1 /* 2 * Copyright Altera Corporation (C) 2012-2015 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <common.h> 8 #include <asm/io.h> 9 #include <asm/arch/sdram.h> 10 #include "sequencer.h" 11 #include "sequencer_auto.h" 12 #include "sequencer_auto_ac_init.h" 13 #include "sequencer_auto_inst_init.h" 14 #include "sequencer_defines.h" 15 16 static void scc_mgr_load_dqs_for_write_group(uint32_t write_group); 17 18 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs = 19 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800); 20 21 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs = 22 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00); 23 24 static struct socfpga_sdr_reg_file *sdr_reg_file = 25 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS; 26 27 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr = 28 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00); 29 30 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd = 31 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS; 32 33 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg = 34 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40); 35 36 static struct socfpga_data_mgr *data_mgr = 37 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS; 38 39 static struct socfpga_sdr_ctrl *sdr_ctrl = 40 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS; 41 42 #define DELTA_D 1 43 44 /* 45 * In order to reduce ROM size, most of the selectable calibration steps are 46 * decided at compile time based on the user's calibration mode selection, 47 * as captured by the STATIC_CALIB_STEPS selection below. 48 * 49 * However, to support simulation-time selection of fast simulation mode, where 50 * we skip everything except the bare minimum, we need a few of the steps to 51 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the 52 * check, which is based on the rtl-supplied value, or we dynamically compute 53 * the value to use based on the dynamically-chosen calibration mode 54 */ 55 56 #define DLEVEL 0 57 #define STATIC_IN_RTL_SIM 0 58 #define STATIC_SKIP_DELAY_LOOPS 0 59 60 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \ 61 STATIC_SKIP_DELAY_LOOPS) 62 63 /* calibration steps requested by the rtl */ 64 uint16_t dyn_calib_steps; 65 66 /* 67 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option 68 * instead of static, we use boolean logic to select between 69 * non-skip and skip values 70 * 71 * The mask is set to include all bits when not-skipping, but is 72 * zero when skipping 73 */ 74 75 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */ 76 77 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \ 78 ((non_skip_value) & skip_delay_mask) 79 80 struct gbl_type *gbl; 81 struct param_type *param; 82 uint32_t curr_shadow_reg; 83 84 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 85 uint32_t write_group, uint32_t use_dm, 86 uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks); 87 88 static void set_failing_group_stage(uint32_t group, uint32_t stage, 89 uint32_t substage) 90 { 91 /* 92 * Only set the global stage if there was not been any other 93 * failing group 94 */ 95 if (gbl->error_stage == CAL_STAGE_NIL) { 96 gbl->error_substage = substage; 97 gbl->error_stage = stage; 98 gbl->error_group = group; 99 } 100 } 101 102 static void reg_file_set_group(u16 set_group) 103 { 104 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16); 105 } 106 107 static void reg_file_set_stage(u8 set_stage) 108 { 109 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff); 110 } 111 112 static void reg_file_set_sub_stage(u8 set_sub_stage) 113 { 114 set_sub_stage &= 0xff; 115 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8); 116 } 117 118 static void initialize(void) 119 { 120 debug("%s:%d\n", __func__, __LINE__); 121 /* USER calibration has control over path to memory */ 122 /* 123 * In Hard PHY this is a 2-bit control: 124 * 0: AFI Mux Select 125 * 1: DDIO Mux Select 126 */ 127 writel(0x3, &phy_mgr_cfg->mux_sel); 128 129 /* USER memory clock is not stable we begin initialization */ 130 writel(0, &phy_mgr_cfg->reset_mem_stbl); 131 132 /* USER calibration status all set to zero */ 133 writel(0, &phy_mgr_cfg->cal_status); 134 135 writel(0, &phy_mgr_cfg->cal_debug_info); 136 137 if ((dyn_calib_steps & CALIB_SKIP_ALL) != CALIB_SKIP_ALL) { 138 param->read_correct_mask_vg = ((uint32_t)1 << 139 (RW_MGR_MEM_DQ_PER_READ_DQS / 140 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1; 141 param->write_correct_mask_vg = ((uint32_t)1 << 142 (RW_MGR_MEM_DQ_PER_READ_DQS / 143 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1; 144 param->read_correct_mask = ((uint32_t)1 << 145 RW_MGR_MEM_DQ_PER_READ_DQS) - 1; 146 param->write_correct_mask = ((uint32_t)1 << 147 RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1; 148 param->dm_correct_mask = ((uint32_t)1 << 149 (RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH)) 150 - 1; 151 } 152 } 153 154 static void set_rank_and_odt_mask(uint32_t rank, uint32_t odt_mode) 155 { 156 uint32_t odt_mask_0 = 0; 157 uint32_t odt_mask_1 = 0; 158 uint32_t cs_and_odt_mask; 159 160 if (odt_mode == RW_MGR_ODT_MODE_READ_WRITE) { 161 if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) { 162 /* 163 * 1 Rank 164 * Read: ODT = 0 165 * Write: ODT = 1 166 */ 167 odt_mask_0 = 0x0; 168 odt_mask_1 = 0x1; 169 } else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) { 170 /* 2 Ranks */ 171 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) { 172 /* - Dual-Slot , Single-Rank 173 * (1 chip-select per DIMM) 174 * OR 175 * - RDIMM, 4 total CS (2 CS per DIMM) 176 * means 2 DIMM 177 * Since MEM_NUMBER_OF_RANKS is 2 they are 178 * both single rank 179 * with 2 CS each (special for RDIMM) 180 * Read: Turn on ODT on the opposite rank 181 * Write: Turn on ODT on all ranks 182 */ 183 odt_mask_0 = 0x3 & ~(1 << rank); 184 odt_mask_1 = 0x3; 185 } else { 186 /* 187 * USER - Single-Slot , Dual-rank DIMMs 188 * (2 chip-selects per DIMM) 189 * USER Read: Turn on ODT off on all ranks 190 * USER Write: Turn on ODT on active rank 191 */ 192 odt_mask_0 = 0x0; 193 odt_mask_1 = 0x3 & (1 << rank); 194 } 195 } else { 196 /* 4 Ranks 197 * Read: 198 * ----------+-----------------------+ 199 * | | 200 * | ODT | 201 * Read From +-----------------------+ 202 * Rank | 3 | 2 | 1 | 0 | 203 * ----------+-----+-----+-----+-----+ 204 * 0 | 0 | 1 | 0 | 0 | 205 * 1 | 1 | 0 | 0 | 0 | 206 * 2 | 0 | 0 | 0 | 1 | 207 * 3 | 0 | 0 | 1 | 0 | 208 * ----------+-----+-----+-----+-----+ 209 * 210 * Write: 211 * ----------+-----------------------+ 212 * | | 213 * | ODT | 214 * Write To +-----------------------+ 215 * Rank | 3 | 2 | 1 | 0 | 216 * ----------+-----+-----+-----+-----+ 217 * 0 | 0 | 1 | 0 | 1 | 218 * 1 | 1 | 0 | 1 | 0 | 219 * 2 | 0 | 1 | 0 | 1 | 220 * 3 | 1 | 0 | 1 | 0 | 221 * ----------+-----+-----+-----+-----+ 222 */ 223 switch (rank) { 224 case 0: 225 odt_mask_0 = 0x4; 226 odt_mask_1 = 0x5; 227 break; 228 case 1: 229 odt_mask_0 = 0x8; 230 odt_mask_1 = 0xA; 231 break; 232 case 2: 233 odt_mask_0 = 0x1; 234 odt_mask_1 = 0x5; 235 break; 236 case 3: 237 odt_mask_0 = 0x2; 238 odt_mask_1 = 0xA; 239 break; 240 } 241 } 242 } else { 243 odt_mask_0 = 0x0; 244 odt_mask_1 = 0x0; 245 } 246 247 cs_and_odt_mask = 248 (0xFF & ~(1 << rank)) | 249 ((0xFF & odt_mask_0) << 8) | 250 ((0xFF & odt_mask_1) << 16); 251 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS | 252 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 253 } 254 255 static void scc_mgr_initialize(void) 256 { 257 u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_HHP_RFILE_OFFSET; 258 259 /* 260 * Clear register file for HPS 261 * 16 (2^4) is the size of the full register file in the scc mgr: 262 * RFILE_DEPTH = log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + 263 * MEM_IF_READ_DQS_WIDTH - 1) + 1; 264 */ 265 uint32_t i; 266 for (i = 0; i < 16; i++) { 267 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n", 268 __func__, __LINE__, i); 269 writel(0, addr + (i << 2)); 270 } 271 } 272 273 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, 274 uint32_t delay) 275 { 276 u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET; 277 278 /* Load the setting in the SCC manager */ 279 writel(delay, addr + (read_group << 2)); 280 } 281 282 static void scc_mgr_set_dqs_io_in_delay(uint32_t write_group, 283 uint32_t delay) 284 { 285 u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET; 286 287 writel(delay, addr + (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 288 } 289 290 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase) 291 { 292 u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_EN_PHASE_OFFSET; 293 294 /* Load the setting in the SCC manager */ 295 writel(phase, addr + (read_group << 2)); 296 } 297 298 static void scc_mgr_set_dqs_en_phase_all_ranks(uint32_t read_group, 299 uint32_t phase) 300 { 301 uint32_t r; 302 uint32_t update_scan_chains; 303 304 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 305 r += NUM_RANKS_PER_SHADOW_REG) { 306 /* 307 * USER although the h/w doesn't support different phases per 308 * shadow register, for simplicity our scc manager modeling 309 * keeps different phase settings per shadow reg, and it's 310 * important for us to keep them in sync to match h/w. 311 * for efficiency, the scan chain update should occur only 312 * once to sr0. 313 */ 314 update_scan_chains = (r == 0) ? 1 : 0; 315 316 scc_mgr_set_dqs_en_phase(read_group, phase); 317 318 if (update_scan_chains) { 319 writel(read_group, &sdr_scc_mgr->dqs_ena); 320 writel(0, &sdr_scc_mgr->update); 321 } 322 } 323 } 324 325 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, 326 uint32_t phase) 327 { 328 u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQDQS_OUT_PHASE_OFFSET; 329 330 /* Load the setting in the SCC manager */ 331 writel(phase, addr + (write_group << 2)); 332 } 333 334 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group, 335 uint32_t phase) 336 { 337 uint32_t r; 338 uint32_t update_scan_chains; 339 340 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 341 r += NUM_RANKS_PER_SHADOW_REG) { 342 /* 343 * USER although the h/w doesn't support different phases per 344 * shadow register, for simplicity our scc manager modeling 345 * keeps different phase settings per shadow reg, and it's 346 * important for us to keep them in sync to match h/w. 347 * for efficiency, the scan chain update should occur only 348 * once to sr0. 349 */ 350 update_scan_chains = (r == 0) ? 1 : 0; 351 352 scc_mgr_set_dqdqs_output_phase(write_group, phase); 353 354 if (update_scan_chains) { 355 writel(write_group, &sdr_scc_mgr->dqs_ena); 356 writel(0, &sdr_scc_mgr->update); 357 } 358 } 359 } 360 361 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay) 362 { 363 uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_EN_DELAY_OFFSET; 364 365 /* Load the setting in the SCC manager */ 366 writel(delay + IO_DQS_EN_DELAY_OFFSET, addr + 367 (read_group << 2)); 368 } 369 370 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group, 371 uint32_t delay) 372 { 373 uint32_t r; 374 375 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 376 r += NUM_RANKS_PER_SHADOW_REG) { 377 scc_mgr_set_dqs_en_delay(read_group, delay); 378 379 writel(read_group, &sdr_scc_mgr->dqs_ena); 380 /* 381 * In shadow register mode, the T11 settings are stored in 382 * registers in the core, which are updated by the DQS_ENA 383 * signals. Not issuing the SCC_MGR_UPD command allows us to 384 * save lots of rank switching overhead, by calling 385 * select_shadow_regs_for_update with update_scan_chains 386 * set to 0. 387 */ 388 writel(0, &sdr_scc_mgr->update); 389 } 390 /* 391 * In shadow register mode, the T11 settings are stored in 392 * registers in the core, which are updated by the DQS_ENA 393 * signals. Not issuing the SCC_MGR_UPD command allows us to 394 * save lots of rank switching overhead, by calling 395 * select_shadow_regs_for_update with update_scan_chains 396 * set to 0. 397 */ 398 writel(0, &sdr_scc_mgr->update); 399 } 400 401 static void scc_mgr_set_oct_out1_delay(uint32_t write_group, uint32_t delay) 402 { 403 uint32_t read_group; 404 uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_OCT_OUT1_DELAY_OFFSET; 405 406 /* 407 * Load the setting in the SCC manager 408 * Although OCT affects only write data, the OCT delay is controlled 409 * by the DQS logic block which is instantiated once per read group. 410 * For protocols where a write group consists of multiple read groups, 411 * the setting must be set multiple times. 412 */ 413 for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH / 414 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 415 read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH / 416 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; ++read_group) 417 writel(delay, addr + (read_group << 2)); 418 } 419 420 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay) 421 { 422 uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 423 424 /* Load the setting in the SCC manager */ 425 writel(delay, addr + (dq_in_group << 2)); 426 } 427 428 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay) 429 { 430 uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET; 431 432 /* Load the setting in the SCC manager */ 433 writel(delay, addr + (dq_in_group << 2)); 434 } 435 436 static void scc_mgr_set_hhp_extras(void) 437 { 438 /* 439 * Load the fixed setting in the SCC manager 440 * bits: 0:0 = 1'b1 - dqs bypass 441 * bits: 1:1 = 1'b1 - dq bypass 442 * bits: 4:2 = 3'b001 - rfifo_mode 443 * bits: 6:5 = 2'b01 - rfifo clock_select 444 * bits: 7:7 = 1'b0 - separate gating from ungating setting 445 * bits: 8:8 = 1'b0 - separate OE from Output delay setting 446 */ 447 uint32_t value = (0<<8) | (0<<7) | (1<<5) | (1<<2) | (1<<1) | (1<<0); 448 uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_HHP_GLOBALS_OFFSET; 449 450 writel(value, addr + SCC_MGR_HHP_EXTRAS_OFFSET); 451 } 452 453 static void scc_mgr_set_dqs_out1_delay(uint32_t write_group, 454 uint32_t delay) 455 { 456 uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 457 458 /* Load the setting in the SCC manager */ 459 writel(delay, addr + (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 460 } 461 462 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay) 463 { 464 uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 465 466 /* Load the setting in the SCC manager */ 467 writel(delay, addr + 468 ((RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm) << 2)); 469 } 470 471 /* 472 * USER Zero all DQS config 473 * TODO: maybe rename to scc_mgr_zero_dqs_config (or something) 474 */ 475 static void scc_mgr_zero_all(void) 476 { 477 uint32_t i, r; 478 479 /* 480 * USER Zero all DQS config settings, across all groups and all 481 * shadow registers 482 */ 483 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += 484 NUM_RANKS_PER_SHADOW_REG) { 485 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 486 /* 487 * The phases actually don't exist on a per-rank basis, 488 * but there's no harm updating them several times, so 489 * let's keep the code simple. 