xref: /openbmc/u-boot/drivers/ddr/altera/sequencer.c (revision 04955cf247cc75cc08c4667f785e74a2435f5061)
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6 
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include <errno.h>
11 #include "sequencer.h"
12 
13 /*
14  * FIXME: This path is temporary until the SDRAM driver gets
15  *        a proper thorough cleanup.
16  */
17 #include "../../../board/altera/socfpga/qts/sequencer_auto.h"
18 #include "../../../board/altera/socfpga/qts/sequencer_defines.h"
19 
20 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
21 	(struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
22 
23 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
24 	(struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
25 
26 static struct socfpga_sdr_reg_file *sdr_reg_file =
27 	(struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
28 
29 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
30 	(struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
31 
32 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
33 	(struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
34 
35 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
36 	(struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
37 
38 static struct socfpga_data_mgr *data_mgr =
39 	(struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
40 
41 static struct socfpga_sdr_ctrl *sdr_ctrl =
42 	(struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
43 
44 #define DELTA_D		1
45 
46 /*
47  * In order to reduce ROM size, most of the selectable calibration steps are
48  * decided at compile time based on the user's calibration mode selection,
49  * as captured by the STATIC_CALIB_STEPS selection below.
50  *
51  * However, to support simulation-time selection of fast simulation mode, where
52  * we skip everything except the bare minimum, we need a few of the steps to
53  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
54  * check, which is based on the rtl-supplied value, or we dynamically compute
55  * the value to use based on the dynamically-chosen calibration mode
56  */
57 
58 #define DLEVEL 0
59 #define STATIC_IN_RTL_SIM 0
60 #define STATIC_SKIP_DELAY_LOOPS 0
61 
62 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
63 	STATIC_SKIP_DELAY_LOOPS)
64 
65 /* calibration steps requested by the rtl */
66 uint16_t dyn_calib_steps;
67 
68 /*
69  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
70  * instead of static, we use boolean logic to select between
71  * non-skip and skip values
72  *
73  * The mask is set to include all bits when not-skipping, but is
74  * zero when skipping
75  */
76 
77 uint16_t skip_delay_mask;	/* mask off bits when skipping/not-skipping */
78 
79 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
80 	((non_skip_value) & skip_delay_mask)
81 
82 struct gbl_type *gbl;
83 struct param_type *param;
84 
85 static void set_failing_group_stage(uint32_t group, uint32_t stage,
86 	uint32_t substage)
87 {
88 	/*
89 	 * Only set the global stage if there was not been any other
90 	 * failing group
91 	 */
92 	if (gbl->error_stage == CAL_STAGE_NIL)	{
93 		gbl->error_substage = substage;
94 		gbl->error_stage = stage;
95 		gbl->error_group = group;
96 	}
97 }
98 
99 static void reg_file_set_group(u16 set_group)
100 {
101 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
102 }
103 
104 static void reg_file_set_stage(u8 set_stage)
105 {
106 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
107 }
108 
109 static void reg_file_set_sub_stage(u8 set_sub_stage)
110 {
111 	set_sub_stage &= 0xff;
112 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
113 }
114 
115 /**
116  * phy_mgr_initialize() - Initialize PHY Manager
117  *
118  * Initialize PHY Manager.
119  */
120 static void phy_mgr_initialize(void)
121 {
122 	u32 ratio;
123 
124 	debug("%s:%d\n", __func__, __LINE__);
125 	/* Calibration has control over path to memory */
126 	/*
127 	 * In Hard PHY this is a 2-bit control:
128 	 * 0: AFI Mux Select
129 	 * 1: DDIO Mux Select
130 	 */
131 	writel(0x3, &phy_mgr_cfg->mux_sel);
132 
133 	/* USER memory clock is not stable we begin initialization  */
134 	writel(0, &phy_mgr_cfg->reset_mem_stbl);
135 
136 	/* USER calibration status all set to zero */
137 	writel(0, &phy_mgr_cfg->cal_status);
138 
139 	writel(0, &phy_mgr_cfg->cal_debug_info);
140 
141 	/* Init params only if we do NOT skip calibration. */
142 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
143 		return;
144 
145 	ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
146 		RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
147 	param->read_correct_mask_vg = (1 << ratio) - 1;
148 	param->write_correct_mask_vg = (1 << ratio) - 1;
149 	param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
150 	param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
151 }
152 
153 /**
154  * set_rank_and_odt_mask() - Set Rank and ODT mask
155  * @rank:	Rank mask
156  * @odt_mode:	ODT mode, OFF or READ_WRITE
157  *
158  * Set Rank and ODT mask (On-Die Termination).
159  */
160 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
161 {
162 	u32 odt_mask_0 = 0;
163 	u32 odt_mask_1 = 0;
164 	u32 cs_and_odt_mask;
165 
166 	if (odt_mode == RW_MGR_ODT_MODE_OFF) {
167 		odt_mask_0 = 0x0;
168 		odt_mask_1 = 0x0;
169 	} else {	/* RW_MGR_ODT_MODE_READ_WRITE */
170 		switch (RW_MGR_MEM_NUMBER_OF_RANKS) {
171 		case 1:	/* 1 Rank */
172 			/* Read: ODT = 0 ; Write: ODT = 1 */
173 			odt_mask_0 = 0x0;
174 			odt_mask_1 = 0x1;
175 			break;
176 		case 2:	/* 2 Ranks */
177 			if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
178 				/*
179 				 * - Dual-Slot , Single-Rank (1 CS per DIMM)
180 				 *   OR
181 				 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
182 				 *
183 				 * Since MEM_NUMBER_OF_RANKS is 2, they
184 				 * are both single rank with 2 CS each
185 				 * (special for RDIMM).
186 				 *
187 				 * Read: Turn on ODT on the opposite rank
188 				 * Write: Turn on ODT on all ranks
189 				 */
190 				odt_mask_0 = 0x3 & ~(1 << rank);
191 				odt_mask_1 = 0x3;
192 			} else {
193 				/*
194 				 * - Single-Slot , Dual-Rank (2 CS per DIMM)
195 				 *
196 				 * Read: Turn on ODT off on all ranks
197 				 * Write: Turn on ODT on active rank
198 				 */
199 				odt_mask_0 = 0x0;
200 				odt_mask_1 = 0x3 & (1 << rank);
201 			}
202 			break;
203 		case 4:	/* 4 Ranks */
204 			/* Read:
205 			 * ----------+-----------------------+
206 			 *           |         ODT           |
207 			 * Read From +-----------------------+
208 			 *   Rank    |  3  |  2  |  1  |  0  |
209 			 * ----------+-----+-----+-----+-----+
210 			 *     0     |  0  |  1  |  0  |  0  |
211 			 *     1     |  1  |  0  |  0  |  0  |
212 			 *     2     |  0  |  0  |  0  |  1  |
213 			 *     3     |  0  |  0  |  1  |  0  |
214 			 * ----------+-----+-----+-----+-----+
215 			 *
216 			 * Write:
217 			 * ----------+-----------------------+
218 			 *           |         ODT           |
219 			 * Write To  +-----------------------+
220 			 *   Rank    |  3  |  2  |  1  |  0  |
221 			 * ----------+-----+-----+-----+-----+
222 			 *     0     |  0  |  1  |  0  |  1  |
223 			 *     1     |  1  |  0  |  1  |  0  |
224 			 *     2     |  0  |  1  |  0  |  1  |
225 			 *     3     |  1  |  0  |  1  |  0  |
226 			 * ----------+-----+-----+-----+-----+
227 			 */
228 			switch (rank) {
229 			case 0:
230 				odt_mask_0 = 0x4;
231 				odt_mask_1 = 0x5;
232 				break;
233 			case 1:
234 				odt_mask_0 = 0x8;
235 				odt_mask_1 = 0xA;
236 				break;
237 			case 2:
238 				odt_mask_0 = 0x1;
239 				odt_mask_1 = 0x5;
240 				break;
241 			case 3:
242 				odt_mask_0 = 0x2;
243 				odt_mask_1 = 0xA;
244 				break;
245 			}
246 			break;
247 		}
248 	}
249 
250 	cs_and_odt_mask = (0xFF & ~(1 << rank)) |
251 			  ((0xFF & odt_mask_0) << 8) |
252 			  ((0xFF & odt_mask_1) << 16);
253 	writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
254 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
255 }
256 
257 /**
258  * scc_mgr_set() - Set SCC Manager register
259  * @off:	Base offset in SCC Manager space
260  * @grp:	Read/Write group
261  * @val:	Value to be set
262  *
263  * This function sets the SCC Manager (Scan Chain Control Manager) register.
264  */
265 static void scc_mgr_set(u32 off, u32 grp, u32 val)
266 {
267 	writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
268 }
269 
270 /**
271  * scc_mgr_initialize() - Initialize SCC Manager registers
272  *
273  * Initialize SCC Manager registers.
274  */
275 static void scc_mgr_initialize(void)
276 {
277 	/*
278 	 * Clear register file for HPS. 16 (2^4) is the size of the
279 	 * full register file in the scc mgr:
280 	 *	RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
281 	 *                             MEM_IF_READ_DQS_WIDTH - 1);
282 	 */
283 	int i;
284 
285 	for (i = 0; i < 16; i++) {
286 		debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
287 			   __func__, __LINE__, i);
288 		scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
289 	}
290 }
291 
292 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
293 {
294 	scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
295 }
296 
297 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
298 {
299 	scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
300 }
301 
302 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
303 {
304 	scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
305 }
306 
307 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
308 {
309 	scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
310 }
311 
312 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
313 {
314 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
315 		    delay);
316 }
317 
318 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
319 {
320 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
321 }
322 
323 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
324 {
325 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
326 }
327 
328 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
329 {
330 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
331 		    delay);
332 }
333 
334 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
335 {
336 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
337 		    RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
338 		    delay);
339 }
340 
341 /* load up dqs config settings */
342 static void scc_mgr_load_dqs(uint32_t dqs)
343 {
344 	writel(dqs, &sdr_scc_mgr->dqs_ena);
345 }
346 
347 /* load up dqs io config settings */
348 static void scc_mgr_load_dqs_io(void)
349 {
350 	writel(0, &sdr_scc_mgr->dqs_io_ena);
351 }
352 
353 /* load up dq config settings */
354 static void scc_mgr_load_dq(uint32_t dq_in_group)
355 {
356 	writel(dq_in_group, &sdr_scc_mgr->dq_ena);
357 }
358 
359 /* load up dm config settings */
360 static void scc_mgr_load_dm(uint32_t dm)
361 {
362 	writel(dm, &sdr_scc_mgr->dm_ena);
363 }
364 
365 /**
366  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
367  * @off:	Base offset in SCC Manager space
368  * @grp:	Read/Write group
369  * @val:	Value to be set
370  * @update:	If non-zero, trigger SCC Manager update for all ranks
371  *
372  * This function sets the SCC Manager (Scan Chain Control Manager) register
373  * and optionally triggers the SCC update for all ranks.
374  */
375 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
376 				  const int update)
377 {
378 	u32 r;
379 
380 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
381 	     r += NUM_RANKS_PER_SHADOW_REG) {
382 		scc_mgr_set(off, grp, val);
383 
384 		if (update || (r == 0)) {
385 			writel(grp, &sdr_scc_mgr->dqs_ena);
386 			writel(0, &sdr_scc_mgr->update);
387 		}
388 	}
389 }
390 
391 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
392 {
393 	/*
394 	 * USER although the h/w doesn't support different phases per
395 	 * shadow register, for simplicity our scc manager modeling
396 	 * keeps different phase settings per shadow reg, and it's
397 	 * important for us to keep them in sync to match h/w.
398 	 * for efficiency, the scan chain update should occur only
399 	 * once to sr0.
400 	 */
401 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
402 			      read_group, phase, 0);
403 }
404 
405 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
406 						     uint32_t phase)
407 {
408 	/*
409 	 * USER although the h/w doesn't support different phases per
410 	 * shadow register, for simplicity our scc manager modeling
411 	 * keeps different phase settings per shadow reg, and it's
412 	 * important for us to keep them in sync to match h/w.
413 	 * for efficiency, the scan chain update should occur only
414 	 * once to sr0.
415 	 */
416 	scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
417 			      write_group, phase, 0);
418 }
419 
420 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
421 					       uint32_t delay)
422 {
423 	/*
424 	 * In shadow register mode, the T11 settings are stored in
425 	 * registers in the core, which are updated by the DQS_ENA
426 	 * signals. Not issuing the SCC_MGR_UPD command allows us to
427 	 * save lots of rank switching overhead, by calling
428 	 * select_shadow_regs_for_update with update_scan_chains
429 	 * set to 0.
430 	 */
431 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
432 			      read_group, delay, 1);
433 	writel(0, &sdr_scc_mgr->update);
434 }
435 
436 /**
437  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
438  * @write_group:	Write group
439  * @delay:		Delay value
440  *
441  * This function sets the OCT output delay in SCC manager.
442  */
443 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
444 {
445 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
446 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
447 	const int base = write_group * ratio;
448 	int i;
449 	/*
450 	 * Load the setting in the SCC manager
451 	 * Although OCT affects only write data, the OCT delay is controlled
452 	 * by the DQS logic block which is instantiated once per read group.
453 	 * For protocols where a write group consists of multiple read groups,
454 	 * the setting must be set multiple times.
455 	 */
456 	for (i = 0; i < ratio; i++)
457 		scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
458 }
459 
460 /**
461  * scc_mgr_set_hhp_extras() - Set HHP extras.
462  *
463  * Load the fixed setting in the SCC manager HHP extras.
464  */
465 static void scc_mgr_set_hhp_extras(void)
466 {
467 	/*
468 	 * Load the fixed setting in the SCC manager
469 	 * bits: 0:0 = 1'b1	- DQS bypass
470 	 * bits: 1:1 = 1'b1	- DQ bypass
471 	 * bits: 4:2 = 3'b001	- rfifo_mode
472 	 * bits: 6:5 = 2'b01	- rfifo clock_select
473 	 * bits: 7:7 = 1'b0	- separate gating from ungating setting
474 	 * bits: 8:8 = 1'b0	- separate OE from Output delay setting
475 	 */
476 	const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
477 			  (1 << 2) | (1 << 1) | (1 << 0);
478 	const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
479 			 SCC_MGR_HHP_GLOBALS_OFFSET |
480 			 SCC_MGR_HHP_EXTRAS_OFFSET;
481 
482 	debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
483 		   __func__, __LINE__);
484 	writel(value, addr);
485 	debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
486 		   __func__, __LINE__);
487 }
488 
489 /**
490  * scc_mgr_zero_all() - Zero all DQS config
491  *
492  * Zero all DQS config.
493  */
494 static void scc_mgr_zero_all(void)
495 {
496 	int i, r;
497 
498 	/*
499 	 * USER Zero all DQS config settings, across all groups and all
500 	 * shadow registers
501 	 */
502 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
503 	     r += NUM_RANKS_PER_SHADOW_REG) {
504 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
505 			/*
506 			 * The phases actually don't exist on a per-rank basis,
507 			 * but there's no harm updating them several times, so
508 			 * let's keep the code simple.
