xref: /openbmc/u-boot/drivers/ddr/altera/sequencer.c (revision 04372fb89797f8206fd44844df4ca95aaa62b9f9)
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6 
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include <errno.h>
11 #include "sequencer.h"
12 #include "sequencer_auto.h"
13 #include "sequencer_auto_ac_init.h"
14 #include "sequencer_auto_inst_init.h"
15 #include "sequencer_defines.h"
16 
17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
18 	(struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
19 
20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
21 	(struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
22 
23 static struct socfpga_sdr_reg_file *sdr_reg_file =
24 	(struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
25 
26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
27 	(struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
28 
29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
30 	(struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
31 
32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
33 	(struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
34 
35 static struct socfpga_data_mgr *data_mgr =
36 	(struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
37 
38 static struct socfpga_sdr_ctrl *sdr_ctrl =
39 	(struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
40 
41 #define DELTA_D		1
42 
43 /*
44  * In order to reduce ROM size, most of the selectable calibration steps are
45  * decided at compile time based on the user's calibration mode selection,
46  * as captured by the STATIC_CALIB_STEPS selection below.
47  *
48  * However, to support simulation-time selection of fast simulation mode, where
49  * we skip everything except the bare minimum, we need a few of the steps to
50  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
51  * check, which is based on the rtl-supplied value, or we dynamically compute
52  * the value to use based on the dynamically-chosen calibration mode
53  */
54 
55 #define DLEVEL 0
56 #define STATIC_IN_RTL_SIM 0
57 #define STATIC_SKIP_DELAY_LOOPS 0
58 
59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
60 	STATIC_SKIP_DELAY_LOOPS)
61 
62 /* calibration steps requested by the rtl */
63 uint16_t dyn_calib_steps;
64 
65 /*
66  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
67  * instead of static, we use boolean logic to select between
68  * non-skip and skip values
69  *
70  * The mask is set to include all bits when not-skipping, but is
71  * zero when skipping
72  */
73 
74 uint16_t skip_delay_mask;	/* mask off bits when skipping/not-skipping */
75 
76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
77 	((non_skip_value) & skip_delay_mask)
78 
79 struct gbl_type *gbl;
80 struct param_type *param;
81 uint32_t curr_shadow_reg;
82 
83 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
84 	uint32_t write_group, uint32_t use_dm,
85 	uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
86 
87 static void set_failing_group_stage(uint32_t group, uint32_t stage,
88 	uint32_t substage)
89 {
90 	/*
91 	 * Only set the global stage if there was not been any other
92 	 * failing group
93 	 */
94 	if (gbl->error_stage == CAL_STAGE_NIL)	{
95 		gbl->error_substage = substage;
96 		gbl->error_stage = stage;
97 		gbl->error_group = group;
98 	}
99 }
100 
101 static void reg_file_set_group(u16 set_group)
102 {
103 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
104 }
105 
106 static void reg_file_set_stage(u8 set_stage)
107 {
108 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
109 }
110 
111 static void reg_file_set_sub_stage(u8 set_sub_stage)
112 {
113 	set_sub_stage &= 0xff;
114 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
115 }
116 
117 /**
118  * phy_mgr_initialize() - Initialize PHY Manager
119  *
120  * Initialize PHY Manager.
121  */
122 static void phy_mgr_initialize(void)
123 {
124 	u32 ratio;
125 
126 	debug("%s:%d\n", __func__, __LINE__);
127 	/* Calibration has control over path to memory */
128 	/*
129 	 * In Hard PHY this is a 2-bit control:
130 	 * 0: AFI Mux Select
131 	 * 1: DDIO Mux Select
132 	 */
133 	writel(0x3, &phy_mgr_cfg->mux_sel);
134 
135 	/* USER memory clock is not stable we begin initialization  */
136 	writel(0, &phy_mgr_cfg->reset_mem_stbl);
137 
138 	/* USER calibration status all set to zero */
139 	writel(0, &phy_mgr_cfg->cal_status);
140 
141 	writel(0, &phy_mgr_cfg->cal_debug_info);
142 
143 	/* Init params only if we do NOT skip calibration. */
144 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
145 		return;
146 
147 	ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
148 		RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
149 	param->read_correct_mask_vg = (1 << ratio) - 1;
150 	param->write_correct_mask_vg = (1 << ratio) - 1;
151 	param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
152 	param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
153 	ratio = RW_MGR_MEM_DATA_WIDTH /
154 		RW_MGR_MEM_DATA_MASK_WIDTH;
155 	param->dm_correct_mask = (1 << ratio) - 1;
156 }
157 
158 /**
159  * set_rank_and_odt_mask() - Set Rank and ODT mask
160  * @rank:	Rank mask
161  * @odt_mode:	ODT mode, OFF or READ_WRITE
162  *
163  * Set Rank and ODT mask (On-Die Termination).
164  */
165 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
166 {
167 	u32 odt_mask_0 = 0;
168 	u32 odt_mask_1 = 0;
169 	u32 cs_and_odt_mask;
170 
171 	if (odt_mode == RW_MGR_ODT_MODE_OFF) {
172 		odt_mask_0 = 0x0;
173 		odt_mask_1 = 0x0;
174 	} else {	/* RW_MGR_ODT_MODE_READ_WRITE */
175 		switch (RW_MGR_MEM_NUMBER_OF_RANKS) {
176 		case 1:	/* 1 Rank */
177 			/* Read: ODT = 0 ; Write: ODT = 1 */
178 			odt_mask_0 = 0x0;
179 			odt_mask_1 = 0x1;
180 			break;
181 		case 2:	/* 2 Ranks */
182 			if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
183 				/*
184 				 * - Dual-Slot , Single-Rank (1 CS per DIMM)
185 				 *   OR
186 				 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
187 				 *
188 				 * Since MEM_NUMBER_OF_RANKS is 2, they
189 				 * are both single rank with 2 CS each
190 				 * (special for RDIMM).