490 */ 491 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE); 492 scc_mgr_set_dqs_en_phase(i, 0); 493 scc_mgr_set_dqs_en_delay(i, 0); 494 } 495 496 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 497 scc_mgr_set_dqdqs_output_phase(i, 0); 498 /* av/cv don't have out2 */ 499 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE); 500 } 501 } 502 503 /* multicast to all DQS group enables */ 504 writel(0xff, &sdr_scc_mgr->dqs_ena); 505 writel(0, &sdr_scc_mgr->update); 506 } 507 508 static void scc_set_bypass_mode(uint32_t write_group, uint32_t mode) 509 { 510 /* mode = 0 : Do NOT bypass - Half Rate Mode */ 511 /* mode = 1 : Bypass - Full Rate Mode */ 512 513 /* only need to set once for all groups, pins, dq, dqs, dm */ 514 if (write_group == 0) { 515 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", __func__, 516 __LINE__); 517 scc_mgr_set_hhp_extras(); 518 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n", 519 __func__, __LINE__); 520 } 521 /* multicast to all DQ enables */ 522 writel(0xff, &sdr_scc_mgr->dq_ena); 523 writel(0xff, &sdr_scc_mgr->dm_ena); 524 525 /* update current DQS IO enable */ 526 writel(0, &sdr_scc_mgr->dqs_io_ena); 527 528 /* update the DQS logic */ 529 writel(write_group, &sdr_scc_mgr->dqs_ena); 530 531 /* hit update */ 532 writel(0, &sdr_scc_mgr->update); 533 } 534 535 static void scc_mgr_zero_group(uint32_t write_group, uint32_t test_begin, 536 int32_t out_only) 537 { 538 uint32_t i, r; 539 540 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += 541 NUM_RANKS_PER_SHADOW_REG) { 542 /* Zero all DQ config settings */ 543 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 544 scc_mgr_set_dq_out1_delay(i, 0); 545 if (!out_only) 546 scc_mgr_set_dq_in_delay(i, 0); 547 } 548 549 /* multicast to all DQ enables */ 550 writel(0xff, &sdr_scc_mgr->dq_ena); 551 552 /* Zero all DM config settings */ 553 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 554 scc_mgr_set_dm_out1_delay(i, 0); 555 } 556 557 /* multicast to all DM enables */ 558 writel(0xff, &sdr_scc_mgr->dm_ena); 559 560 /* zero all DQS io settings */ 561 if (!out_only) 562 scc_mgr_set_dqs_io_in_delay(write_group, 0); 563 /* av/cv don't have out2 */ 564 scc_mgr_set_dqs_out1_delay(write_group, IO_DQS_OUT_RESERVE); 565 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE); 566 scc_mgr_load_dqs_for_write_group(write_group); 567 568 /* multicast to all DQS IO enables (only 1) */ 569 writel(0, &sdr_scc_mgr->dqs_io_ena); 570 571 /* hit update to zero everything */ 572 writel(0, &sdr_scc_mgr->update); 573 } 574 } 575 576 /* load up dqs config settings */ 577 static void scc_mgr_load_dqs(uint32_t dqs) 578 { 579 writel(dqs, &sdr_scc_mgr->dqs_ena); 580 } 581 582 static void scc_mgr_load_dqs_for_write_group(uint32_t write_group) 583 { 584 uint32_t read_group; 585 uint32_t addr = (u32)&sdr_scc_mgr->dqs_ena; 586 /* 587 * Although OCT affects only write data, the OCT delay is controlled 588 * by the DQS logic block which is instantiated once per read group. 589 * For protocols where a write group consists of multiple read groups, 590 * the setting must be scanned multiple times. 591 */ 592 for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH / 593 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 594 read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH / 595 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; ++read_group) 596 writel(read_group, addr); 597 } 598 599 /* load up dqs io config settings */ 600 static void scc_mgr_load_dqs_io(void) 601 { 602 writel(0, &sdr_scc_mgr->dqs_io_ena); 603 } 604 605 /* load up dq config settings */ 606 static void scc_mgr_load_dq(uint32_t dq_in_group) 607 { 608 writel(dq_in_group, &sdr_scc_mgr->dq_ena); 609 } 610 611 /* load up dm config settings */ 612 static void scc_mgr_load_dm(uint32_t dm) 613 { 614 writel(dm, &sdr_scc_mgr->dm_ena); 615 } 616 617 /* 618 * apply and load a particular input delay for the DQ pins in a group 619 * group_bgn is the index of the first dq pin (in the write group) 620 */ 621 static void scc_mgr_apply_group_dq_in_delay(uint32_t write_group, 622 uint32_t group_bgn, uint32_t delay) 623 { 624 uint32_t i, p; 625 626 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 627 scc_mgr_set_dq_in_delay(p, delay); 628 scc_mgr_load_dq(p); 629 } 630 } 631 632 /* apply and load a particular output delay for the DQ pins in a group */ 633 static void scc_mgr_apply_group_dq_out1_delay(uint32_t write_group, 634 uint32_t group_bgn, 635 uint32_t delay1) 636 { 637 uint32_t i, p; 638 639 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 640 scc_mgr_set_dq_out1_delay(i, delay1); 641 scc_mgr_load_dq(i); 642 } 643 } 644 645 /* apply and load a particular output delay for the DM pins in a group */ 646 static void scc_mgr_apply_group_dm_out1_delay(uint32_t write_group, 647 uint32_t delay1) 648 { 649 uint32_t i; 650 651 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 652 scc_mgr_set_dm_out1_delay(i, delay1); 653 scc_mgr_load_dm(i); 654 } 655 } 656 657 658 /* apply and load delay on both DQS and OCT out1 */ 659 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group, 660 uint32_t delay) 661 { 662 scc_mgr_set_dqs_out1_delay(write_group, delay); 663 scc_mgr_load_dqs_io(); 664 665 scc_mgr_set_oct_out1_delay(write_group, delay); 666 scc_mgr_load_dqs_for_write_group(write_group); 667 } 668 669 /* apply a delay to the entire output side: DQ, DM, DQS, OCT */ 670 static void scc_mgr_apply_group_all_out_delay_add(uint32_t write_group, 671 uint32_t group_bgn, 672 uint32_t delay) 673 { 674 uint32_t i, p, new_delay; 675 676 /* dq shift */ 677 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 678 new_delay = READ_SCC_DQ_OUT2_DELAY; 679 new_delay += delay; 680 681 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 682 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQ[%u,%u]:\ 683 %u > %lu => %lu", __func__, __LINE__, 684 write_group, group_bgn, delay, i, p, new_delay, 685 (long unsigned int)IO_IO_OUT2_DELAY_MAX, 686 (long unsigned int)IO_IO_OUT2_DELAY_MAX); 687 new_delay = IO_IO_OUT2_DELAY_MAX; 688 } 689 690 scc_mgr_load_dq(i); 691 } 692 693 /* dm shift */ 694 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 695 new_delay = READ_SCC_DM_IO_OUT2_DELAY; 696 new_delay += delay; 697 698 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 699 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DM[%u]:\ 700 %u > %lu => %lu\n", __func__, __LINE__, 701 write_group, group_bgn, delay, i, new_delay, 702 (long unsigned int)IO_IO_OUT2_DELAY_MAX, 703 (long unsigned int)IO_IO_OUT2_DELAY_MAX); 704 new_delay = IO_IO_OUT2_DELAY_MAX; 705 } 706 707 scc_mgr_load_dm(i); 708 } 709 710 /* dqs shift */ 711 new_delay = READ_SCC_DQS_IO_OUT2_DELAY; 712 new_delay += delay; 713 714 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 715 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;" 716 " adding %u to OUT1\n", __func__, __LINE__, 717 write_group, group_bgn, delay, new_delay, 718 IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX, 719 new_delay - IO_IO_OUT2_DELAY_MAX); 720 scc_mgr_set_dqs_out1_delay(write_group, new_delay - 721 IO_IO_OUT2_DELAY_MAX); 722 new_delay = IO_IO_OUT2_DELAY_MAX; 723 } 724 725 scc_mgr_load_dqs_io(); 726 727 /* oct shift */ 728 new_delay = READ_SCC_OCT_OUT2_DELAY; 729 new_delay += delay; 730 731 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 732 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;" 733 " adding %u to OUT1\n", __func__, __LINE__, 734 write_group, group_bgn, delay, new_delay, 735 IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX, 736 new_delay - IO_IO_OUT2_DELAY_MAX); 737 scc_mgr_set_oct_out1_delay(write_group, new_delay - 738 IO_IO_OUT2_DELAY_MAX); 739 new_delay = IO_IO_OUT2_DELAY_MAX; 740 } 741 742 scc_mgr_load_dqs_for_write_group(write_group); 743 } 744 745 /* 746 * USER apply a delay to the entire output side (DQ, DM, DQS, OCT) 747 * and to all ranks 748 */ 749 static void scc_mgr_apply_group_all_out_delay_add_all_ranks( 750 uint32_t write_group, uint32_t group_bgn, uint32_t delay) 751 { 752 uint32_t r; 753 754 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 755 r += NUM_RANKS_PER_SHADOW_REG) { 756 scc_mgr_apply_group_all_out_delay_add(write_group, 757 group_bgn, delay); 758 writel(0, &sdr_scc_mgr->update); 759 } 760 } 761 762 /* optimization used to recover some slots in ddr3 inst_rom */ 763 /* could be applied to other protocols if we wanted to */ 764 static void set_jump_as_return(void) 765 { 766 /* 767 * to save space, we replace return with jump to special shared 768 * RETURN instruction so we set the counter to large value so that 769 * we always jump 770 */ 771 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0); 772 writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 773 } 774 775 /* 776 * should always use constants as argument to ensure all computations are 777 * performed at compile time 778 */ 779 static void delay_for_n_mem_clocks(const uint32_t clocks) 780 { 781 uint32_t afi_clocks; 782 uint8_t inner = 0; 783 uint8_t outer = 0; 784 uint16_t c_loop = 0; 785 786 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks); 787 788 789 afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO; 790 /* scale (rounding up) to get afi clocks */ 791 792 /* 793 * Note, we don't bother accounting for being off a little bit 794 * because of a few extra instructions in outer loops 795 * Note, the loops have a test at the end, and do the test before 796 * the decrement, and so always perform the loop 797 * 1 time more than the counter value 798 */ 799 if (afi_clocks == 0) { 800 ; 801 } else if (afi_clocks <= 0x100) { 802 inner = afi_clocks-1; 803 outer = 0; 804 c_loop = 0; 805 } else if (afi_clocks <= 0x10000) { 806 inner = 0xff; 807 outer = (afi_clocks-1) >> 8; 808 c_loop = 0; 809 } else { 810 inner = 0xff; 811 outer = 0xff; 812 c_loop = (afi_clocks-1) >> 16; 813 } 814 815 /* 816 * rom instructions are structured as follows: 817 * 818 * IDLE_LOOP2: jnz cntr0, TARGET_A 819 * IDLE_LOOP1: jnz cntr1, TARGET_B 820 * return 821 * 822 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and 823 * TARGET_B is set to IDLE_LOOP2 as well 824 * 825 * if we have no outer loop, though, then we can use IDLE_LOOP1 only, 826 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely 827 * 828 * a little confusing, but it helps save precious space in the inst_rom 829 * and sequencer rom and keeps the delays more accurate and reduces 830 * overhead 831 */ 832 if (afi_clocks <= 0x100) { 833 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 834 &sdr_rw_load_mgr_regs->load_cntr1); 835 836 writel(RW_MGR_IDLE_LOOP1, 837 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 838 839 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 840 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 841 } else { 842 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 843 &sdr_rw_load_mgr_regs->load_cntr0); 844 845 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), 846 &sdr_rw_load_mgr_regs->load_cntr1); 847 848 writel(RW_MGR_IDLE_LOOP2, 849 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 850 851 writel(RW_MGR_IDLE_LOOP2, 852 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 853 854 /* hack to get around compiler not being smart enough */ 855 if (afi_clocks <= 0x10000) { 856 /* only need to run once */ 857 writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS | 858 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 859 } else { 860 do { 861 writel(RW_MGR_IDLE_LOOP2, 862 SDR_PHYGRP_RWMGRGRP_ADDRESS | 863 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 864 } while (c_loop-- != 0); 865 } 866 } 867 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks); 868 } 869 870 static void rw_mgr_mem_initialize(void) 871 { 872 uint32_t r; 873 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 874 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 875 876 debug("%s:%d\n", __func__, __LINE__); 877 878 /* The reset / cke part of initialization is broadcasted to all ranks */ 879 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 880 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 881 882 /* 883 * Here's how you load register for a loop 884 * Counters are located @ 0x800 885 * Jump address are located @ 0xC00 886 * For both, registers 0 to 3 are selected using bits 3 and 2, like 887 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C 888 * I know this ain't pretty, but Avalon bus throws away the 2 least 889 * significant bits 890 */ 891 892 /* start with memory RESET activated */ 893 894 /* tINIT = 200us */ 895 896 /* 897 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles 898 * If a and b are the number of iteration in 2 nested loops 899 * it takes the following number of cycles to complete the operation: 900 * number_of_cycles = ((2 + n) * a + 2) * b 901 * where n is the number of instruction in the inner loop 902 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF, 903 * b = 6A 904 */ 905 906 /* Load counters */ 907 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR0_VAL), 908 &sdr_rw_load_mgr_regs->load_cntr0); 909 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR1_VAL), 910 &sdr_rw_load_mgr_regs->load_cntr1); 911 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR2_VAL), 912 &sdr_rw_load_mgr_regs->load_cntr2); 913 914 /* Load jump address */ 915 writel(RW_MGR_INIT_RESET_0_CKE_0, 916 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 917 writel(RW_MGR_INIT_RESET_0_CKE_0, 918 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 919 writel(RW_MGR_INIT_RESET_0_CKE_0, 920 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 921 922 /* Execute count instruction */ 923 writel(RW_MGR_INIT_RESET_0_CKE_0, grpaddr); 924 925 /* indicate that memory is stable */ 926 writel(1, &phy_mgr_cfg->reset_mem_stbl); 927 928 /* 929 * transition the RESET to high 930 * Wait for 500us 931 */ 932 933 /* 934 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles 935 * If a and b are the number of iteration in 2 nested loops 936 * it takes the following number of cycles to complete the operation 937 * number_of_cycles = ((2 + n) * a + 2) * b 938 * where n is the number of instruction in the inner loop 939 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83, 940 * b = FF 941 */ 942 943 /* Load counters */ 944 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR0_VAL), 945 &sdr_rw_load_mgr_regs->load_cntr0); 946 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR1_VAL), 947 &sdr_rw_load_mgr_regs->load_cntr1); 948 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR2_VAL), 949 &sdr_rw_load_mgr_regs->load_cntr2); 950 951 /* Load jump address */ 952 writel(RW_MGR_INIT_RESET_1_CKE_0, 953 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 954 writel(RW_MGR_INIT_RESET_1_CKE_0, 955 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 956 writel(RW_MGR_INIT_RESET_1_CKE_0, 957 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 958 959 writel(RW_MGR_INIT_RESET_1_CKE_0, grpaddr); 960 961 /* bring up clock enable */ 962 963 /* tXRP < 250 ck cycles */ 964 delay_for_n_mem_clocks(250); 965 966 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 967 if (param->skip_ranks[r]) { 968 /* request to skip the rank */ 969 continue; 970 } 971 972 /* set rank */ 973 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 974 975 /* 976 * USER Use Mirror-ed