509 			 */
510 			scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
511 			scc_mgr_set_dqs_en_phase(i, 0);
512 			scc_mgr_set_dqs_en_delay(i, 0);
513 		}
514 
515 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
516 			scc_mgr_set_dqdqs_output_phase(i, 0);
517 			/* Arria V/Cyclone V don't have out2. */
518 			scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
519 		}
520 	}
521 
522 	/* Multicast to all DQS group enables. */
523 	writel(0xff, &sdr_scc_mgr->dqs_ena);
524 	writel(0, &sdr_scc_mgr->update);
525 }
526 
527 /**
528  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
529  * @write_group:	Write group
530  *
531  * Set bypass mode and trigger SCC update.
532  */
533 static void scc_set_bypass_mode(const u32 write_group)
534 {
535 	/* Multicast to all DQ enables. */
536 	writel(0xff, &sdr_scc_mgr->dq_ena);
537 	writel(0xff, &sdr_scc_mgr->dm_ena);
538 
539 	/* Update current DQS IO enable. */
540 	writel(0, &sdr_scc_mgr->dqs_io_ena);
541 
542 	/* Update the DQS logic. */
543 	writel(write_group, &sdr_scc_mgr->dqs_ena);
544 
545 	/* Hit update. */
546 	writel(0, &sdr_scc_mgr->update);
547 }
548 
549 /**
550  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
551  * @write_group:	Write group
552  *
553  * Load DQS settings for Write Group, do not trigger SCC update.
554  */
555 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
556 {
557 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
558 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
559 	const int base = write_group * ratio;
560 	int i;
561 	/*
562 	 * Load the setting in the SCC manager
563 	 * Although OCT affects only write data, the OCT delay is controlled
564 	 * by the DQS logic block which is instantiated once per read group.
565 	 * For protocols where a write group consists of multiple read groups,
566 	 * the setting must be set multiple times.
567 	 */
568 	for (i = 0; i < ratio; i++)
569 		writel(base + i, &sdr_scc_mgr->dqs_ena);
570 }
571 
572 /**
573  * scc_mgr_zero_group() - Zero all configs for a group
574  *
575  * Zero DQ, DM, DQS and OCT configs for a group.
576  */
577 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
578 {
579 	int i, r;
580 
581 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
582 	     r += NUM_RANKS_PER_SHADOW_REG) {
583 		/* Zero all DQ config settings. */
584 		for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
585 			scc_mgr_set_dq_out1_delay(i, 0);
586 			if (!out_only)
587 				scc_mgr_set_dq_in_delay(i, 0);
588 		}
589 
590 		/* Multicast to all DQ enables. */
591 		writel(0xff, &sdr_scc_mgr->dq_ena);
592 
593 		/* Zero all DM config settings. */
594 		for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
595 			scc_mgr_set_dm_out1_delay(i, 0);
596 
597 		/* Multicast to all DM enables. */
598 		writel(0xff, &sdr_scc_mgr->dm_ena);
599 
600 		/* Zero all DQS IO settings. */
601 		if (!out_only)
602 			scc_mgr_set_dqs_io_in_delay(0);
603 
604 		/* Arria V/Cyclone V don't have out2. */
605 		scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
606 		scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
607 		scc_mgr_load_dqs_for_write_group(write_group);
608 
609 		/* Multicast to all DQS IO enables (only 1 in total). */
610 		writel(0, &sdr_scc_mgr->dqs_io_ena);
611 
612 		/* Hit update to zero everything. */
613 		writel(0, &sdr_scc_mgr->update);
614 	}
615 }
616 
617 /*
618  * apply and load a particular input delay for the DQ pins in a group
619  * group_bgn is the index of the first dq pin (in the write group)
620  */
621 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
622 {
623 	uint32_t i, p;
624 
625 	for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
626 		scc_mgr_set_dq_in_delay(p, delay);
627 		scc_mgr_load_dq(p);
628 	}
629 }
630 
631 /**
632  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
633  * @delay:		Delay value
634  *
635  * Apply and load a particular output delay for the DQ pins in a group.
636  */
637 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
638 {
639 	int i;
640 
641 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
642 		scc_mgr_set_dq_out1_delay(i, delay);
643 		scc_mgr_load_dq(i);
644 	}
645 }
646 
647 /* apply and load a particular output delay for the DM pins in a group */
648 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
649 {
650 	uint32_t i;
651 
652 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
653 		scc_mgr_set_dm_out1_delay(i, delay1);
654 		scc_mgr_load_dm(i);
655 	}
656 }
657 
658 
659 /* apply and load delay on both DQS and OCT out1 */
660 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
661 						    uint32_t delay)
662 {
663 	scc_mgr_set_dqs_out1_delay(delay);
664 	scc_mgr_load_dqs_io();
665 
666 	scc_mgr_set_oct_out1_delay(write_group, delay);
667 	scc_mgr_load_dqs_for_write_group(write_group);
668 }
669 
670 /**
671  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
672  * @write_group:	Write group
673  * @delay:		Delay value
674  *
675  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
676  */
677 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
678 						  const u32 delay)
679 {
680 	u32 i, new_delay;
681 
682 	/* DQ shift */
683 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
684 		scc_mgr_load_dq(i);
685 
686 	/* DM shift */
687 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
688 		scc_mgr_load_dm(i);
689 
690 	/* DQS shift */
691 	new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
692 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
693 		debug_cond(DLEVEL == 1,
694 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
695 			   __func__, __LINE__, write_group, delay, new_delay,
696 			   IO_IO_OUT2_DELAY_MAX,
697 			   new_delay - IO_IO_OUT2_DELAY_MAX);
698 		new_delay -= IO_IO_OUT2_DELAY_MAX;
699 		scc_mgr_set_dqs_out1_delay(new_delay);
700 	}
701 
702 	scc_mgr_load_dqs_io();
703 
704 	/* OCT shift */
705 	new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
706 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
707 		debug_cond(DLEVEL == 1,
708 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
709 			   __func__, __LINE__, write_group, delay,
710 			   new_delay, IO_IO_OUT2_DELAY_MAX,
711 			   new_delay - IO_IO_OUT2_DELAY_MAX);
712 		new_delay -= IO_IO_OUT2_DELAY_MAX;
713 		scc_mgr_set_oct_out1_delay(write_group, new_delay);
714 	}
715 
716 	scc_mgr_load_dqs_for_write_group(write_group);
717 }
718 
719 /**
720  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
721  * @write_group:	Write group
722  * @delay:		Delay value
723  *
724  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
725  */
726 static void
727 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
728 						const u32 delay)
729 {
730 	int r;
731 
732 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
733 	     r += NUM_RANKS_PER_SHADOW_REG) {
734 		scc_mgr_apply_group_all_out_delay_add(write_group, delay);
735 		writel(0, &sdr_scc_mgr->update);
736 	}
737 }
738 
739 /**
740  * set_jump_as_return() - Return instruction optimization
741  *
742  * Optimization used to recover some slots in ddr3 inst_rom could be
743  * applied to other protocols if we wanted to
744  */
745 static void set_jump_as_return(void)
746 {
747 	/*
748 	 * To save space, we replace return with jump to special shared
749 	 * RETURN instruction so we set the counter to large value so that
750 	 * we always jump.
751 	 */
752 	writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
753 	writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
754 }
755 
756 /**
757  * delay_for_n_mem_clocks() - Delay for N memory clocks
758  * @clocks:	Length of the delay
759  *
760  * Delay for N memory clocks.
761  */
762 static void delay_for_n_mem_clocks(const u32 clocks)
763 {
764 	u32 afi_clocks;
765 	u16 c_loop;
766 	u8 inner;
767 	u8 outer;
768 
769 	debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
770 
771 	/* Scale (rounding up) to get afi clocks. */
772 	afi_clocks = DIV_ROUND_UP(clocks, AFI_RATE_RATIO);
773 	if (afi_clocks)	/* Temporary underflow protection */
774 		afi_clocks--;
775 
776 	/*
777 	 * Note, we don't bother accounting for being off a little
778 	 * bit because of a few extra instructions in outer loops.
779 	 * Note, the loops have a test at the end, and do the test
780 	 * before the decrement, and so always perform the loop
781 	 * 1 time more than the counter value
782 	 */
783 	c_loop = afi_clocks >> 16;
784 	outer = c_loop ? 0xff : (afi_clocks >> 8);
785 	inner = outer ? 0xff : afi_clocks;
786 
787 	/*
788 	 * rom instructions are structured as follows:
789 	 *
790 	 *    IDLE_LOOP2: jnz cntr0, TARGET_A
791 	 *    IDLE_LOOP1: jnz cntr1, TARGET_B
792 	 *                return
793 	 *
794 	 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
795 	 * TARGET_B is set to IDLE_LOOP2 as well
796 	 *
797 	 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
798 	 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
799 	 *
800 	 * a little confusing, but it helps save precious space in the inst_rom
801 	 * and sequencer rom and keeps the delays more accurate and reduces
802 	 * overhead
803 	 */
804 	if (afi_clocks < 0x100) {
805 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
806 			&sdr_rw_load_mgr_regs->load_cntr1);
807 
808 		writel(RW_MGR_IDLE_LOOP1,
809 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
810 
811 		writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
812 					  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
813 	} else {
814 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
815 			&sdr_rw_load_mgr_regs->load_cntr0);
816 
817 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
818 			&sdr_rw_load_mgr_regs->load_cntr1);
819 
820 		writel(RW_MGR_IDLE_LOOP2,
821 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
822 
823 		writel(RW_MGR_IDLE_LOOP2,
824 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
825 
826 		do {
827 			writel(RW_MGR_IDLE_LOOP2,
828 				SDR_PHYGRP_RWMGRGRP_ADDRESS |
829 				RW_MGR_RUN_SINGLE_GROUP_OFFSET);
830 		} while (c_loop-- != 0);
831 	}
832 	debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
833 }
834 
835 /**
836  * rw_mgr_mem_init_load_regs() - Load instruction registers
837  * @cntr0:	Counter 0 value
838  * @cntr1:	Counter 1 value
839  * @cntr2:	Counter 2 value
840  * @jump:	Jump instruction value
841  *
842  * Load instruction registers.
843  */
844 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
845 {
846 	uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
847 			   RW_MGR_RUN_SINGLE_GROUP_OFFSET;
848 
849 	/* Load counters */
850 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
851 	       &sdr_rw_load_mgr_regs->load_cntr0);
852 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
853 	       &sdr_rw_load_mgr_regs->load_cntr1);
854 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
855 	       &sdr_rw_load_mgr_regs->load_cntr2);
856 
857 	/* Load jump address */
858 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
859 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
860 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
861 
862 	/* Execute count instruction */
863 	writel(jump, grpaddr);
864 }
865 
866 /**
867  * rw_mgr_mem_load_user() - Load user calibration values
868  * @fin1:	Final instruction 1
869  * @fin2:	Final instruction 2
870  * @precharge:	If 1, precharge the banks at the end
871  *
872  * Load user calibration values and optionally precharge the banks.
873  */
874 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
875 				 const int precharge)
876 {
877 	u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
878 		      RW_MGR_RUN_SINGLE_GROUP_OFFSET;
879 	u32 r;
880 
881 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
882 		/* set rank */
883 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
884 
885 		/* precharge all banks ... */
886 		if (precharge)
887 			writel(RW_MGR_PRECHARGE_ALL, grpaddr);
888 
889 		/*
890 		 * USER Use Mirror-ed commands for odd ranks if address
891 		 * mirrorring is on
892 		 */
893 		if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
894 			set_jump_as_return();
895 			writel(RW_MGR_MRS2_MIRR, grpaddr);
896 			delay_for_n_mem_clocks(4);
897 			set_jump_as_return();
898 			writel(RW_MGR_MRS3_MIRR, grpaddr);
899 			delay_for_n_mem_clocks(4);
900 			set_jump_as_return();
901 			writel(RW_MGR_MRS1_MIRR, grpaddr);
902 			delay_for_n_mem_clocks(4);
903 			set_jump_as_return();
904 			writel(fin1, grpaddr);
905 		} else {
906 			set_jump_as_return();
907 			writel(RW_MGR_MRS2, grpaddr);
908 			delay_for_n_mem_clocks(4);
909 			set_jump_as_return();
910 			writel(RW_MGR_MRS3, grpaddr);
911 			delay_for_n_mem_clocks(4);
912 			set_jump_as_return();
913 			writel(RW_MGR_MRS1, grpaddr);
914 			set_jump_as_return();
915 			writel(fin2, grpaddr);
916 		}
917 
918 		if (precharge)
919 			continue;
920 
921 		set_jump_as_return();
922 		writel(RW_MGR_ZQCL, grpaddr);
923 
924 		/* tZQinit = tDLLK = 512 ck cycles */
925 		delay_for_n_mem_clocks(512);
926 	}
927 }
928 
929 /**
930  * rw_mgr_mem_initialize() - Initialize RW Manager
931  *
932  * Initialize RW Manager.
933  */
934 static void rw_mgr_mem_initialize(void)
935 {
936 	debug("%s:%d\n", __func__, __LINE__);
937 
938 	/* The reset / cke part of initialization is broadcasted to all ranks */
939 	writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
940 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
941 
942 	/*
943 	 * Here's how you load register for a loop
944 	 * Counters are located @ 0x800
945 	 * Jump address are located @ 0xC00
946 	 * For both, registers 0 to 3 are selected using bits 3 and 2, like
947 	 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
948 	 * I know this ain't pretty, but Avalon bus throws away the 2 least
949 	 * significant bits
950 	 */
951 
952 	/* Start with memory RESET activated */
953 
954 	/* tINIT = 200us */
955 
956 	/*
957 	 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
958 	 * If a and b are the number of iteration in 2 nested loops
959 	 * it takes the following number of cycles to complete the operation:
960 	 * number_of_cycles = ((2 + n) * a + 2) * b
961 	 * where n is the number of instruction in the inner loop
962 	 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
963 	 * b = 6A
964 	 */
965 	rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
966 				  SEQ_TINIT_CNTR2_VAL,
967 				  RW_MGR_INIT_RESET_0_CKE_0);
968 
969 	/* Indicate that memory is stable. */
970 	writel(1, &phy_mgr_cfg->reset_mem_stbl);
971 
972 	/*
973 	 * transition the RESET to high
974 	 * Wait for 500us
975 	 */
976 
977 	/*
978 	 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
979 	 * If a and b are the number of iteration in 2 nested loops
980 	 * it takes the following number of cycles to complete the operation
981 	 * number_of_cycles = ((2 + n) * a + 2) * b
982 	 * where n is the number of instruction in the inner loop
983 	 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
984 	 * b = FF
985 	 */
986 	rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
987 				  SEQ_TRESET_CNTR2_VAL,
988 				  RW_MGR_INIT_RESET_1_CKE_0);
989 
990 	/* Bring up clock enable. */
991 
992 	/* tXRP < 250 ck cycles */
993 	delay_for_n_mem_clocks(250);
994 
995 	rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
996 			     0);
997 }
998 
999 /**
1000  * rw_mgr_mem_handoff() - Hand off the memory to user
1001  *
1002  * At the end of calibration we have to program the user settings in
1003  * and hand off the memory to the user.
1004  */
1005 static void rw_mgr_mem_handoff(void)
1006 {
1007 	rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
1008 	/*
1009 	 * Need to wait tMOD (12CK or 15ns) time before issuing other
1010 	 * commands, but we will have plenty of NIOS cycles before actual
1011 	 * handoff so its okay.
1012 	 */
1013 }
1014 
1015 /**
1016  * rw_mgr_mem_calibrate_write_test_issue() - Issue write test command
1017  * @group:	Write Group
1018  * @use_dm:	Use DM
1019  *
1020  * Issue write test command. Two variants are provided, one that just tests
1021  * a write pattern and another that tests datamask functionality.