191 				 *
192 				 * Read: Turn on ODT on the opposite rank
193 				 * Write: Turn on ODT on all ranks
194 				 */
195 				odt_mask_0 = 0x3 & ~(1 << rank);
196 				odt_mask_1 = 0x3;
197 			} else {
198 				/*
199 				 * - Single-Slot , Dual-Rank (2 CS per DIMM)
200 				 *
201 				 * Read: Turn on ODT off on all ranks
202 				 * Write: Turn on ODT on active rank
203 				 */
204 				odt_mask_0 = 0x0;
205 				odt_mask_1 = 0x3 & (1 << rank);
206 			}
207 			break;
208 		case 4:	/* 4 Ranks */
209 			/* Read:
210 			 * ----------+-----------------------+
211 			 *           |         ODT           |
212 			 * Read From +-----------------------+
213 			 *   Rank    |  3  |  2  |  1  |  0  |
214 			 * ----------+-----+-----+-----+-----+
215 			 *     0     |  0  |  1  |  0  |  0  |
216 			 *     1     |  1  |  0  |  0  |  0  |
217 			 *     2     |  0  |  0  |  0  |  1  |
218 			 *     3     |  0  |  0  |  1  |  0  |
219 			 * ----------+-----+-----+-----+-----+
220 			 *
221 			 * Write:
222 			 * ----------+-----------------------+
223 			 *           |         ODT           |
224 			 * Write To  +-----------------------+
225 			 *   Rank    |  3  |  2  |  1  |  0  |
226 			 * ----------+-----+-----+-----+-----+
227 			 *     0     |  0  |  1  |  0  |  1  |
228 			 *     1     |  1  |  0  |  1  |  0  |
229 			 *     2     |  0  |  1  |  0  |  1  |
230 			 *     3     |  1  |  0  |  1  |  0  |
231 			 * ----------+-----+-----+-----+-----+
232 			 */
233 			switch (rank) {
234 			case 0:
235 				odt_mask_0 = 0x4;
236 				odt_mask_1 = 0x5;
237 				break;
238 			case 1:
239 				odt_mask_0 = 0x8;
240 				odt_mask_1 = 0xA;
241 				break;
242 			case 2:
243 				odt_mask_0 = 0x1;
244 				odt_mask_1 = 0x5;
245 				break;
246 			case 3:
247 				odt_mask_0 = 0x2;
248 				odt_mask_1 = 0xA;
249 				break;
250 			}
251 			break;
252 		}
253 	}
254 
255 	cs_and_odt_mask = (0xFF & ~(1 << rank)) |
256 			  ((0xFF & odt_mask_0) << 8) |
257 			  ((0xFF & odt_mask_1) << 16);
258 	writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
259 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
260 }
261 
262 /**
263  * scc_mgr_set() - Set SCC Manager register
264  * @off:	Base offset in SCC Manager space
265  * @grp:	Read/Write group
266  * @val:	Value to be set
267  *
268  * This function sets the SCC Manager (Scan Chain Control Manager) register.
269  */
270 static void scc_mgr_set(u32 off, u32 grp, u32 val)
271 {
272 	writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
273 }
274 
275 /**
276  * scc_mgr_initialize() - Initialize SCC Manager registers
277  *
278  * Initialize SCC Manager registers.
279  */
280 static void scc_mgr_initialize(void)
281 {
282 	/*
283 	 * Clear register file for HPS. 16 (2^4) is the size of the
284 	 * full register file in the scc mgr:
285 	 *	RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
286 	 *                             MEM_IF_READ_DQS_WIDTH - 1);
287 	 */
288 	int i;
289 
290 	for (i = 0; i < 16; i++) {
291 		debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
292 			   __func__, __LINE__, i);
293 		scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
294 	}
295 }
296 
297 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
298 {
299 	scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
300 }
301 
302 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
303 {
304 	scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
305 }
306 
307 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
308 {
309 	scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
310 }
311 
312 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
313 {
314 	scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
315 }
316 
317 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
318 {
319 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
320 		    delay);
321 }
322 
323 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
324 {
325 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
326 }
327 
328 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
329 {
330 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
331 }
332 
333 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
334 {
335 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
336 		    delay);
337 }
338 
339 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
340 {
341 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
342 		    RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
343 		    delay);
344 }
345 
346 /* load up dqs config settings */
347 static void scc_mgr_load_dqs(uint32_t dqs)
348 {
349 	writel(dqs, &sdr_scc_mgr->dqs_ena);
350 }
351 
352 /* load up dqs io config settings */
353 static void scc_mgr_load_dqs_io(void)
354 {
355 	writel(0, &sdr_scc_mgr->dqs_io_ena);
356 }
357 
358 /* load up dq config settings */
359 static void scc_mgr_load_dq(uint32_t dq_in_group)
360 {
361 	writel(dq_in_group, &sdr_scc_mgr->dq_ena);
362 }
363 
364 /* load up dm config settings */
365 static void scc_mgr_load_dm(uint32_t dm)
366 {
367 	writel(dm, &sdr_scc_mgr->dm_ena);
368 }
369 
370 /**
371  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
372  * @off:	Base offset in SCC Manager space
373  * @grp:	Read/Write group
374  * @val:	Value to be set
375  * @update:	If non-zero, trigger SCC Manager update for all ranks
376  *
377  * This function sets the SCC Manager (Scan Chain Control Manager) register
378  * and optionally triggers the SCC update for all ranks.
379  */
380 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
381 				  const int update)
382 {
383 	u32 r;
384 
385 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
386 	     r += NUM_RANKS_PER_SHADOW_REG) {
387 		scc_mgr_set(off, grp, val);
388 
389 		if (update || (r == 0)) {
390 			writel(grp, &sdr_scc_mgr->dqs_ena);
391 			writel(0, &sdr_scc_mgr->update);
392 		}
393 	}
394 }
395 
396 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
397 {
398 	/*
399 	 * USER although the h/w doesn't support different phases per
400 	 * shadow register, for simplicity our scc manager modeling
401 	 * keeps different phase settings per shadow reg, and it's
402 	 * important for us to keep them in sync to match h/w.
403 	 * for efficiency, the scan chain update should occur only
404 	 * once to sr0.
405 	 */
406 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
407 			      read_group, phase, 0);
408 }
409 
410 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
411 						     uint32_t phase)
412 {
413 	/*
414 	 * USER although the h/w doesn't support different phases per
415 	 * shadow register, for simplicity our scc manager modeling
416 	 * keeps different phase settings per shadow reg, and it's
417 	 * important for us to keep them in sync to match h/w.
418 	 * for efficiency, the scan chain update should occur only
419 	 * once to sr0.
420 	 */
421 	scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
422 			      write_group, phase, 0);
423 }
424 
425 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
426 					       uint32_t delay)
427 {
428 	/*
429 	 * In shadow register mode, the T11 settings are stored in
430 	 * registers in the core, which are updated by the DQS_ENA
431 	 * signals. Not issuing the SCC_MGR_UPD command allows us to
432 	 * save lots of rank switching overhead, by calling
433 	 * select_shadow_regs_for_update with update_scan_chains
434 	 * set to 0.
435 	 */
436 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
437 			      read_group, delay, 1);
438 	writel(0, &sdr_scc_mgr->update);
439 }
440 
441 /**
442  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
443  * @write_group:	Write group
444  * @delay:		Delay value
445  *
446  * This function sets the OCT output delay in SCC manager.
