEL == 2, "vfifo_center: before: \
2092 			   shift_dq[%u]=%d\n", i, shift_dq);
2093 
2094 		addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
2095 		temp_dq_in_delay1 = readl(addr + (p << 2));
2096 		temp_dq_in_delay2 = readl(addr + (i << 2));
2097 
2098 		if (shift_dq + (int32_t)temp_dq_in_delay1 >
2099 			(int32_t)IO_IO_IN_DELAY_MAX) {
2100 			shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2101 		} else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2102 			shift_dq = -(int32_t)temp_dq_in_delay1;
2103 		}
2104 		debug_cond(DLEVEL == 2, "vfifo_center: after: \
2105 			   shift_dq[%u]=%d\n", i, shift_dq);
2106 		final_dq[i] = temp_dq_in_delay1 + shift_dq;
2107 		scc_mgr_set_dq_in_delay(p, final_dq[i]);
2108 		scc_mgr_load_dq(p);
2109 
2110 		debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2111 			   left_edge[i] - shift_dq + (-mid_min),
2112 			   right_edge[i] + shift_dq - (-mid_min));
2113 		/* To determine values for export structures */
2114 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2115 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
2116 
2117 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2118 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2119 	}
2120 
2121 	final_dqs = new_dqs;
2122 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2123 		final_dqs_en = start_dqs_en - mid_min;
2124 
2125 	/* Move DQS-en */
2126 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2127 		scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2128 		scc_mgr_load_dqs(read_group);
2129 	}
2130 
2131 	/* Move DQS */
2132 	scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2133 	scc_mgr_load_dqs(read_group);
2134 	debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2135 		   dqs_margin=%d", __func__, __LINE__,
2136 		   dq_margin, dqs_margin);
2137 
2138 	/*
2139 	 * Do not remove this line as it makes sure all of our decisions
2140 	 * have been applied. Apply the update bit.
2141 	 */
2142 	writel(0, &sdr_scc_mgr->update);
2143 
2144 	return (dq_margin >= 0) && (dqs_margin >= 0);
2145 }
2146 
2147 /**
2148  * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2149  * @rw_group:	Read/Write Group
2150  * @phase:	DQ/DQS phase
2151  *
2152  * Because initially no communication ca be reliably performed with the memory
2153  * device, the sequencer uses a guaranteed write mechanism to write data into
2154  * the memory device.
2155  */
2156 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2157 						 const u32 phase)
2158 {
2159 	int ret;
2160 
2161 	/* Set a particular DQ/DQS phase. */
2162 	scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2163 
2164 	debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
2165 		   __func__, __LINE__, rw_group, phase);
2166 
2167 	/*
2168 	 * Altera EMI_RM 2015.05.04 :: Figure 1-25
2169 	 * Load up the patterns used by read calibration using the
2170 	 * current DQDQS phase.
2171 	 */
2172 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2173 
2174 	if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2175 		return 0;
2176 
2177 	/*
2178 	 * Altera EMI_RM 2015.05.04 :: Figure 1-26
2179 	 * Back-to-Back reads of the patterns used for calibration.
2180 	 */
2181 	ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2182 	if (ret)
2183 		debug_cond(DLEVEL == 1,
2184 			   "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2185 			   __func__, __LINE__, rw_group, phase);
2186 	return ret;
2187 }
2188 
2189 /**
2190  * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2191  * @rw_group:	Read/Write Group
2192  * @test_bgn:	Rank at which the test begins
2193  *
2194  * DQS enable calibration ensures reliable capture of the DQ signal without
2195  * glitches on the DQS line.
2196  */
2197 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2198 						       const u32 test_bgn)
2199 {
2200 	/*
2201 	 * Altera EMI_RM 2015.05.04 :: Figure 1-27
2202 	 * DQS and DQS Eanble Signal Relationships.
2203 	 */
2204 
2205 	/* We start at zero, so have one less dq to devide among */
2206 	const u32 delay_step = IO_IO_IN_DELAY_MAX /
2207 			       (RW_MGR_MEM_DQ_PER_READ_DQS - 1);
2208 	int found;
2209 	u32 i, p, d, r;
2210 
2211 	debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2212 
2213 	/* Try different dq_in_delays since the DQ path is shorter than DQS. */
2214 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2215 	     r += NUM_RANKS_PER_SHADOW_REG) {
2216 		for (i = 0, p = test_bgn, d = 0;
2217 		     i < RW_MGR_MEM_DQ_PER_READ_DQS;
2218 		     i++, p++, d += delay_step) {
2219 			debug_cond(DLEVEL == 1,
2220 				   "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2221 				   __func__, __LINE__, rw_group, r, i, p, d);
2222 
2223 			scc_mgr_set_dq_in_delay(p, d);
2224 			scc_mgr_load_dq(p);
2225 		}
2226 
2227 		writel(0, &sdr_scc_mgr->update);
2228 	}
2229 
2230 	/*
2231 	 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2232 	 * dq_in_delay values
2233 	 */
2234 	found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
2235 
2236 	debug_cond(DLEVEL == 1,
2237 		   "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
2238 		   __func__, __LINE__, rw_group, found);
2239 
2240 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2241 	     r += NUM_RANKS_PER_SHADOW_REG) {
2242 		scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2243 		writel(0, &sdr_scc_mgr->update);
2244 	}
2245 
2246 	if (!found)
2247 		return -EINVAL;
2248 
2249 	return 0;
2250 
2251 }
2252 
2253 /**
2254  * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2255  * @rw_group:		Read/Write Group
2256  * @test_bgn:		Rank at which the test begins
2257  * @use_read_test:	Perform a read test
2258  * @update_fom:		Update FOM
2259  *
2260  * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2261  * within a group.
2262  */
2263 static int
2264 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2265 				      const int use_read_test,
2266 				      const int update_fom)
2267 
2268 {
2269 	int ret, grp_calibrated;
2270 	u32 rank_bgn, sr;
2271 
2272 	/*
2273 	 * Altera EMI_RM 2015.05.04 :: Figure 1-28
2274 	 * Read per-bit deskew can be done on a per shadow register basis.
2275 	 */
2276 	grp_calibrated = 1;
2277 	for (rank_bgn = 0, sr = 0;
2278 	     rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2279 	     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2280 		/* Check if this set of ranks should be skipped entirely. */
2281 		if (param->skip_shadow_regs[sr])
2282 			continue;
2283 
2284 		ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2285 							rw_group, test_bgn,
2286 							use_read_test,
2287 							update_fom);
2288 		if (ret)
2289 			continue;
2290 
2291 		grp_calibrated = 0;
2292 	}
2293 
2294 	if (!grp_calibrated)
2295 		return -EIO;
2296 
2297 	return 0;
2298 }
2299 
2300 /**
2301  * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2302  * @rw_group:		Read/Write Group
2303  * @test_bgn:		Rank at which the test begins
2304  *
2305  * Stage 1: Calibrate the read valid prediction FIFO.