1022  */
1023 static void rw_mgr_mem_calibrate_write_test_issue(u32 group,
1024 						  u32 test_dm)
1025 {
1026 	const u32 quick_write_mode =
1027 		(STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) &&
1028 		ENABLE_SUPER_QUICK_CALIBRATION;
1029 	u32 mcc_instruction;
1030 	u32 rw_wl_nop_cycles;
1031 
1032 	/*
1033 	 * Set counter and jump addresses for the right
1034 	 * number of NOP cycles.
1035 	 * The number of supported NOP cycles can range from -1 to infinity
1036 	 * Three different cases are handled:
1037 	 *
1038 	 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
1039 	 *    mechanism will be used to insert the right number of NOPs
1040 	 *
1041 	 * 2. For a number of NOP cycles equals to 0, the micro-instruction
1042 	 *    issuing the write command will jump straight to the
1043 	 *    micro-instruction that turns on DQS (for DDRx), or outputs write
1044 	 *    data (for RLD), skipping
1045 	 *    the NOP micro-instruction all together
1046 	 *
1047 	 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
1048 	 *    turned on in the same micro-instruction that issues the write
1049 	 *    command. Then we need
1050 	 *    to directly jump to the micro-instruction that sends out the data
1051 	 *
1052 	 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
1053 	 *       (2 and 3). One jump-counter (0) is used to perform multiple
1054 	 *       write-read operations.
1055 	 *       one counter left to issue this command in "multiple-group" mode
1056 	 */
1057 
1058 	rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
1059 
1060 	if (rw_wl_nop_cycles == -1) {
1061 		/*
1062 		 * CNTR 2 - We want to execute the special write operation that
1063 		 * turns on DQS right away and then skip directly to the
1064 		 * instruction that sends out the data. We set the counter to a
1065 		 * large number so that the jump is always taken.
1066 		 */
1067 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1068 
1069 		/* CNTR 3 - Not used */
1070 		if (test_dm) {
1071 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
1072 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
1073 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1074 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
1075 			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1076 		} else {
1077 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
1078 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
1079 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1080 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
1081 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1082 		}
1083 	} else if (rw_wl_nop_cycles == 0) {
1084 		/*
1085 		 * CNTR 2 - We want to skip the NOP operation and go straight
1086 		 * to the DQS enable instruction. We set the counter to a large
1087 		 * number so that the jump is always taken.
1088 		 */
1089 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1090 
1091 		/* CNTR 3 - Not used */
1092 		if (test_dm) {
1093 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
1094 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
1095 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1096 		} else {
1097 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
1098 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
1099 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1100 		}
1101 	} else {
1102 		/*
1103 		 * CNTR 2 - In this case we want to execute the next instruction
1104 		 * and NOT take the jump. So we set the counter to 0. The jump
1105 		 * address doesn't count.
1106 		 */
1107 		writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
1108 		writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1109 
1110 		/*
1111 		 * CNTR 3 - Set the nop counter to the number of cycles we
1112 		 * need to loop for, minus 1.
1113 		 */
1114 		writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
1115 		if (test_dm) {
1116 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
1117 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
1118 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1119 		} else {
1120 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
1121 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
1122 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1123 		}
1124 	}
1125 
1126 	writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1127 		  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1128 
1129 	if (quick_write_mode)
1130 		writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
1131 	else
1132 		writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
1133 
1134 	writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1135 
1136 	/*
1137 	 * CNTR 1 - This is used to ensure enough time elapses
1138 	 * for read data to come back.
1139 	 */
1140 	writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
1141 
1142 	if (test_dm) {
1143 		writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
1144 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1145 	} else {
1146 		writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
1147 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1148 	}
1149 
1150 	writel(mcc_instruction, (SDR_PHYGRP_RWMGRGRP_ADDRESS |
1151 				RW_MGR_RUN_SINGLE_GROUP_OFFSET) +
1152 				(group << 2));
1153 }
1154 
1155 /**
1156  * rw_mgr_mem_calibrate_write_test() - Test writes, check for single/multiple pass
1157  * @rank_bgn:		Rank number
1158  * @write_group:	Write Group
1159  * @use_dm:		Use DM
1160  * @all_correct:	All bits must be correct in the mask
1161  * @bit_chk:		Resulting bit mask after the test
1162  * @all_ranks:		Test all ranks
1163  *
1164  * Test writes, can check for a single bit pass or multiple bit pass.
1165  */
1166 static int
1167 rw_mgr_mem_calibrate_write_test(const u32 rank_bgn, const u32 write_group,
1168 				const u32 use_dm, const u32 all_correct,
1169 				u32 *bit_chk, const u32 all_ranks)
1170 {
1171 	const u32 rank_end = all_ranks ?
1172 				RW_MGR_MEM_NUMBER_OF_RANKS :
1173 				(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1174 	const u32 shift_ratio = RW_MGR_MEM_DQ_PER_WRITE_DQS /
1175 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS;
1176 	const u32 correct_mask_vg = param->write_correct_mask_vg;
1177 
1178 	u32 tmp_bit_chk, base_rw_mgr;
1179 	int vg, r;
1180 
1181 	*bit_chk = param->write_correct_mask;
1182 
1183 	for (r = rank_bgn; r < rank_end; r++) {
1184 		/* Set rank */
1185 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1186 
1187 		tmp_bit_chk = 0;
1188 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS - 1;
1189 		     vg >= 0; vg--) {
1190 			/* Reset the FIFOs to get pointers to known state. */
1191 			writel(0, &phy_mgr_cmd->fifo_reset);
1192 
1193 			rw_mgr_mem_calibrate_write_test_issue(
1194 				write_group *
1195 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS + vg,
1196 				use_dm);
1197 
1198 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1199 			tmp_bit_chk <<= shift_ratio;
1200 			tmp_bit_chk |= (correct_mask_vg & ~(base_rw_mgr));
1201 		}
1202 
1203 		*bit_chk &= tmp_bit_chk;
1204 	}
1205 
1206 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1207 	if (all_correct) {
1208 		debug_cond(DLEVEL == 2,
1209 			   "write_test(%u,%u,ALL) : %u == %u => %i\n",
1210 			   write_group, use_dm, *bit_chk,
1211 			   param->write_correct_mask,
1212 			   *bit_chk == param->write_correct_mask);
1213 		return *bit_chk == param->write_correct_mask;
1214 	} else {
1215 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1216 		debug_cond(DLEVEL == 2,
1217 			   "write_test(%u,%u,ONE) : %u != %i => %i\n",
1218 			   write_group, use_dm, *bit_chk, 0, *bit_chk != 0);
1219 		return *bit_chk != 0x00;
1220 	}
1221 }
1222 
1223 /**
1224  * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1225  * @rank_bgn:	Rank number
1226  * @group:	Read/Write Group
1227  * @all_ranks:	Test all ranks
1228  *
1229  * Performs a guaranteed read on the patterns we are going to use during a
1230  * read test to ensure memory works.
1231  */
1232 static int
1233 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1234 					const u32 all_ranks)
1235 {
1236 	const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1237 			 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1238 	const u32 addr_offset =
1239 			 (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2;
1240 	const u32 rank_end = all_ranks ?
1241 				RW_MGR_MEM_NUMBER_OF_RANKS :
1242 				(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1243 	const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
1244 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1245 	const u32 correct_mask_vg = param->read_correct_mask_vg;
1246 
1247 	u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1248 	int vg, r;
1249 	int ret = 0;
1250 
1251 	bit_chk = param->read_correct_mask;
1252 
1253 	for (r = rank_bgn; r < rank_end; r++) {
1254 		/* Set rank */
1255 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1256 
1257 		/* Load up a constant bursts of read commands */
1258 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1259 		writel(RW_MGR_GUARANTEED_READ,
1260 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1261 
1262 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1263 		writel(RW_MGR_GUARANTEED_READ_CONT,
1264 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1265 
1266 		tmp_bit_chk = 0;
1267 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1;
1268 		     vg >= 0; vg--) {
1269 			/* Reset the FIFOs to get pointers to known state. */
1270 			writel(0, &phy_mgr_cmd->fifo_reset);
1271 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1272 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1273 			writel(RW_MGR_GUARANTEED_READ,
1274 			       addr + addr_offset + (vg << 2));
1275 
1276 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1277 			tmp_bit_chk <<= shift_ratio;
1278 			tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1279 		}
1280 
1281 		bit_chk &= tmp_bit_chk;
1282 	}
1283 
1284 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1285 
1286 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1287 
1288 	if (bit_chk != param->read_correct_mask)
1289 		ret = -EIO;
1290 
1291 	debug_cond(DLEVEL == 1,
1292 		   "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1293 		   __func__, __LINE__, group, bit_chk,
1294 		   param->read_correct_mask, ret);
1295 
1296 	return ret;
1297 }
1298 
1299 /**
1300  * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1301  * @rank_bgn:	Rank number
1302  * @all_ranks:	Test all ranks
1303  *
1304  * Load up the patterns we are going to use during a read test.
1305  */
1306 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1307 						    const int all_ranks)
1308 {
1309 	const u32 rank_end = all_ranks ?
1310 			RW_MGR_MEM_NUMBER_OF_RANKS :
1311 			(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1312 	u32 r;
1313 
1314 	debug("%s:%d\n", __func__, __LINE__);
1315 
1316 	for (r = rank_bgn; r < rank_end; r++) {
1317 		/* set rank */
1318 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1319 
1320 		/* Load up a constant bursts */
1321 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1322 
1323 		writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1324 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1325 
1326 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1327 
1328 		writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1329 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1330 
1331 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1332 
1333 		writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1334 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1335 
1336 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1337 
1338 		writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1339 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1340 
1341 		writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1342 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1343 	}
1344 
1345 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1346 }
1347 
1348 /**
1349  * rw_mgr_mem_calibrate_read_test() - Perform READ test on single rank
1350  * @rank_bgn:		Rank number
1351  * @group:		Read/Write group
1352  * @num_tries:		Number of retries of the test
1353  * @all_correct:	All bits must be correct in the mask
1354  * @bit_chk:		Resulting bit mask after the test
1355  * @all_groups:		Test all R/W groups
1356  * @all_ranks:		Test all ranks
1357  *
1358  * Try a read and see if it returns correct data back. Test has dummy reads
1359  * inserted into the mix used to align DQS enable. Test has more thorough
1360  * checks than the regular read test.
1361  */
1362 static int
1363 rw_mgr_mem_calibrate_read_test(const u32 rank_bgn, const u32 group,
1364 			       const u32 num_tries, const u32 all_correct,
1365 			       u32 *bit_chk,
1366 			       const u32 all_groups, const u32 all_ranks)
1367 {
1368 	const u32 rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1369 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1370 	const u32 quick_read_mode =
1371 		((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) &&
1372 		 ENABLE_SUPER_QUICK_CALIBRATION);
1373 	u32 correct_mask_vg = param->read_correct_mask_vg;
1374 	u32 tmp_bit_chk;
1375 	u32 base_rw_mgr;
1376 	u32 addr;
1377 
1378 	int r, vg, ret;
1379 
1380 	*bit_chk = param->read_correct_mask;
1381 
1382 	for (r = rank_bgn; r < rank_end; r++) {
1383 		/* set rank */
1384 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1385 
1386 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1387 
1388 		writel(RW_MGR_READ_B2B_WAIT1,
1389 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1390 
1391 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1392 		writel(RW_MGR_READ_B2B_WAIT2,
1393 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1394 
1395 		if (quick_read_mode)
1396 			writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1397 			/* need at least two (1+1) reads to capture failures */
1398 		else if (all_groups)
1399 			writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1400 		else
1401 			writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1402 
1403 		writel(RW_MGR_READ_B2B,
1404 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1405 		if (all_groups)
1406 			writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1407 			       RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1408 			       &sdr_rw_load_mgr_regs->load_cntr3);
1409 		else
1410 			writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1411 
1412 		writel(RW_MGR_READ_B2B,
1413 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1414 
1415 		tmp_bit_chk = 0;
1416 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; vg >= 0;
1417 		     vg--) {
1418 			/* Reset the FIFOs to get pointers to known state. */
1419 			writel(0, &phy_mgr_cmd->fifo_reset);
1420 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1421 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1422 
1423 			if (all_groups) {
1424 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1425 				       RW_MGR_RUN_ALL_GROUPS_OFFSET;
1426 			} else {
1427 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1428 				       RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1429 			}
1430 
1431 			writel(RW_MGR_READ_B2B, addr +
1432 			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1433 			       vg) << 2));
1434 
1435 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1436 			tmp_bit_chk <<= RW_MGR_MEM_DQ_PER_READ_DQS /
1437 					RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1438 			tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr);
1439 		}
1440 
1441 		*bit_chk &= tmp_bit_chk;
1442 	}
1443 
1444 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1445 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1446 
1447 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1448 
1449 	if (all_correct) {
1450 		ret = (*bit_chk == param->read_correct_mask);
1451 		debug_cond(DLEVEL == 2,
1452 			   "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n",
1453 			   __func__, __LINE__, group, all_groups, *bit_chk,
1454 			   param->read_correct_mask, ret);
1455 	} else	{
1456 		ret = (*bit_chk != 0x00);
1457 		debug_cond(DLEVEL == 2,
1458 			   "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n",
1459 			   __func__, __LINE__, group, all_groups, *bit_chk,
1460 			   0, ret);
1461 	}
1462 
1463 	return ret;
1464 }
1465 
1466 /**
1467  * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks
1468  * @grp:		Read/Write group
1469  * @num_tries:		Number of retries of the test
1470  * @all_correct:	All bits must be correct in the mask
1471  * @all_groups:		Test all R/W groups
1472  *
1473  * Perform a READ test across all memory ranks.
1474  */
1475 static int
1476 rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries,
1477 					 const u32 all_correct,
1478 					 const u32 all_groups)
1479 {
1480 	u32 bit_chk;
1481 	return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct,
1482 					      &bit_chk, all_groups, 1);
1483 }
1484 
1485 /**
1486  * rw_mgr_incr_vfifo() - Increase VFIFO value
1487  * @grp:	Read/Write group
1488  *
1489  * Increase VFIFO value.
1490  */
1491 static void rw_mgr_incr_vfifo(const u32 grp)
1492 {
1493 	writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1494 }
1495 
1496 /**
1497  * rw_mgr_decr_vfifo() - Decrease VFIFO value
1498  * @grp:	Read/Write group
1499  *
1500  * Decrease VFIFO value.
1501  */
1502 static void rw_mgr_decr_vfifo(const u32 grp)
1503 {
1504 	u32 i;
1505 
1506 	for (i = 0; i < VFIFO_SIZE - 1; i++)
1507 		rw_mgr_incr_vfifo(grp);
1508 }
1509 
1510 /**
1511  * find_vfifo_failing_read() - Push VFIFO to get a failing read
1512  * @grp:	Read/Write group
1513  *
1514  * Push VFIFO until a failing read happens.