447  */
448 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
449 {
450 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
451 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
452 	const int base = write_group * ratio;
453 	int i;
454 	/*
455 	 * Load the setting in the SCC manager
456 	 * Although OCT affects only write data, the OCT delay is controlled
457 	 * by the DQS logic block which is instantiated once per read group.
458 	 * For protocols where a write group consists of multiple read groups,
459 	 * the setting must be set multiple times.
460 	 */
461 	for (i = 0; i < ratio; i++)
462 		scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
463 }
464 
465 /**
466  * scc_mgr_set_hhp_extras() - Set HHP extras.
467  *
468  * Load the fixed setting in the SCC manager HHP extras.
469  */
470 static void scc_mgr_set_hhp_extras(void)
471 {
472 	/*
473 	 * Load the fixed setting in the SCC manager
474 	 * bits: 0:0 = 1'b1	- DQS bypass
475 	 * bits: 1:1 = 1'b1	- DQ bypass
476 	 * bits: 4:2 = 3'b001	- rfifo_mode
477 	 * bits: 6:5 = 2'b01	- rfifo clock_select
478 	 * bits: 7:7 = 1'b0	- separate gating from ungating setting
479 	 * bits: 8:8 = 1'b0	- separate OE from Output delay setting
480 	 */
481 	const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
482 			  (1 << 2) | (1 << 1) | (1 << 0);
483 	const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
484 			 SCC_MGR_HHP_GLOBALS_OFFSET |
485 			 SCC_MGR_HHP_EXTRAS_OFFSET;
486 
487 	debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
488 		   __func__, __LINE__);
489 	writel(value, addr);
490 	debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
491 		   __func__, __LINE__);
492 }
493 
494 /**
495  * scc_mgr_zero_all() - Zero all DQS config
496  *
497  * Zero all DQS config.
498  */
499 static void scc_mgr_zero_all(void)
500 {
501 	int i, r;
502 
503 	/*
504 	 * USER Zero all DQS config settings, across all groups and all
505 	 * shadow registers
506 	 */
507 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
508 	     r += NUM_RANKS_PER_SHADOW_REG) {
509 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
510 			/*
511 			 * The phases actually don't exist on a per-rank basis,
512 			 * but there's no harm updating them several times, so
513 			 * let's keep the code simple.
514 			 */
515 			scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
516 			scc_mgr_set_dqs_en_phase(i, 0);
517 			scc_mgr_set_dqs_en_delay(i, 0);
518 		}
519 
520 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
521 			scc_mgr_set_dqdqs_output_phase(i, 0);
522 			/* Arria V/Cyclone V don't have out2. */
523 			scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
524 		}
525 	}
526 
527 	/* Multicast to all DQS group enables. */
528 	writel(0xff, &sdr_scc_mgr->dqs_ena);
529 	writel(0, &sdr_scc_mgr->update);
530 }
531 
532 /**
533  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
534  * @write_group:	Write group
535  *
536  * Set bypass mode and trigger SCC update.
537  */
538 static void scc_set_bypass_mode(const u32 write_group)
539 {
540 	/* Multicast to all DQ enables. */
541 	writel(0xff, &sdr_scc_mgr->dq_ena);
542 	writel(0xff, &sdr_scc_mgr->dm_ena);
543 
544 	/* Update current DQS IO enable. */
545 	writel(0, &sdr_scc_mgr->dqs_io_ena);
546 
547 	/* Update the DQS logic. */
548 	writel(write_group, &sdr_scc_mgr->dqs_ena);
549 
550 	/* Hit update. */
551 	writel(0, &sdr_scc_mgr->update);
552 }
553 
554 /**
555  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
556  * @write_group:	Write group
557  *
558  * Load DQS settings for Write Group, do not trigger SCC update.
559  */
560 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
561 {
562 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
563 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
564 	const int base = write_group * ratio;
565 	int i;
566 	/*
567 	 * Load the setting in the SCC manager
568 	 * Although OCT affects only write data, the OCT delay is controlled
569 	 * by the DQS logic block which is instantiated once per read group.
570 	 * For protocols where a write group consists of multiple read groups,
571 	 * the setting must be set multiple times.
572 	 */
573 	for (i = 0; i < ratio; i++)
574 		writel(base + i, &sdr_scc_mgr->dqs_ena);
575 }
576 
577 /**
578  * scc_mgr_zero_group() - Zero all configs for a group
579  *
580  * Zero DQ, DM, DQS and OCT configs for a group.
581  */
582 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
583 {
584 	int i, r;
585 
586 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
587 	     r += NUM_RANKS_PER_SHADOW_REG) {
588 		/* Zero all DQ config settings. */
589 		for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
590 			scc_mgr_set_dq_out1_delay(i, 0);
591 			if (!out_only)
592 				scc_mgr_set_dq_in_delay(i, 0);
593 		}
594 
595 		/* Multicast to all DQ enables. */
596 		writel(0xff, &sdr_scc_mgr->dq_ena);
597 
598 		/* Zero all DM config settings. */
599 		for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
600 			scc_mgr_set_dm_out1_delay(i, 0);
601 
602 		/* Multicast to all DM enables. */
603 		writel(0xff, &sdr_scc_mgr->dm_ena);
604 
605 		/* Zero all DQS IO settings. */
606 		if (!out_only)
607 			scc_mgr_set_dqs_io_in_delay(0);
608 
609 		/* Arria V/Cyclone V don't have out2. */
610 		scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
611 		scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
612 		scc_mgr_load_dqs_for_write_group(write_group);
613 
614 		/* Multicast to all DQS IO enables (only 1 in total). */
615 		writel(0, &sdr_scc_mgr->dqs_io_ena);
616 
617 		/* Hit update to zero everything. */
618 		writel(0, &sdr_scc_mgr->update);
619 	}
620 }
621 
622 /*
623  * apply and load a particular input delay for the DQ pins in a group
624  * group_bgn is the index of the first dq pin (in the write group)
625  */
626 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
627 {
628 	uint32_t i, p;
629 
630 	for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
631 		scc_mgr_set_dq_in_delay(p, delay);
632 		scc_mgr_load_dq(p);
633 	}
634 }
635 
636 /**
637  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
638  * @delay:		Delay value
639  *
640  * Apply and load a particular output delay for the DQ pins in a group.