commands for odd ranks if address 977 * mirrorring is on 978 */ 979 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 980 set_jump_as_return(); 981 writel(RW_MGR_MRS2_MIRR, grpaddr); 982 delay_for_n_mem_clocks(4); 983 set_jump_as_return(); 984 writel(RW_MGR_MRS3_MIRR, grpaddr); 985 delay_for_n_mem_clocks(4); 986 set_jump_as_return(); 987 writel(RW_MGR_MRS1_MIRR, grpaddr); 988 delay_for_n_mem_clocks(4); 989 set_jump_as_return(); 990 writel(RW_MGR_MRS0_DLL_RESET_MIRR, grpaddr); 991 } else { 992 set_jump_as_return(); 993 writel(RW_MGR_MRS2, grpaddr); 994 delay_for_n_mem_clocks(4); 995 set_jump_as_return(); 996 writel(RW_MGR_MRS3, grpaddr); 997 delay_for_n_mem_clocks(4); 998 set_jump_as_return(); 999 writel(RW_MGR_MRS1, grpaddr); 1000 set_jump_as_return(); 1001 writel(RW_MGR_MRS0_DLL_RESET, grpaddr); 1002 } 1003 set_jump_as_return(); 1004 writel(RW_MGR_ZQCL, grpaddr); 1005 1006 /* tZQinit = tDLLK = 512 ck cycles */ 1007 delay_for_n_mem_clocks(512); 1008 } 1009 } 1010 1011 /* 1012 * At the end of calibration we have to program the user settings in, and 1013 * USER hand off the memory to the user. 1014 */ 1015 static void rw_mgr_mem_handoff(void) 1016 { 1017 uint32_t r; 1018 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1019 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1020 1021 debug("%s:%d\n", __func__, __LINE__); 1022 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 1023 if (param->skip_ranks[r]) 1024 /* request to skip the rank */ 1025 continue; 1026 /* set rank */ 1027 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 1028 1029 /* precharge all banks ... */ 1030 writel(RW_MGR_PRECHARGE_ALL, grpaddr); 1031 1032 /* load up MR settings specified by user */ 1033 1034 /* 1035 * Use Mirror-ed commands for odd ranks if address 1036 * mirrorring is on 1037 */ 1038 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 1039 set_jump_as_return(); 1040 writel(RW_MGR_MRS2_MIRR, grpaddr); 1041 delay_for_n_mem_clocks(4); 1042 set_jump_as_return(); 1043 writel(RW_MGR_MRS3_MIRR, grpaddr); 1044 delay_for_n_mem_clocks(4); 1045 set_jump_as_return(); 1046 writel(RW_MGR_MRS1_MIRR, grpaddr); 1047 delay_for_n_mem_clocks(4); 1048 set_jump_as_return(); 1049 writel(RW_MGR_MRS0_USER_MIRR, grpaddr); 1050 } else { 1051 set_jump_as_return(); 1052 writel(RW_MGR_MRS2, grpaddr); 1053 delay_for_n_mem_clocks(4); 1054 set_jump_as_return(); 1055 writel(RW_MGR_MRS3, grpaddr); 1056 delay_for_n_mem_clocks(4); 1057 set_jump_as_return(); 1058 writel(RW_MGR_MRS1, grpaddr); 1059 delay_for_n_mem_clocks(4); 1060 set_jump_as_return(); 1061 writel(RW_MGR_MRS0_USER, grpaddr); 1062 } 1063 /* 1064 * USER need to wait tMOD (12CK or 15ns) time before issuing 1065 * other commands, but we will have plenty of NIOS cycles before 1066 * actual handoff so its okay. 1067 */ 1068 } 1069 } 1070 1071 /* 1072 * performs a guaranteed read on the patterns we are going to use during a 1073 * read test to ensure memory works 1074 */ 1075 static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn, 1076 uint32_t group, uint32_t num_tries, uint32_t *bit_chk, 1077 uint32_t all_ranks) 1078 { 1079 uint32_t r, vg; 1080 uint32_t correct_mask_vg; 1081 uint32_t tmp_bit_chk; 1082 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1083 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1084 uint32_t addr; 1085 uint32_t base_rw_mgr; 1086 1087 *bit_chk = param->read_correct_mask; 1088 correct_mask_vg = param->read_correct_mask_vg; 1089 1090 for (r = rank_bgn; r < rank_end; r++) { 1091 if (param->skip_ranks[r]) 1092 /* request to skip the rank */ 1093 continue; 1094 1095 /* set rank */ 1096 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1097 1098 /* Load up a constant bursts of read commands */ 1099 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1100 writel(RW_MGR_GUARANTEED_READ, 1101 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1102 1103 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1104 writel(RW_MGR_GUARANTEED_READ_CONT, 1105 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1106 1107 tmp_bit_chk = 0; 1108 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1109 /* reset the fifos to get pointers to known state */ 1110 1111 writel(0, &phy_mgr_cmd->fifo_reset); 1112 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1113 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1114 1115 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1116 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1117 1118 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1119 writel(RW_MGR_GUARANTEED_READ, addr + 1120 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1121 vg) << 2)); 1122 1123 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1124 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr)); 1125 1126 if (vg == 0) 1127 break; 1128 } 1129 *bit_chk &= tmp_bit_chk; 1130 } 1131 1132 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1133 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1134 1135 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1136 debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\ 1137 %lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask, 1138 (long unsigned int)(*bit_chk == param->read_correct_mask)); 1139 return *bit_chk == param->read_correct_mask; 1140 } 1141 1142 static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks 1143 (uint32_t group, uint32_t num_tries, uint32_t *bit_chk) 1144 { 1145 return rw_mgr_mem_calibrate_read_test_patterns(0, group, 1146 num_tries, bit_chk, 1); 1147 } 1148 1149 /* load up the patterns we are going to use during a read test */ 1150 static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn, 1151 uint32_t all_ranks) 1152 { 1153 uint32_t r; 1154 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1155 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1156 1157 debug("%s:%d\n", __func__, __LINE__); 1158 for (r = rank_bgn; r < rank_end; r++) { 1159 if (param->skip_ranks[r]) 1160 /* request to skip the rank */ 1161 continue; 1162 1163 /* set rank */ 1164 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1165 1166 /* Load up a constant bursts */ 1167 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1168 1169 writel(RW_MGR_GUARANTEED_WRITE_WAIT0, 1170 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1171 1172 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1173 1174 writel(RW_MGR_GUARANTEED_WRITE_WAIT1, 1175 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1176 1177 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2); 1178 1179 writel(RW_MGR_GUARANTEED_WRITE_WAIT2, 1180 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1181 1182 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3); 1183 1184 writel(RW_MGR_GUARANTEED_WRITE_WAIT3, 1185 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1186 1187 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1188 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 1189 } 1190 1191 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1192 } 1193 1194 /* 1195 * try a read and see if it returns correct data back. has dummy reads 1196 * inserted into the mix used to align dqs enable. has more thorough checks 1197 * than the regular read test. 1198 */ 1199 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group, 1200 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1201 uint32_t all_groups, uint32_t all_ranks) 1202 { 1203 uint32_t r, vg; 1204 uint32_t correct_mask_vg; 1205 uint32_t tmp_bit_chk; 1206 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1207 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1208 uint32_t addr; 1209 uint32_t base_rw_mgr; 1210 1211 *bit_chk = param->read_correct_mask; 1212 correct_mask_vg = param->read_correct_mask_vg; 1213 1214 uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) & 1215 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION); 1216 1217 for (r = rank_bgn; r < rank_end; r++) { 1218 if (param->skip_ranks[r]) 1219 /* request to skip the rank */ 1220 continue; 1221 1222 /* set rank */ 1223 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1224 1225 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1); 1226 1227 writel(RW_MGR_READ_B2B_WAIT1, 1228 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1229 1230 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2); 1231 writel(RW_MGR_READ_B2B_WAIT2, 1232 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1233 1234 if (quick_read_mode) 1235 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0); 1236 /* need at least two (1+1) reads to capture failures */ 1237 else if (all_groups) 1238 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0); 1239 else 1240 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0); 1241 1242 writel(RW_MGR_READ_B2B, 1243 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1244 if (all_groups) 1245 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH * 1246 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1, 1247 &sdr_rw_load_mgr_regs->load_cntr3); 1248 else 1249 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3); 1250 1251 writel(RW_MGR_READ_B2B, 1252 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1253 1254 tmp_bit_chk = 0; 1255 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1256 /* reset the fifos to get pointers to known state */ 1257 writel(0, &phy_mgr_cmd->fifo_reset); 1258 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1259 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1260 1261 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1262 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1263 1264 if (all_groups) 1265 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET; 1266 else 1267 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1268 1269 writel(RW_MGR_READ_B2B, addr + 1270 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1271 vg) << 2)); 1272 1273 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1274 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 1275 1276 if (vg == 0) 1277 break; 1278 } 1279 *bit_chk &= tmp_bit_chk; 1280 } 1281 1282 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1283 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1284 1285 if (all_correct) { 1286 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1287 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\ 1288 (%u == %u) => %lu", __func__, __LINE__, group, 1289 all_groups, *bit_chk, param->read_correct_mask, 1290 (long unsigned int)(*bit_chk == 1291 param->read_correct_mask)); 1292 return *bit_chk == param->read_correct_mask; 1293 } else { 1294 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1295 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\ 1296 (%u != %lu) => %lu\n", __func__, __LINE__, 1297 group, all_groups, *bit_chk, (long unsigned int)0, 1298 (long unsigned int)(*bit_chk != 0x00)); 1299 return *bit_chk != 0x00; 1300 } 1301 } 1302 1303 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group, 1304 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1305 uint32_t all_groups) 1306 { 1307 return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct, 1308 bit_chk, all_groups, 1); 1309 } 1310 1311 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v) 1312 { 1313 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy); 1314 (*v)++; 1315 } 1316 1317 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v) 1318 { 1319 uint32_t i; 1320 1321 for (i = 0; i < VFIFO_SIZE-1; i++) 1322 rw_mgr_incr_vfifo(grp, v); 1323 } 1324 1325 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk) 1326 { 1327 uint32_t v; 1328 uint32_t fail_cnt = 0; 1329 uint32_t test_status; 1330 1331 for (v = 0; v < VFIFO_SIZE; ) { 1332 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n", 1333 __func__, __LINE__, v); 1334 test_status = rw_mgr_mem_calibrate_read_test_all_ranks 1335 (grp, 1, PASS_ONE_BIT, bit_chk, 0); 1336 if (!test_status) { 1337 fail_cnt++; 1338 1339 if (fail_cnt == 2) 1340 break; 1341 } 1342 1343 /* fiddle with FIFO */ 1344 rw_mgr_incr_vfifo(grp, &v); 1345 } 1346 1347 if (v >= VFIFO_SIZE) { 1348 /* no failing read found!! Something must have gone wrong */ 1349 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n", 1350 __func__, __LINE__); 1351 return 0; 1352 } else { 1353 return v; 1354 } 1355 } 1356 1357 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk, 1358 uint32_t dtaps_per_ptap, uint32_t *work_bgn, 1359 uint32_t *v, uint32_t *d, uint32_t *p, 1360 uint32_t *i, uint32_t *max_working_cnt) 1361 { 1362 uint32_t found_begin = 0; 1363 uint32_t tmp_delay = 0; 1364 uint32_t test_status; 1365 1366 for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay += 1367 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1368 *work_bgn = tmp_delay; 1369 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1370 1371 for (*i = 0; *i < VFIFO_SIZE; (*i)++) { 1372 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn += 1373 IO_DELAY_PER_OPA_TAP) { 1374 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1375 1376 test_status = 1377 rw_mgr_mem_calibrate_read_test_all_ranks 1378 (*grp, 1, PASS_ONE_BIT, bit_chk, 0); 1379 1380 if (test_status) { 1381 *max_working_cnt = 1; 1382 found_begin = 1; 1383 break; 1384 } 1385 } 1386 1387 if (found_begin) 1388 break; 1389 1390 if (*p > IO_DQS_EN_PHASE_MAX) 1391 /* fiddle with FIFO */ 1392 rw_mgr_incr_vfifo(*grp, v); 1393 } 1394 1395 if (found_begin) 1396 break; 1397 } 1398 1399 if (*i >= VFIFO_SIZE) { 1400 /* cannot find working solution */ 1401 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\ 1402 ptap/dtap\n", __func__, __LINE__); 1403 return 0; 1404 } else { 1405 return 1; 1406 } 1407 } 1408 1409 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk, 1410 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1411 uint32_t *p, uint32_t *max_working_cnt) 1412 { 1413 uint32_t found_begin = 0; 1414 uint32_t tmp_delay; 1415 1416 /* Special case code for backing up a phase */ 1417 if (*p == 0) { 1418 *p = IO_DQS_EN_PHASE_MAX; 1419 rw_mgr_decr_vfifo(*grp, v); 1420 } else { 1421 (*p)--; 1422 } 1423 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP; 1424 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1425 1426 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; 1427 (*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1428 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1429 1430 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1, 1431 PASS_ONE_BIT, 1432 bit_chk, 0)) { 1433 found_begin = 1; 1434 *work_bgn = tmp_delay; 1435 break; 1436 } 1437 } 1438 1439 /* We have found a working dtap before the ptap found above */ 1440 if (found_begin == 1) 1441 (*max_working_cnt)++; 1442 1443 /* 1444 * Restore VFIFO to old state before we decremented it 1445 * (if needed). 