1515  */
1516 static int find_vfifo_failing_read(const u32 grp)
1517 {
1518 	u32 v, ret, fail_cnt = 0;
1519 
1520 	for (v = 0; v < VFIFO_SIZE; v++) {
1521 		debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n",
1522 			   __func__, __LINE__, v);
1523 		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1524 						PASS_ONE_BIT, 0);
1525 		if (!ret) {
1526 			fail_cnt++;
1527 
1528 			if (fail_cnt == 2)
1529 				return v;
1530 		}
1531 
1532 		/* Fiddle with FIFO. */
1533 		rw_mgr_incr_vfifo(grp);
1534 	}
1535 
1536 	/* No failing read found! Something must have gone wrong. */
1537 	debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__);
1538 	return 0;
1539 }
1540 
1541 /**
1542  * sdr_find_phase_delay() - Find DQS enable phase or delay
1543  * @working:	If 1, look for working phase/delay, if 0, look for non-working
1544  * @delay:	If 1, look for delay, if 0, look for phase
1545  * @grp:	Read/Write group
1546  * @work:	Working window position
1547  * @work_inc:	Working window increment
1548  * @pd:		DQS Phase/Delay Iterator
1549  *
1550  * Find working or non-working DQS enable phase setting.
1551  */
1552 static int sdr_find_phase_delay(int working, int delay, const u32 grp,
1553 				u32 *work, const u32 work_inc, u32 *pd)
1554 {
1555 	const u32 max = delay ? IO_DQS_EN_DELAY_MAX : IO_DQS_EN_PHASE_MAX;
1556 	u32 ret;
1557 
1558 	for (; *pd <= max; (*pd)++) {
1559 		if (delay)
1560 			scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd);
1561 		else
1562 			scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd);
1563 
1564 		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1565 					PASS_ONE_BIT, 0);
1566 		if (!working)
1567 			ret = !ret;
1568 
1569 		if (ret)
1570 			return 0;
1571 
1572 		if (work)
1573 			*work += work_inc;
1574 	}
1575 
1576 	return -EINVAL;
1577 }
1578 /**
1579  * sdr_find_phase() - Find DQS enable phase
1580  * @working:	If 1, look for working phase, if 0, look for non-working phase
1581  * @grp:	Read/Write group
1582  * @work:	Working window position
1583  * @i:		Iterator
1584  * @p:		DQS Phase Iterator
1585  *
1586  * Find working or non-working DQS enable phase setting.
1587  */
1588 static int sdr_find_phase(int working, const u32 grp, u32 *work,
1589 			  u32 *i, u32 *p)
1590 {
1591 	const u32 end = VFIFO_SIZE + (working ? 0 : 1);
1592 	int ret;
1593 
1594 	for (; *i < end; (*i)++) {
1595 		if (working)
1596 			*p = 0;
1597 
1598 		ret = sdr_find_phase_delay(working, 0, grp, work,
1599 					   IO_DELAY_PER_OPA_TAP, p);
1600 		if (!ret)
1601 			return 0;
1602 
1603 		if (*p > IO_DQS_EN_PHASE_MAX) {
1604 			/* Fiddle with FIFO. */
1605 			rw_mgr_incr_vfifo(grp);
1606 			if (!working)
1607 				*p = 0;
1608 		}
1609 	}
1610 
1611 	return -EINVAL;
1612 }
1613 
1614 /**
1615  * sdr_working_phase() - Find working DQS enable phase
1616  * @grp:	Read/Write group
1617  * @work_bgn:	Working window start position
1618  * @d:		dtaps output value
1619  * @p:		DQS Phase Iterator
1620  * @i:		Iterator
1621  *
1622  * Find working DQS enable phase setting.
1623  */
1624 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d,
1625 			     u32 *p, u32 *i)
1626 {
1627 	const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP /
1628 				   IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1629 	int ret;
1630 
1631 	*work_bgn = 0;
1632 
1633 	for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
1634 		*i = 0;
1635 		scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
1636 		ret = sdr_find_phase(1, grp, work_bgn, i, p);
1637 		if (!ret)
1638 			return 0;
1639 		*work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1640 	}
1641 
1642 	/* Cannot find working solution */
1643 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
1644 		   __func__, __LINE__);
1645 	return -EINVAL;
1646 }
1647 
1648 /**
1649  * sdr_backup_phase() - Find DQS enable backup phase
1650  * @grp:	Read/Write group
1651  * @work_bgn:	Working window start position
1652  * @p:		DQS Phase Iterator
1653  *
1654  * Find DQS enable backup phase setting.
1655  */
1656 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p)
1657 {
1658 	u32 tmp_delay, d;
1659 	int ret;
1660 
1661 	/* Special case code for backing up a phase */
1662 	if (*p == 0) {
1663 		*p = IO_DQS_EN_PHASE_MAX;
1664 		rw_mgr_decr_vfifo(grp);
1665 	} else {
1666 		(*p)--;
1667 	}
1668 	tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1669 	scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1670 
1671 	for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; d++) {
1672 		scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1673 
1674 		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1675 					PASS_ONE_BIT, 0);
1676 		if (ret) {
1677 			*work_bgn = tmp_delay;
1678 			break;
1679 		}
1680 
1681 		tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1682 	}
1683 
1684 	/* Restore VFIFO to old state before we decremented it (if needed). */
1685 	(*p)++;
1686 	if (*p > IO_DQS_EN_PHASE_MAX) {
1687 		*p = 0;
1688 		rw_mgr_incr_vfifo(grp);
1689 	}
1690 
1691 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1692 }
1693 
1694 /**
1695  * sdr_nonworking_phase() - Find non-working DQS enable phase
1696  * @grp:	Read/Write group
1697  * @work_end:	Working window end position
1698  * @p:		DQS Phase Iterator
1699  * @i:		Iterator
1700  *
1701  * Find non-working DQS enable phase setting.
1702  */
1703 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i)
1704 {
1705 	int ret;
1706 
1707 	(*p)++;
1708 	*work_end += IO_DELAY_PER_OPA_TAP;
1709 	if (*p > IO_DQS_EN_PHASE_MAX) {
1710 		/* Fiddle with FIFO. */
1711 		*p = 0;
1712 		rw_mgr_incr_vfifo(grp);
1713 	}
1714 
1715 	ret = sdr_find_phase(0, grp, work_end, i, p);
1716 	if (ret) {
1717 		/* Cannot see edge of failing read. */
1718 		debug_cond(DLEVEL == 2, "%s:%d: end: failed\n",
1719 			   __func__, __LINE__);
1720 	}
1721 
1722 	return ret;
1723 }
1724 
1725 /**
1726  * sdr_find_window_center() - Find center of the working DQS window.
1727  * @grp:	Read/Write group
1728  * @work_bgn:	First working settings
1729  * @work_end:	Last working settings
1730  *
1731  * Find center of the working DQS enable window.
1732  */
1733 static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
1734 				  const u32 work_end)
1735 {
1736 	u32 work_mid;
1737 	int tmp_delay = 0;
1738 	int i, p, d;
1739 
1740 	work_mid = (work_bgn + work_end) / 2;
1741 
1742 	debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1743 		   work_bgn, work_end, work_mid);
1744 	/* Get the middle delay to be less than a VFIFO delay */
1745 	tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP;
1746 
1747 	debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1748 	work_mid %= tmp_delay;
1749 	debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid);
1750 
1751 	tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP);
1752 	if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP)
1753 		tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP;
1754 	p = tmp_delay / IO_DELAY_PER_OPA_TAP;
1755 
1756 	debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
1757 
1758 	d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP);
1759 	if (d > IO_DQS_EN_DELAY_MAX)
1760 		d = IO_DQS_EN_DELAY_MAX;
1761 	tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1762 
1763 	debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
1764 
1765 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1766 	scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1767 
1768 	/*
1769 	 * push vfifo until we can successfully calibrate. We can do this
1770 	 * because the largest possible margin in 1 VFIFO cycle.
1771 	 */
1772 	for (i = 0; i < VFIFO_SIZE; i++) {
1773 		debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n");
1774 		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1775 							     PASS_ONE_BIT,
1776 							     0)) {
1777 			debug_cond(DLEVEL == 2,
1778 				   "%s:%d center: found: ptap=%u dtap=%u\n",
1779 				   __func__, __LINE__, p, d);
1780 			return 0;
1781 		}
1782 
1783 		/* Fiddle with FIFO. */
1784 		rw_mgr_incr_vfifo(grp);
1785 	}
1786 
1787 	debug_cond(DLEVEL == 2, "%s:%d center: failed.\n",
1788 		   __func__, __LINE__);
1789 	return -EINVAL;
1790 }
1791 
1792 /**
1793  * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use
1794  * @grp:	Read/Write Group
1795  *
1796  * Find a good DQS enable to use.
1797  */
1798 static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp)
1799 {
1800 	u32 d, p, i;
1801 	u32 dtaps_per_ptap;
1802 	u32 work_bgn, work_end;
1803 	u32 found_passing_read, found_failing_read, initial_failing_dtap;
1804 	int ret;
1805 
1806 	debug("%s:%d %u\n", __func__, __LINE__, grp);
1807 
1808 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1809 
1810 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1811 	scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1812 
1813 	/* Step 0: Determine number of delay taps for each phase tap. */
1814 	dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1815 
1816 	/* Step 1: First push vfifo until we get a failing read. */
1817 	find_vfifo_failing_read(grp);
1818 
1819 	/* Step 2: Find first working phase, increment in ptaps. */
1820 	work_bgn = 0;
1821 	ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i);
1822 	if (ret)
1823 		return ret;
1824 
1825 	work_end = work_bgn;
1826 
1827 	/*
1828 	 * If d is 0 then the working window covers a phase tap and we can
1829 	 * follow the old procedure. Otherwise, we've found the beginning
1830 	 * and we need to increment the dtaps until we find the end.
1831 	 */
1832 	if (d == 0) {
1833 		/*
1834 		 * Step 3a: If we have room, back off by one and
1835 		 *          increment in dtaps.
1836 		 */
1837 		sdr_backup_phase(grp, &work_bgn, &p);
1838 
1839 		/*
1840 		 * Step 4a: go forward from working phase to non working
1841 		 * phase, increment in ptaps.
1842 		 */
1843 		ret = sdr_nonworking_phase(grp, &work_end, &p, &i);
1844 		if (ret)
1845 			return ret;
1846 
1847 		/* Step 5a: Back off one from last, increment in dtaps. */
1848 
1849 		/* Special case code for backing up a phase */
1850 		if (p == 0) {
1851 			p = IO_DQS_EN_PHASE_MAX;
1852 			rw_mgr_decr_vfifo(grp);
1853 		} else {
1854 			p = p - 1;
1855 		}
1856 
1857 		work_end -= IO_DELAY_PER_OPA_TAP;
1858 		scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1859 
1860 		d = 0;
1861 
1862 		debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n",
1863 			   __func__, __LINE__, p);
1864 	}
1865 
1866 	/* The dtap increment to find the failing edge is done here. */
1867 	sdr_find_phase_delay(0, 1, grp, &work_end,
1868 			     IO_DELAY_PER_DQS_EN_DCHAIN_TAP, &d);
1869 
1870 	/* Go back to working dtap */
1871 	if (d != 0)
1872 		work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1873 
1874 	debug_cond(DLEVEL == 2,
1875 		   "%s:%d p/d: ptap=%u dtap=%u end=%u\n",
1876 		   __func__, __LINE__, p, d - 1, work_end);
1877 
1878 	if (work_end < work_bgn) {
1879 		/* nil range */
1880 		debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n",
1881 			   __func__, __LINE__);
1882 		return -EINVAL;
1883 	}
1884 
1885 	debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n",
1886 		   __func__, __LINE__, work_bgn, work_end);
1887 
1888 	/*
1889 	 * We need to calculate the number of dtaps that equal a ptap.
1890 	 * To do that we'll back up a ptap and re-find the edge of the
1891 	 * window using dtaps
1892 	 */
1893 	debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n",
1894 		   __func__, __LINE__);
1895 
1896 	/* Special case code for backing up a phase */
1897 	if (p == 0) {
1898 		p = IO_DQS_EN_PHASE_MAX;
1899 		rw_mgr_decr_vfifo(grp);
1900 		debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n",
1901 			   __func__, __LINE__, p);
1902 	} else {
1903 		p = p - 1;
1904 		debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u",
1905 			   __func__, __LINE__, p);
1906 	}
1907 
1908 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1909 
1910 	/*
1911 	 * Increase dtap until we first see a passing read (in case the
1912 	 * window is smaller than a ptap), and then a failing read to
1913 	 * mark the edge of the window again.
1914 	 */
1915 
1916 	/* Find a passing read. */
1917 	debug_cond(DLEVEL == 2, "%s:%d find passing read\n",
1918 		   __func__, __LINE__);
1919 
1920 	initial_failing_dtap = d;
1921 
1922 	found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d);
1923 	if (found_passing_read) {
1924 		/* Find a failing read. */
1925 		debug_cond(DLEVEL == 2, "%s:%d find failing read\n",
1926 			   __func__, __LINE__);
1927 		d++;
1928 		found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0,
1929 							   &d);
1930 	} else {
1931 		debug_cond(DLEVEL == 1,
1932 			   "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n",
1933 			   __func__, __LINE__);
1934 	}
1935 
1936 	/*
1937 	 * The dynamically calculated dtaps_per_ptap is only valid if we
1938 	 * found a passing/failing read. If we didn't, it means d hit the max
1939 	 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1940 	 * statically calculated value.
1941 	 */
1942 	if (found_passing_read && found_failing_read)
1943 		dtaps_per_ptap = d - initial_failing_dtap;
1944 
1945 	writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1946 	debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u",
1947 		   __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap);
1948 
1949 	/* Step 6: Find the centre of the window. */
1950 	ret = sdr_find_window_center(grp, work_bgn, work_end);
1951 
1952 	return ret;
1953 }
1954 
1955 /**
1956  * search_stop_check() - Check if the detected edge is valid
1957  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
1958  * @d:			DQS delay
1959  * @rank_bgn:		Rank number
1960  * @write_group:	Write Group
1961  * @read_group:		Read Group
1962  * @bit_chk:		Resulting bit mask after the test
1963  * @sticky_bit_chk:	Resulting sticky bit mask after the test
1964  * @use_read_test:	Perform read test
1965  *
1966  * Test if the found edge is valid.
1967  */
1968 static u32 search_stop_check(const int write, const int d, const int rank_bgn,
1969 			     const u32 write_group, const u32 read_group,
1970 			     u32 *bit_chk, u32 *sticky_bit_chk,
1971 			     const u32 use_read_test)
1972 {
1973 	const u32 ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
1974 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
1975 	const u32 correct_mask = write ? param->write_correct_mask :
1976 					 param->read_correct_mask;
1977 	const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
1978 				    RW_MGR_MEM_DQ_PER_READ_DQS;
1979 	u32 ret;
1980 	/*
1981 	 * Stop searching when the read test doesn't pass AND when
1982 	 * we've seen a passing read on every bit.