641  */
642 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
643 {
644 	int i;
645 
646 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
647 		scc_mgr_set_dq_out1_delay(i, delay);
648 		scc_mgr_load_dq(i);
649 	}
650 }
651 
652 /* apply and load a particular output delay for the DM pins in a group */
653 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
654 {
655 	uint32_t i;
656 
657 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
658 		scc_mgr_set_dm_out1_delay(i, delay1);
659 		scc_mgr_load_dm(i);
660 	}
661 }
662 
663 
664 /* apply and load delay on both DQS and OCT out1 */
665 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
666 						    uint32_t delay)
667 {
668 	scc_mgr_set_dqs_out1_delay(delay);
669 	scc_mgr_load_dqs_io();
670 
671 	scc_mgr_set_oct_out1_delay(write_group, delay);
672 	scc_mgr_load_dqs_for_write_group(write_group);
673 }
674 
675 /**
676  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
677  * @write_group:	Write group
678  * @delay:		Delay value
679  *
680  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
681  */
682 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
683 						  const u32 delay)
684 {
685 	u32 i, new_delay;
686 
687 	/* DQ shift */
688 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
689 		scc_mgr_load_dq(i);
690 
691 	/* DM shift */
692 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
693 		scc_mgr_load_dm(i);
694 
695 	/* DQS shift */
696 	new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
697 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
698 		debug_cond(DLEVEL == 1,
699 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
700 			   __func__, __LINE__, write_group, delay, new_delay,
701 			   IO_IO_OUT2_DELAY_MAX,
702 			   new_delay - IO_IO_OUT2_DELAY_MAX);
703 		new_delay -= IO_IO_OUT2_DELAY_MAX;
704 		scc_mgr_set_dqs_out1_delay(new_delay);
705 	}
706 
707 	scc_mgr_load_dqs_io();
708 
709 	/* OCT shift */
710 	new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
711 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
712 		debug_cond(DLEVEL == 1,
713 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
714 			   __func__, __LINE__, write_group, delay,
715 			   new_delay, IO_IO_OUT2_DELAY_MAX,
716 			   new_delay - IO_IO_OUT2_DELAY_MAX);
717 		new_delay -= IO_IO_OUT2_DELAY_MAX;
718 		scc_mgr_set_oct_out1_delay(write_group, new_delay);
719 	}
720 
721 	scc_mgr_load_dqs_for_write_group(write_group);
722 }
723 
724 /**
725  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
726  * @write_group:	Write group
727  * @delay:		Delay value
728  *
729  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
730  */
731 static void
732 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
733 						const u32 delay)
734 {
735 	int r;
736 
737 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
738 	     r += NUM_RANKS_PER_SHADOW_REG) {
739 		scc_mgr_apply_group_all_out_delay_add(write_group, delay);
740 		writel(0, &sdr_scc_mgr->update);
741 	}
742 }
743 
744 /**
745  * set_jump_as_return() - Return instruction optimization
746  *
747  * Optimization used to recover some slots in ddr3 inst_rom could be
748  * applied to other protocols if we wanted to
749  */
750 static void set_jump_as_return(void)
751 {
752 	/*
753 	 * To save space, we replace return with jump to special shared
754 	 * RETURN instruction so we set the counter to large value so that
755 	 * we always jump.
756 	 */
757 	writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
758 	writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
759 }
760 
761 /*
762  * should always use constants as argument to ensure all computations are
763  * performed at compile time
764  */
765 static void delay_for_n_mem_clocks(const uint32_t clocks)
766 {
767 	uint32_t afi_clocks;
768 	uint8_t inner = 0;
769 	uint8_t outer = 0;
770 	uint16_t c_loop = 0;
771 
772 	debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
773 
774 
775 	afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
776 	/* scale (rounding up) to get afi clocks */
777 
778 	/*
779 	 * Note, we don't bother accounting for being off a little bit
780 	 * because of a few extra instructions in outer loops
781 	 * Note, the loops have a test at the end, and do the test before
782 	 * the decrement, and so always perform the loop
783 	 * 1 time more than the counter value
784 	 */
785 	if (afi_clocks == 0) {
786 		;
787 	} else if (afi_clocks <= 0x100) {
788 		inner = afi_clocks-1;
789 		outer = 0;
790 		c_loop = 0;
791 	} else if (afi_clocks <= 0x10000) {
792 		inner = 0xff;
793 		outer = (afi_clocks-1) >> 8;
794 		c_loop = 0;
795 	} else {
796 		inner = 0xff;
797 		outer = 0xff;
798 		c_loop = (afi_clocks-1) >> 16;
799 	}
800 
801 	/*
802 	 * rom instructions are structured as follows:
803 	 *
804 	 *    IDLE_LOOP2: jnz cntr0, TARGET_A
805 	 *    IDLE_LOOP1: jnz cntr1, TARGET_B
806 	 *                return
807 	 *
808 	 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
809 	 * TARGET_B is set to IDLE_LOOP2 as well
810 	 *
811 	 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
812 	 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
813 	 *
814 	 * a little confusing, but it helps save precious space in the inst_rom
815 	 * and sequencer rom and keeps the delays more accurate and reduces
816 	 * overhead
817 	 */
818 	if (afi_clocks <= 0x100) {
819 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
820 			&sdr_rw_load_mgr_regs->load_cntr1);
821 
822 		writel(RW_MGR_IDLE_LOOP1,
823 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
824 
825 		writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
826 					  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
827 	} else {
828 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
829 			&sdr_rw_load_mgr_regs->load_cntr0);
830 
831 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
832 			&sdr_rw_load_mgr_regs->load_cntr1);
833 
834 		writel(RW_MGR_IDLE_LOOP2,
835 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
836 
837 		writel(RW_MGR_IDLE_LOOP2,
838 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
839 
840 		/* hack to get around compiler not being smart enough */
841 		if (afi_clocks <= 0x10000) {
842 			/* only need to run once */
843 			writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
844 						  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
845 		} else {
846 			do {
847 				writel(RW_MGR_IDLE_LOOP2,
848 					SDR_PHYGRP_RWMGRGRP_ADDRESS |
849 					RW_MGR_RUN_SINGLE_GROUP_OFFSET);
850 			} while (c_loop-- != 0);
851 		}
852 	}
853 	debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
854 }
855 
856 /**
857  * rw_mgr_mem_init_load_regs() - Load instruction registers
858  * @cntr0:	Counter 0 value
859  * @cntr1:	Counter 1 value
860  * @cntr2:	Counter 2 value
861  * @jump:	Jump instruction value
862  *
863  * Load instruction registers.