1446 */ 1447 (*p)++; 1448 if (*p > IO_DQS_EN_PHASE_MAX) { 1449 *p = 0; 1450 rw_mgr_incr_vfifo(*grp, v); 1451 } 1452 1453 scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0); 1454 } 1455 1456 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk, 1457 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1458 uint32_t *p, uint32_t *i, uint32_t *max_working_cnt, 1459 uint32_t *work_end) 1460 { 1461 uint32_t found_end = 0; 1462 1463 (*p)++; 1464 *work_end += IO_DELAY_PER_OPA_TAP; 1465 if (*p > IO_DQS_EN_PHASE_MAX) { 1466 /* fiddle with FIFO */ 1467 *p = 0; 1468 rw_mgr_incr_vfifo(*grp, v); 1469 } 1470 1471 for (; *i < VFIFO_SIZE + 1; (*i)++) { 1472 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end 1473 += IO_DELAY_PER_OPA_TAP) { 1474 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1475 1476 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1477 (*grp, 1, PASS_ONE_BIT, bit_chk, 0)) { 1478 found_end = 1; 1479 break; 1480 } else { 1481 (*max_working_cnt)++; 1482 } 1483 } 1484 1485 if (found_end) 1486 break; 1487 1488 if (*p > IO_DQS_EN_PHASE_MAX) { 1489 /* fiddle with FIFO */ 1490 rw_mgr_incr_vfifo(*grp, v); 1491 *p = 0; 1492 } 1493 } 1494 1495 if (*i >= VFIFO_SIZE + 1) { 1496 /* cannot see edge of failing read */ 1497 debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\ 1498 failed\n", __func__, __LINE__); 1499 return 0; 1500 } else { 1501 return 1; 1502 } 1503 } 1504 1505 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk, 1506 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1507 uint32_t *p, uint32_t *work_mid, 1508 uint32_t *work_end) 1509 { 1510 int i; 1511 int tmp_delay = 0; 1512 1513 *work_mid = (*work_bgn + *work_end) / 2; 1514 1515 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n", 1516 *work_bgn, *work_end, *work_mid); 1517 /* Get the middle delay to be less than a VFIFO delay */ 1518 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; 1519 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP) 1520 ; 1521 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay); 1522 while (*work_mid > tmp_delay) 1523 *work_mid -= tmp_delay; 1524 debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid); 1525 1526 tmp_delay = 0; 1527 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid; 1528 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP) 1529 ; 1530 tmp_delay -= IO_DELAY_PER_OPA_TAP; 1531 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay); 1532 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++, 1533 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) 1534 ; 1535 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay); 1536 1537 scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1); 1538 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1539 1540 /* 1541 * push vfifo until we can successfully calibrate. We can do this 1542 * because the largest possible margin in 1 VFIFO cycle. 1543 */ 1544 for (i = 0; i < VFIFO_SIZE; i++) { 1545 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n", 1546 *v); 1547 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1, 1548 PASS_ONE_BIT, 1549 bit_chk, 0)) { 1550 break; 1551 } 1552 1553 /* fiddle with FIFO */ 1554 rw_mgr_incr_vfifo(*grp, v); 1555 } 1556 1557 if (i >= VFIFO_SIZE) { 1558 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \ 1559 failed\n", __func__, __LINE__); 1560 return 0; 1561 } else { 1562 return 1; 1563 } 1564 } 1565 1566 /* find a good dqs enable to use */ 1567 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp) 1568 { 1569 uint32_t v, d, p, i; 1570 uint32_t max_working_cnt; 1571 uint32_t bit_chk; 1572 uint32_t dtaps_per_ptap; 1573 uint32_t work_bgn, work_mid, work_end; 1574 uint32_t found_passing_read, found_failing_read, initial_failing_dtap; 1575 1576 debug("%s:%d %u\n", __func__, __LINE__, grp); 1577 1578 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 1579 1580 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1581 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); 1582 1583 /* ************************************************************** */ 1584 /* * Step 0 : Determine number of delay taps for each phase tap * */ 1585 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1586 1587 /* ********************************************************* */ 1588 /* * Step 1 : First push vfifo until we get a failing read * */ 1589 v = find_vfifo_read(grp, &bit_chk); 1590 1591 max_working_cnt = 0; 1592 1593 /* ******************************************************** */ 1594 /* * step 2: find first working phase, increment in ptaps * */ 1595 work_bgn = 0; 1596 if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d, 1597 &p, &i, &max_working_cnt) == 0) 1598 return 0; 1599 1600 work_end = work_bgn; 1601 1602 /* 1603 * If d is 0 then the working window covers a phase tap and 1604 * we can follow the old procedure otherwise, we've found the beginning, 1605 * and we need to increment the dtaps until we find the end. 1606 */ 1607 if (d == 0) { 1608 /* ********************************************************* */ 1609 /* * step 3a: if we have room, back off by one and 1610 increment in dtaps * */ 1611 1612 sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1613 &max_working_cnt); 1614 1615 /* ********************************************************* */ 1616 /* * step 4a: go forward from working phase to non working 1617 phase, increment in ptaps * */ 1618 if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1619 &i, &max_working_cnt, &work_end) == 0) 1620 return 0; 1621 1622 /* ********************************************************* */ 1623 /* * step 5a: back off one from last, increment in dtaps * */ 1624 1625 /* Special case code for backing up a phase */ 1626 if (p == 0) { 1627 p = IO_DQS_EN_PHASE_MAX; 1628 rw_mgr_decr_vfifo(grp, &v); 1629 } else { 1630 p = p - 1; 1631 } 1632 1633 work_end -= IO_DELAY_PER_OPA_TAP; 1634 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1635 1636 /* * The actual increment of dtaps is done outside of 1637 the if/else loop to share code */ 1638 d = 0; 1639 1640 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \ 1641 vfifo=%u ptap=%u\n", __func__, __LINE__, 1642 v, p); 1643 } else { 1644 /* ******************************************************* */ 1645 /* * step 3-5b: Find the right edge of the window using 1646 delay taps * */ 1647 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \ 1648 ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__, 1649 v, p, d, work_bgn); 1650 1651 work_end = work_bgn; 1652 1653 /* * The actual increment of dtaps is done outside of the 1654 if/else loop to share code */ 1655 1656 /* Only here to counterbalance a subtract later on which is 1657 not needed if this branch of the algorithm is taken */ 1658 max_working_cnt++; 1659 } 1660 1661 /* The dtap increment to find the failing edge is done here */ 1662 for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end += 1663 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1664 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1665 end-2: dtap=%u\n", __func__, __LINE__, d); 1666 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1667 1668 if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1669 PASS_ONE_BIT, 1670 &bit_chk, 0)) { 1671 break; 1672 } 1673 } 1674 1675 /* Go back to working dtap */ 1676 if (d != 0) 1677 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1678 1679 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \ 1680 ptap=%u dtap=%u end=%u\n", __func__, __LINE__, 1681 v, p, d-1, work_end); 1682 1683 if (work_end < work_bgn) { 1684 /* nil range */ 1685 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \ 1686 failed\n", __func__, __LINE__); 1687 return 0; 1688 } 1689 1690 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n", 1691 __func__, __LINE__, work_bgn, work_end); 1692 1693 /* *************************************************************** */ 1694 /* 1695 * * We need to calculate the number of dtaps that equal a ptap 1696 * * To do that we'll back up a ptap and re-find the edge of the 1697 * * window using dtaps 1698 */ 1699 1700 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \ 1701 for tracking\n", __func__, __LINE__); 1702 1703 /* Special case code for backing up a phase */ 1704 if (p == 0) { 1705 p = IO_DQS_EN_PHASE_MAX; 1706 rw_mgr_decr_vfifo(grp, &v); 1707 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1708 cycle/phase: v=%u p=%u\n", __func__, __LINE__, 1709 v, p); 1710 } else { 1711 p = p - 1; 1712 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1713 phase only: v=%u p=%u", __func__, __LINE__, 1714 v, p); 1715 } 1716 1717 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1718 1719 /* 1720 * Increase dtap until we first see a passing read (in case the 1721 * window is smaller than a ptap), 1722 * and then a failing read to mark the edge of the window again 1723 */ 1724 1725 /* Find a passing read */ 1726 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n", 1727 __func__, __LINE__); 1728 found_passing_read = 0; 1729 found_failing_read = 0; 1730 initial_failing_dtap = d; 1731 for (; d <= IO_DQS_EN_DELAY_MAX; d++) { 1732 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \ 1733 read d=%u\n", __func__, __LINE__, d); 1734 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1735 1736 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1737 PASS_ONE_BIT, 1738 &bit_chk, 0)) { 1739 found_passing_read = 1; 1740 break; 1741 } 1742 } 1743 1744 if (found_passing_read) { 1745 /* Find a failing read */ 1746 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \ 1747 read\n", __func__, __LINE__); 1748 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) { 1749 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1750 testing read d=%u\n", __func__, __LINE__, d); 1751 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1752 1753 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1754 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { 1755 found_failing_read = 1; 1756 break; 1757 } 1758 } 1759 } else { 1760 debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \ 1761 calculate dtaps", __func__, __LINE__); 1762 debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n"); 1763 } 1764 1765 /* 1766 * The dynamically calculated dtaps_per_ptap is only valid if we 1767 * found a passing/failing read. If we didn't, it means d hit the max 1768 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its 1769 * statically calculated value. 1770 */ 1771 if (found_passing_read && found_failing_read) 1772 dtaps_per_ptap = d - initial_failing_dtap; 1773 1774 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 1775 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \ 1776 - %u = %u", __func__, __LINE__, d, 1777 initial_failing_dtap, dtaps_per_ptap); 1778 1779 /* ******************************************** */ 1780 /* * step 6: Find the centre of the window * */ 1781 if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1782 &work_mid, &work_end) == 0) 1783 return 0; 1784 1785 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \ 1786 vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__, 1787 v, p-1, d); 1788 return 1; 1789 } 1790 1791 /* 1792 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different 1793 * dq_in_delay values 1794 */ 1795 static uint32_t 1796 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay 1797 (uint32_t write_group, uint32_t read_group, uint32_t test_bgn) 1798 { 1799 uint32_t found; 1800 uint32_t i; 1801 uint32_t p; 1802 uint32_t d; 1803 uint32_t r; 1804 1805 const uint32_t delay_step = IO_IO_IN_DELAY_MAX / 1806 (RW_MGR_MEM_DQ_PER_READ_DQS-1); 1807 /* we start at zero, so have one less dq to devide among */ 1808 1809 debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group, 1810 test_bgn); 1811 1812 /* try different dq_in_delays since the dq path is shorter than dqs */ 1813 1814 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 1815 r += NUM_RANKS_PER_SHADOW_REG) { 1816 for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; 1817 i++, p++, d += delay_step) { 1818 debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\ 1819 vfifo_find_dqs_", __func__, __LINE__); 1820 debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ", 1821 write_group, read_group); 1822 debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d); 1823 scc_mgr_set_dq_in_delay(p, d); 1824 scc_mgr_load_dq(p); 1825 } 1826 writel(0, &sdr_scc_mgr->update); 1827 } 1828 1829 found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group); 1830 1831 debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\ 1832 en_phase_sweep_dq", __func__, __LINE__); 1833 debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \ 1834 chain to zero\n", write_group, read_group, found); 1835 1836 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 1837 r += NUM_RANKS_PER_SHADOW_REG) { 1838 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; 1839 i++, p++) { 1840 scc_mgr_set_dq_in_delay(p, 0); 1841 scc_mgr_load_dq(p); 1842 } 1843 writel(0, &sdr_scc_mgr->update); 1844 } 1845 1846 return found; 1847 } 1848 1849 /* per-bit deskew DQ and center */ 1850 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn, 1851 uint32_t write_group, uint32_t read_group, uint32_t test_bgn, 1852 uint32_t use_read_test, uint32_t update_fom) 1853 { 1854 uint32_t i, p, d, min_index; 1855 /* 1856 * Store these as signed since there are comparisons with 1857 * signed numbers. 1858 */ 1859 uint32_t bit_chk; 1860 uint32_t sticky_bit_chk; 1861 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1862 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1863 int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS]; 1864 int32_t mid; 1865 int32_t orig_mid_min, mid_min; 1866 int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs, 1867 final_dqs_en; 1868 int32_t dq_margin, dqs_margin; 1869 uint32_t stop; 1870 uint32_t temp_dq_in_delay1, temp_dq_in_delay2; 1871 uint32_t addr; 1872 1873 debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn); 1874 1875 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET; 1876 start_dqs = readl(addr + (read_group << 2)); 1877 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 1878 start_dqs_en = readl(addr + ((read_group << 2) 1879 - IO_DQS_EN_DELAY_OFFSET)); 1880 1881 /* set the left and right edge of each bit to an illegal value */ 1882 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */ 1883 sticky_bit_chk = 0; 1884 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1885 left_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1886 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1887 } 1888 1889 /* Search for the left edge of the window for each bit */ 1890 for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) { 1891 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d); 1892 1893 writel(0, &sdr_scc_mgr->update); 1894 1895 /* 1896 * Stop searching when the read test doesn't pass AND when 1897 * we've seen a passing read on every bit. 1898 */ 1899 if (use_read_test) { 1900 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1901 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1902 &bit_chk, 0, 0); 1903 } else { 1904 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1905 0, PASS_ONE_BIT, 1906 &bit_chk, 0); 1907 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1908 (read_group - (write_group * 1909 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1910 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1911 stop = (bit_chk == 0); 1912 } 1913 sticky_bit_chk = sticky_bit_chk | bit_chk; 1914 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1915 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \ 1916 && %u", __func__, __LINE__, d, 1917 sticky_bit_chk, 1918 param->read_correct_mask, stop); 1919 1920 if (stop == 1) { 1921 break; 1922 } else { 1923 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1924 if (bit_chk & 1) { 1925 /* Remember a passing test as the 1926 left_edge */ 1927 left_edge[i] = d; 1928 } else { 1929 /* If a left edge has not been seen yet, 1930 then a future passing test will mark 1931 this edge as the right edge */ 1932 if (left_edge[i] == 1933 IO_IO_IN_DELAY_MAX + 1) { 1934 right_edge[i] = -(d + 1); 1935 } 1936 } 1937 bit_chk = bit_chk >> 1; 1938 } 1939 } 1940 } 1941 1942 /* Reset DQ delay chains to 0 */ 1943 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, 0); 1944 sticky_bit_chk = 0; 1945 for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) { 1946 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 1947 %d right_edge[%u]: %d\n", __func__, __LINE__, 1948 i, left_edge[i], i, right_edge[i]); 1949 1950 /* 1951 * Check for cases where we haven't found the left edge, 1952 * which makes our assignment of the the right edge invalid. 