1983 	 */
1984 	if (write) {			/* WRITE-ONLY */
1985 		ret = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1986 							 0, PASS_ONE_BIT,
1987 							 bit_chk, 0);
1988 	} else if (use_read_test) {	/* READ-ONLY */
1989 		ret = !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group,
1990 							NUM_READ_PB_TESTS,
1991 							PASS_ONE_BIT, bit_chk,
1992 							0, 0);
1993 	} else {			/* READ-ONLY */
1994 		rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0,
1995 						PASS_ONE_BIT, bit_chk, 0);
1996 		*bit_chk = *bit_chk >> (per_dqs *
1997 			(read_group - (write_group * ratio)));
1998 		ret = (*bit_chk == 0);
1999 	}
2000 	*sticky_bit_chk = *sticky_bit_chk | *bit_chk;
2001 	ret = ret && (*sticky_bit_chk == correct_mask);
2002 	debug_cond(DLEVEL == 2,
2003 		   "%s:%d center(left): dtap=%u => %u == %u && %u",
2004 		   __func__, __LINE__, d,
2005 		   *sticky_bit_chk, correct_mask, ret);
2006 	return ret;
2007 }
2008 
2009 /**
2010  * search_left_edge() - Find left edge of DQ/DQS working phase
2011  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
2012  * @rank_bgn:		Rank number
2013  * @write_group:	Write Group
2014  * @read_group:		Read Group
2015  * @test_bgn:		Rank number to begin the test
2016  * @sticky_bit_chk:	Resulting sticky bit mask after the test
2017  * @left_edge:		Left edge of the DQ/DQS phase
2018  * @right_edge:		Right edge of the DQ/DQS phase
2019  * @use_read_test:	Perform read test
2020  *
2021  * Find left edge of DQ/DQS working phase.
2022  */
2023 static void search_left_edge(const int write, const int rank_bgn,
2024 	const u32 write_group, const u32 read_group, const u32 test_bgn,
2025 	u32 *sticky_bit_chk,
2026 	int *left_edge, int *right_edge, const u32 use_read_test)
2027 {
2028 	const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2029 	const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX;
2030 	const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2031 				    RW_MGR_MEM_DQ_PER_READ_DQS;
2032 	u32 stop, bit_chk;
2033 	int i, d;
2034 
2035 	for (d = 0; d <= dqs_max; d++) {
2036 		if (write)
2037 			scc_mgr_apply_group_dq_out1_delay(d);
2038 		else
2039 			scc_mgr_apply_group_dq_in_delay(test_bgn, d);
2040 
2041 		writel(0, &sdr_scc_mgr->update);
2042 
2043 		stop = search_stop_check(write, d, rank_bgn, write_group,
2044 					 read_group, &bit_chk, sticky_bit_chk,
2045 					 use_read_test);
2046 		if (stop == 1)
2047 			break;
2048 
2049 		/* stop != 1 */
2050 		for (i = 0; i < per_dqs; i++) {
2051 			if (bit_chk & 1) {
2052 				/*
2053 				 * Remember a passing test as
2054 				 * the left_edge.
2055 				 */
2056 				left_edge[i] = d;
2057 			} else {
2058 				/*
2059 				 * If a left edge has not been seen
2060 				 * yet, then a future passing test
2061 				 * will mark this edge as the right
2062 				 * edge.
2063 				 */
2064 				if (left_edge[i] == delay_max + 1)
2065 					right_edge[i] = -(d + 1);
2066 			}
2067 			bit_chk >>= 1;
2068 		}
2069 	}
2070 
2071 	/* Reset DQ delay chains to 0 */
2072 	if (write)
2073 		scc_mgr_apply_group_dq_out1_delay(0);
2074 	else
2075 		scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2076 
2077 	*sticky_bit_chk = 0;
2078 	for (i = per_dqs - 1; i >= 0; i--) {
2079 		debug_cond(DLEVEL == 2,
2080 			   "%s:%d vfifo_center: left_edge[%u]: %d right_edge[%u]: %d\n",
2081 			   __func__, __LINE__, i, left_edge[i],
2082 			   i, right_edge[i]);
2083 
2084 		/*
2085 		 * Check for cases where we haven't found the left edge,
2086 		 * which makes our assignment of the the right edge invalid.
2087 		 * Reset it to the illegal value.
2088 		 */
2089 		if ((left_edge[i] == delay_max + 1) &&
2090 		    (right_edge[i] != delay_max + 1)) {
2091 			right_edge[i] = delay_max + 1;
2092 			debug_cond(DLEVEL == 2,
2093 				   "%s:%d vfifo_center: reset right_edge[%u]: %d\n",
2094 				   __func__, __LINE__, i, right_edge[i]);
2095 		}
2096 
2097 		/*
2098 		 * Reset sticky bit
2099 		 * READ: except for bits where we have seen both
2100 		 *       the left and right edge.
2101 		 * WRITE: except for bits where we have seen the
2102 		 *        left edge.
2103 		 */
2104 		*sticky_bit_chk <<= 1;
2105 		if (write) {
2106 			if (left_edge[i] != delay_max + 1)
2107 				*sticky_bit_chk |= 1;
2108 		} else {
2109 			if ((left_edge[i] != delay_max + 1) &&
2110 			    (right_edge[i] != delay_max + 1))
2111 				*sticky_bit_chk |= 1;
2112 		}
2113 	}
2114 
2115 
2116 }
2117 
2118 /**
2119  * search_right_edge() - Find right edge of DQ/DQS working phase
2120  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
2121  * @rank_bgn:		Rank number
2122  * @write_group:	Write Group
2123  * @read_group:		Read Group
2124  * @start_dqs:		DQS start phase
2125  * @start_dqs_en:	DQS enable start phase
2126  * @sticky_bit_chk:	Resulting sticky bit mask after the test
2127  * @left_edge:		Left edge of the DQ/DQS phase
2128  * @right_edge:		Right edge of the DQ/DQS phase
2129  * @use_read_test:	Perform read test
2130  *
2131  * Find right edge of DQ/DQS working phase.
2132  */
2133 static int search_right_edge(const int write, const int rank_bgn,
2134 	const u32 write_group, const u32 read_group,
2135 	const int start_dqs, const int start_dqs_en,
2136 	u32 *sticky_bit_chk,
2137 	int *left_edge, int *right_edge, const u32 use_read_test)
2138 {
2139 	const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2140 	const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX;
2141 	const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2142 				    RW_MGR_MEM_DQ_PER_READ_DQS;
2143 	u32 stop, bit_chk;
2144 	int i, d;
2145 
2146 	for (d = 0; d <= dqs_max - start_dqs; d++) {
2147 		if (write) {	/* WRITE-ONLY */
2148 			scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2149 								d + start_dqs);
2150 		} else {	/* READ-ONLY */
2151 			scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
2152 			if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2153 				uint32_t delay = d + start_dqs_en;
2154 				if (delay > IO_DQS_EN_DELAY_MAX)
2155 					delay = IO_DQS_EN_DELAY_MAX;
2156 				scc_mgr_set_dqs_en_delay(read_group, delay);
2157 			}
2158 			scc_mgr_load_dqs(read_group);
2159 		}
2160 
2161 		writel(0, &sdr_scc_mgr->update);
2162 
2163 		stop = search_stop_check(write, d, rank_bgn, write_group,
2164 					 read_group, &bit_chk, sticky_bit_chk,
2165 					 use_read_test);
2166 		if (stop == 1) {
2167 			if (write && (d == 0)) {	/* WRITE-ONLY */
2168 				for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2169 					/*
2170 					 * d = 0 failed, but it passed when
2171 					 * testing the left edge, so it must be
2172 					 * marginal, set it to -1
2173 					 */
2174 					if (right_edge[i] == delay_max + 1 &&
2175 					    left_edge[i] != delay_max + 1)
2176 						right_edge[i] = -1;
2177 				}
2178 			}
2179 			break;
2180 		}
2181 
2182 		/* stop != 1 */
2183 		for (i = 0; i < per_dqs; i++) {
2184 			if (bit_chk & 1) {
2185 				/*
2186 				 * Remember a passing test as
2187 				 * the right_edge.
2188 				 */
2189 				right_edge[i] = d;
2190 			} else {
2191 				if (d != 0) {
2192 					/*
2193 					 * If a right edge has not
2194 					 * been seen yet, then a future
2195 					 * passing test will mark this
2196 					 * edge as the left edge.
2197 					 */
2198 					if (right_edge[i] == delay_max + 1)
2199 						left_edge[i] = -(d + 1);
2200 				} else {
2201 					/*
2202 					 * d = 0 failed, but it passed
2203 					 * when testing the left edge,
2204 					 * so it must be marginal, set
2205 					 * it to -1
2206 					 */
2207 					if (right_edge[i] == delay_max + 1 &&
2208 					    left_edge[i] != delay_max + 1)
2209 						right_edge[i] = -1;
2210 					/*
2211 					 * If a right edge has not been
2212 					 * seen yet, then a future
2213 					 * passing test will mark this
2214 					 * edge as the left edge.
2215 					 */
2216 					else if (right_edge[i] == delay_max + 1)
2217 						left_edge[i] = -(d + 1);
2218 				}
2219 			}
2220 
2221 			debug_cond(DLEVEL == 2, "%s:%d center[r,d=%u]: ",
2222 				   __func__, __LINE__, d);
2223 			debug_cond(DLEVEL == 2,
2224 				   "bit_chk_test=%i left_edge[%u]: %d ",
2225 				   bit_chk & 1, i, left_edge[i]);
2226 			debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2227 				   right_edge[i]);
2228 			bit_chk >>= 1;
2229 		}
2230 	}
2231 
2232 	/* Check that all bits have a window */
2233 	for (i = 0; i < per_dqs; i++) {
2234 		debug_cond(DLEVEL == 2,
2235 			   "%s:%d write_center: left_edge[%u]: %d right_edge[%u]: %d",
2236 			   __func__, __LINE__, i, left_edge[i],
2237 			   i, right_edge[i]);
2238 		if ((left_edge[i] == dqs_max + 1) ||
2239 		    (right_edge[i] == dqs_max + 1))
2240 			return i + 1;	/* FIXME: If we fail, retval > 0 */
2241 	}
2242 
2243 	return 0;
2244 }
2245 
2246 /**
2247  * get_window_mid_index() - Find the best middle setting of DQ/DQS phase
2248  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
2249  * @left_edge:		Left edge of the DQ/DQS phase
2250  * @right_edge:		Right edge of the DQ/DQS phase
2251  * @mid_min:		Best DQ/DQS phase middle setting
2252  *
2253  * Find index and value of the middle of the DQ/DQS working phase.
2254  */
2255 static int get_window_mid_index(const int write, int *left_edge,
2256 				int *right_edge, int *mid_min)
2257 {
2258 	const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2259 				    RW_MGR_MEM_DQ_PER_READ_DQS;
2260 	int i, mid, min_index;
2261 
2262 	/* Find middle of window for each DQ bit */
2263 	*mid_min = left_edge[0] - right_edge[0];
2264 	min_index = 0;
2265 	for (i = 1; i < per_dqs; i++) {
2266 		mid = left_edge[i] - right_edge[i];
2267 		if (mid < *mid_min) {
2268 			*mid_min = mid;
2269 			min_index = i;
2270 		}
2271 	}
2272 
2273 	/*
2274 	 * -mid_min/2 represents the amount that we need to move DQS.
2275 	 * If mid_min is odd and positive we'll need to add one to make
2276 	 * sure the rounding in further calculations is correct (always
2277 	 * bias to the right), so just add 1 for all positive values.
2278 	 */
2279 	if (*mid_min > 0)
2280 		(*mid_min)++;
2281 	*mid_min = *mid_min / 2;
2282 
2283 	debug_cond(DLEVEL == 1, "%s:%d vfifo_center: *mid_min=%d (index=%u)\n",
2284 		   __func__, __LINE__, *mid_min, min_index);
2285 	return min_index;
2286 }
2287 
2288 /**
2289  * center_dq_windows() - Center the DQ/DQS windows
2290  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
2291  * @left_edge:		Left edge of the DQ/DQS phase
2292  * @right_edge:		Right edge of the DQ/DQS phase
2293  * @mid_min:		Adjusted DQ/DQS phase middle setting
2294  * @orig_mid_min:	Original DQ/DQS phase middle setting
2295  * @min_index:		DQ/DQS phase middle setting index
2296  * @test_bgn:		Rank number to begin the test
2297  * @dq_margin:		Amount of shift for the DQ
2298  * @dqs_margin:		Amount of shift for the DQS
2299  *
2300  * Align the DQ/DQS windows in each group.
2301  */
2302 static void center_dq_windows(const int write, int *left_edge, int *right_edge,
2303 			      const int mid_min, const int orig_mid_min,
2304 			      const int min_index, const int test_bgn,
2305 			      int *dq_margin, int *dqs_margin)
2306 {
2307 	const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2308 	const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2309 				    RW_MGR_MEM_DQ_PER_READ_DQS;
2310 	const u32 delay_off = write ? SCC_MGR_IO_OUT1_DELAY_OFFSET :
2311 				      SCC_MGR_IO_IN_DELAY_OFFSET;
2312 	const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | delay_off;
2313 
2314 	u32 temp_dq_io_delay1, temp_dq_io_delay2;
2315 	int shift_dq, i, p;
2316 
2317 	/* Initialize data for export structures */
2318 	*dqs_margin = delay_max + 1;
2319 	*dq_margin  = delay_max + 1;
2320 
2321 	/* add delay to bring centre of all DQ windows to the same "level" */
2322 	for (i = 0, p = test_bgn; i < per_dqs; i++, p++) {
2323 		/* Use values before divide by 2 to reduce round off error */
2324 		shift_dq = (left_edge[i] - right_edge[i] -
2325 			(left_edge[min_index] - right_edge[min_index]))/2  +
2326 			(orig_mid_min - mid_min);
2327 
2328 		debug_cond(DLEVEL == 2,
2329 			   "vfifo_center: before: shift_dq[%u]=%d\n",
2330 			   i, shift_dq);
2331 
2332 		temp_dq_io_delay1 = readl(addr + (p << 2));
2333 		temp_dq_io_delay2 = readl(addr + (i << 2));
2334 
2335 		if (shift_dq + temp_dq_io_delay1 > delay_max)
2336 			shift_dq = delay_max - temp_dq_io_delay2;
2337 		else if (shift_dq + temp_dq_io_delay1 < 0)
2338 			shift_dq = -temp_dq_io_delay1;
2339 
2340 		debug_cond(DLEVEL == 2,
2341 			   "vfifo_center: after: shift_dq[%u]=%d\n",
2342 			   i, shift_dq);
2343 
2344 		if (write)
2345 			scc_mgr_set_dq_out1_delay(i, temp_dq_io_delay1 + shift_dq);
2346 		else
2347 			scc_mgr_set_dq_in_delay(p, temp_dq_io_delay1 + shift_dq);
2348 
2349 		scc_mgr_load_dq(p);
2350 
2351 		debug_cond(DLEVEL == 2,
2352 			   "vfifo_center: margin[%u]=[%d,%d]\n", i,
2353 			   left_edge[i] - shift_dq + (-mid_min),
2354 			   right_edge[i] + shift_dq - (-mid_min));
2355 
2356 		/* To determine values for export structures */
2357 		if (left_edge[i] - shift_dq + (-mid_min) < *dq_margin)
2358 			*dq_margin = left_edge[i] - shift_dq + (-mid_min);
2359 
2360 		if (right_edge[i] + shift_dq - (-mid_min) < *dqs_margin)
2361 			*dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2362 	}
2363 
2364 }
2365 
2366 /**
2367  * rw_mgr_mem_calibrate_vfifo_center() - Per-bit deskew DQ and centering
2368  * @rank_bgn:		Rank number
2369  * @rw_group:		Read/Write Group
2370  * @test_bgn:		Rank at which the test begins
2371  * @use_read_test:	Perform a read test
2372  * @update_fom:		Update FOM
2373  *
2374  * Per-bit deskew DQ and centering.