864  */
865 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
866 {
867 	uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
868 			   RW_MGR_RUN_SINGLE_GROUP_OFFSET;
869 
870 	/* Load counters */
871 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
872 	       &sdr_rw_load_mgr_regs->load_cntr0);
873 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
874 	       &sdr_rw_load_mgr_regs->load_cntr1);
875 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
876 	       &sdr_rw_load_mgr_regs->load_cntr2);
877 
878 	/* Load jump address */
879 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
880 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
881 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
882 
883 	/* Execute count instruction */
884 	writel(jump, grpaddr);
885 }
886 
887 /**
888  * rw_mgr_mem_load_user() - Load user calibration values
889  * @fin1:	Final instruction 1
890  * @fin2:	Final instruction 2
891  * @precharge:	If 1, precharge the banks at the end
892  *
893  * Load user calibration values and optionally precharge the banks.
894  */
895 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
896 				 const int precharge)
897 {
898 	u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
899 		      RW_MGR_RUN_SINGLE_GROUP_OFFSET;
900 	u32 r;
901 
902 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
903 		if (param->skip_ranks[r]) {
904 			/* request to skip the rank */
905 			continue;
906 		}
907 
908 		/* set rank */
909 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
910 
911 		/* precharge all banks ... */
912 		if (precharge)
913 			writel(RW_MGR_PRECHARGE_ALL, grpaddr);
914 
915 		/*
916 		 * USER Use Mirror-ed commands for odd ranks if address
917 		 * mirrorring is on
918 		 */
919 		if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
920 			set_jump_as_return();
921 			writel(RW_MGR_MRS2_MIRR, grpaddr);
922 			delay_for_n_mem_clocks(4);
923 			set_jump_as_return();
924 			writel(RW_MGR_MRS3_MIRR, grpaddr);
925 			delay_for_n_mem_clocks(4);
926 			set_jump_as_return();
927 			writel(RW_MGR_MRS1_MIRR, grpaddr);
928 			delay_for_n_mem_clocks(4);
929 			set_jump_as_return();
930 			writel(fin1, grpaddr);
931 		} else {
932 			set_jump_as_return();
933 			writel(RW_MGR_MRS2, grpaddr);
934 			delay_for_n_mem_clocks(4);
935 			set_jump_as_return();
936 			writel(RW_MGR_MRS3, grpaddr);
937 			delay_for_n_mem_clocks(4);
938 			set_jump_as_return();
939 			writel(RW_MGR_MRS1, grpaddr);
940 			set_jump_as_return();
941 			writel(fin2, grpaddr);
942 		}
943 
944 		if (precharge)
945 			continue;
946 
947 		set_jump_as_return();
948 		writel(RW_MGR_ZQCL, grpaddr);
949 
950 		/* tZQinit = tDLLK = 512 ck cycles */
951 		delay_for_n_mem_clocks(512);
952 	}
953 }
954 
955 /**
956  * rw_mgr_mem_initialize() - Initialize RW Manager
957  *
958  * Initialize RW Manager.
959  */
960 static void rw_mgr_mem_initialize(void)
961 {
962 	debug("%s:%d\n", __func__, __LINE__);
963 
964 	/* The reset / cke part of initialization is broadcasted to all ranks */
965 	writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
966 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
967 
968 	/*
969 	 * Here's how you load register for a loop
970 	 * Counters are located @ 0x800
971 	 * Jump address are located @ 0xC00
972 	 * For both, registers 0 to 3 are selected using bits 3 and 2, like
973 	 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
974 	 * I know this ain't pretty, but Avalon bus throws away the 2 least
975 	 * significant bits
976 	 */
977 
978 	/* Start with memory RESET activated */
979 
980 	/* tINIT = 200us */
981 
982 	/*
983 	 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
984 	 * If a and b are the number of iteration in 2 nested loops
985 	 * it takes the following number of cycles to complete the operation:
986 	 * number_of_cycles = ((2 + n) * a + 2) * b
987 	 * where n is the number of instruction in the inner loop
988 	 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
989 	 * b = 6A
990 	 */
991 	rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
992 				  SEQ_TINIT_CNTR2_VAL,
993 				  RW_MGR_INIT_RESET_0_CKE_0);
994 
995 	/* Indicate that memory is stable. */
996 	writel(1, &phy_mgr_cfg->reset_mem_stbl);
997 
998 	/*
999 	 * transition the RESET to high
1000 	 * Wait for 500us
1001 	 */
1002 
1003 	/*
1004 	 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
1005 	 * If a and b are the number of iteration in 2 nested loops
1006 	 * it takes the following number of cycles to complete the operation
1007 	 * number_of_cycles = ((2 + n) * a + 2) * b
1008 	 * where n is the number of instruction in the inner loop
1009 	 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
1010 	 * b = FF
1011 	 */
1012 	rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
1013 				  SEQ_TRESET_CNTR2_VAL,
1014 				  RW_MGR_INIT_RESET_1_CKE_0);
1015 
1016 	/* Bring up clock enable. */
1017 
1018 	/* tXRP < 250 ck cycles */
1019 	delay_for_n_mem_clocks(250);
1020 
1021 	rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
1022 			     0);
1023 }
1024 
1025 /*
1026  * At the end of calibration we have to program the user settings in, and
1027  * USER  hand off the memory to the user.
1028  */
1029 static void rw_mgr_mem_handoff(void)
1030 {
1031 	rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
1032 	/*
1033 	 * USER  need to wait tMOD (12CK or 15ns) time before issuing
1034 	 * other commands, but we will have plenty of NIOS cycles before
1035 	 * actual handoff so its okay.