1953 * Reset it to the illegal value. 1954 */ 1955 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && ( 1956 right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1957 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1958 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \ 1959 right_edge[%u]: %d\n", __func__, __LINE__, 1960 i, right_edge[i]); 1961 } 1962 1963 /* 1964 * Reset sticky bit (except for bits where we have seen 1965 * both the left and right edge). 1966 */ 1967 sticky_bit_chk = sticky_bit_chk << 1; 1968 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) && 1969 (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1970 sticky_bit_chk = sticky_bit_chk | 1; 1971 } 1972 1973 if (i == 0) 1974 break; 1975 } 1976 1977 /* Search for the right edge of the window for each bit */ 1978 for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) { 1979 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs); 1980 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 1981 uint32_t delay = d + start_dqs_en; 1982 if (delay > IO_DQS_EN_DELAY_MAX) 1983 delay = IO_DQS_EN_DELAY_MAX; 1984 scc_mgr_set_dqs_en_delay(read_group, delay); 1985 } 1986 scc_mgr_load_dqs(read_group); 1987 1988 writel(0, &sdr_scc_mgr->update); 1989 1990 /* 1991 * Stop searching when the read test doesn't pass AND when 1992 * we've seen a passing read on every bit. 1993 */ 1994 if (use_read_test) { 1995 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1996 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1997 &bit_chk, 0, 0); 1998 } else { 1999 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2000 0, PASS_ONE_BIT, 2001 &bit_chk, 0); 2002 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 2003 (read_group - (write_group * 2004 RW_MGR_MEM_IF_READ_DQS_WIDTH / 2005 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 2006 stop = (bit_chk == 0); 2007 } 2008 sticky_bit_chk = sticky_bit_chk | bit_chk; 2009 stop = stop && (sticky_bit_chk == param->read_correct_mask); 2010 2011 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \ 2012 %u && %u", __func__, __LINE__, d, 2013 sticky_bit_chk, param->read_correct_mask, stop); 2014 2015 if (stop == 1) { 2016 break; 2017 } else { 2018 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2019 if (bit_chk & 1) { 2020 /* Remember a passing test as 2021 the right_edge */ 2022 right_edge[i] = d; 2023 } else { 2024 if (d != 0) { 2025 /* If a right edge has not been 2026 seen yet, then a future passing 2027 test will mark this edge as the 2028 left edge */ 2029 if (right_edge[i] == 2030 IO_IO_IN_DELAY_MAX + 1) { 2031 left_edge[i] = -(d + 1); 2032 } 2033 } else { 2034 /* d = 0 failed, but it passed 2035 when testing the left edge, 2036 so it must be marginal, 2037 set it to -1 */ 2038 if (right_edge[i] == 2039 IO_IO_IN_DELAY_MAX + 1 && 2040 left_edge[i] != 2041 IO_IO_IN_DELAY_MAX 2042 + 1) { 2043 right_edge[i] = -1; 2044 } 2045 /* If a right edge has not been 2046 seen yet, then a future passing 2047 test will mark this edge as the 2048 left edge */ 2049 else if (right_edge[i] == 2050 IO_IO_IN_DELAY_MAX + 2051 1) { 2052 left_edge[i] = -(d + 1); 2053 } 2054 } 2055 } 2056 2057 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\ 2058 d=%u]: ", __func__, __LINE__, d); 2059 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ", 2060 (int)(bit_chk & 1), i, left_edge[i]); 2061 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2062 right_edge[i]); 2063 bit_chk = bit_chk >> 1; 2064 } 2065 } 2066 } 2067 2068 /* Check that all bits have a window */ 2069 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2070 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 2071 %d right_edge[%u]: %d", __func__, __LINE__, 2072 i, left_edge[i], i, right_edge[i]); 2073 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i] 2074 == IO_IO_IN_DELAY_MAX + 1)) { 2075 /* 2076 * Restore delay chain settings before letting the loop 2077 * in rw_mgr_mem_calibrate_vfifo to retry different 2078 * dqs/ck relationships. 2079 */ 2080 scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs); 2081 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2082 scc_mgr_set_dqs_en_delay(read_group, 2083 start_dqs_en); 2084 } 2085 scc_mgr_load_dqs(read_group); 2086 writel(0, &sdr_scc_mgr->update); 2087 2088 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \ 2089 find edge [%u]: %d %d", __func__, __LINE__, 2090 i, left_edge[i], right_edge[i]); 2091 if (use_read_test) { 2092 set_failing_group_stage(read_group * 2093 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2094 CAL_STAGE_VFIFO, 2095 CAL_SUBSTAGE_VFIFO_CENTER); 2096 } else { 2097 set_failing_group_stage(read_group * 2098 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2099 CAL_STAGE_VFIFO_AFTER_WRITES, 2100 CAL_SUBSTAGE_VFIFO_CENTER); 2101 } 2102 return 0; 2103 } 2104 } 2105 2106 /* Find middle of window for each DQ bit */ 2107 mid_min = left_edge[0] - right_edge[0]; 2108 min_index = 0; 2109 for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2110 mid = left_edge[i] - right_edge[i]; 2111 if (mid < mid_min) { 2112 mid_min = mid; 2113 min_index = i; 2114 } 2115 } 2116 2117 /* 2118 * -mid_min/2 represents the amount that we need to move DQS. 2119 * If mid_min is odd and positive we'll need to add one to 2120 * make sure the rounding in further calculations is correct 2121 * (always bias to the right), so just add 1 for all positive values. 2122 */ 2123 if (mid_min > 0) 2124 mid_min++; 2125 2126 mid_min = mid_min / 2; 2127 2128 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n", 2129 __func__, __LINE__, mid_min, min_index); 2130 2131 /* Determine the amount we can change DQS (which is -mid_min) */ 2132 orig_mid_min = mid_min; 2133 new_dqs = start_dqs - mid_min; 2134 if (new_dqs > IO_DQS_IN_DELAY_MAX) 2135 new_dqs = IO_DQS_IN_DELAY_MAX; 2136 else if (new_dqs < 0) 2137 new_dqs = 0; 2138 2139 mid_min = start_dqs - new_dqs; 2140 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n", 2141 mid_min, new_dqs); 2142 2143 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2144 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX) 2145 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX; 2146 else if (start_dqs_en - mid_min < 0) 2147 mid_min += start_dqs_en - mid_min; 2148 } 2149 new_dqs = start_dqs - mid_min; 2150 2151 debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \ 2152 new_dqs=%d mid_min=%d\n", start_dqs, 2153 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1, 2154 new_dqs, mid_min); 2155 2156 /* Initialize data for export structures */ 2157 dqs_margin = IO_IO_IN_DELAY_MAX + 1; 2158 dq_margin = IO_IO_IN_DELAY_MAX + 1; 2159 2160 /* add delay to bring centre of all DQ windows to the same "level" */ 2161 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 2162 /* Use values before divide by 2 to reduce round off error */ 2163 shift_dq = (left_edge[i] - right_edge[i] - 2164 (left_edge[min_index] - right_edge[min_index]))/2 + 2165 (orig_mid_min - mid_min); 2166 2167 debug_cond(DLEVEL == 2, "vfifo_center: before: \ 2168 shift_dq[%u]=%d\n", i, shift_dq); 2169 2170 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET; 2171 temp_dq_in_delay1 = readl(addr + (p << 2)); 2172 temp_dq_in_delay2 = readl(addr + (i << 2)); 2173 2174 if (shift_dq + (int32_t)temp_dq_in_delay1 > 2175 (int32_t)IO_IO_IN_DELAY_MAX) { 2176 shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2; 2177 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) { 2178 shift_dq = -(int32_t)temp_dq_in_delay1; 2179 } 2180 debug_cond(DLEVEL == 2, "vfifo_center: after: \ 2181 shift_dq[%u]=%d\n", i, shift_dq); 2182 final_dq[i] = temp_dq_in_delay1 + shift_dq; 2183 scc_mgr_set_dq_in_delay(p, final_dq[i]); 2184 scc_mgr_load_dq(p); 2185 2186 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i, 2187 left_edge[i] - shift_dq + (-mid_min), 2188 right_edge[i] + shift_dq - (-mid_min)); 2189 /* To determine values for export structures */ 2190 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2191 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2192 2193 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2194 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2195 } 2196 2197 final_dqs = new_dqs; 2198 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2199 final_dqs_en = start_dqs_en - mid_min; 2200 2201 /* Move DQS-en */ 2202 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2203 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en); 2204 scc_mgr_load_dqs(read_group); 2205 } 2206 2207 /* Move DQS */ 2208 scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs); 2209 scc_mgr_load_dqs(read_group); 2210 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \ 2211 dqs_margin=%d", __func__, __LINE__, 2212 dq_margin, dqs_margin); 2213 2214 /* 2215 * Do not remove this line as it makes sure all of our decisions 2216 * have been applied. Apply the update bit. 2217 */ 2218 writel(0, &sdr_scc_mgr->update); 2219 2220 return (dq_margin >= 0) && (dqs_margin >= 0); 2221 } 2222 2223 /* 2224 * calibrate the read valid prediction FIFO. 2225 * 2226 * - read valid prediction will consist of finding a good DQS enable phase, 2227 * DQS enable delay, DQS input phase, and DQS input delay. 2228 * - we also do a per-bit deskew on the DQ lines. 2229 */ 2230 static uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t read_group, 2231 uint32_t test_bgn) 2232 { 2233 uint32_t p, d, rank_bgn, sr; 2234 uint32_t dtaps_per_ptap; 2235 uint32_t tmp_delay; 2236 uint32_t bit_chk; 2237 uint32_t grp_calibrated; 2238 uint32_t write_group, write_test_bgn; 2239 uint32_t failed_substage; 2240 2241 debug("%s:%d: %u %u\n", __func__, __LINE__, read_group, test_bgn); 2242 2243 /* update info for sims */ 2244 reg_file_set_stage(CAL_STAGE_VFIFO); 2245 2246 write_group = read_group; 2247 write_test_bgn = test_bgn; 2248 2249 /* USER Determine number of delay taps for each phase tap */ 2250 dtaps_per_ptap = 0; 2251 tmp_delay = 0; 2252 while (tmp_delay < IO_DELAY_PER_OPA_TAP) { 2253 dtaps_per_ptap++; 2254 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 2255 } 2256 dtaps_per_ptap--; 2257 tmp_delay = 0; 2258 2259 /* update info for sims */ 2260 reg_file_set_group(read_group); 2261 2262 grp_calibrated = 0; 2263 2264 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ); 2265 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ; 2266 2267 for (d = 0; d <= dtaps_per_ptap && grp_calibrated == 0; d += 2) { 2268 /* 2269 * In RLDRAMX we may be messing the delay of pins in 2270 * the same write group but outside of the current read 2271 * the group, but that's ok because we haven't 2272 * calibrated output side yet. 2273 */ 2274 if (d > 0) { 2275 scc_mgr_apply_group_all_out_delay_add_all_ranks 2276 (write_group, write_test_bgn, d); 2277 } 2278 2279 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0; 2280 p++) { 2281 /* set a particular dqdqs phase */ 2282 scc_mgr_set_dqdqs_output_phase_all_ranks(read_group, p); 2283 2284 debug_cond(DLEVEL == 1, "%s:%d calibrate_vfifo: g=%u \ 2285 p=%u d=%u\n", __func__, __LINE__, 2286 read_group, p, d); 2287 2288 /* 2289 * Load up the patterns used by read calibration 2290 * using current DQDQS phase. 2291 */ 2292 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2293 if (!(gbl->phy_debug_mode_flags & 2294 PHY_DEBUG_DISABLE_GUARANTEED_READ)) { 2295 if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks 2296 (read_group, 1, &bit_chk)) { 2297 debug_cond(DLEVEL == 1, "%s:%d Guaranteed read test failed:", 2298 __func__, __LINE__); 2299 debug_cond(DLEVEL == 1, " g=%u p=%u d=%u\n", 2300 read_group, p, d); 2301 break; 2302 } 2303 } 2304 2305 /* case:56390 */ 2306 grp_calibrated = 1; 2307 if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay 2308 (write_group, read_group, test_bgn)) { 2309 /* 2310 * USER Read per-bit deskew can be done on a 2311 * per shadow register basis. 2312 */ 2313 for (rank_bgn = 0, sr = 0; 2314 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2315 rank_bgn += NUM_RANKS_PER_SHADOW_REG, 2316 ++sr) { 2317 /* 2318 * Determine if this set of ranks 2319 * should be skipped entirely. 2320 */ 2321 if (!param->skip_shadow_regs[sr]) { 2322 /* 2323 * If doing read after write 2324 * calibration, do not update 2325 * FOM, now - do it then. 2326 */ 2327 if (!rw_mgr_mem_calibrate_vfifo_center 2328 (rank_bgn, write_group, 2329 read_group, test_bgn, 1, 0)) { 2330 grp_calibrated = 0; 2331 failed_substage = 2332 CAL_SUBSTAGE_VFIFO_CENTER; 2333 } 2334 } 2335 } 2336 } else { 2337 grp_calibrated = 0; 2338 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE; 2339 } 2340 } 2341 } 2342 2343 if (grp_calibrated == 0) { 2344 set_failing_group_stage(write_group, CAL_STAGE_VFIFO, 2345 failed_substage); 2346 return 0; 2347 } 2348 2349 /* 2350 * Reset the delay chains back to zero if they have moved > 1 2351 * (check for > 1 because loop will increase d even when pass in 2352 * first case). 