2306  *
2307  * This function implements UniPHY calibration Stage 1, as explained in
2308  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2309  *
2310  * - read valid prediction will consist of finding:
2311  *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2312  *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
2313  *  - we also do a per-bit deskew on the DQ lines.
2314  */
2315 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2316 {
2317 	uint32_t p, d;
2318 	uint32_t dtaps_per_ptap;
2319 	uint32_t failed_substage;
2320 
2321 	int ret;
2322 
2323 	debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2324 
2325 	/* Update info for sims */
2326 	reg_file_set_group(rw_group);
2327 	reg_file_set_stage(CAL_STAGE_VFIFO);
2328 	reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2329 
2330 	failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2331 
2332 	/* USER Determine number of delay taps for each phase tap. */
2333 	dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2334 				      IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
2335 
2336 	for (d = 0; d <= dtaps_per_ptap; d += 2) {
2337 		/*
2338 		 * In RLDRAMX we may be messing the delay of pins in
2339 		 * the same write rw_group but outside of the current read
2340 		 * the rw_group, but that's ok because we haven't calibrated
2341 		 * output side yet.
2342 		 */
2343 		if (d > 0) {
2344 			scc_mgr_apply_group_all_out_delay_add_all_ranks(
2345 								rw_group, d);
2346 		}
2347 
2348 		for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
2349 			/* 1) Guaranteed Write */
2350 			ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2351 			if (ret)
2352 				break;
2353 
2354 			/* 2) DQS Enable Calibration */
2355 			ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2356 									  test_bgn);
2357 			if (ret) {
2358 				failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2359 				continue;
2360 			}
2361 
2362 			/* 3) Centering DQ/DQS */
2363 			/*
2364 			 * If doing read after write calibration, do not update
2365 			 * FOM now. Do it then.
2366 			 */
2367 			ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2368 								test_bgn, 1, 0);
2369 			if (ret) {
2370 				failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2371 				continue;
2372 			}
2373 
2374 			/* All done. */
2375 			goto cal_done_ok;
2376 		}
2377 	}
2378 
2379 	/* Calibration Stage 1 failed. */
2380 	set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2381 	return 0;
2382 
2383 	/* Calibration Stage 1 completed OK. */
2384 cal_done_ok:
2385 	/*
2386 	 * Reset the delay chains back to zero if they have moved > 1
2387 	 * (check for > 1 because loop will increase d even when pass in
2388 	 * first case).
2389 	 */
2390 	if (d > 2)
2391 		scc_mgr_zero_group(rw_group, 1);
2392 
2393 	return 1;
2394 }
2395 
2396 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2397 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2398 					       uint32_t test_bgn)
2399 {
2400 	uint32_t rank_bgn, sr;
2401 	uint32_t grp_calibrated;
2402 	uint32_t write_group;
2403 
2404 	debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2405 
2406 	/* update info for sims */
2407 
2408 	reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2409 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2410 
2411 	write_group = read_group;
2412 
2413 	/* update info for sims */
2414 	reg_file_set_group(read_group);
2415 
2416 	grp_calibrated = 1;
2417 	/* Read per-bit deskew can be done on a per shadow register basis */
2418 	for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2419 		rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2420 		/* Determine if this set of ranks should be skipped entirely */
2421 		if (!param->skip_shadow_regs[sr]) {
2422 		/* This is the last calibration round, update FOM here */
2423 			if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2424 								write_group,
2425 								read_group,
2426 								test_bgn, 0,
2427 								1)) {
2428 				grp_calibrated = 0;
2429 			}
2430 		}
2431 	}
2432 
2433 
2434 	if (grp_calibrated == 0) {
2435 		set_failing_group_stage(write_group,
2436 					CAL_STAGE_VFIFO_AFTER_WRITES,
2437 					CAL_SUBSTAGE_VFIFO_CENTER);
2438 		return 0;
2439 	}
2440 
2441 	return 1;
2442 }
2443 
2444 /* Calibrate LFIFO to find smallest read latency */
2445 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2446 {
2447 	uint32_t found_one;
2448 	uint32_t bit_chk;
2449 
2450 	debug("%s:%d\n", __func__, __LINE__);
2451 
2452 	/* update info for sims */
2453 	reg_file_set_stage(CAL_STAGE_LFIFO);
2454 	reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2455 
2456 	/* Load up the patterns used by read calibration for all ranks */
2457 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2458 	found_one = 0;
2459 
2460 	do {
2461 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2462 		debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2463 			   __func__, __LINE__, gbl->curr_read_lat);
2464 
2465 		if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2466 							      NUM_READ_TESTS,
2467 							      PASS_ALL_BITS,
2468 							      &bit_chk, 1)) {
2469 			break;
2470 		}
2471 
2472 		found_one = 1;
2473 		/* reduce read latency and see if things are working */
2474 		/* correctly */
2475 		gbl->curr_read_lat--;
2476 	} while (gbl->curr_read_lat > 0);
2477 
2478 	/* reset the fifos to get pointers to known state */
2479 
2480 	writel(0, &phy_mgr_cmd->fifo_reset);
2481 
2482 	if (found_one) {
2483 		/* add a fudge factor to the read latency that was determined */
2484 		gbl->curr_read_lat += 2;
2485 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2486 		debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2487 			   read_lat=%u\n", __func__, __LINE__,
2488 			   gbl->curr_read_lat);
2489 		return 1;
2490 	} else {
2491 		set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2492 					CAL_SUBSTAGE_READ_LATENCY);
2493 
2494 		debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2495 			   read_lat=%u\n", __func__, __LINE__,
2496 			   gbl->curr_read_lat);
2497 		return 0;
2498 	}
2499 }
2500 
2501 /*
2502  * issue write test command.
2503  * two variants are provided. one that just tests a write pattern and
2504  * another that tests datamask functionality.
2505  */
2506 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2507 						  uint32_t test_dm)
2508 {
2509 	uint32_t mcc_instruction;
2510 	uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2511 		ENABLE_SUPER_QUICK_CALIBRATION);
2512 	uint32_t rw_wl_nop_cycles;
2513 	uint32_t addr;
2514 
2515 	/*
2516 	 * Set counter and jump addresses for the right
2517 	 * number of NOP cycles.