1036 	 */
1037 }
1038 
1039 /*
1040  * performs a guaranteed read on the patterns we are going to use during a
1041  * read test to ensure memory works
1042  */
1043 static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn,
1044 	uint32_t group, uint32_t num_tries, uint32_t *bit_chk,
1045 	uint32_t all_ranks)
1046 {
1047 	uint32_t r, vg;
1048 	uint32_t correct_mask_vg;
1049 	uint32_t tmp_bit_chk;
1050 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1051 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1052 	uint32_t addr;
1053 	uint32_t base_rw_mgr;
1054 
1055 	*bit_chk = param->read_correct_mask;
1056 	correct_mask_vg = param->read_correct_mask_vg;
1057 
1058 	for (r = rank_bgn; r < rank_end; r++) {
1059 		if (param->skip_ranks[r])
1060 			/* request to skip the rank */
1061 			continue;
1062 
1063 		/* set rank */
1064 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1065 
1066 		/* Load up a constant bursts of read commands */
1067 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1068 		writel(RW_MGR_GUARANTEED_READ,
1069 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1070 
1071 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1072 		writel(RW_MGR_GUARANTEED_READ_CONT,
1073 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1074 
1075 		tmp_bit_chk = 0;
1076 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1077 			/* reset the fifos to get pointers to known state */
1078 
1079 			writel(0, &phy_mgr_cmd->fifo_reset);
1080 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1081 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1082 
1083 			tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1084 				/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1085 
1086 			addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1087 			writel(RW_MGR_GUARANTEED_READ, addr +
1088 			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1089 				vg) << 2));
1090 
1091 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1092 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr));
1093 
1094 			if (vg == 0)
1095 				break;
1096 		}
1097 		*bit_chk &= tmp_bit_chk;
1098 	}
1099 
1100 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1101 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1102 
1103 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1104 	debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\
1105 		   %lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask,
1106 		   (long unsigned int)(*bit_chk == param->read_correct_mask));
1107 	return *bit_chk == param->read_correct_mask;
1108 }
1109 
1110 static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks
1111 	(uint32_t group, uint32_t num_tries, uint32_t *bit_chk)
1112 {
1113 	return rw_mgr_mem_calibrate_read_test_patterns(0, group,
1114 		num_tries, bit_chk, 1);
1115 }
1116 
1117 /* load up the patterns we are going to use during a read test */
1118 static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn,
1119 	uint32_t all_ranks)
1120 {
1121 	uint32_t r;
1122 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1123 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1124 
1125 	debug("%s:%d\n", __func__, __LINE__);
1126 	for (r = rank_bgn; r < rank_end; r++) {
1127 		if (param->skip_ranks[r])
1128 			/* request to skip the rank */
1129 			continue;
1130 
1131 		/* set rank */
1132 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1133 
1134 		/* Load up a constant bursts */
1135 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1136 
1137 		writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1138 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1139 
1140 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1141 
1142 		writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1143 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1144 
1145 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1146 
1147 		writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1148 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1149 
1150 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1151 
1152 		writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1153 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1154 
1155 		writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1156 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1157 	}
1158 
1159 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1160 }
1161 
1162 /*
1163  * try a read and see if it returns correct data back. has dummy reads
1164  * inserted into the mix used to align dqs enable. has more thorough checks
1165  * than the regular read test.
1166  */
1167 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
1168 	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1169 	uint32_t all_groups, uint32_t all_ranks)
1170 {
1171 	uint32_t r, vg;
1172 	uint32_t correct_mask_vg;
1173 	uint32_t tmp_bit_chk;
1174 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1175 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1176 	uint32_t addr;
1177 	uint32_t base_rw_mgr;
1178 
1179 	*bit_chk = param->read_correct_mask;
1180 	correct_mask_vg = param->read_correct_mask_vg;
1181 
1182 	uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
1183 		CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
1184 
1185 	for (r = rank_bgn; r < rank_end; r++) {
1186 		if (param->skip_ranks[r])
1187 			/* request to skip the rank */
1188 			continue;
1189 
1190 		/* set rank */
1191 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1192 
1193 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1194 
1195 		writel(RW_MGR_READ_B2B_WAIT1,
1196 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1197 
1198 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1199 		writel(RW_MGR_READ_B2B_WAIT2,
1200 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1201 
1202 		if (quick_read_mode)
1203 			writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1204 			/* need at least two (1+1) reads to capture failures */
1205 		else if (all_groups)
1206 			writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1207 		else
1208 			writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1209 
1210 		writel(RW_MGR_READ_B2B,
1211 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1212 		if (all_groups)
1213 			writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1214 			       RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1215 			       &sdr_rw_load_mgr_regs->load_cntr3);
1216 		else
1217 			writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1218 
1219 		writel(RW_MGR_READ_B2B,
1220 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1221 
1222 		tmp_bit_chk = 0;
1223 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1224 			/* reset the fifos to get pointers to known state */
1225 			writel(0, &phy_mgr_cmd->fifo_reset);
1226 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1227 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1228 
1229 			tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1230 				/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1231 
1232 			if (all_groups)
1233 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
1234 			else
1235 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1236 
1237 			writel(RW_MGR_READ_B2B, addr +
1238 			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1239 			       vg) << 2));
1240 
1241 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1242 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
1243 
1244 			if (vg == 0)
1245 				break;
1246 		}
1247 		*bit_chk &= tmp_bit_chk;
1248 	}
1249 
1250 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1251 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1252 
1253 	if (all_correct) {
1254 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1255 		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
1256 			   (%u == %u) => %lu", __func__, __LINE__, group,
1257 			   all_groups, *bit_chk, param->read_correct_mask,
1258 			   (long unsigned int)(*bit_chk ==
1259 			   param->read_correct_mask));
1260 		return *bit_chk == param->read_correct_mask;
1261 	} else	{
1262 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1263 		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
1264 			   (%u != %lu) => %lu\n", __func__, __LINE__,
1265 			   group, all_groups, *bit_chk, (long unsigned int)0,
1266 			   (long unsigned int)(*bit_chk != 0x00));
1267 		return *bit_chk != 0x00;
1268 	}
1269 }
1270 
1271 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
1272 	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1273 	uint32_t all_groups)
1274 {
1275 	return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
1276 					      bit_chk, all_groups, 1);
1277 }
1278 
1279 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
1280 {
1281 	writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1282 	(*v)++;
1283 }
1284 