2353 */ 2354 if (d > 2) 2355 scc_mgr_zero_group(write_group, write_test_bgn, 1); 2356 2357 return 1; 2358 } 2359 2360 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */ 2361 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group, 2362 uint32_t test_bgn) 2363 { 2364 uint32_t rank_bgn, sr; 2365 uint32_t grp_calibrated; 2366 uint32_t write_group; 2367 2368 debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn); 2369 2370 /* update info for sims */ 2371 2372 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES); 2373 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 2374 2375 write_group = read_group; 2376 2377 /* update info for sims */ 2378 reg_file_set_group(read_group); 2379 2380 grp_calibrated = 1; 2381 /* Read per-bit deskew can be done on a per shadow register basis */ 2382 for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2383 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) { 2384 /* Determine if this set of ranks should be skipped entirely */ 2385 if (!param->skip_shadow_regs[sr]) { 2386 /* This is the last calibration round, update FOM here */ 2387 if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn, 2388 write_group, 2389 read_group, 2390 test_bgn, 0, 2391 1)) { 2392 grp_calibrated = 0; 2393 } 2394 } 2395 } 2396 2397 2398 if (grp_calibrated == 0) { 2399 set_failing_group_stage(write_group, 2400 CAL_STAGE_VFIFO_AFTER_WRITES, 2401 CAL_SUBSTAGE_VFIFO_CENTER); 2402 return 0; 2403 } 2404 2405 return 1; 2406 } 2407 2408 /* Calibrate LFIFO to find smallest read latency */ 2409 static uint32_t rw_mgr_mem_calibrate_lfifo(void) 2410 { 2411 uint32_t found_one; 2412 uint32_t bit_chk; 2413 2414 debug("%s:%d\n", __func__, __LINE__); 2415 2416 /* update info for sims */ 2417 reg_file_set_stage(CAL_STAGE_LFIFO); 2418 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY); 2419 2420 /* Load up the patterns used by read calibration for all ranks */ 2421 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2422 found_one = 0; 2423 2424 do { 2425 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2426 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u", 2427 __func__, __LINE__, gbl->curr_read_lat); 2428 2429 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, 2430 NUM_READ_TESTS, 2431 PASS_ALL_BITS, 2432 &bit_chk, 1)) { 2433 break; 2434 } 2435 2436 found_one = 1; 2437 /* reduce read latency and see if things are working */ 2438 /* correctly */ 2439 gbl->curr_read_lat--; 2440 } while (gbl->curr_read_lat > 0); 2441 2442 /* reset the fifos to get pointers to known state */ 2443 2444 writel(0, &phy_mgr_cmd->fifo_reset); 2445 2446 if (found_one) { 2447 /* add a fudge factor to the read latency that was determined */ 2448 gbl->curr_read_lat += 2; 2449 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2450 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \ 2451 read_lat=%u\n", __func__, __LINE__, 2452 gbl->curr_read_lat); 2453 return 1; 2454 } else { 2455 set_failing_group_stage(0xff, CAL_STAGE_LFIFO, 2456 CAL_SUBSTAGE_READ_LATENCY); 2457 2458 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \ 2459 read_lat=%u\n", __func__, __LINE__, 2460 gbl->curr_read_lat); 2461 return 0; 2462 } 2463 } 2464 2465 /* 2466 * issue write test command. 2467 * two variants are provided. one that just tests a write pattern and 2468 * another that tests datamask functionality. 2469 */ 2470 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group, 2471 uint32_t test_dm) 2472 { 2473 uint32_t mcc_instruction; 2474 uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) && 2475 ENABLE_SUPER_QUICK_CALIBRATION); 2476 uint32_t rw_wl_nop_cycles; 2477 uint32_t addr; 2478 2479 /* 2480 * Set counter and jump addresses for the right 2481 * number of NOP cycles. 2482 * The number of supported NOP cycles can range from -1 to infinity 2483 * Three different cases are handled: 2484 * 2485 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping 2486 * mechanism will be used to insert the right number of NOPs 2487 * 2488 * 2. For a number of NOP cycles equals to 0, the micro-instruction 2489 * issuing the write command will jump straight to the 2490 * micro-instruction that turns on DQS (for DDRx), or outputs write 2491 * data (for RLD), skipping 2492 * the NOP micro-instruction all together 2493 * 2494 * 3. A number of NOP cycles equal to -1 indicates that DQS must be 2495 * turned on in the same micro-instruction that issues the write 2496 * command. Then we need 2497 * to directly jump to the micro-instruction that sends out the data 2498 * 2499 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters 2500 * (2 and 3). One jump-counter (0) is used to perform multiple 2501 * write-read operations. 2502 * one counter left to issue this command in "multiple-group" mode 2503 */ 2504 2505 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles; 2506 2507 if (rw_wl_nop_cycles == -1) { 2508 /* 2509 * CNTR 2 - We want to execute the special write operation that 2510 * turns on DQS right away and then skip directly to the 2511 * instruction that sends out the data. We set the counter to a 2512 * large number so that the jump is always taken. 2513 */ 2514 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2515 2516 /* CNTR 3 - Not used */ 2517 if (test_dm) { 2518 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1; 2519 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA, 2520 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2521 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2522 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2523 } else { 2524 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1; 2525 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA, 2526 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2527 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2528 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2529 } 2530 } else if (rw_wl_nop_cycles == 0) { 2531 /* 2532 * CNTR 2 - We want to skip the NOP operation and go straight 2533 * to the DQS enable instruction. We set the counter to a large 2534 * number so that the jump is always taken. 2535 */ 2536 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2537 2538 /* CNTR 3 - Not used */ 2539 if (test_dm) { 2540 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2541 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS, 2542 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2543 } else { 2544 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2545 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS, 2546 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2547 } 2548 } else { 2549 /* 2550 * CNTR 2 - In this case we want to execute the next instruction 2551 * and NOT take the jump. So we set the counter to 0. The jump 2552 * address doesn't count. 2553 */ 2554 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2); 2555 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2556 2557 /* 2558 * CNTR 3 - Set the nop counter to the number of cycles we 2559 * need to loop for, minus 1. 2560 */ 2561 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3); 2562 if (test_dm) { 2563 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2564 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2565 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2566 } else { 2567 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2568 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2569 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2570 } 2571 } 2572 2573 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 2574 RW_MGR_RESET_READ_DATAPATH_OFFSET); 2575 2576 if (quick_write_mode) 2577 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0); 2578 else 2579 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0); 2580 2581 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 2582 2583 /* 2584 * CNTR 1 - This is used to ensure enough time elapses 2585 * for read data to come back. 2586 */ 2587 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1); 2588 2589 if (test_dm) { 2590 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT, 2591 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2592 } else { 2593 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT, 2594 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2595 } 2596 2597 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 2598 writel(mcc_instruction, addr + (group << 2)); 2599 } 2600 2601 /* Test writes, can check for a single bit pass or multiple bit pass */ 2602 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 2603 uint32_t write_group, uint32_t use_dm, uint32_t all_correct, 2604 uint32_t *bit_chk, uint32_t all_ranks) 2605 { 2606 uint32_t r; 2607 uint32_t correct_mask_vg; 2608 uint32_t tmp_bit_chk; 2609 uint32_t vg; 2610 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 2611 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 2612 uint32_t addr_rw_mgr; 2613 uint32_t base_rw_mgr; 2614 2615 *bit_chk = param->write_correct_mask; 2616 correct_mask_vg = param->write_correct_mask_vg; 2617 2618 for (r = rank_bgn; r < rank_end; r++) { 2619 if (param->skip_ranks[r]) { 2620 /* request to skip the rank */ 2621 continue; 2622 } 2623 2624 /* set rank */ 2625 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 2626 2627 tmp_bit_chk = 0; 2628 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS; 2629 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) { 2630 /* reset the fifos to get pointers to known state */ 2631 writel(0, &phy_mgr_cmd->fifo_reset); 2632 2633 tmp_bit_chk = tmp_bit_chk << 2634 (RW_MGR_MEM_DQ_PER_WRITE_DQS / 2635 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 2636 rw_mgr_mem_calibrate_write_test_issue(write_group * 2637 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg, 2638 use_dm); 2639 2640 base_rw_mgr = readl(addr_rw_mgr); 2641 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 2642 if (vg == 0) 2643 break; 2644 } 2645 *bit_chk &= tmp_bit_chk; 2646 } 2647 2648 if (all_correct) { 2649 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2650 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \ 2651 %u => %lu", write_group, use_dm, 2652 *bit_chk, param->write_correct_mask, 2653 (long unsigned int)(*bit_chk == 2654 param->write_correct_mask)); 2655 return *bit_chk == param->write_correct_mask; 2656 } else { 2657 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2658 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ", 2659 write_group, use_dm, *bit_chk); 2660 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0, 2661 (long unsigned int)(*bit_chk != 0)); 2662 return *bit_chk != 0x00; 2663 } 2664 } 2665 2666 /* 2667 * center all windows. do per-bit-deskew to possibly increase size of 2668 * certain windows. 2669 */ 2670 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn, 2671 uint32_t write_group, uint32_t test_bgn) 2672 { 2673 uint32_t i, p, min_index; 2674 int32_t d; 2675 /* 2676 * Store these as signed since there are comparisons with 2677 * signed numbers. 2678 */ 2679 uint32_t bit_chk; 2680 uint32_t sticky_bit_chk; 2681 int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2682 int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2683 int32_t mid; 2684 int32_t mid_min, orig_mid_min; 2685 int32_t new_dqs, start_dqs, shift_dq; 2686 int32_t dq_margin, dqs_margin, dm_margin; 2687 uint32_t stop; 2688 uint32_t temp_dq_out1_delay; 2689 uint32_t addr; 2690 2691 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn); 2692 2693 dm_margin = 0; 2694 2695 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2696 start_dqs = readl(addr + 2697 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 2698 2699 /* per-bit deskew */ 2700 2701 /* 2702 * set the left and right edge of each bit to an illegal value 2703 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 2704 */ 2705 sticky_bit_chk = 0; 2706 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2707 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2708 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2709 } 2710 2711 /* Search for the left edge of the window for each bit */ 2712 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) { 2713 scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, d); 2714 2715 writel(0, &sdr_scc_mgr->update); 2716 2717 /* 2718 * Stop searching when the read test doesn't pass AND when 2719 * we've seen a passing read on every bit. 2720 */ 2721 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2722 0, PASS_ONE_BIT, &bit_chk, 0); 2723 sticky_bit_chk = sticky_bit_chk | bit_chk; 2724 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2725 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \ 2726 == %u && %u [bit_chk= %u ]\n", 2727 d, sticky_bit_chk, param->write_correct_mask, 2728 stop, bit_chk); 2729 2730 if (stop == 1) { 2731 break; 2732 } else { 2733 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2734 if (bit_chk & 1) { 2735 /* 2736 * Remember a passing test as the 2737 * left_edge. 2738 */ 2739 left_edge[i] = d; 2740 } else { 2741 /* 2742 * If a left edge has not been seen 2743 * yet, then a future passing test will 2744 * mark this edge as the right edge. 2745 */ 2746 if (left_edge[i] == 2747 IO_IO_OUT1_DELAY_MAX + 1) { 2748 right_edge[i] = -(d + 1); 2749 } 2750 } 2751 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d); 2752 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2753 (int)(bit_chk & 1), i, left_edge[i]); 2754 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2755 right_edge[i]); 2756 bit_chk = bit_chk >> 1; 2757 } 2758 } 2759 } 2760 2761 /* Reset DQ delay chains to 0 */ 2762 scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, 0); 2763 sticky_bit_chk = 0; 2764 for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) { 2765 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2766 %d right_edge[%u]: %d\n", __func__, __LINE__, 2767 i, left_edge[i], i, right_edge[i]); 2768 2769 /* 2770 * Check for cases where we haven't found the left edge, 2771 * which makes our assignment of the the right edge invalid. 2772 * Reset it to the illegal value. 2773 */ 2774 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) && 2775 (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) { 2776 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2777 debug_cond(DLEVEL == 2, "%s:%d write_center: reset \ 2778 right_edge[%u]: %d\n", __func__, __LINE__, 2779 i, right_edge[i]); 2780 } 2781 2782 /* 2783 * Reset sticky bit (except for bits where we have 2784 * seen the left edge). 2785 */ 2786 sticky_bit_chk = sticky_bit_chk << 1; 2787 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) 2788 sticky_bit_chk = sticky_bit_chk | 1; 2789 2790 if (i == 0) 2791 break; 2792 } 2793 2794 /* Search for the right edge of the window for each bit */ 2795 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) { 2796 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2797 d + start_dqs); 2798 2799 writel(0, &sdr_scc_mgr->update); 2800 2801 /* 2802 * Stop searching when the read test doesn't pass AND when 2803 * we've seen a passing read on every bit. 2804 */ 2805 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2806 0, PASS_ONE_BIT, &bit_chk, 0); 2807 2808 sticky_bit_chk = sticky_bit_chk | bit_chk; 2809 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2810 2811 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \ 2812 %u && %u\n", d, sticky_bit_chk, 2813 param->write_correct_mask, stop); 2814 2815 if (stop == 1) { 2816 if (d == 0) { 2817 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; 2818 i++) { 2819 /* d = 0 failed, but it passed when 2820 testing the left edge, so it must be 2821 marginal, set it to -1 */ 2822 if (right_edge[i] == 2823 IO_IO_OUT1_DELAY_MAX + 1 && 2824 left_edge[i] != 2825 IO_IO_OUT1_DELAY_MAX + 1) { 2826 right_edge[i] = -1; 2827 } 2828 } 2829 } 2830 break; 2831 } else { 2832 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2833 if (bit_chk & 1) { 2834 /* 2835 * Remember a passing test as 2836 * the right_edge. 2837 */ 2838 right_edge[i] = d; 2839 } else { 2840 if (d != 0) { 2841 /* 2842 * If a right edge has not 2843 * been seen yet, then a future 2844 * passing test will mark this 2845 * edge as the left edge. 2846 */ 2847 if (right_edge[i] == 2848 IO_IO_OUT1_DELAY_MAX + 1) 2849 left_edge[i] = -(d + 1); 2850 } else { 2851 /* 2852 * d = 0 failed, but it passed 2853 * when testing the left edge, 2854 * so it must be marginal, set 2855 * it to -1. 