2518 	 * The number of supported NOP cycles can range from -1 to infinity
2519 	 * Three different cases are handled:
2520 	 *
2521 	 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2522 	 *    mechanism will be used to insert the right number of NOPs
2523 	 *
2524 	 * 2. For a number of NOP cycles equals to 0, the micro-instruction
2525 	 *    issuing the write command will jump straight to the
2526 	 *    micro-instruction that turns on DQS (for DDRx), or outputs write
2527 	 *    data (for RLD), skipping
2528 	 *    the NOP micro-instruction all together
2529 	 *
2530 	 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2531 	 *    turned on in the same micro-instruction that issues the write
2532 	 *    command. Then we need
2533 	 *    to directly jump to the micro-instruction that sends out the data
2534 	 *
2535 	 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2536 	 *       (2 and 3). One jump-counter (0) is used to perform multiple
2537 	 *       write-read operations.
2538 	 *       one counter left to issue this command in "multiple-group" mode
2539 	 */
2540 
2541 	rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2542 
2543 	if (rw_wl_nop_cycles == -1) {
2544 		/*
2545 		 * CNTR 2 - We want to execute the special write operation that
2546 		 * turns on DQS right away and then skip directly to the
2547 		 * instruction that sends out the data. We set the counter to a
2548 		 * large number so that the jump is always taken.
2549 		 */
2550 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2551 
2552 		/* CNTR 3 - Not used */
2553 		if (test_dm) {
2554 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
2555 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
2556 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2557 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2558 			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2559 		} else {
2560 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
2561 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
2562 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2563 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2564 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2565 		}
2566 	} else if (rw_wl_nop_cycles == 0) {
2567 		/*
2568 		 * CNTR 2 - We want to skip the NOP operation and go straight
2569 		 * to the DQS enable instruction. We set the counter to a large
2570 		 * number so that the jump is always taken.
2571 		 */
2572 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2573 
2574 		/* CNTR 3 - Not used */
2575 		if (test_dm) {
2576 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2577 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
2578 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2579 		} else {
2580 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2581 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
2582 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2583 		}
2584 	} else {
2585 		/*
2586 		 * CNTR 2 - In this case we want to execute the next instruction
2587 		 * and NOT take the jump. So we set the counter to 0. The jump
2588 		 * address doesn't count.
2589 		 */
2590 		writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
2591 		writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2592 
2593 		/*
2594 		 * CNTR 3 - Set the nop counter to the number of cycles we
2595 		 * need to loop for, minus 1.
2596 		 */
2597 		writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
2598 		if (test_dm) {
2599 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2600 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2601 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2602 		} else {
2603 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2604 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2605 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2606 		}
2607 	}
2608 
2609 	writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
2610 		  RW_MGR_RESET_READ_DATAPATH_OFFSET);
2611 
2612 	if (quick_write_mode)
2613 		writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
2614 	else
2615 		writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
2616 
2617 	writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
2618 
2619 	/*
2620 	 * CNTR 1 - This is used to ensure enough time elapses
2621 	 * for read data to come back.
2622 	 */
2623 	writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
2624 
2625 	if (test_dm) {
2626 		writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
2627 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2628 	} else {
2629 		writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
2630 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2631 	}
2632 
2633 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
2634 	writel(mcc_instruction, addr + (group << 2));
2635 }
2636 
2637 /* Test writes, can check for a single bit pass or multiple bit pass */
2638 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2639 	uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2640 	uint32_t *bit_chk, uint32_t all_ranks)
2641 {
2642 	uint32_t r;
2643 	uint32_t correct_mask_vg;
2644 	uint32_t tmp_bit_chk;
2645 	uint32_t vg;
2646 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2647 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2648 	uint32_t addr_rw_mgr;
2649 	uint32_t base_rw_mgr;
2650 
2651 	*bit_chk = param->write_correct_mask;
2652 	correct_mask_vg = param->write_correct_mask_vg;
2653 
2654 	for (r = rank_bgn; r < rank_end; r++) {
2655 		if (param->skip_ranks[r]) {
2656 			/* request to skip the rank */
2657 			continue;
2658 		}
2659 
2660 		/* set rank */
2661 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2662 
2663 		tmp_bit_chk = 0;
2664 		addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
2665 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2666 			/* reset the fifos to get pointers to known state */
2667 			writel(0, &phy_mgr_cmd->fifo_reset);
2668 
2669 			tmp_bit_chk = tmp_bit_chk <<
2670 				(RW_MGR_MEM_DQ_PER_WRITE_DQS /
2671 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2672 			rw_mgr_mem_calibrate_write_test_issue(write_group *
2673 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2674 				use_dm);
2675 
2676 			base_rw_mgr = readl(addr_rw_mgr);
2677 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2678 			if (vg == 0)
2679 				break;
2680 		}
2681 		*bit_chk &= tmp_bit_chk;
2682 	}
2683 
2684 	if (all_correct) {
2685 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2686 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2687 			   %u => %lu", write_group, use_dm,
2688 			   *bit_chk, param->write_correct_mask,
2689 			   (long unsigned int)(*bit_chk ==
2690 			   param->write_correct_mask));
2691 		return *bit_chk == param->write_correct_mask;
2692 	} else {
2693 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2694 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2695 		       write_group, use_dm, *bit_chk);
2696 		debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2697 			(long unsigned int)(*bit_chk != 0));
2698 		return *bit_chk != 0x00;
2699 	}
2700 }
2701 
2702 /*
2703  * center all windows. do per-bit-deskew to possibly increase size of
2704  * certain windows.
2705  */
2706 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2707 	uint32_t write_group, uint32_t test_bgn)
2708 {
2709 	uint32_t i, p, min_index;
2710 	int32_t d;
2711 	/*
2712 	 * Store these as signed since there are comparisons with
2713 	 * signed numbers.
2714 	 */
2715 	uint32_t bit_chk;
2716 	uint32_t sticky_bit_chk;
2717 	int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2718 	int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2719 	int32_t mid;
2720 	int32_t mid_min, orig_mid_min;
2721 	int32_t new_dqs, start_dqs, shift_dq;
2722 	int32_t dq_margin, dqs_margin, dm_margin;
2723 	uint32_t stop;
2724 	uint32_t temp_dq_out1_delay;
2725 	uint32_t addr;
2726 
2727 	debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2728 
2729 	dm_margin = 0;
2730 
2731 	addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2732 	start_dqs = readl(addr +
2733 			  (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2734 
2735 	/* per-bit deskew */
2736 
2737 	/*
2738 	 * set the left and right edge of each bit to an illegal value
2739 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2740 	 */
2741 	sticky_bit_chk = 0;
2742 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2743 		left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2744 		right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2745 	}
2746 
2747 	/* Search for the left edge of the window for each bit */
2748 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
2749 		scc_mgr_apply_group_dq_out1_delay(write_group, d);
2750 
2751 		writel(0, &sdr_scc_mgr->update);
2752 
2753 		/*
2754 		 * Stop searching when the read test doesn't pass AND when
2755 		 * we've seen a passing read on every bit.