2375  */
2376 static int rw_mgr_mem_calibrate_vfifo_center(const u32 rank_bgn,
2377 			const u32 rw_group, const u32 test_bgn,
2378 			const int use_read_test, const int update_fom)
2379 {
2380 	const u32 addr =
2381 		SDR_PHYGRP_SCCGRP_ADDRESS + SCC_MGR_DQS_IN_DELAY_OFFSET +
2382 		(rw_group << 2);
2383 	/*
2384 	 * Store these as signed since there are comparisons with
2385 	 * signed numbers.
2386 	 */
2387 	uint32_t sticky_bit_chk;
2388 	int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
2389 	int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
2390 	int32_t orig_mid_min, mid_min;
2391 	int32_t new_dqs, start_dqs, start_dqs_en, final_dqs_en;
2392 	int32_t dq_margin, dqs_margin;
2393 	int i, min_index;
2394 	int ret;
2395 
2396 	debug("%s:%d: %u %u", __func__, __LINE__, rw_group, test_bgn);
2397 
2398 	start_dqs = readl(addr);
2399 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2400 		start_dqs_en = readl(addr - IO_DQS_EN_DELAY_OFFSET);
2401 
2402 	/* set the left and right edge of each bit to an illegal value */
2403 	/* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
2404 	sticky_bit_chk = 0;
2405 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2406 		left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
2407 		right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
2408 	}
2409 
2410 	/* Search for the left edge of the window for each bit */
2411 	search_left_edge(0, rank_bgn, rw_group, rw_group, test_bgn,
2412 			 &sticky_bit_chk,
2413 			 left_edge, right_edge, use_read_test);
2414 
2415 
2416 	/* Search for the right edge of the window for each bit */
2417 	ret = search_right_edge(0, rank_bgn, rw_group, rw_group,
2418 				start_dqs, start_dqs_en,
2419 				&sticky_bit_chk,
2420 				left_edge, right_edge, use_read_test);
2421 	if (ret) {
2422 		/*
2423 		 * Restore delay chain settings before letting the loop
2424 		 * in rw_mgr_mem_calibrate_vfifo to retry different
2425 		 * dqs/ck relationships.
2426 		 */
2427 		scc_mgr_set_dqs_bus_in_delay(rw_group, start_dqs);
2428 		if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2429 			scc_mgr_set_dqs_en_delay(rw_group, start_dqs_en);
2430 
2431 		scc_mgr_load_dqs(rw_group);
2432 		writel(0, &sdr_scc_mgr->update);
2433 
2434 		debug_cond(DLEVEL == 1,
2435 			   "%s:%d vfifo_center: failed to find edge [%u]: %d %d",
2436 			   __func__, __LINE__, i, left_edge[i], right_edge[i]);
2437 		if (use_read_test) {
2438 			set_failing_group_stage(rw_group *
2439 				RW_MGR_MEM_DQ_PER_READ_DQS + i,
2440 				CAL_STAGE_VFIFO,
2441 				CAL_SUBSTAGE_VFIFO_CENTER);
2442 		} else {
2443 			set_failing_group_stage(rw_group *
2444 				RW_MGR_MEM_DQ_PER_READ_DQS + i,
2445 				CAL_STAGE_VFIFO_AFTER_WRITES,
2446 				CAL_SUBSTAGE_VFIFO_CENTER);
2447 		}
2448 		return -EIO;
2449 	}
2450 
2451 	min_index = get_window_mid_index(0, left_edge, right_edge, &mid_min);
2452 
2453 	/* Determine the amount we can change DQS (which is -mid_min) */
2454 	orig_mid_min = mid_min;
2455 	new_dqs = start_dqs - mid_min;
2456 	if (new_dqs > IO_DQS_IN_DELAY_MAX)
2457 		new_dqs = IO_DQS_IN_DELAY_MAX;
2458 	else if (new_dqs < 0)
2459 		new_dqs = 0;
2460 
2461 	mid_min = start_dqs - new_dqs;
2462 	debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2463 		   mid_min, new_dqs);
2464 
2465 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2466 		if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2467 			mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2468 		else if (start_dqs_en - mid_min < 0)
2469 			mid_min += start_dqs_en - mid_min;
2470 	}
2471 	new_dqs = start_dqs - mid_min;
2472 
2473 	debug_cond(DLEVEL == 1,
2474 		   "vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d\n",
2475 		   start_dqs,
2476 		   IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2477 		   new_dqs, mid_min);
2478 
2479 	/* Add delay to bring centre of all DQ windows to the same "level". */
2480 	center_dq_windows(0, left_edge, right_edge, mid_min, orig_mid_min,
2481 			  min_index, test_bgn, &dq_margin, &dqs_margin);
2482 
2483 	/* Move DQS-en */
2484 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2485 		final_dqs_en = start_dqs_en - mid_min;
2486 		scc_mgr_set_dqs_en_delay(rw_group, final_dqs_en);
2487 		scc_mgr_load_dqs(rw_group);
2488 	}
2489 
2490 	/* Move DQS */
2491 	scc_mgr_set_dqs_bus_in_delay(rw_group, new_dqs);
2492 	scc_mgr_load_dqs(rw_group);
2493 	debug_cond(DLEVEL == 2,
2494 		   "%s:%d vfifo_center: dq_margin=%d dqs_margin=%d",
2495 		   __func__, __LINE__, dq_margin, dqs_margin);
2496 
2497 	/*
2498 	 * Do not remove this line as it makes sure all of our decisions
2499 	 * have been applied. Apply the update bit.
2500 	 */
2501 	writel(0, &sdr_scc_mgr->update);
2502 
2503 	if ((dq_margin < 0) || (dqs_margin < 0))
2504 		return -EINVAL;
2505 
2506 	return 0;
2507 }
2508 
2509 /**
2510  * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2511  * @rw_group:	Read/Write Group
2512  * @phase:	DQ/DQS phase
2513  *
2514  * Because initially no communication ca be reliably performed with the memory
2515  * device, the sequencer uses a guaranteed write mechanism to write data into
2516  * the memory device.
2517  */
2518 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2519 						 const u32 phase)
2520 {
2521 	int ret;
2522 
2523 	/* Set a particular DQ/DQS phase. */
2524 	scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2525 
2526 	debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
2527 		   __func__, __LINE__, rw_group, phase);
2528 
2529 	/*
2530 	 * Altera EMI_RM 2015.05.04 :: Figure 1-25
2531 	 * Load up the patterns used by read calibration using the
2532 	 * current DQDQS phase.
2533 	 */
2534 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2535 
2536 	if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2537 		return 0;
2538 
2539 	/*
2540 	 * Altera EMI_RM 2015.05.04 :: Figure 1-26
2541 	 * Back-to-Back reads of the patterns used for calibration.
2542 	 */
2543 	ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2544 	if (ret)
2545 		debug_cond(DLEVEL == 1,
2546 			   "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2547 			   __func__, __LINE__, rw_group, phase);
2548 	return ret;
2549 }
2550 
2551 /**
2552  * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2553  * @rw_group:	Read/Write Group
2554  * @test_bgn:	Rank at which the test begins
2555  *
2556  * DQS enable calibration ensures reliable capture of the DQ signal without
2557  * glitches on the DQS line.
2558  */
2559 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2560 						       const u32 test_bgn)
2561 {
2562 	/*
2563 	 * Altera EMI_RM 2015.05.04 :: Figure 1-27
2564 	 * DQS and DQS Eanble Signal Relationships.
2565 	 */
2566 
2567 	/* We start at zero, so have one less dq to devide among */
2568 	const u32 delay_step = IO_IO_IN_DELAY_MAX /
2569 			       (RW_MGR_MEM_DQ_PER_READ_DQS - 1);
2570 	int ret;
2571 	u32 i, p, d, r;
2572 
2573 	debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2574 
2575 	/* Try different dq_in_delays since the DQ path is shorter than DQS. */
2576 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2577 	     r += NUM_RANKS_PER_SHADOW_REG) {
2578 		for (i = 0, p = test_bgn, d = 0;
2579 		     i < RW_MGR_MEM_DQ_PER_READ_DQS;
2580 		     i++, p++, d += delay_step) {
2581 			debug_cond(DLEVEL == 1,
2582 				   "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2583 				   __func__, __LINE__, rw_group, r, i, p, d);
2584 
2585 			scc_mgr_set_dq_in_delay(p, d);
2586 			scc_mgr_load_dq(p);
2587 		}
2588 
2589 		writel(0, &sdr_scc_mgr->update);
2590 	}
2591 
2592 	/*
2593 	 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2594 	 * dq_in_delay values
2595 	 */
2596 	ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
2597 
2598 	debug_cond(DLEVEL == 1,
2599 		   "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
2600 		   __func__, __LINE__, rw_group, !ret);
2601 
2602 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2603 	     r += NUM_RANKS_PER_SHADOW_REG) {
2604 		scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2605 		writel(0, &sdr_scc_mgr->update);
2606 	}
2607 
2608 	return ret;
2609 }
2610 
2611 /**
2612  * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2613  * @rw_group:		Read/Write Group
2614  * @test_bgn:		Rank at which the test begins
2615  * @use_read_test:	Perform a read test
2616  * @update_fom:		Update FOM
2617  *
2618  * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2619  * within a group.
2620  */
2621 static int
2622 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2623 				      const int use_read_test,
2624 				      const int update_fom)
2625 
2626 {
2627 	int ret, grp_calibrated;
2628 	u32 rank_bgn, sr;
2629 
2630 	/*
2631 	 * Altera EMI_RM 2015.05.04 :: Figure 1-28
2632 	 * Read per-bit deskew can be done on a per shadow register basis.
2633 	 */
2634 	grp_calibrated = 1;
2635 	for (rank_bgn = 0, sr = 0;
2636 	     rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2637 	     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2638 		ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2639 							test_bgn,
2640 							use_read_test,
2641 							update_fom);
2642 		if (!ret)
2643 			continue;
2644 
2645 		grp_calibrated = 0;
2646 	}
2647 
2648 	if (!grp_calibrated)
2649 		return -EIO;
2650 
2651 	return 0;
2652 }
2653 
2654 /**
2655  * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2656  * @rw_group:		Read/Write Group
2657  * @test_bgn:		Rank at which the test begins
2658  *
2659  * Stage 1: Calibrate the read valid prediction FIFO.
2660  *
2661  * This function implements UniPHY calibration Stage 1, as explained in
2662  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2663  *
2664  * - read valid prediction will consist of finding:
2665  *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2666  *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
2667  *  - we also do a per-bit deskew on the DQ lines.
2668  */
2669 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2670 {
2671 	uint32_t p, d;
2672 	uint32_t dtaps_per_ptap;
2673 	uint32_t failed_substage;
2674 
2675 	int ret;
2676 
2677 	debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2678 
2679 	/* Update info for sims */
2680 	reg_file_set_group(rw_group);
2681 	reg_file_set_stage(CAL_STAGE_VFIFO);
2682 	reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2683 
2684 	failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2685 
2686 	/* USER Determine number of delay taps for each phase tap. */
2687 	dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2688 				      IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
2689 
2690 	for (d = 0; d <= dtaps_per_ptap; d += 2) {
2691 		/*
2692 		 * In RLDRAMX we may be messing the delay of pins in
2693 		 * the same write rw_group but outside of the current read
2694 		 * the rw_group, but that's ok because we haven't calibrated
2695 		 * output side yet.
2696 		 */
2697 		if (d > 0) {
2698 			scc_mgr_apply_group_all_out_delay_add_all_ranks(
2699 								rw_group, d);
2700 		}
2701 
2702 		for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
2703 			/* 1) Guaranteed Write */
2704 			ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2705 			if (ret)
2706 				break;
2707 
2708 			/* 2) DQS Enable Calibration */
2709 			ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2710 									  test_bgn);
2711 			if (ret) {
2712 				failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2713 				continue;
2714 			}
2715 
2716 			/* 3) Centering DQ/DQS */
2717 			/*
2718 			 * If doing read after write calibration, do not update
2719 			 * FOM now. Do it then.
2720 			 */
2721 			ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2722 								test_bgn, 1, 0);
2723 			if (ret) {
2724 				failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2725 				continue;
2726 			}
2727 
2728 			/* All done. */
2729 			goto cal_done_ok;
2730 		}
2731 	}
2732 
2733 	/* Calibration Stage 1 failed. */
2734 	set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2735 	return 0;
2736 
2737 	/* Calibration Stage 1 completed OK. */
2738 cal_done_ok:
2739 	/*
2740 	 * Reset the delay chains back to zero if they have moved > 1
2741 	 * (check for > 1 because loop will increase d even when pass in
2742 	 * first case).
2743 	 */
2744 	if (d > 2)
2745 		scc_mgr_zero_group(rw_group, 1);
2746 
2747 	return 1;
2748 }
2749 
2750 /**
2751  * rw_mgr_mem_calibrate_vfifo_end() - DQ/DQS Centering.
2752  * @rw_group:		Read/Write Group
2753  * @test_bgn:		Rank at which the test begins
2754  *
2755  * Stage 3: DQ/DQS Centering.
2756  *
2757  * This function implements UniPHY calibration Stage 3, as explained in
2758  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2759  */
2760 static int rw_mgr_mem_calibrate_vfifo_end(const u32 rw_group,
2761 					  const u32 test_bgn)
2762 {
2763 	int ret;
2764 
2765 	debug("%s:%d %u %u", __func__, __LINE__, rw_group, test_bgn);
2766 
2767 	/* Update info for sims. */
2768 	reg_file_set_group(rw_group);
2769 	reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2770 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2771 
2772 	ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, test_bgn, 0, 1);
2773 	if (ret)
2774 		set_failing_group_stage(rw_group,
2775 					CAL_STAGE_VFIFO_AFTER_WRITES,
2776 					CAL_SUBSTAGE_VFIFO_CENTER);
2777 	return ret;
2778 }
2779 
2780 /**
2781  * rw_mgr_mem_calibrate_lfifo() - Minimize latency
2782  *
2783  * Stage 4: Minimize latency.
2784  *
2785  * This function implements UniPHY calibration Stage 4, as explained in
2786  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2787  * Calibrate LFIFO to find smallest read latency.
2788  */
2789 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2790 {
2791 	int found_one = 0;
2792 
2793 	debug("%s:%d\n", __func__, __LINE__);
2794 
2795 	/* Update info for sims. */
2796 	reg_file_set_stage(CAL_STAGE_LFIFO);
2797 	reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2798 
2799 	/* Load up the patterns used by read calibration for all ranks */
2800 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2801 
2802 	do {
2803 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2804 		debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2805 			   __func__, __LINE__, gbl->curr_read_lat);
2806 
2807 		if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, NUM_READ_TESTS,
2808 							      PASS_ALL_BITS, 1))
2809 			break;
2810 
2811 		found_one = 1;
2812 		/*
2813 		 * Reduce read latency and see if things are
2814 		 * working correctly.