2856 */ 2857 if (right_edge[i] == 2858 IO_IO_OUT1_DELAY_MAX + 1 && 2859 left_edge[i] != 2860 IO_IO_OUT1_DELAY_MAX + 1) 2861 right_edge[i] = -1; 2862 /* 2863 * If a right edge has not been 2864 * seen yet, then a future 2865 * passing test will mark this 2866 * edge as the left edge. 2867 */ 2868 else if (right_edge[i] == 2869 IO_IO_OUT1_DELAY_MAX + 2870 1) 2871 left_edge[i] = -(d + 1); 2872 } 2873 } 2874 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d); 2875 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2876 (int)(bit_chk & 1), i, left_edge[i]); 2877 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2878 right_edge[i]); 2879 bit_chk = bit_chk >> 1; 2880 } 2881 } 2882 } 2883 2884 /* Check that all bits have a window */ 2885 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2886 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2887 %d right_edge[%u]: %d", __func__, __LINE__, 2888 i, left_edge[i], i, right_edge[i]); 2889 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) || 2890 (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) { 2891 set_failing_group_stage(test_bgn + i, 2892 CAL_STAGE_WRITES, 2893 CAL_SUBSTAGE_WRITES_CENTER); 2894 return 0; 2895 } 2896 } 2897 2898 /* Find middle of window for each DQ bit */ 2899 mid_min = left_edge[0] - right_edge[0]; 2900 min_index = 0; 2901 for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2902 mid = left_edge[i] - right_edge[i]; 2903 if (mid < mid_min) { 2904 mid_min = mid; 2905 min_index = i; 2906 } 2907 } 2908 2909 /* 2910 * -mid_min/2 represents the amount that we need to move DQS. 2911 * If mid_min is odd and positive we'll need to add one to 2912 * make sure the rounding in further calculations is correct 2913 * (always bias to the right), so just add 1 for all positive values. 2914 */ 2915 if (mid_min > 0) 2916 mid_min++; 2917 mid_min = mid_min / 2; 2918 debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__, 2919 __LINE__, mid_min); 2920 2921 /* Determine the amount we can change DQS (which is -mid_min) */ 2922 orig_mid_min = mid_min; 2923 new_dqs = start_dqs; 2924 mid_min = 0; 2925 debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \ 2926 mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min); 2927 /* Initialize data for export structures */ 2928 dqs_margin = IO_IO_OUT1_DELAY_MAX + 1; 2929 dq_margin = IO_IO_OUT1_DELAY_MAX + 1; 2930 2931 /* add delay to bring centre of all DQ windows to the same "level" */ 2932 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 2933 /* Use values before divide by 2 to reduce round off error */ 2934 shift_dq = (left_edge[i] - right_edge[i] - 2935 (left_edge[min_index] - right_edge[min_index]))/2 + 2936 (orig_mid_min - mid_min); 2937 2938 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \ 2939 [%u]=%d\n", __func__, __LINE__, i, shift_dq); 2940 2941 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2942 temp_dq_out1_delay = readl(addr + (i << 2)); 2943 if (shift_dq + (int32_t)temp_dq_out1_delay > 2944 (int32_t)IO_IO_OUT1_DELAY_MAX) { 2945 shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay; 2946 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) { 2947 shift_dq = -(int32_t)temp_dq_out1_delay; 2948 } 2949 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n", 2950 i, shift_dq); 2951 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq); 2952 scc_mgr_load_dq(i); 2953 2954 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i, 2955 left_edge[i] - shift_dq + (-mid_min), 2956 right_edge[i] + shift_dq - (-mid_min)); 2957 /* To determine values for export structures */ 2958 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2959 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2960 2961 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2962 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2963 } 2964 2965 /* Move DQS */ 2966 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 2967 writel(0, &sdr_scc_mgr->update); 2968 2969 /* Centre DM */ 2970 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__); 2971 2972 /* 2973 * set the left and right edge of each bit to an illegal value, 2974 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value, 2975 */ 2976 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 2977 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 2978 int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2979 int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2980 int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1; 2981 int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1; 2982 int32_t win_best = 0; 2983 2984 /* Search for the/part of the window with DM shift */ 2985 for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) { 2986 scc_mgr_apply_group_dm_out1_delay(write_group, d); 2987 writel(0, &sdr_scc_mgr->update); 2988 2989 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 2990 PASS_ALL_BITS, &bit_chk, 2991 0)) { 2992 /* USE Set current end of the window */ 2993 end_curr = -d; 2994 /* 2995 * If a starting edge of our window has not been seen 2996 * this is our current start of the DM window. 2997 */ 2998 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 2999 bgn_curr = -d; 3000 3001 /* 3002 * If current window is bigger than best seen. 3003 * Set best seen to be current window. 3004 */ 3005 if ((end_curr-bgn_curr+1) > win_best) { 3006 win_best = end_curr-bgn_curr+1; 3007 bgn_best = bgn_curr; 3008 end_best = end_curr; 3009 } 3010 } else { 3011 /* We just saw a failing test. Reset temp edge */ 3012 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3013 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3014 } 3015 } 3016 3017 3018 /* Reset DM delay chains to 0 */ 3019 scc_mgr_apply_group_dm_out1_delay(write_group, 0); 3020 3021 /* 3022 * Check to see if the current window nudges up aganist 0 delay. 3023 * If so we need to continue the search by shifting DQS otherwise DQS 3024 * search begins as a new search. */ 3025 if (end_curr != 0) { 3026 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3027 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3028 } 3029 3030 /* Search for the/part of the window with DQS shifts */ 3031 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) { 3032 /* 3033 * Note: This only shifts DQS, so are we limiting ourselve to 3034 * width of DQ unnecessarily. 3035 */ 3036 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 3037 d + new_dqs); 3038 3039 writel(0, &sdr_scc_mgr->update); 3040 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3041 PASS_ALL_BITS, &bit_chk, 3042 0)) { 3043 /* USE Set current end of the window */ 3044 end_curr = d; 3045 /* 3046 * If a beginning edge of our window has not been seen 3047 * this is our current begin of the DM window. 3048 */ 3049 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3050 bgn_curr = d; 3051 3052 /* 3053 * If current window is bigger than best seen. Set best 3054 * seen to be current window. 3055 */ 3056 if ((end_curr-bgn_curr+1) > win_best) { 3057 win_best = end_curr-bgn_curr+1; 3058 bgn_best = bgn_curr; 3059 end_best = end_curr; 3060 } 3061 } else { 3062 /* We just saw a failing test. Reset temp edge */ 3063 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3064 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3065 3066 /* Early exit optimization: if ther remaining delay 3067 chain space is less than already seen largest window 3068 we can exit */ 3069 if ((win_best-1) > 3070 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) { 3071 break; 3072 } 3073 } 3074 } 3075 3076 /* assign left and right edge for cal and reporting; */ 3077 left_edge[0] = -1*bgn_best; 3078 right_edge[0] = end_best; 3079 3080 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__, 3081 __LINE__, left_edge[0], right_edge[0]); 3082 3083 /* Move DQS (back to orig) */ 3084 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3085 3086 /* Move DM */ 3087 3088 /* Find middle of window for the DM bit */ 3089 mid = (left_edge[0] - right_edge[0]) / 2; 3090 3091 /* only move right, since we are not moving DQS/DQ */ 3092 if (mid < 0) 3093 mid = 0; 3094 3095 /* dm_marign should fail if we never find a window */ 3096 if (win_best == 0) 3097 dm_margin = -1; 3098 else 3099 dm_margin = left_edge[0] - mid; 3100 3101 scc_mgr_apply_group_dm_out1_delay(write_group, mid); 3102 writel(0, &sdr_scc_mgr->update); 3103 3104 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \ 3105 dm_margin=%d\n", __func__, __LINE__, left_edge[0], 3106 right_edge[0], mid, dm_margin); 3107 /* Export values */ 3108 gbl->fom_out += dq_margin + dqs_margin; 3109 3110 debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \ 3111 dqs_margin=%d dm_margin=%d\n", __func__, __LINE__, 3112 dq_margin, dqs_margin, dm_margin); 3113 3114 /* 3115 * Do not remove this line as it makes sure all of our 3116 * decisions have been applied. 3117 */ 3118 writel(0, &sdr_scc_mgr->update); 3119 return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0); 3120 } 3121 3122 /* calibrate the write operations */ 3123 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g, 3124 uint32_t test_bgn) 3125 { 3126 /* update info for sims */ 3127 debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn); 3128 3129 reg_file_set_stage(CAL_STAGE_WRITES); 3130 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER); 3131 3132 reg_file_set_group(g); 3133 3134 if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) { 3135 set_failing_group_stage(g, CAL_STAGE_WRITES, 3136 CAL_SUBSTAGE_WRITES_CENTER); 3137 return 0; 3138 } 3139 3140 return 1; 3141 } 3142 3143 /* precharge all banks and activate row 0 in bank "000..." and bank "111..." */ 3144 static void mem_precharge_and_activate(void) 3145 { 3146 uint32_t r; 3147 3148 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 3149 if (param->skip_ranks[r]) { 3150 /* request to skip the rank */ 3151 continue; 3152 } 3153 3154 /* set rank */ 3155 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 3156 3157 /* precharge all banks ... */ 3158 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3159 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3160 3161 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0); 3162 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1, 3163 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 3164 3165 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1); 3166 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2, 3167 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 3168 3169 /* activate rows */ 3170 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3171 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3172 } 3173 } 3174 3175 /* Configure various memory related parameters. */ 3176 static void mem_config(void) 3177 { 3178 uint32_t rlat, wlat; 3179 uint32_t rw_wl_nop_cycles; 3180 uint32_t max_latency; 3181 3182 debug("%s:%d\n", __func__, __LINE__); 3183 /* read in write and read latency */ 3184 wlat = readl(&data_mgr->t_wl_add); 3185 wlat += readl(&data_mgr->mem_t_add); 3186 3187 /* WL for hard phy does not include additive latency */ 3188 3189 /* 3190 * add addtional write latency to offset the address/command extra 3191 * clock cycle. We change the AC mux setting causing AC to be delayed 3192 * by one mem clock cycle. Only do this for DDR3 3193 */ 3194 wlat = wlat + 1; 3195 3196 rlat = readl(&data_mgr->t_rl_add); 3197 3198 rw_wl_nop_cycles = wlat - 2; 3199 gbl->rw_wl_nop_cycles = rw_wl_nop_cycles; 3200 3201 /* 3202 * For AV/CV, lfifo is hardened and always runs at full rate so 3203 * max latency in AFI clocks, used here, is correspondingly smaller. 3204 */ 3205 max_latency = (1<<MAX_LATENCY_COUNT_WIDTH)/1 - 1; 3206 /* configure for a burst length of 8 */ 3207 3208 /* write latency */ 3209 /* Adjust Write Latency for Hard PHY */ 3210 wlat = wlat + 1; 3211 3212 /* set a pretty high read latency initially */ 3213 gbl->curr_read_lat = rlat + 16; 3214 3215 if (gbl->curr_read_lat > max_latency) 3216 gbl->curr_read_lat = max_latency; 3217 3218 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3219 3220 /* advertise write latency */ 3221 gbl->curr_write_lat = wlat; 3222 writel(wlat - 2, &phy_mgr_cfg->afi_wlat); 3223 3224 /* initialize bit slips */ 3225 mem_precharge_and_activate(); 3226 } 3227 3228 /* Set VFIFO and LFIFO to instant-on settings in skip calibration mode */ 3229 static void mem_skip_calibrate(void) 3230 { 3231 uint32_t vfifo_offset; 3232 uint32_t i, j, r; 3233 3234 debug("%s:%d\n", __func__, __LINE__); 3235 /* Need to update every shadow register set used by the interface */ 3236 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 3237 r += NUM_RANKS_PER_SHADOW_REG) { 3238 /* 3239 * Set output phase alignment settings appropriate for 3240 * skip calibration. 3241 */ 3242 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3243 scc_mgr_set_dqs_en_phase(i, 0); 3244 #if IO_DLL_CHAIN_LENGTH == 6 3245 scc_mgr_set_dqdqs_output_phase(i, 6); 3246 #else 3247 scc_mgr_set_dqdqs_output_phase(i, 7); 3248 #endif 3249 /* 3250 * Case:33398 3251 * 3252 * Write data arrives to the I/O two cycles before write 3253 * latency is reached (720 deg). 3254 * -> due to bit-slip in a/c bus 3255 * -> to allow board skew where dqs is longer than ck 3256 * -> how often can this happen!? 3257 * -> can claim back some ptaps for high freq 3258 * support if we can relax this, but i digress... 3259 * 3260 * The write_clk leads mem_ck by 90 deg 3261 * The minimum ptap of the OPA is 180 deg 3262 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay 3263 * The write_clk is always delayed by 2 ptaps 3264 * 3265 * Hence, to make DQS aligned to CK, we need to delay 3266 * DQS by: 3267 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH)) 3268 * 3269 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH) 3270 * gives us the number of ptaps, which simplies to: 3271 * 3272 * (1.25 * IO_DLL_CHAIN_LENGTH - 2) 3273 */ 3274 scc_mgr_set_dqdqs_output_phase(i, (1.25 * 3275 IO_DLL_CHAIN_LENGTH - 2)); 3276 } 3277 writel(0xff, &sdr_scc_mgr->dqs_ena); 3278 writel(0xff, &sdr_scc_mgr->dqs_io_ena); 3279 3280 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 3281 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3282 SCC_MGR_GROUP_COUNTER_OFFSET); 3283 } 3284 writel(0xff, &sdr_scc_mgr->dq_ena); 3285 writel(0xff, &sdr_scc_mgr->dm_ena); 3286 writel(0, &sdr_scc_mgr->update); 3287 } 3288 3289 /* Compensate for simulation model behaviour */ 3290 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3291 scc_mgr_set_dqs_bus_in_delay(i, 10); 3292 scc_mgr_load_dqs(i); 3293 } 3294 writel(0, &sdr_scc_mgr->update); 3295 3296 /* 3297 * ArriaV has hard FIFOs that can only be initialized by incrementing 3298 * in sequencer. 3299 */ 3300 vfifo_offset = CALIB_VFIFO_OFFSET; 3301 for (j = 0; j < vfifo_offset; j++) { 3302 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy); 3303 } 3304 writel(0, &phy_mgr_cmd->fifo_reset); 3305 3306 /* 3307 * For ACV with hard lfifo, we get the skip-cal setting from 3308 * generation-time constant. 