2756 		 */
2757 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2758 			0, PASS_ONE_BIT, &bit_chk, 0);
2759 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2760 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2761 		debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
2762 			   == %u && %u [bit_chk= %u ]\n",
2763 			d, sticky_bit_chk, param->write_correct_mask,
2764 			stop, bit_chk);
2765 
2766 		if (stop == 1) {
2767 			break;
2768 		} else {
2769 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2770 				if (bit_chk & 1) {
2771 					/*
2772 					 * Remember a passing test as the
2773 					 * left_edge.
2774 					 */
2775 					left_edge[i] = d;
2776 				} else {
2777 					/*
2778 					 * If a left edge has not been seen
2779 					 * yet, then a future passing test will
2780 					 * mark this edge as the right edge.
2781 					 */
2782 					if (left_edge[i] ==
2783 						IO_IO_OUT1_DELAY_MAX + 1) {
2784 						right_edge[i] = -(d + 1);
2785 					}
2786 				}
2787 				debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
2788 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2789 					   (int)(bit_chk & 1), i, left_edge[i]);
2790 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2791 				       right_edge[i]);
2792 				bit_chk = bit_chk >> 1;
2793 			}
2794 		}
2795 	}
2796 
2797 	/* Reset DQ delay chains to 0 */
2798 	scc_mgr_apply_group_dq_out1_delay(0);
2799 	sticky_bit_chk = 0;
2800 	for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
2801 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2802 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
2803 			   i, left_edge[i], i, right_edge[i]);
2804 
2805 		/*
2806 		 * Check for cases where we haven't found the left edge,
2807 		 * which makes our assignment of the the right edge invalid.
2808 		 * Reset it to the illegal value.
2809 		 */
2810 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
2811 		    (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
2812 			right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2813 			debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
2814 				   right_edge[%u]: %d\n", __func__, __LINE__,
2815 				   i, right_edge[i]);
2816 		}
2817 
2818 		/*
2819 		 * Reset sticky bit (except for bits where we have
2820 		 * seen the left edge).
2821 		 */
2822 		sticky_bit_chk = sticky_bit_chk << 1;
2823 		if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
2824 			sticky_bit_chk = sticky_bit_chk | 1;
2825 
2826 		if (i == 0)
2827 			break;
2828 	}
2829 
2830 	/* Search for the right edge of the window for each bit */
2831 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
2832 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2833 							d + start_dqs);
2834 
2835 		writel(0, &sdr_scc_mgr->update);
2836 
2837 		/*
2838 		 * Stop searching when the read test doesn't pass AND when
2839 		 * we've seen a passing read on every bit.
2840 		 */
2841 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2842 			0, PASS_ONE_BIT, &bit_chk, 0);
2843 
2844 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2845 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2846 
2847 		debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
2848 			   %u && %u\n", d, sticky_bit_chk,
2849 			   param->write_correct_mask, stop);
2850 
2851 		if (stop == 1) {
2852 			if (d == 0) {
2853 				for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
2854 					i++) {
2855 					/* d = 0 failed, but it passed when
2856 					testing the left edge, so it must be
2857 					marginal, set it to -1 */
2858 					if (right_edge[i] ==
2859 						IO_IO_OUT1_DELAY_MAX + 1 &&
2860 						left_edge[i] !=
2861 						IO_IO_OUT1_DELAY_MAX + 1) {
2862 						right_edge[i] = -1;
2863 					}
2864 				}
2865 			}
2866 			break;
2867 		} else {
2868 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2869 				if (bit_chk & 1) {
2870 					/*
2871 					 * Remember a passing test as
2872 					 * the right_edge.
2873 					 */
2874 					right_edge[i] = d;
2875 				} else {
2876 					if (d != 0) {
2877 						/*
2878 						 * If a right edge has not
2879 						 * been seen yet, then a future
2880 						 * passing test will mark this
2881 						 * edge as the left edge.
2882 						 */
2883 						if (right_edge[i] ==
2884 						    IO_IO_OUT1_DELAY_MAX + 1)
2885 							left_edge[i] = -(d + 1);
2886 					} else {
2887 						/*
2888 						 * d = 0 failed, but it passed
2889 						 * when testing the left edge,
2890 						 * so it must be marginal, set
2891 						 * it to -1.
2892 						 */
2893 						if (right_edge[i] ==
2894 						    IO_IO_OUT1_DELAY_MAX + 1 &&
2895 						    left_edge[i] !=
2896 						    IO_IO_OUT1_DELAY_MAX + 1)
2897 							right_edge[i] = -1;
2898 						/*
2899 						 * If a right edge has not been
2900 						 * seen yet, then a future
2901 						 * passing test will mark this
2902 						 * edge as the left edge.
2903 						 */
2904 						else if (right_edge[i] ==
2905 							IO_IO_OUT1_DELAY_MAX +
2906 							1)
2907 							left_edge[i] = -(d + 1);
2908 					}
2909 				}
2910 				debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
2911 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2912 					   (int)(bit_chk & 1), i, left_edge[i]);
2913 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2914 					   right_edge[i]);
2915 				bit_chk = bit_chk >> 1;
2916 			}
2917 		}
2918 	}
2919 
2920 	/* Check that all bits have a window */
2921 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2922 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2923 			   %d right_edge[%u]: %d", __func__, __LINE__,
2924 			   i, left_edge[i], i, right_edge[i]);
2925 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
2926 		    (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
2927 			set_failing_group_stage(test_bgn + i,
2928 						CAL_STAGE_WRITES,
2929 						CAL_SUBSTAGE_WRITES_CENTER);
2930 			return 0;
2931 		}
2932 	}
2933 
2934 	/* Find middle of window for each DQ bit */
2935 	mid_min = left_edge[0] - right_edge[0];
2936 	min_index = 0;
2937 	for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2938 		mid = left_edge[i] - right_edge[i];
2939 		if (mid < mid_min) {
2940 			mid_min = mid;
2941 			min_index = i;
2942 		}
2943 	}
2944 
2945 	/*
2946 	 * -mid_min/2 represents the amount that we need to move DQS.
2947 	 * If mid_min is odd and positive we'll need to add one to
2948 	 * make sure the rounding in further calculations is correct
2949 	 * (always bias to the right), so just add 1 for all positive values.