2815 		 */
2816 		gbl->curr_read_lat--;
2817 	} while (gbl->curr_read_lat > 0);
2818 
2819 	/* Reset the fifos to get pointers to known state. */
2820 	writel(0, &phy_mgr_cmd->fifo_reset);
2821 
2822 	if (found_one) {
2823 		/* Add a fudge factor to the read latency that was determined */
2824 		gbl->curr_read_lat += 2;
2825 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2826 		debug_cond(DLEVEL == 2,
2827 			   "%s:%d lfifo: success: using read_lat=%u\n",
2828 			   __func__, __LINE__, gbl->curr_read_lat);
2829 	} else {
2830 		set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2831 					CAL_SUBSTAGE_READ_LATENCY);
2832 
2833 		debug_cond(DLEVEL == 2,
2834 			   "%s:%d lfifo: failed at initial read_lat=%u\n",
2835 			   __func__, __LINE__, gbl->curr_read_lat);
2836 	}
2837 
2838 	return found_one;
2839 }
2840 
2841 /**
2842  * search_window() - Search for the/part of the window with DM/DQS shift
2843  * @search_dm:		If 1, search for the DM shift, if 0, search for DQS shift
2844  * @rank_bgn:		Rank number
2845  * @write_group:	Write Group
2846  * @bgn_curr:		Current window begin
2847  * @end_curr:		Current window end
2848  * @bgn_best:		Current best window begin
2849  * @end_best:		Current best window end
2850  * @win_best:		Size of the best window
2851  * @new_dqs:		New DQS value (only applicable if search_dm = 0).
2852  *
2853  * Search for the/part of the window with DM/DQS shift.
2854  */
2855 static void search_window(const int search_dm,
2856 			  const u32 rank_bgn, const u32 write_group,
2857 			  int *bgn_curr, int *end_curr, int *bgn_best,
2858 			  int *end_best, int *win_best, int new_dqs)
2859 {
2860 	u32 bit_chk;
2861 	const int max = IO_IO_OUT1_DELAY_MAX - new_dqs;
2862 	int d, di;
2863 
2864 	/* Search for the/part of the window with DM/DQS shift. */
2865 	for (di = max; di >= 0; di -= DELTA_D) {
2866 		if (search_dm) {
2867 			d = di;
2868 			scc_mgr_apply_group_dm_out1_delay(d);
2869 		} else {
2870 			/* For DQS, we go from 0...max */
2871 			d = max - di;
2872 			/*
2873 			 * Note: This only shifts DQS, so are we limiting ourselve to
2874 			 * width of DQ unnecessarily.
2875 			 */
2876 			scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2877 								d + new_dqs);
2878 		}
2879 
2880 		writel(0, &sdr_scc_mgr->update);
2881 
2882 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2883 						    PASS_ALL_BITS, &bit_chk,
2884 						    0)) {
2885 			/* Set current end of the window. */
2886 			*end_curr = search_dm ? -d : d;
2887 
2888 			/*
2889 			 * If a starting edge of our window has not been seen
2890 			 * this is our current start of the DM window.
2891 			 */
2892 			if (*bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
2893 				*bgn_curr = search_dm ? -d : d;
2894 
2895 			/*
2896 			 * If current window is bigger than best seen.
2897 			 * Set best seen to be current window.
2898 			 */
2899 			if ((*end_curr - *bgn_curr + 1) > *win_best) {
2900 				*win_best = *end_curr - *bgn_curr + 1;
2901 				*bgn_best = *bgn_curr;
2902 				*end_best = *end_curr;
2903 			}
2904 		} else {
2905 			/* We just saw a failing test. Reset temp edge. */
2906 			*bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2907 			*end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2908 
2909 			/* Early exit is only applicable to DQS. */
2910 			if (search_dm)
2911 				continue;
2912 
2913 			/*
2914 			 * Early exit optimization: if the remaining delay
2915 			 * chain space is less than already seen largest
2916 			 * window we can exit.
2917 			 */
2918 			if (*win_best - 1 > IO_IO_OUT1_DELAY_MAX - new_dqs - d)
2919 				break;
2920 		}
2921 	}
2922 }
2923 
2924 /*
2925  * rw_mgr_mem_calibrate_writes_center() - Center all windows
2926  * @rank_bgn:		Rank number
2927  * @write_group:	Write group
2928  * @test_bgn:		Rank at which the test begins
2929  *
2930  * Center all windows. Do per-bit-deskew to possibly increase size of
2931  * certain windows.
2932  */
2933 static int
2934 rw_mgr_mem_calibrate_writes_center(const u32 rank_bgn, const u32 write_group,
2935 				   const u32 test_bgn)
2936 {
2937 	int i;
2938 	u32 sticky_bit_chk;
2939 	u32 min_index;
2940 	int left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2941 	int right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2942 	int mid;
2943 	int mid_min, orig_mid_min;
2944 	int new_dqs, start_dqs;
2945 	int dq_margin, dqs_margin, dm_margin;
2946 	int bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2947 	int end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2948 	int bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
2949 	int end_best = IO_IO_OUT1_DELAY_MAX + 1;
2950 	int win_best = 0;
2951 
2952 	int ret;
2953 
2954 	debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2955 
2956 	dm_margin = 0;
2957 
2958 	start_dqs = readl((SDR_PHYGRP_SCCGRP_ADDRESS |
2959 			  SCC_MGR_IO_OUT1_DELAY_OFFSET) +
2960 			  (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2961 
2962 	/* Per-bit deskew. */
2963 
2964 	/*
2965 	 * Set the left and right edge of each bit to an illegal value.
2966 	 * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2967 	 */
2968 	sticky_bit_chk = 0;
2969 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2970 		left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2971 		right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2972 	}
2973 
2974 	/* Search for the left edge of the window for each bit. */
2975 	search_left_edge(1, rank_bgn, write_group, 0, test_bgn,
2976 			 &sticky_bit_chk,
2977 			 left_edge, right_edge, 0);
2978 
2979 	/* Search for the right edge of the window for each bit. */
2980 	ret = search_right_edge(1, rank_bgn, write_group, 0,
2981 				start_dqs, 0,
2982 				&sticky_bit_chk,
2983 				left_edge, right_edge, 0);
2984 	if (ret) {
2985 		set_failing_group_stage(test_bgn + ret - 1, CAL_STAGE_WRITES,
2986 					CAL_SUBSTAGE_WRITES_CENTER);
2987 		return -EINVAL;
2988 	}
2989 
2990 	min_index = get_window_mid_index(1, left_edge, right_edge, &mid_min);
2991 
2992 	/* Determine the amount we can change DQS (which is -mid_min). */
2993 	orig_mid_min = mid_min;
2994 	new_dqs = start_dqs;
2995 	mid_min = 0;
2996 	debug_cond(DLEVEL == 1,
2997 		   "%s:%d write_center: start_dqs=%d new_dqs=%d mid_min=%d\n",
2998 		   __func__, __LINE__, start_dqs, new_dqs, mid_min);
2999 
3000 	/* Add delay to bring centre of all DQ windows to the same "level". */
3001 	center_dq_windows(1, left_edge, right_edge, mid_min, orig_mid_min,
3002 			  min_index, 0, &dq_margin, &dqs_margin);
3003 
3004 	/* Move DQS */
3005 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3006 	writel(0, &sdr_scc_mgr->update);
3007 
3008 	/* Centre DM */
3009 	debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3010 
3011 	/*
3012 	 * Set the left and right edge of each bit to an illegal value.
3013 	 * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
3014 	 */
3015 	left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
3016 	right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
3017 
3018 	/* Search for the/part of the window with DM shift. */
3019 	search_window(1, rank_bgn, write_group, &bgn_curr, &end_curr,
3020 		      &bgn_best, &end_best, &win_best, 0);
3021 
3022 	/* Reset DM delay chains to 0. */
3023 	scc_mgr_apply_group_dm_out1_delay(0);
3024 
3025 	/*
3026 	 * Check to see if the current window nudges up aganist 0 delay.
3027 	 * If so we need to continue the search by shifting DQS otherwise DQS
3028 	 * search begins as a new search.
3029 	 */
3030 	if (end_curr != 0) {
3031 		bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3032 		end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3033 	}
3034 
3035 	/* Search for the/part of the window with DQS shifts. */
3036 	search_window(0, rank_bgn, write_group, &bgn_curr, &end_curr,
3037 		      &bgn_best, &end_best, &win_best, new_dqs);
3038 
3039 	/* Assign left and right edge for cal and reporting. */
3040 	left_edge[0] = -1 * bgn_best;
3041 	right_edge[0] = end_best;
3042 
3043 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n",
3044 		   __func__, __LINE__, left_edge[0], right_edge[0]);
3045 
3046 	/* Move DQS (back to orig). */
3047 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3048 
3049 	/* Move DM */
3050 
3051 	/* Find middle of window for the DM bit. */
3052 	mid = (left_edge[0] - right_edge[0]) / 2;
3053 
3054 	/* Only move right, since we are not moving DQS/DQ. */
3055 	if (mid < 0)
3056 		mid = 0;
3057 
3058 	/* dm_marign should fail if we never find a window. */
3059 	if (win_best == 0)
3060 		dm_margin = -1;
3061 	else
3062 		dm_margin = left_edge[0] - mid;
3063 
3064 	scc_mgr_apply_group_dm_out1_delay(mid);
3065 	writel(0, &sdr_scc_mgr->update);
3066 
3067 	debug_cond(DLEVEL == 2,
3068 		   "%s:%d dm_calib: left=%d right=%d mid=%d dm_margin=%d\n",
3069 		   __func__, __LINE__, left_edge[0], right_edge[0],
3070 		   mid, dm_margin);
3071 	/* Export values. */
3072 	gbl->fom_out += dq_margin + dqs_margin;
3073 
3074 	debug_cond(DLEVEL == 2,
3075 		   "%s:%d write_center: dq_margin=%d dqs_margin=%d dm_margin=%d\n",
3076 		   __func__, __LINE__, dq_margin, dqs_margin, dm_margin);
3077 
3078 	/*
3079 	 * Do not remove this line as it makes sure all of our
3080 	 * decisions have been applied.
3081 	 */
3082 	writel(0, &sdr_scc_mgr->update);
3083 
3084 	if ((dq_margin < 0) || (dqs_margin < 0) || (dm_margin < 0))
3085 		return -EINVAL;
3086 
3087 	return 0;
3088 }
3089 
3090 /**
3091  * rw_mgr_mem_calibrate_writes() - Write Calibration Part One
3092  * @rank_bgn:		Rank number
3093  * @group:		Read/Write Group
3094  * @test_bgn:		Rank at which the test begins
3095  *
3096  * Stage 2: Write Calibration Part One.
3097  *
3098  * This function implements UniPHY calibration Stage 2, as explained in
3099  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
3100  */
3101 static int rw_mgr_mem_calibrate_writes(const u32 rank_bgn, const u32 group,
3102 				       const u32 test_bgn)
3103 {
3104 	int ret;
3105 
3106 	/* Update info for sims */
3107 	debug("%s:%d %u %u\n", __func__, __LINE__, group, test_bgn);
3108 
3109 	reg_file_set_group(group);
3110 	reg_file_set_stage(CAL_STAGE_WRITES);
3111 	reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3112 
3113 	ret = rw_mgr_mem_calibrate_writes_center(rank_bgn, group, test_bgn);
3114 	if (ret)
3115 		set_failing_group_stage(group, CAL_STAGE_WRITES,
3116 					CAL_SUBSTAGE_WRITES_CENTER);
3117 
3118 	return ret;
3119 }
3120 
3121 /**
3122  * mem_precharge_and_activate() - Precharge all banks and activate
3123  *
3124  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3125  */
3126 static void mem_precharge_and_activate(void)
3127 {
3128 	int r;
3129 
3130 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3131 		/* Set rank. */
3132 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3133 
3134 		/* Precharge all banks. */
3135 		writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3136 					     RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3137 
3138 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3139 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3140 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
3141 
3142 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3143 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3144 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
3145 
3146 		/* Activate rows. */
3147 		writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3148 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3149 	}
3150 }
3151 
3152 /**
3153  * mem_init_latency() - Configure memory RLAT and WLAT settings
3154  *
3155  * Configure memory RLAT and WLAT parameters.
3156  */
3157 static void mem_init_latency(void)
3158 {
3159 	/*
3160 	 * For AV/CV, LFIFO is hardened and always runs at full rate
3161 	 * so max latency in AFI clocks, used here, is correspondingly
3162 	 * smaller.
3163 	 */
3164 	const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3165 	u32 rlat, wlat;
3166 
3167 	debug("%s:%d\n", __func__, __LINE__);
3168 
3169 	/*
3170 	 * Read in write latency.
3171 	 * WL for Hard PHY does not include additive latency.
3172 	 */
3173 	wlat = readl(&data_mgr->t_wl_add);
3174 	wlat += readl(&data_mgr->mem_t_add);
3175 
3176 	gbl->rw_wl_nop_cycles = wlat - 1;
3177 
3178 	/* Read in readl latency. */
3179 	rlat = readl(&data_mgr->t_rl_add);
3180 
3181 	/* Set a pretty high read latency initially. */
3182 	gbl->curr_read_lat = rlat + 16;
3183 	if (gbl->curr_read_lat > max_latency)
3184 		gbl->curr_read_lat = max_latency;
3185 
3186 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3187 
3188 	/* Advertise write latency. */
3189 	writel(wlat, &phy_mgr_cfg->afi_wlat);
3190 }
3191 
3192 /**
3193  * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3194  *
3195  * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3196  */
3197 static void mem_skip_calibrate(void)
3198 {
3199 	uint32_t vfifo_offset;
3200 	uint32_t i, j, r;
3201 
3202 	debug("%s:%d\n", __func__, __LINE__);
3203 	/* Need to update every shadow register set used by the interface */
3204 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3205 	     r += NUM_RANKS_PER_SHADOW_REG) {
3206 		/*
3207 		 * Set output phase alignment settings appropriate for
3208 		 * skip calibration.
3209 		 */
3210 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3211 			scc_mgr_set_dqs_en_phase(i, 0);
3212 #if IO_DLL_CHAIN_LENGTH == 6
3213 			scc_mgr_set_dqdqs_output_phase(i, 6);
3214 #else
3215 			scc_mgr_set_dqdqs_output_phase(i, 7);
3216 #endif
3217 			/*
3218 			 * Case:33398
3219 			 *
3220 			 * Write data arrives to the I/O two cycles before write
3221 			 * latency is reached (720 deg).
3222 			 *   -> due to bit-slip in a/c bus
3223 			 *   -> to allow board skew where dqs is longer than ck
3224 			 *      -> how often can this happen!?
3225 			 *      -> can claim back some ptaps for high freq
3226 			 *       support if we can relax this, but i digress...
3227 			 *
3228 			 * The write_clk leads mem_ck by 90 deg
3229 			 * The minimum ptap of the OPA is 180 deg
3230 			 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3231 			 * The write_clk is always delayed by 2 ptaps
3232 			 *
3233 			 * Hence, to make DQS aligned to CK, we need to delay
3234 			 * DQS by:
3235 			 *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3236 			 *
3237 			 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3238 			 * gives us the number of ptaps, which simplies to:
3239 			 *
3240 			 *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3241 			 */
3242 			scc_mgr_set_dqdqs_output_phase(i,
3243 					1.25 * IO_DLL_CHAIN_LENGTH - 2);
3244 		}
3245 		writel(0xff, &sdr_scc_mgr->dqs_ena);
3246 		writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3247 
3248 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3249 			writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3250 				  SCC_MGR_GROUP_COUNTER_OFFSET);
3251 		}
3252 		writel(0xff, &sdr_scc_mgr->dq_ena);
3253 		writel(0xff, &sdr_scc_mgr->dm_ena);
3254 		writel(0, &sdr_scc_mgr->update);
3255 	}
3256 
3257 	/* Compensate for simulation model behaviour */
3258 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3259 		scc_mgr_set_dqs_bus_in_delay(i, 10);
3260 		scc_mgr_load_dqs(i);
3261 	}
3262 	writel(0, &sdr_scc_mgr->update);
3263 
3264 	/*
3265 	 * ArriaV has hard FIFOs that can only be initialized by incrementing
3266 	 * in sequencer.