1285 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v)
1286 {
1287 	uint32_t i;
1288 
1289 	for (i = 0; i < VFIFO_SIZE-1; i++)
1290 		rw_mgr_incr_vfifo(grp, v);
1291 }
1292 
1293 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk)
1294 {
1295 	uint32_t  v;
1296 	uint32_t fail_cnt = 0;
1297 	uint32_t test_status;
1298 
1299 	for (v = 0; v < VFIFO_SIZE; ) {
1300 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n",
1301 			   __func__, __LINE__, v);
1302 		test_status = rw_mgr_mem_calibrate_read_test_all_ranks
1303 			(grp, 1, PASS_ONE_BIT, bit_chk, 0);
1304 		if (!test_status) {
1305 			fail_cnt++;
1306 
1307 			if (fail_cnt == 2)
1308 				break;
1309 		}
1310 
1311 		/* fiddle with FIFO */
1312 		rw_mgr_incr_vfifo(grp, &v);
1313 	}
1314 
1315 	if (v >= VFIFO_SIZE) {
1316 		/* no failing read found!! Something must have gone wrong */
1317 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n",
1318 			   __func__, __LINE__);
1319 		return 0;
1320 	} else {
1321 		return v;
1322 	}
1323 }
1324 
1325 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk,
1326 			      uint32_t dtaps_per_ptap, uint32_t *work_bgn,
1327 			      uint32_t *v, uint32_t *d, uint32_t *p,
1328 			      uint32_t *i, uint32_t *max_working_cnt)
1329 {
1330 	uint32_t found_begin = 0;
1331 	uint32_t tmp_delay = 0;
1332 	uint32_t test_status;
1333 
1334 	for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay +=
1335 		IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1336 		*work_bgn = tmp_delay;
1337 		scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1338 
1339 		for (*i = 0; *i < VFIFO_SIZE; (*i)++) {
1340 			for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn +=
1341 				IO_DELAY_PER_OPA_TAP) {
1342 				scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1343 
1344 				test_status =
1345 				rw_mgr_mem_calibrate_read_test_all_ranks
1346 				(*grp, 1, PASS_ONE_BIT, bit_chk, 0);
1347 
1348 				if (test_status) {
1349 					*max_working_cnt = 1;
1350 					found_begin = 1;
1351 					break;
1352 				}
1353 			}
1354 
1355 			if (found_begin)
1356 				break;
1357 
1358 			if (*p > IO_DQS_EN_PHASE_MAX)
1359 				/* fiddle with FIFO */
1360 				rw_mgr_incr_vfifo(*grp, v);
1361 		}
1362 
1363 		if (found_begin)
1364 			break;
1365 	}
1366 
1367 	if (*i >= VFIFO_SIZE) {
1368 		/* cannot find working solution */
1369 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\
1370 			   ptap/dtap\n", __func__, __LINE__);
1371 		return 0;
1372 	} else {
1373 		return 1;
1374 	}
1375 }
1376 
1377 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk,
1378 			     uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1379 			     uint32_t *p, uint32_t *max_working_cnt)
1380 {
1381 	uint32_t found_begin = 0;
1382 	uint32_t tmp_delay;
1383 
1384 	/* Special case code for backing up a phase */
1385 	if (*p == 0) {
1386 		*p = IO_DQS_EN_PHASE_MAX;
1387 		rw_mgr_decr_vfifo(*grp, v);
1388 	} else {
1389 		(*p)--;
1390 	}
1391 	tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1392 	scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1393 
1394 	for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn;
1395 		(*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1396 		scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1397 
1398 		if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1399 							     PASS_ONE_BIT,
1400 							     bit_chk, 0)) {
1401 			found_begin = 1;
1402 			*work_bgn = tmp_delay;
1403 			break;
1404 		}
1405 	}
1406 
1407 	/* We have found a working dtap before the ptap found above */
1408 	if (found_begin == 1)
1409 		(*max_working_cnt)++;
1410 
1411 	/*
1412 	 * Restore VFIFO to old state before we decremented it
1413 	 * (if needed).
1414 	 */
1415 	(*p)++;
1416 	if (*p > IO_DQS_EN_PHASE_MAX) {
1417 		*p = 0;
1418 		rw_mgr_incr_vfifo(*grp, v);
1419 	}
1420 
1421 	scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0);
1422 }
1423 
1424 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk,
1425 			     uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1426 			     uint32_t *p, uint32_t *i, uint32_t *max_working_cnt,
1427 			     uint32_t *work_end)
1428 {
1429 	uint32_t found_end = 0;
1430 
1431 	(*p)++;
1432 	*work_end += IO_DELAY_PER_OPA_TAP;
1433 	if (*p > IO_DQS_EN_PHASE_MAX) {
1434 		/* fiddle with FIFO */
1435 		*p = 0;
1436 		rw_mgr_incr_vfifo(*grp, v);
1437 	}
1438 
1439 	for (; *i < VFIFO_SIZE + 1; (*i)++) {
1440 		for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end
1441 			+= IO_DELAY_PER_OPA_TAP) {
1442 			scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1443 
1444 			if (!rw_mgr_mem_calibrate_read_test_all_ranks
1445 				(*grp, 1, PASS_ONE_BIT, bit_chk, 0)) {
1446 				found_end = 1;
1447 				break;
1448 			} else {
1449 				(*max_working_cnt)++;
1450 			}
1451 		}
1452 
1453 		if (found_end)
1454 			break;
1455 
1456 		if (*p > IO_DQS_EN_PHASE_MAX) {
1457 			/* fiddle with FIFO */
1458 			rw_mgr_incr_vfifo(*grp, v);
1459 			*p = 0;
1460 		}
1461 	}
1462 
1463 	if (*i >= VFIFO_SIZE + 1) {
1464 		/* cannot see edge of failing read */
1465 		debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\
1466 			   failed\n", __func__, __LINE__);
1467 		return 0;
1468 	} else {
1469 		return 1;
1470 	}
1471 }
1472 
1473 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk,
1474 				  uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1475 				  uint32_t *p, uint32_t *work_mid,
1476 				  uint32_t *work_end)
1477 {
1478 	int i;
1479 	int tmp_delay = 0;
1480 
1481 	*work_mid = (*work_bgn + *work_end) / 2;
1482 
1483 	debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1484 		   *work_bgn, *work_end, *work_mid);
1485 	/* Get the middle delay to be less than a VFIFO delay */
1486 	for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX;
1487 		(*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1488 		;
1489 	debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1490 	while (*work_mid > tmp_delay)
1491 		*work_mid -= tmp_delay;
1492 	debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid);
1493 
1494 	tmp_delay = 0;
1495 	for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid;
1496 		(*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1497 		;
1498 	tmp_delay -= IO_DELAY_PER_OPA_TAP;
1499 	debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay);
1500 	for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++,
1501 		tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP)
1502 		;
1503 	debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay);
1504 
1505 	scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1);
1506 	scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1507 
1508 	/*
1509 	 * push vfifo until we can successfully calibrate. We can do this
1510 	 * because the largest possible margin in 1 VFIFO cycle.
1511 	 */
1512 	for (i = 0; i < VFIFO_SIZE; i++) {
1513 		debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n",
1514 			   *v);
1515 		if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1516 							     PASS_ONE_BIT,
1517 							     bit_chk, 0)) {
1518 			break;
1519 		}
1520 
1521 		/* fiddle with FIFO */
1522 		rw_mgr_incr_vfifo(*grp, v);
1523 	}
1524 
1525 	if (i >= VFIFO_SIZE) {
1526 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \
1527 			   failed\n", __func__, __LINE__);
1528 		return 0;
1529 	} else {
1530 		return 1;
1531 	}
1532 }
1533 
1534 /* find a good dqs enable to use */
1535 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
1536 {
1537 	uint32_t v, d, p, i;
1538 	uint32_t max_working_cnt;
1539 	uint32_t bit_chk;
1540 	uint32_t dtaps_per_ptap;
1541 	uint32_t work_bgn, work_mid, work_end;
1542 	uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
1543 
1544 	debug("%s:%d %u\n", __func__, __LINE__, grp);
1545 
1546 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1547 
1548 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1549 	scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1550 
1551 	/* ************************************************************** */
1552 	/* * Step 0 : Determine number of delay taps for each phase tap * */
1553 	dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1554 
1555 	/* ********************************************************* */
1556 	/* * Step 1 : First push vfifo until we get a failing read * */
1557 	v = find_vfifo_read(grp, &bit_chk);
1558 
1559 	max_working_cnt = 0;
1560 
1561 	/* ******************************************************** */
1562 	/* * step 2: find first working phase, increment in ptaps * */
1563 	work_bgn = 0;
1564 	if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d,
1565 				&p, &i, &max_working_cnt) == 0)
1566 		return 0;
1567 
1568 	work_end = work_bgn;
1569 
1570 	/*
1571 	 * If d is 0 then the working window covers a phase tap and
1572 	 * we can follow the old procedure otherwise, we've found the beginning,
1573 	 * and we need to increment the dtaps until we find the end.