2950 	 */
2951 	if (mid_min > 0)
2952 		mid_min++;
2953 	mid_min = mid_min / 2;
2954 	debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
2955 		   __LINE__, mid_min);
2956 
2957 	/* Determine the amount we can change DQS (which is -mid_min) */
2958 	orig_mid_min = mid_min;
2959 	new_dqs = start_dqs;
2960 	mid_min = 0;
2961 	debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
2962 		   mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
2963 	/* Initialize data for export structures */
2964 	dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
2965 	dq_margin  = IO_IO_OUT1_DELAY_MAX + 1;
2966 
2967 	/* add delay to bring centre of all DQ windows to the same "level" */
2968 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
2969 		/* Use values before divide by 2 to reduce round off error */
2970 		shift_dq = (left_edge[i] - right_edge[i] -
2971 			(left_edge[min_index] - right_edge[min_index]))/2  +
2972 		(orig_mid_min - mid_min);
2973 
2974 		debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
2975 			   [%u]=%d\n", __func__, __LINE__, i, shift_dq);
2976 
2977 		addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2978 		temp_dq_out1_delay = readl(addr + (i << 2));
2979 		if (shift_dq + (int32_t)temp_dq_out1_delay >
2980 			(int32_t)IO_IO_OUT1_DELAY_MAX) {
2981 			shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
2982 		} else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
2983 			shift_dq = -(int32_t)temp_dq_out1_delay;
2984 		}
2985 		debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
2986 			   i, shift_dq);
2987 		scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq);
2988 		scc_mgr_load_dq(i);
2989 
2990 		debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
2991 			   left_edge[i] - shift_dq + (-mid_min),
2992 			   right_edge[i] + shift_dq - (-mid_min));
2993 		/* To determine values for export structures */
2994 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2995 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
2996 
2997 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2998 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2999 	}
3000 
3001 	/* Move DQS */
3002 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3003 	writel(0, &sdr_scc_mgr->update);
3004 
3005 	/* Centre DM */
3006 	debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3007 
3008 	/*
3009 	 * set the left and right edge of each bit to an illegal value,
3010 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
3011 	 */
3012 	left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
3013 	right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
3014 	int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3015 	int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3016 	int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
3017 	int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
3018 	int32_t win_best = 0;
3019 
3020 	/* Search for the/part of the window with DM shift */
3021 	for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
3022 		scc_mgr_apply_group_dm_out1_delay(d);
3023 		writel(0, &sdr_scc_mgr->update);
3024 
3025 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3026 						    PASS_ALL_BITS, &bit_chk,
3027 						    0)) {
3028 			/* USE Set current end of the window */
3029 			end_curr = -d;
3030 			/*
3031 			 * If a starting edge of our window has not been seen
3032 			 * this is our current start of the DM window.
3033 			 */
3034 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3035 				bgn_curr = -d;
3036 
3037 			/*
3038 			 * If current window is bigger than best seen.
3039 			 * Set best seen to be current window.
3040 			 */
3041 			if ((end_curr-bgn_curr+1) > win_best) {
3042 				win_best = end_curr-bgn_curr+1;
3043 				bgn_best = bgn_curr;
3044 				end_best = end_curr;
3045 			}
3046 		} else {
3047 			/* We just saw a failing test. Reset temp edge */
3048 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3049 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3050 			}
3051 		}
3052 
3053 
3054 	/* Reset DM delay chains to 0 */
3055 	scc_mgr_apply_group_dm_out1_delay(0);
3056 
3057 	/*
3058 	 * Check to see if the current window nudges up aganist 0 delay.
3059 	 * If so we need to continue the search by shifting DQS otherwise DQS
3060 	 * search begins as a new search. */
3061 	if (end_curr != 0) {
3062 		bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3063 		end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3064 	}
3065 
3066 	/* Search for the/part of the window with DQS shifts */
3067 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
3068 		/*
3069 		 * Note: This only shifts DQS, so are we limiting ourselve to
3070 		 * width of DQ unnecessarily.
3071 		 */
3072 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
3073 							d + new_dqs);
3074 
3075 		writel(0, &sdr_scc_mgr->update);
3076 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3077 						    PASS_ALL_BITS, &bit_chk,
3078 						    0)) {
3079 			/* USE Set current end of the window */
3080 			end_curr = d;
3081 			/*
3082 			 * If a beginning edge of our window has not been seen
3083 			 * this is our current begin of the DM window.
3084 			 */
3085 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3086 				bgn_curr = d;
3087 
3088 			/*
3089 			 * If current window is bigger than best seen. Set best
3090 			 * seen to be current window.
3091 			 */
3092 			if ((end_curr-bgn_curr+1) > win_best) {
3093 				win_best = end_curr-bgn_curr+1;
3094 				bgn_best = bgn_curr;
3095 				end_best = end_curr;
3096 			}
3097 		} else {
3098 			/* We just saw a failing test. Reset temp edge */
3099 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3100 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3101 
3102 			/* Early exit optimization: if ther remaining delay
3103 			chain space is less than already seen largest window
3104 			we can exit */
3105 			if ((win_best-1) >
3106 				(IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3107 					break;
3108 				}
3109 			}
3110 		}
3111 
3112 	/* assign left and right edge for cal and reporting; */
3113 	left_edge[0] = -1*bgn_best;
3114 	right_edge[0] = end_best;
3115 
3116 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3117 		   __LINE__, left_edge[0], right_edge[0]);
3118 
3119 	/* Move DQS (back to orig) */
3120 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3121 
3122 	/* Move DM */
3123 
3124 	/* Find middle of window for the DM bit */
3125 	mid = (left_edge[0] - right_edge[0]) / 2;
3126 
3127 	/* only move right, since we are not moving DQS/DQ */
3128 	if (mid < 0)
3129 		mid = 0;
3130 
3131 	/* dm_marign should fail if we never find a window */
3132 	if (win_best == 0)
3133 		dm_margin = -1;
3134 	else
3135 		dm_margin = left_edge[0] - mid;
3136 
3137 	scc_mgr_apply_group_dm_out1_delay(mid);
3138 	writel(0, &sdr_scc_mgr->update);
3139 
3140 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3141 		   dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3142 		   right_edge[0], mid, dm_margin);
3143 	/* Export values */
3144 	gbl->fom_out += dq_margin + dqs_margin;
3145 
3146 	debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3147 		   dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3148 		   dq_margin, dqs_margin, dm_margin);
3149 
3150 	/*
3151 	 * Do not remove this line as it makes sure all of our
3152 	 * decisions have been applied.
3153 	 */
3154 	writel(0, &sdr_scc_mgr->update);
3155 	return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3156 }
3157 
3158 /* calibrate the write operations */
3159 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
3160 	uint32_t test_bgn)
3161 {
3162 	/* update info for sims */
3163 	debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
3164 
3165 	reg_file_set_stage(CAL_STAGE_WRITES);
3166 	reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3167 
3168 	reg_file_set_group(g);
3169 
3170 	if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
3171 		set_failing_group_stage(g, CAL_STAGE_WRITES,
3172 					CAL_SUBSTAGE_WRITES_CENTER);
3173 		return 0;
3174 	}
3175 
3176 	return 1;
3177 }
3178 
3179 /**
3180  * mem_precharge_and_activate() - Precharge all banks and activate
3181  *
3182  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3183  */
3184 static void mem_precharge_and_activate(void)
3185 {
3186 	int r;
3187 
3188 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3189 		/* Test if the rank should be skipped. */
3190 		if (param->skip_ranks[r])
3191 			continue;
3192 
3193 		/* Set rank. */
3194 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3195 
3196 		/* Precharge all banks. */
3197 		writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3198 					     RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3199 
3200 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3201 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3202 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
3203 
3204 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3205 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3206 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
3207 
3208 		/* Activate rows. */
3209 		writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3210 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3211 	}
3212 }
3213 
3214 /**
3215  * mem_init_latency() - Configure memory RLAT and WLAT settings
3216  *
3217  * Configure memory RLAT and WLAT parameters.