3309 */ 3310 gbl->curr_read_lat = CALIB_LFIFO_OFFSET; 3311 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3312 } 3313 3314 /* Memory calibration entry point */ 3315 static uint32_t mem_calibrate(void) 3316 { 3317 uint32_t i; 3318 uint32_t rank_bgn, sr; 3319 uint32_t write_group, write_test_bgn; 3320 uint32_t read_group, read_test_bgn; 3321 uint32_t run_groups, current_run; 3322 uint32_t failing_groups = 0; 3323 uint32_t group_failed = 0; 3324 uint32_t sr_failed = 0; 3325 3326 debug("%s:%d\n", __func__, __LINE__); 3327 /* Initialize the data settings */ 3328 3329 gbl->error_substage = CAL_SUBSTAGE_NIL; 3330 gbl->error_stage = CAL_STAGE_NIL; 3331 gbl->error_group = 0xff; 3332 gbl->fom_in = 0; 3333 gbl->fom_out = 0; 3334 3335 mem_config(); 3336 3337 uint32_t bypass_mode = 0x1; 3338 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3339 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3340 SCC_MGR_GROUP_COUNTER_OFFSET); 3341 scc_set_bypass_mode(i, bypass_mode); 3342 } 3343 3344 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) { 3345 /* 3346 * Set VFIFO and LFIFO to instant-on settings in skip 3347 * calibration mode. 3348 */ 3349 mem_skip_calibrate(); 3350 } else { 3351 for (i = 0; i < NUM_CALIB_REPEAT; i++) { 3352 /* 3353 * Zero all delay chain/phase settings for all 3354 * groups and all shadow register sets. 3355 */ 3356 scc_mgr_zero_all(); 3357 3358 run_groups = ~param->skip_groups; 3359 3360 for (write_group = 0, write_test_bgn = 0; write_group 3361 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++, 3362 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) { 3363 /* Initialized the group failure */ 3364 group_failed = 0; 3365 3366 current_run = run_groups & ((1 << 3367 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1); 3368 run_groups = run_groups >> 3369 RW_MGR_NUM_DQS_PER_WRITE_GROUP; 3370 3371 if (current_run == 0) 3372 continue; 3373 3374 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS | 3375 SCC_MGR_GROUP_COUNTER_OFFSET); 3376 scc_mgr_zero_group(write_group, write_test_bgn, 3377 0); 3378 3379 for (read_group = write_group * 3380 RW_MGR_MEM_IF_READ_DQS_WIDTH / 3381 RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3382 read_test_bgn = 0; 3383 read_group < (write_group + 1) * 3384 RW_MGR_MEM_IF_READ_DQS_WIDTH / 3385 RW_MGR_MEM_IF_WRITE_DQS_WIDTH && 3386 group_failed == 0; 3387 read_group++, read_test_bgn += 3388 RW_MGR_MEM_DQ_PER_READ_DQS) { 3389 /* Calibrate the VFIFO */ 3390 if (!((STATIC_CALIB_STEPS) & 3391 CALIB_SKIP_VFIFO)) { 3392 if (!rw_mgr_mem_calibrate_vfifo 3393 (read_group, 3394 read_test_bgn)) { 3395 group_failed = 1; 3396 3397 if (!(gbl-> 3398 phy_debug_mode_flags & 3399 PHY_DEBUG_SWEEP_ALL_GROUPS)) { 3400 return 0; 3401 } 3402 } 3403 } 3404 } 3405 3406 /* Calibrate the output side */ 3407 if (group_failed == 0) { 3408 for (rank_bgn = 0, sr = 0; rank_bgn 3409 < RW_MGR_MEM_NUMBER_OF_RANKS; 3410 rank_bgn += 3411 NUM_RANKS_PER_SHADOW_REG, 3412 ++sr) { 3413 sr_failed = 0; 3414 if (!((STATIC_CALIB_STEPS) & 3415 CALIB_SKIP_WRITES)) { 3416 if ((STATIC_CALIB_STEPS) 3417 & CALIB_SKIP_DELAY_SWEEPS) { 3418 /* not needed in quick mode! */ 3419 } else { 3420 /* 3421 * Determine if this set of 3422 * ranks should be skipped 3423 * entirely. 3424 */ 3425 if (!param->skip_shadow_regs[sr]) { 3426 if (!rw_mgr_mem_calibrate_writes 3427 (rank_bgn, write_group, 3428 write_test_bgn)) { 3429 sr_failed = 1; 3430 if (!(gbl-> 3431 phy_debug_mode_flags & 3432 PHY_DEBUG_SWEEP_ALL_GROUPS)) { 3433 return 0; 3434 } 3435 } 3436 } 3437 } 3438 } 3439 if (sr_failed != 0) 3440 group_failed = 1; 3441 } 3442 } 3443 3444 if (group_failed == 0) { 3445 for (read_group = write_group * 3446 RW_MGR_MEM_IF_READ_DQS_WIDTH / 3447 RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3448 read_test_bgn = 0; 3449 read_group < (write_group + 1) 3450 * RW_MGR_MEM_IF_READ_DQS_WIDTH 3451 / RW_MGR_MEM_IF_WRITE_DQS_WIDTH && 3452 group_failed == 0; 3453 read_group++, read_test_bgn += 3454 RW_MGR_MEM_DQ_PER_READ_DQS) { 3455 if (!((STATIC_CALIB_STEPS) & 3456 CALIB_SKIP_WRITES)) { 3457 if (!rw_mgr_mem_calibrate_vfifo_end 3458 (read_group, read_test_bgn)) { 3459 group_failed = 1; 3460 3461 if (!(gbl->phy_debug_mode_flags 3462 & PHY_DEBUG_SWEEP_ALL_GROUPS)) { 3463 return 0; 3464 } 3465 } 3466 } 3467 } 3468 } 3469 3470 if (group_failed != 0) 3471 failing_groups++; 3472 } 3473 3474 /* 3475 * USER If there are any failing groups then report 3476 * the failure. 3477 */ 3478 if (failing_groups != 0) 3479 return 0; 3480 3481 /* Calibrate the LFIFO */ 3482 if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_LFIFO)) { 3483 /* 3484 * If we're skipping groups as part of debug, 3485 * don't calibrate LFIFO. 3486 */ 3487 if (param->skip_groups == 0) { 3488 if (!rw_mgr_mem_calibrate_lfifo()) 3489 return 0; 3490 } 3491 } 3492 } 3493 } 3494 3495 /* 3496 * Do not remove this line as it makes sure all of our decisions 3497 * have been applied. 3498 */ 3499 writel(0, &sdr_scc_mgr->update); 3500 return 1; 3501 } 3502 3503 static uint32_t run_mem_calibrate(void) 3504 { 3505 uint32_t pass; 3506 uint32_t debug_info; 3507 3508 debug("%s:%d\n", __func__, __LINE__); 3509 3510 /* Reset pass/fail status shown on afi_cal_success/fail */ 3511 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status); 3512 3513 /* stop tracking manger */ 3514 uint32_t ctrlcfg = readl(&sdr_ctrl->ctrl_cfg); 3515 3516 writel(ctrlcfg & 0xFFBFFFFF, &sdr_ctrl->ctrl_cfg); 3517 3518 initialize(); 3519 rw_mgr_mem_initialize(); 3520 3521 pass = mem_calibrate(); 3522 3523 mem_precharge_and_activate(); 3524 writel(0, &phy_mgr_cmd->fifo_reset); 3525 3526 /* 3527 * Handoff: 3528 * Don't return control of the PHY back to AFI when in debug mode. 3529 */ 3530 if ((gbl->phy_debug_mode_flags & PHY_DEBUG_IN_DEBUG_MODE) == 0) { 3531 rw_mgr_mem_handoff(); 3532 /* 3533 * In Hard PHY this is a 2-bit control: 3534 * 0: AFI Mux Select 3535 * 1: DDIO Mux Select 3536 */ 3537 writel(0x2, &phy_mgr_cfg->mux_sel); 3538 } 3539 3540 writel(ctrlcfg, &sdr_ctrl->ctrl_cfg); 3541 3542 if (pass) { 3543 printf("%s: CALIBRATION PASSED\n", __FILE__); 3544 3545 gbl->fom_in /= 2; 3546 gbl->fom_out /= 2; 3547 3548 if (gbl->fom_in > 0xff) 3549 gbl->fom_in = 0xff; 3550 3551 if (gbl->fom_out > 0xff) 3552 gbl->fom_out = 0xff; 3553 3554 /* Update the FOM in the register file */ 3555 debug_info = gbl->fom_in; 3556 debug_info |= gbl->fom_out << 8; 3557 writel(debug_info, &sdr_reg_file->fom); 3558 3559 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3560 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status); 3561 } else { 3562 printf("%s: CALIBRATION FAILED\n", __FILE__); 3563 3564 debug_info = gbl->error_stage; 3565 debug_info |= gbl->error_substage << 8; 3566 debug_info |= gbl->error_group << 16; 3567 3568 writel(debug_info, &sdr_reg_file->failing_stage); 3569 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3570 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status); 3571 3572 /* Update the failing group/stage in the register file */ 3573 debug_info = gbl->error_stage; 3574 debug_info |= gbl->error_substage << 8; 3575 debug_info |= gbl->error_group << 16; 3576 writel(debug_info, &sdr_reg_file->failing_stage); 3577 } 3578 3579 return pass; 3580 } 3581 3582 /** 3583 * hc_initialize_rom_data() - Initialize ROM data 3584 * 3585 * Initialize ROM data. 3586 */ 3587 static void hc_initialize_rom_data(void) 3588 { 3589 u32 i, addr; 3590 3591 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET; 3592 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++) 3593 writel(inst_rom_init[i], addr + (i << 2)); 3594 3595 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET; 3596 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++) 3597 writel(ac_rom_init[i], addr + (i << 2)); 3598 } 3599 3600 /** 3601 * initialize_reg_file() - Initialize SDR register file 3602 * 3603 * Initialize SDR register file. 3604 */ 3605 static void initialize_reg_file(void) 3606 { 3607 /* Initialize the register file with the correct data */ 3608 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature); 3609 writel(0, &sdr_reg_file->debug_data_addr); 3610 writel(0, &sdr_reg_file->cur_stage); 3611 writel(0, &sdr_reg_file->fom); 3612 writel(0, &sdr_reg_file->failing_stage); 3613 writel(0, &sdr_reg_file->debug1); 3614 writel(0, &sdr_reg_file->debug2); 3615 } 3616 3617 /** 3618 * initialize_hps_phy() - Initialize HPS PHY 3619 * 3620 * Initialize HPS PHY. 3621 */ 3622 static void initialize_hps_phy(void) 3623 { 3624 uint32_t reg; 3625 /* 3626 * Tracking also gets configured here because it's in the 3627 * same register. 3628 */ 3629 uint32_t trk_sample_count = 7500; 3630 uint32_t trk_long_idle_sample_count = (10 << 16) | 100; 3631 /* 3632 * Format is number of outer loops in the 16 MSB, sample 3633 * count in 16 LSB. 3634 */ 3635 3636 reg = 0; 3637 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2); 3638 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1); 3639 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1); 3640 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1); 3641 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0); 3642 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1); 3643 /* 3644 * This field selects the intrinsic latency to RDATA_EN/FULL path. 3645 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles. 3646 */ 3647 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0); 3648 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET( 3649 trk_sample_count); 3650 writel(reg, &sdr_ctrl->phy_ctrl0); 3651 3652 reg = 0; 3653 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET( 3654 trk_sample_count >> 3655 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH); 3656 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET( 3657 trk_long_idle_sample_count); 3658 writel(reg, &sdr_ctrl->phy_ctrl1); 3659 3660 reg = 0; 3661 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET( 3662 trk_long_idle_sample_count >> 3663 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH); 3664 writel(reg, &sdr_ctrl->phy_ctrl2); 3665 } 3666 3667 static void initialize_tracking(void) 3668 { 3669 uint32_t concatenated_longidle = 0x0; 3670 uint32_t concatenated_delays = 0x0; 3671 uint32_t concatenated_rw_addr = 0x0; 3672 uint32_t concatenated_refresh = 0x0; 3673 uint32_t trk_sample_count = 7500; 3674 uint32_t dtaps_per_ptap; 3675 uint32_t tmp_delay; 3676 3677 /* 3678 * compute usable version of value in case we skip full 3679 * computation later 3680 */ 3681 dtaps_per_ptap = 0; 3682 tmp_delay = 0; 3683 while (tmp_delay < IO_DELAY_PER_OPA_TAP) { 3684 dtaps_per_ptap++; 3685 tmp_delay += IO_DELAY_PER_DCHAIN_TAP; 3686 } 3687 dtaps_per_ptap--; 3688 3689 concatenated_longidle = concatenated_longidle ^ 10; 3690 /*longidle outer loop */ 3691 concatenated_longidle = concatenated_longidle << 16; 3692 concatenated_longidle = concatenated_longidle ^ 100; 3693 /*longidle sample count */ 3694 concatenated_delays = concatenated_delays ^ 243; 3695 /* trfc, worst case of 933Mhz 4Gb */ 3696 concatenated_delays = concatenated_delays << 8; 3697 concatenated_delays = concatenated_delays ^ 14; 3698 /* trcd, worst case */ 3699 concatenated_delays = concatenated_delays << 8; 3700 concatenated_delays = concatenated_delays ^ 10; 3701 /* vfifo wait */ 3702 concatenated_delays = concatenated_delays << 8; 3703 concatenated_delays = concatenated_delays ^ 4; 3704 /* mux delay */ 3705 3706 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_IDLE; 3707 concatenated_rw_addr = concatenated_rw_addr << 8; 3708 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_ACTIVATE_1; 3709 concatenated_rw_addr = concatenated_rw_addr << 8; 3710 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_SGLE_READ; 3711 concatenated_rw_addr = concatenated_rw_addr << 8; 3712 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_PRECHARGE_ALL; 3713 3714 concatenated_refresh = concatenated_refresh ^ RW_MGR_REFRESH_ALL; 3715 concatenated_refresh = concatenated_refresh << 24; 3716 concatenated_refresh = concatenated_refresh ^ 1000; /* trefi */ 3717 3718 /* Initialize the register file with the correct data */ 3719 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 3720 writel(trk_sample_count, &sdr_reg_file->trk_sample_count); 3721 writel(concatenated_longidle, &sdr_reg_file->trk_longidle); 3722 writel(concatenated_delays, &sdr_reg_file->delays); 3723 writel(concatenated_rw_addr, &sdr_reg_file->trk_rw_mgr_addr); 3724 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, &sdr_reg_file->trk_read_dqs_width); 3725 writel(concatenated_refresh, &sdr_reg_file->trk_rfsh); 3726 } 3727 3728 int sdram_calibration_full(void) 3729 { 3730 struct param_type my_param; 3731 struct gbl_type my_gbl; 3732 uint32_t pass; 3733 uint32_t i; 3734 3735 param = &my_param; 3736 gbl = &my_gbl; 3737 3738 /* Initialize the debug mode flags */ 3739 gbl->phy_debug_mode_flags = 0; 3740 /* Set the calibration enabled by default */ 3741 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT; 3742 /* 3743 * Only sweep all groups (regardless of fail state) by default 3744 * Set enabled read test by default. 3745 */ 3746 #if DISABLE_GUARANTEED_READ 3747 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ; 3748 #endif 3749 /* Initialize the register file */ 3750 initialize_reg_file(); 3751 3752 /* Initialize any PHY CSR */ 3753 initialize_hps_phy(); 3754 3755 scc_mgr_initialize(); 3756 3757 initialize_tracking(); 3758 3759 /* USER Enable all ranks, groups */ 3760 for (i = 0; i < RW_MGR_MEM_NUMBER_OF_RANKS; i++) 3761 param->skip_ranks[i] = 0; 3762 for (i = 0; i < NUM_SHADOW_REGS; ++i) 3763 param->skip_shadow_regs[i] = 0; 3764 param->skip_groups = 0; 3765 3766 printf("%s: Preparing to start memory calibration\n", __FILE__); 3767 3768 debug("%s:%d\n", __func__, __LINE__); 3769 debug_cond(DLEVEL == 1, 3770 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ", 3771 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM, 3772 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS, 3773 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS, 3774 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 3775 debug_cond(DLEVEL == 1, 3776 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ", 3777 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3778 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH, 3779 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP); 3780 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u", 3781 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH); 3782 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ", 3783 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX, 3784 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX); 3785 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ", 3786 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX, 3787 IO_IO_OUT2_DELAY_MAX); 3788 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n", 3789 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE); 3790 3791 hc_initialize_rom_data(); 3792 3793 /* update info for sims */ 3794 reg_file_set_stage(CAL_STAGE_NIL); 3795 reg_file_set_group(0); 3796 3797 /* 3798 * Load global needed for those actions that require 3799 * some dynamic calibration support. 3800 */ 3801 dyn_calib_steps = STATIC_CALIB_STEPS; 3802 /* 3803 * Load global to allow dynamic selection of delay loop settings 3804 * based on calibration mode. 3805 */ 3806 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS)) 3807 skip_delay_mask = 0xff; 3808 else 3809 skip_delay_mask = 0x0; 3810 3811 pass = run_mem_calibrate(); 3812 3813 printf("%s: Calibration complete\n", __FILE__); 3814 return pass; 3815 } 3816