3267 	 */
3268 	vfifo_offset = CALIB_VFIFO_OFFSET;
3269 	for (j = 0; j < vfifo_offset; j++)
3270 		writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3271 	writel(0, &phy_mgr_cmd->fifo_reset);
3272 
3273 	/*
3274 	 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3275 	 * setting from generation-time constant.
3276 	 */
3277 	gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3278 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3279 }
3280 
3281 /**
3282  * mem_calibrate() - Memory calibration entry point.
3283  *
3284  * Perform memory calibration.
3285  */
3286 static uint32_t mem_calibrate(void)
3287 {
3288 	uint32_t i;
3289 	uint32_t rank_bgn, sr;
3290 	uint32_t write_group, write_test_bgn;
3291 	uint32_t read_group, read_test_bgn;
3292 	uint32_t run_groups, current_run;
3293 	uint32_t failing_groups = 0;
3294 	uint32_t group_failed = 0;
3295 
3296 	const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
3297 				RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
3298 
3299 	debug("%s:%d\n", __func__, __LINE__);
3300 
3301 	/* Initialize the data settings */
3302 	gbl->error_substage = CAL_SUBSTAGE_NIL;
3303 	gbl->error_stage = CAL_STAGE_NIL;
3304 	gbl->error_group = 0xff;
3305 	gbl->fom_in = 0;
3306 	gbl->fom_out = 0;
3307 
3308 	/* Initialize WLAT and RLAT. */
3309 	mem_init_latency();
3310 
3311 	/* Initialize bit slips. */
3312 	mem_precharge_and_activate();
3313 
3314 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3315 		writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3316 			  SCC_MGR_GROUP_COUNTER_OFFSET);
3317 		/* Only needed once to set all groups, pins, DQ, DQS, DM. */
3318 		if (i == 0)
3319 			scc_mgr_set_hhp_extras();
3320 
3321 		scc_set_bypass_mode(i);
3322 	}
3323 
3324 	/* Calibration is skipped. */
3325 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3326 		/*
3327 		 * Set VFIFO and LFIFO to instant-on settings in skip
3328 		 * calibration mode.
3329 		 */
3330 		mem_skip_calibrate();
3331 
3332 		/*
3333 		 * Do not remove this line as it makes sure all of our
3334 		 * decisions have been applied.
3335 		 */
3336 		writel(0, &sdr_scc_mgr->update);
3337 		return 1;
3338 	}
3339 
3340 	/* Calibration is not skipped. */
3341 	for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3342 		/*
3343 		 * Zero all delay chain/phase settings for all
3344 		 * groups and all shadow register sets.
3345 		 */
3346 		scc_mgr_zero_all();
3347 
3348 		run_groups = ~0;
3349 
3350 		for (write_group = 0, write_test_bgn = 0; write_group
3351 			< RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3352 			write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3353 
3354 			/* Initialize the group failure */
3355 			group_failed = 0;
3356 
3357 			current_run = run_groups & ((1 <<
3358 				RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3359 			run_groups = run_groups >>
3360 				RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3361 
3362 			if (current_run == 0)
3363 				continue;
3364 
3365 			writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3366 					    SCC_MGR_GROUP_COUNTER_OFFSET);
3367 			scc_mgr_zero_group(write_group, 0);
3368 
3369 			for (read_group = write_group * rwdqs_ratio,
3370 			     read_test_bgn = 0;
3371 			     read_group < (write_group + 1) * rwdqs_ratio;
3372 			     read_group++,
3373 			     read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3374 				if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3375 					continue;
3376 
3377 				/* Calibrate the VFIFO */
3378 				if (rw_mgr_mem_calibrate_vfifo(read_group,
3379 							       read_test_bgn))
3380 					continue;
3381 
3382 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3383 					return 0;
3384 
3385 				/* The group failed, we're done. */
3386 				goto grp_failed;
3387 			}
3388 
3389 			/* Calibrate the output side */
3390 			for (rank_bgn = 0, sr = 0;
3391 			     rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
3392 			     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3393 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3394 					continue;
3395 
3396 				/* Not needed in quick mode! */
3397 				if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
3398 					continue;
3399 
3400 				/* Calibrate WRITEs */
3401 				if (!rw_mgr_mem_calibrate_writes(rank_bgn,
3402 						write_group, write_test_bgn))
3403 					continue;
3404 
3405 				group_failed = 1;
3406 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3407 					return 0;
3408 			}
3409 
3410 			/* Some group failed, we're done. */
3411 			if (group_failed)
3412 				goto grp_failed;
3413 
3414 			for (read_group = write_group * rwdqs_ratio,
3415 			     read_test_bgn = 0;
3416 			     read_group < (write_group + 1) * rwdqs_ratio;
3417 			     read_group++,
3418 			     read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3419 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3420 					continue;
3421 
3422 				if (!rw_mgr_mem_calibrate_vfifo_end(read_group,
3423 								read_test_bgn))
3424 					continue;
3425 
3426 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3427 					return 0;
3428 
3429 				/* The group failed, we're done. */
3430 				goto grp_failed;
3431 			}
3432 
3433 			/* No group failed, continue as usual. */
3434 			continue;
3435 
3436 grp_failed:		/* A group failed, increment the counter. */
3437 			failing_groups++;
3438 		}
3439 
3440 		/*
3441 		 * USER If there are any failing groups then report
3442 		 * the failure.
3443 		 */
3444 		if (failing_groups != 0)
3445 			return 0;
3446 
3447 		if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3448 			continue;
3449 
3450 		/* Calibrate the LFIFO */
3451 		if (!rw_mgr_mem_calibrate_lfifo())
3452 			return 0;
3453 	}
3454 
3455 	/*
3456 	 * Do not remove this line as it makes sure all of our decisions
3457 	 * have been applied.
3458 	 */
3459 	writel(0, &sdr_scc_mgr->update);
3460 	return 1;
3461 }
3462 
3463 /**
3464  * run_mem_calibrate() - Perform memory calibration
3465  *
3466  * This function triggers the entire memory calibration procedure.
3467  */
3468 static int run_mem_calibrate(void)
3469 {
3470 	int pass;
3471 
3472 	debug("%s:%d\n", __func__, __LINE__);
3473 
3474 	/* Reset pass/fail status shown on afi_cal_success/fail */
3475 	writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3476 
3477 	/* Stop tracking manager. */
3478 	clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3479 
3480 	phy_mgr_initialize();
3481 	rw_mgr_mem_initialize();
3482 
3483 	/* Perform the actual memory calibration. */
3484 	pass = mem_calibrate();
3485 
3486 	mem_precharge_and_activate();
3487 	writel(0, &phy_mgr_cmd->fifo_reset);
3488 
3489 	/* Handoff. */
3490 	rw_mgr_mem_handoff();
3491 	/*
3492 	 * In Hard PHY this is a 2-bit control:
3493 	 * 0: AFI Mux Select
3494 	 * 1: DDIO Mux Select
3495 	 */
3496 	writel(0x2, &phy_mgr_cfg->mux_sel);
3497 
3498 	/* Start tracking manager. */
3499 	setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3500 
3501 	return pass;
3502 }
3503 
3504 /**
3505  * debug_mem_calibrate() - Report result of memory calibration
3506  * @pass:	Value indicating whether calibration passed or failed
3507  *
3508  * This function reports the results of the memory calibration
3509  * and writes debug information into the register file.
3510  */
3511 static void debug_mem_calibrate(int pass)
3512 {
3513 	uint32_t debug_info;
3514 
3515 	if (pass) {
3516 		printf("%s: CALIBRATION PASSED\n", __FILE__);
3517 
3518 		gbl->fom_in /= 2;
3519 		gbl->fom_out /= 2;
3520 
3521 		if (gbl->fom_in > 0xff)
3522 			gbl->fom_in = 0xff;
3523 
3524 		if (gbl->fom_out > 0xff)
3525 			gbl->fom_out = 0xff;
3526 
3527 		/* Update the FOM in the register file */
3528 		debug_info = gbl->fom_in;
3529 		debug_info |= gbl->fom_out << 8;
3530 		writel(debug_info, &sdr_reg_file->fom);
3531 
3532 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3533 		writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3534 	} else {
3535 		printf("%s: CALIBRATION FAILED\n", __FILE__);
3536 
3537 		debug_info = gbl->error_stage;
3538 		debug_info |= gbl->error_substage << 8;
3539 		debug_info |= gbl->error_group << 16;
3540 
3541 		writel(debug_info, &sdr_reg_file->failing_stage);
3542 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3543 		writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3544 
3545 		/* Update the failing group/stage in the register file */
3546 		debug_info = gbl->error_stage;
3547 		debug_info |= gbl->error_substage << 8;
3548 		debug_info |= gbl->error_group << 16;
3549 		writel(debug_info, &sdr_reg_file->failing_stage);
3550 	}
3551 
3552 	printf("%s: Calibration complete\n", __FILE__);
3553 }
3554 
3555 /**
3556  * hc_initialize_rom_data() - Initialize ROM data
3557  *
3558  * Initialize ROM data.
3559  */
3560 static void hc_initialize_rom_data(void)
3561 {
3562 	unsigned int nelem = 0;
3563 	const u32 *rom_init;
3564 	u32 i, addr;
3565 
3566 	socfpga_get_seq_inst_init(&rom_init, &nelem);
3567 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3568 	for (i = 0; i < nelem; i++)
3569 		writel(rom_init[i], addr + (i << 2));
3570 
3571 	socfpga_get_seq_ac_init(&rom_init, &nelem);
3572 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3573 	for (i = 0; i < nelem; i++)
3574 		writel(rom_init[i], addr + (i << 2));
3575 }
3576 
3577 /**
3578  * initialize_reg_file() - Initialize SDR register file
3579  *
3580  * Initialize SDR register file.
3581  */
3582 static void initialize_reg_file(void)
3583 {
3584 	/* Initialize the register file with the correct data */
3585 	writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3586 	writel(0, &sdr_reg_file->debug_data_addr);
3587 	writel(0, &sdr_reg_file->cur_stage);
3588 	writel(0, &sdr_reg_file->fom);
3589 	writel(0, &sdr_reg_file->failing_stage);
3590 	writel(0, &sdr_reg_file->debug1);
3591 	writel(0, &sdr_reg_file->debug2);
3592 }
3593 
3594 /**
3595  * initialize_hps_phy() - Initialize HPS PHY
3596  *
3597  * Initialize HPS PHY.
3598  */
3599 static void initialize_hps_phy(void)
3600 {
3601 	uint32_t reg;
3602 	/*
3603 	 * Tracking also gets configured here because it's in the
3604 	 * same register.
3605 	 */
3606 	uint32_t trk_sample_count = 7500;
3607 	uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3608 	/*
3609 	 * Format is number of outer loops in the 16 MSB, sample
3610 	 * count in 16 LSB.
3611 	 */
3612 
3613 	reg = 0;
3614 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3615 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3616 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3617 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3618 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3619 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3620 	/*
3621 	 * This field selects the intrinsic latency to RDATA_EN/FULL path.
3622 	 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3623 	 */
3624 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3625 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3626 		trk_sample_count);
3627 	writel(reg, &sdr_ctrl->phy_ctrl0);
3628 
3629 	reg = 0;
3630 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3631 		trk_sample_count >>
3632 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3633 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3634 		trk_long_idle_sample_count);
3635 	writel(reg, &sdr_ctrl->phy_ctrl1);
3636 
3637 	reg = 0;
3638 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3639 		trk_long_idle_sample_count >>
3640 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3641 	writel(reg, &sdr_ctrl->phy_ctrl2);
3642 }
3643 
3644 /**
3645  * initialize_tracking() - Initialize tracking
3646  *
3647  * Initialize the register file with usable initial data.
3648  */
3649 static void initialize_tracking(void)
3650 {
3651 	/*
3652 	 * Initialize the register file with the correct data.
3653 	 * Compute usable version of value in case we skip full
3654 	 * computation later.
3655 	 */
3656 	writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3657 	       &sdr_reg_file->dtaps_per_ptap);
3658 
3659 	/* trk_sample_count */
3660 	writel(7500, &sdr_reg_file->trk_sample_count);
3661 
3662 	/* longidle outer loop [15:0] */
3663 	writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3664 
3665 	/*
3666 	 * longidle sample count [31:24]
3667 	 * trfc, worst case of 933Mhz 4Gb [23:16]
3668 	 * trcd, worst case [15:8]
3669 	 * vfifo wait [7:0]
3670 	 */
3671 	writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3672 	       &sdr_reg_file->delays);
3673 
3674 	/* mux delay */
3675 	writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
3676 	       (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
3677 	       &sdr_reg_file->trk_rw_mgr_addr);
3678 
3679 	writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
3680 	       &sdr_reg_file->trk_read_dqs_width);
3681 
3682 	/* trefi [7:0] */
3683 	writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
3684 	       &sdr_reg_file->trk_rfsh);
3685 }
3686 
3687 int sdram_calibration_full(void)
3688 {
3689 	struct param_type my_param;
3690 	struct gbl_type my_gbl;
3691 	uint32_t pass;
3692 
3693 	memset(&my_param, 0, sizeof(my_param));
3694 	memset(&my_gbl, 0, sizeof(my_gbl));
3695 
3696 	param = &my_param;
3697 	gbl = &my_gbl;
3698 
3699 	/* Set the calibration enabled by default */
3700 	gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3701 	/*
3702 	 * Only sweep all groups (regardless of fail state) by default
3703 	 * Set enabled read test by default.
3704 	 */
3705 #if DISABLE_GUARANTEED_READ
3706 	gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3707 #endif
3708 	/* Initialize the register file */
3709 	initialize_reg_file();
3710 
3711 	/* Initialize any PHY CSR */
3712 	initialize_hps_phy();
3713 
3714 	scc_mgr_initialize();
3715 
3716 	initialize_tracking();
3717 
3718 	printf("%s: Preparing to start memory calibration\n", __FILE__);
3719 
3720 	debug("%s:%d\n", __func__, __LINE__);
3721 	debug_cond(DLEVEL == 1,
3722 		   "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3723 		   RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3724 		   RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3725 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3726 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3727 	debug_cond(DLEVEL == 1,
3728 		   "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3729 		   RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3730 		   RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3731 		   IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3732 	debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3733 		   IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3734 	debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3735 		   IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3736 		   IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3737 	debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3738 		   IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3739 		   IO_IO_OUT2_DELAY_MAX);
3740 	debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3741 		   IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3742 
3743 	hc_initialize_rom_data();
3744 
3745 	/* update info for sims */
3746 	reg_file_set_stage(CAL_STAGE_NIL);
3747 	reg_file_set_group(0);
3748 
3749 	/*
3750 	 * Load global needed for those actions that require
3751 	 * some dynamic calibration support.
3752 	 */
3753 	dyn_calib_steps = STATIC_CALIB_STEPS;
3754 	/*
3755 	 * Load global to allow dynamic selection of delay loop settings
3756 	 * based on calibration mode.
3757 	 */
3758 	if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3759 		skip_delay_mask = 0xff;
3760 	else
3761 		skip_delay_mask = 0x0;
3762 
3763 	pass = run_mem_calibrate();
3764 	debug_mem_calibrate(pass);
3765 	return pass;
3766 }
3767