3218  */
3219 static void mem_init_latency(void)
3220 {
3221 	/*
3222 	 * For AV/CV, LFIFO is hardened and always runs at full rate
3223 	 * so max latency in AFI clocks, used here, is correspondingly
3224 	 * smaller.
3225 	 */
3226 	const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3227 	u32 rlat, wlat;
3228 
3229 	debug("%s:%d\n", __func__, __LINE__);
3230 
3231 	/*
3232 	 * Read in write latency.
3233 	 * WL for Hard PHY does not include additive latency.
3234 	 */
3235 	wlat = readl(&data_mgr->t_wl_add);
3236 	wlat += readl(&data_mgr->mem_t_add);
3237 
3238 	gbl->rw_wl_nop_cycles = wlat - 1;
3239 
3240 	/* Read in readl latency. */
3241 	rlat = readl(&data_mgr->t_rl_add);
3242 
3243 	/* Set a pretty high read latency initially. */
3244 	gbl->curr_read_lat = rlat + 16;
3245 	if (gbl->curr_read_lat > max_latency)
3246 		gbl->curr_read_lat = max_latency;
3247 
3248 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3249 
3250 	/* Advertise write latency. */
3251 	writel(wlat, &phy_mgr_cfg->afi_wlat);
3252 }
3253 
3254 /**
3255  * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3256  *
3257  * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3258  */
3259 static void mem_skip_calibrate(void)
3260 {
3261 	uint32_t vfifo_offset;
3262 	uint32_t i, j, r;
3263 
3264 	debug("%s:%d\n", __func__, __LINE__);
3265 	/* Need to update every shadow register set used by the interface */
3266 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3267 	     r += NUM_RANKS_PER_SHADOW_REG) {
3268 		/*
3269 		 * Set output phase alignment settings appropriate for
3270 		 * skip calibration.
3271 		 */
3272 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3273 			scc_mgr_set_dqs_en_phase(i, 0);
3274 #if IO_DLL_CHAIN_LENGTH == 6
3275 			scc_mgr_set_dqdqs_output_phase(i, 6);
3276 #else
3277 			scc_mgr_set_dqdqs_output_phase(i, 7);
3278 #endif
3279 			/*
3280 			 * Case:33398
3281 			 *
3282 			 * Write data arrives to the I/O two cycles before write
3283 			 * latency is reached (720 deg).
3284 			 *   -> due to bit-slip in a/c bus
3285 			 *   -> to allow board skew where dqs is longer than ck
3286 			 *      -> how often can this happen!?
3287 			 *      -> can claim back some ptaps for high freq
3288 			 *       support if we can relax this, but i digress...
3289 			 *
3290 			 * The write_clk leads mem_ck by 90 deg
3291 			 * The minimum ptap of the OPA is 180 deg
3292 			 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3293 			 * The write_clk is always delayed by 2 ptaps
3294 			 *
3295 			 * Hence, to make DQS aligned to CK, we need to delay
3296 			 * DQS by:
3297 			 *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3298 			 *
3299 			 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3300 			 * gives us the number of ptaps, which simplies to:
3301 			 *
3302 			 *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3303 			 */
3304 			scc_mgr_set_dqdqs_output_phase(i,
3305 					1.25 * IO_DLL_CHAIN_LENGTH - 2);
3306 		}
3307 		writel(0xff, &sdr_scc_mgr->dqs_ena);
3308 		writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3309 
3310 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3311 			writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3312 				  SCC_MGR_GROUP_COUNTER_OFFSET);
3313 		}
3314 		writel(0xff, &sdr_scc_mgr->dq_ena);
3315 		writel(0xff, &sdr_scc_mgr->dm_ena);
3316 		writel(0, &sdr_scc_mgr->update);
3317 	}
3318 
3319 	/* Compensate for simulation model behaviour */
3320 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3321 		scc_mgr_set_dqs_bus_in_delay(i, 10);
3322 		scc_mgr_load_dqs(i);
3323 	}
3324 	writel(0, &sdr_scc_mgr->update);
3325 
3326 	/*
3327 	 * ArriaV has hard FIFOs that can only be initialized by incrementing
3328 	 * in sequencer.
3329 	 */
3330 	vfifo_offset = CALIB_VFIFO_OFFSET;
3331 	for (j = 0; j < vfifo_offset; j++)
3332 		writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3333 	writel(0, &phy_mgr_cmd->fifo_reset);
3334 
3335 	/*
3336 	 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3337 	 * setting from generation-time constant.
3338 	 */
3339 	gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3340 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3341 }
3342 
3343 /**
3344  * mem_calibrate() - Memory calibration entry point.
3345  *
3346  * Perform memory calibration.
3347  */
3348 static uint32_t mem_calibrate(void)
3349 {
3350 	uint32_t i;
3351 	uint32_t rank_bgn, sr;
3352 	uint32_t write_group, write_test_bgn;
3353 	uint32_t read_group, read_test_bgn;
3354 	uint32_t run_groups, current_run;
3355 	uint32_t failing_groups = 0;
3356 	uint32_t group_failed = 0;
3357 
3358 	const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
3359 				RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
3360 
3361 	debug("%s:%d\n", __func__, __LINE__);
3362 
3363 	/* Initialize the data settings */
3364 	gbl->error_substage = CAL_SUBSTAGE_NIL;
3365 	gbl->error_stage = CAL_STAGE_NIL;
3366 	gbl->error_group = 0xff;
3367 	gbl->fom_in = 0;
3368 	gbl->fom_out = 0;
3369 
3370 	/* Initialize WLAT and RLAT. */
3371 	mem_init_latency();
3372 
3373 	/* Initialize bit slips. */
3374 	mem_precharge_and_activate();
3375 
3376 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3377 		writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3378 			  SCC_MGR_GROUP_COUNTER_OFFSET);
3379 		/* Only needed once to set all groups, pins, DQ, DQS, DM. */
3380 		if (i == 0)
3381 			scc_mgr_set_hhp_extras();
3382 
3383 		scc_set_bypass_mode(i);
3384 	}
3385 
3386 	/* Calibration is skipped. */
3387 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3388 		/*
3389 		 * Set VFIFO and LFIFO to instant-on settings in skip
3390 		 * calibration mode.
3391 		 */
3392 		mem_skip_calibrate();
3393 
3394 		/*
3395 		 * Do not remove this line as it makes sure all of our
3396 		 * decisions have been applied.
3397 		 */
3398 		writel(0, &sdr_scc_mgr->update);
3399 		return 1;
3400 	}
3401 
3402 	/* Calibration is not skipped. */
3403 	for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3404 		/*
3405 		 * Zero all delay chain/phase settings for all
3406 		 * groups and all shadow register sets.
3407 		 */
3408 		scc_mgr_zero_all();
3409 
3410 		run_groups = ~param->skip_groups;
3411 
3412 		for (write_group = 0, write_test_bgn = 0; write_group
3413 			< RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3414 			write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3415 
3416 			/* Initialize the group failure */
3417 			group_failed = 0;
3418 
3419 			current_run = run_groups & ((1 <<
3420 				RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3421 			run_groups = run_groups >>
3422 				RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3423 
3424 			if (current_run == 0)
3425 				continue;
3426 
3427 			writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3428 					    SCC_MGR_GROUP_COUNTER_OFFSET);
3429 			scc_mgr_zero_group(write_group, 0);
3430 
3431 			for (read_group = write_group * rwdqs_ratio,
3432 			     read_test_bgn = 0;
3433 			     read_group < (write_group + 1) * rwdqs_ratio;
3434 			     read_group++,
3435 			     read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3436 				if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3437 					continue;
3438 
3439 				/* Calibrate the VFIFO */
3440 				if (rw_mgr_mem_calibrate_vfifo(read_group,
3441 							       read_test_bgn))
3442 					continue;
3443 
3444 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3445 					return 0;
3446 
3447 				/* The group failed, we're done. */
3448 				goto grp_failed;
3449 			}
3450 
3451 			/* Calibrate the output side */
3452 			for (rank_bgn = 0, sr = 0;
3453 			     rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
3454 			     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3455 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3456 					continue;
3457 
3458 				/* Not needed in quick mode! */
3459 				if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
3460 					continue;
3461 
3462 				/*
3463 				 * Determine if this set of ranks
3464 				 * should be skipped entirely.
3465 				 */
3466 				if (param->skip_shadow_regs[sr])
3467 					continue;
3468 
3469 				/* Calibrate WRITEs */
3470 				if (rw_mgr_mem_calibrate_writes(rank_bgn,
3471 						write_group, write_test_bgn))
3472 					continue;
3473 
3474 				group_failed = 1;
3475 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3476 					return 0;
3477 			}
3478 
3479 			/* Some group failed, we're done. */
3480 			if (group_failed)
3481 				goto grp_failed;
3482 
3483 			for (read_group = write_group * rwdqs_ratio,
3484 			     read_test_bgn = 0;
3485 			     read_group < (write_group + 1) * rwdqs_ratio;
3486 			     read_group++,
3487 			     read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3488 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3489 					continue;
3490 
3491 				if (rw_mgr_mem_calibrate_vfifo_end(read_group,
3492 								read_test_bgn))
3493 					continue;
3494 
3495 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3496 					return 0;
3497 
3498 				/* The group failed, we're done. */
3499 				goto grp_failed;
3500 			}
3501 
3502 			/* No group failed, continue as usual. */
3503 			continue;
3504 
3505 grp_failed:		/* A group failed, increment the counter. */
3506 			failing_groups++;
3507 		}
3508 
3509 		/*
3510 		 * USER If there are any failing groups then report
3511 		 * the failure.
3512 		 */
3513 		if (failing_groups != 0)
3514 			return 0;
3515 
3516 		if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3517 			continue;
3518 
3519 		/*
3520 		 * If we're skipping groups as part of debug,
3521 		 * don't calibrate LFIFO.
3522 		 */
3523 		if (param->skip_groups != 0)
3524 			continue;
3525 
3526 		/* Calibrate the LFIFO */
3527 		if (!rw_mgr_mem_calibrate_lfifo())
3528 			return 0;
3529 	}
3530 
3531 	/*
3532 	 * Do not remove this line as it makes sure all of our decisions
3533 	 * have been applied.
3534 	 */
3535 	writel(0, &sdr_scc_mgr->update);
3536 	return 1;
3537 }
3538 
3539 /**
3540  * run_mem_calibrate() - Perform memory calibration
3541  *
3542  * This function triggers the entire memory calibration procedure.
3543  */
3544 static int run_mem_calibrate(void)
3545 {
3546 	int pass;
3547 
3548 	debug("%s:%d\n", __func__, __LINE__);
3549 
3550 	/* Reset pass/fail status shown on afi_cal_success/fail */
3551 	writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3552 
3553 	/* Stop tracking manager. */
3554 	clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3555 
3556 	phy_mgr_initialize();
3557 	rw_mgr_mem_initialize();
3558 
3559 	/* Perform the actual memory calibration. */
3560 	pass = mem_calibrate();
3561 
3562 	mem_precharge_and_activate();
3563 	writel(0, &phy_mgr_cmd->fifo_reset);
3564 
3565 	/* Handoff. */
3566 	rw_mgr_mem_handoff();
3567 	/*
3568 	 * In Hard PHY this is a 2-bit control:
3569 	 * 0: AFI Mux Select
3570 	 * 1: DDIO Mux Select
3571 	 */
3572 	writel(0x2, &phy_mgr_cfg->mux_sel);
3573 
3574 	/* Start tracking manager. */
3575 	setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3576 
3577 	return pass;
3578 }
3579 
3580 /**
3581  * debug_mem_calibrate() - Report result of memory calibration
3582  * @pass:	Value indicating whether calibration passed or failed
3583  *
3584  * This function reports the results of the memory calibration
3585  * and writes debug information into the register file.
3586  */
3587 static void debug_mem_calibrate(int pass)
3588 {
3589 	uint32_t debug_info;
3590 
3591 	if (pass) {
3592 		printf("%s: CALIBRATION PASSED\n", __FILE__);
3593 
3594 		gbl->fom_in /= 2;
3595 		gbl->fom_out /= 2;
3596 
3597 		if (gbl->fom_in > 0xff)
3598 			gbl->fom_in = 0xff;
3599 
3600 		if (gbl->fom_out > 0xff)
3601 			gbl->fom_out = 0xff;
3602 
3603 		/* Update the FOM in the register file */
3604 		debug_info = gbl->fom_in;
3605 		debug_info |= gbl->fom_out << 8;
3606 		writel(debug_info, &sdr_reg_file->fom);
3607 
3608 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3609 		writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3610 	} else {
3611 		printf("%s: CALIBRATION FAILED\n", __FILE__);
3612 
3613 		debug_info = gbl->error_stage;
3614 		debug_info |= gbl->error_substage << 8;
3615 		debug_info |= gbl->error_group << 16;
3616 
3617 		writel(debug_info, &sdr_reg_file->failing_stage);
3618 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3619 		writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3620 
3621 		/* Update the failing group/stage in the register file */
3622 		debug_info = gbl->error_stage;
3623 		debug_info |= gbl->error_substage << 8;
3624 		debug_info |= gbl->error_group << 16;
3625 		writel(debug_info, &sdr_reg_file->failing_stage);
3626 	}
3627 
3628 	printf("%s: Calibration complete\n", __FILE__);
3629 }
3630 
3631 /**
3632  * hc_initialize_rom_data() - Initialize ROM data
3633  *
3634  * Initialize ROM data.
3635  */
3636 static void hc_initialize_rom_data(void)
3637 {
3638 	u32 i, addr;
3639 
3640 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3641 	for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3642 		writel(inst_rom_init[i], addr + (i << 2));
3643 
3644 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3645 	for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3646 		writel(ac_rom_init[i], addr + (i << 2));
3647 }
3648 
3649 /**
3650  * initialize_reg_file() - Initialize SDR register file
3651  *
3652  * Initialize SDR register file.
3653  */
3654 static void initialize_reg_file(void)
3655 {
3656 	/* Initialize the register file with the correct data */
3657 	writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3658 	writel(0, &sdr_reg_file->debug_data_addr);
3659 	writel(0, &sdr_reg_file->cur_stage);
3660 	writel(0, &sdr_reg_file->fom);
3661 	writel(0, &sdr_reg_file->failing_stage);
3662 	writel(0, &sdr_reg_file->debug1);
3663 	writel(0, &sdr_reg_file->debug2);
3664 }
3665 
3666 /**
3667  * initialize_hps_phy() - Initialize HPS PHY
3668  *
3669  * Initialize HPS PHY.
3670  */
3671 static void initialize_hps_phy(void)
3672 {
3673 	uint32_t reg;
3674 	/*
3675 	 * Tracking also gets configured here because it's in the
3676 	 * same register.
3677 	 */
3678 	uint32_t trk_sample_count = 7500;
3679 	uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3680 	/*
3681 	 * Format is number of outer loops in the 16 MSB, sample
3682 	 * count in 16 LSB.
3683 	 */
3684 
3685 	reg = 0;
3686 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3687 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3688 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3689 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3690 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3691 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3692 	/*
3693 	 * This field selects the intrinsic latency to RDATA_EN/FULL path.
3694 	 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3695 	 */
3696 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3697 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3698 		trk_sample_count);
3699 	writel(reg, &sdr_ctrl->phy_ctrl0);
3700 
3701 	reg = 0;
3702 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3703 		trk_sample_count >>
3704 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3705 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3706 		trk_long_idle_sample_count);
3707 	writel(reg, &sdr_ctrl->phy_ctrl1);
3708 
3709 	reg = 0;
3710 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3711 		trk_long_idle_sample_count >>
3712 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3713 	writel(reg, &sdr_ctrl->phy_ctrl2);
3714 }
3715 
3716 /**
3717  * initialize_tracking() - Initialize tracking
3718  *
3719  * Initialize the register file with usable initial data.
3720  */
3721 static void initialize_tracking(void)
3722 {
3723 	/*
3724 	 * Initialize the register file with the correct data.
3725 	 * Compute usable version of value in case we skip full
3726 	 * computation later.
3727 	 */
3728 	writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3729 	       &sdr_reg_file->dtaps_per_ptap);
3730 
3731 	/* trk_sample_count */
3732 	writel(7500, &sdr_reg_file->trk_sample_count);
3733 
3734 	/* longidle outer loop [15:0] */
3735 	writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3736 
3737 	/*
3738 	 * longidle sample count [31:24]
3739 	 * trfc, worst case of 933Mhz 4Gb [23:16]
3740 	 * trcd, worst case [15:8]
3741 	 * vfifo wait [7:0]
3742 	 */
3743 	writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3744 	       &sdr_reg_file->delays);
3745 
3746 	/* mux delay */
3747 	writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
3748 	       (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
3749 	       &sdr_reg_file->trk_rw_mgr_addr);
3750 
3751 	writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
3752 	       &sdr_reg_file->trk_read_dqs_width);
3753 
3754 	/* trefi [7:0] */
3755 	writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
3756 	       &sdr_reg_file->trk_rfsh);
3757 }
3758 
3759 int sdram_calibration_full(void)
3760 {
3761 	struct param_type my_param;
3762 	struct gbl_type my_gbl;
3763 	uint32_t pass;
3764 
3765 	memset(&my_param, 0, sizeof(my_param));
3766 	memset(&my_gbl, 0, sizeof(my_gbl));
3767 
3768 	param = &my_param;
3769 	gbl = &my_gbl;
3770 
3771 	/* Set the calibration enabled by default */
3772 	gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3773 	/*
3774 	 * Only sweep all groups (regardless of fail state) by default
3775 	 * Set enabled read test by default.
3776 	 */
3777 #if DISABLE_GUARANTEED_READ
3778 	gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3779 #endif
3780 	/* Initialize the register file */
3781 	initialize_reg_file();
3782 
3783 	/* Initialize any PHY CSR */
3784 	initialize_hps_phy();
3785 
3786 	scc_mgr_initialize();
3787 
3788 	initialize_tracking();
3789 
3790 	printf("%s: Preparing to start memory calibration\n", __FILE__);
3791 
3792 	debug("%s:%d\n", __func__, __LINE__);
3793 	debug_cond(DLEVEL == 1,
3794 		   "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3795 		   RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3796 		   RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3797 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3798 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3799 	debug_cond(DLEVEL == 1,
3800 		   "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3801 		   RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3802 		   RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3803 		   IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3804 	debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3805 		   IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3806 	debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3807 		   IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3808 		   IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3809 	debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3810 		   IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3811 		   IO_IO_OUT2_DELAY_MAX);
3812 	debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3813 		   IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3814 
3815 	hc_initialize_rom_data();
3816 
3817 	/* update info for sims */
3818 	reg_file_set_stage(CAL_STAGE_NIL);
3819 	reg_file_set_group(0);
3820 
3821 	/*
3822 	 * Load global needed for those actions that require
3823 	 * some dynamic calibration support.
3824 	 */
3825 	dyn_calib_steps = STATIC_CALIB_STEPS;
3826 	/*
3827 	 * Load global to allow dynamic selection of delay loop settings
3828 	 * based on calibration mode.
3829 	 */
3830 	if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3831 		skip_delay_mask = 0xff;
3832 	else
3833 		skip_delay_mask = 0x0;
3834 
3835 	pass = run_mem_calibrate();
3836 	debug_mem_calibrate(pass);
3837 	return pass;
3838 }
3839