1574 	 */
1575 	if (d == 0) {
1576 		/* ********************************************************* */
1577 		/* * step 3a: if we have room, back off by one and
1578 		increment in dtaps * */
1579 
1580 		sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1581 				 &max_working_cnt);
1582 
1583 		/* ********************************************************* */
1584 		/* * step 4a: go forward from working phase to non working
1585 		phase, increment in ptaps * */
1586 		if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1587 					 &i, &max_working_cnt, &work_end) == 0)
1588 			return 0;
1589 
1590 		/* ********************************************************* */
1591 		/* * step 5a:  back off one from last, increment in dtaps  * */
1592 
1593 		/* Special case code for backing up a phase */
1594 		if (p == 0) {
1595 			p = IO_DQS_EN_PHASE_MAX;
1596 			rw_mgr_decr_vfifo(grp, &v);
1597 		} else {
1598 			p = p - 1;
1599 		}
1600 
1601 		work_end -= IO_DELAY_PER_OPA_TAP;
1602 		scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1603 
1604 		/* * The actual increment of dtaps is done outside of
1605 		the if/else loop to share code */
1606 		d = 0;
1607 
1608 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \
1609 			   vfifo=%u ptap=%u\n", __func__, __LINE__,
1610 			   v, p);
1611 	} else {
1612 		/* ******************************************************* */
1613 		/* * step 3-5b:  Find the right edge of the window using
1614 		delay taps   * */
1615 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \
1616 			   ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__,
1617 			   v, p, d, work_bgn);
1618 
1619 		work_end = work_bgn;
1620 
1621 		/* * The actual increment of dtaps is done outside of the
1622 		if/else loop to share code */
1623 
1624 		/* Only here to counterbalance a subtract later on which is
1625 		not needed if this branch of the algorithm is taken */
1626 		max_working_cnt++;
1627 	}
1628 
1629 	/* The dtap increment to find the failing edge is done here */
1630 	for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
1631 		IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1632 			debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1633 				   end-2: dtap=%u\n", __func__, __LINE__, d);
1634 			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1635 
1636 			if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1637 								      PASS_ONE_BIT,
1638 								      &bit_chk, 0)) {
1639 				break;
1640 			}
1641 	}
1642 
1643 	/* Go back to working dtap */
1644 	if (d != 0)
1645 		work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1646 
1647 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \
1648 		   ptap=%u dtap=%u end=%u\n", __func__, __LINE__,
1649 		   v, p, d-1, work_end);
1650 
1651 	if (work_end < work_bgn) {
1652 		/* nil range */
1653 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \
1654 			   failed\n", __func__, __LINE__);
1655 		return 0;
1656 	}
1657 
1658 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n",
1659 		   __func__, __LINE__, work_bgn, work_end);
1660 
1661 	/* *************************************************************** */
1662 	/*
1663 	 * * We need to calculate the number of dtaps that equal a ptap
1664 	 * * To do that we'll back up a ptap and re-find the edge of the
1665 	 * * window using dtaps
1666 	 */
1667 
1668 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \
1669 		   for tracking\n", __func__, __LINE__);
1670 
1671 	/* Special case code for backing up a phase */
1672 	if (p == 0) {
1673 		p = IO_DQS_EN_PHASE_MAX;
1674 		rw_mgr_decr_vfifo(grp, &v);
1675 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1676 			   cycle/phase: v=%u p=%u\n", __func__, __LINE__,
1677 			   v, p);
1678 	} else {
1679 		p = p - 1;
1680 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1681 			   phase only: v=%u p=%u", __func__, __LINE__,
1682 			   v, p);
1683 	}
1684 
1685 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1686 
1687 	/*
1688 	 * Increase dtap until we first see a passing read (in case the
1689 	 * window is smaller than a ptap),
1690 	 * and then a failing read to mark the edge of the window again
1691 	 */
1692 
1693 	/* Find a passing read */
1694 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n",
1695 		   __func__, __LINE__);
1696 	found_passing_read = 0;
1697 	found_failing_read = 0;
1698 	initial_failing_dtap = d;
1699 	for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
1700 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \
1701 			   read d=%u\n", __func__, __LINE__, d);
1702 		scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1703 
1704 		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1705 							     PASS_ONE_BIT,
1706 							     &bit_chk, 0)) {
1707 			found_passing_read = 1;
1708 			break;
1709 		}
1710 	}
1711 
1712 	if (found_passing_read) {
1713 		/* Find a failing read */
1714 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \
1715 			   read\n", __func__, __LINE__);
1716 		for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
1717 			debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1718 				   testing read d=%u\n", __func__, __LINE__, d);
1719 			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1720 
1721 			if (!rw_mgr_mem_calibrate_read_test_all_ranks
1722 				(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
1723 				found_failing_read = 1;
1724 				break;
1725 			}
1726 		}
1727 	} else {
1728 		debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \
1729 			   calculate dtaps", __func__, __LINE__);
1730 		debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n");
1731 	}
1732 
1733 	/*
1734 	 * The dynamically calculated dtaps_per_ptap is only valid if we
1735 	 * found a passing/failing read. If we didn't, it means d hit the max
1736 	 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1737 	 * statically calculated value.
1738 	 */
1739 	if (found_passing_read && found_failing_read)
1740 		dtaps_per_ptap = d - initial_failing_dtap;
1741 
1742 	writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1743 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \
1744 		   - %u = %u",  __func__, __LINE__, d,
1745 		   initial_failing_dtap, dtaps_per_ptap);
1746 
1747 	/* ******************************************** */
1748 	/* * step 6:  Find the centre of the window   * */
1749 	if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1750 				   &work_mid, &work_end) == 0)
1751 		return 0;
1752 
1753 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \
1754 		   vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__,
1755 		   v, p-1, d);
1756 	return 1;
1757 }
1758 
1759 /*
1760  * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
1761  * dq_in_delay values
1762  */
1763 static uint32_t
1764 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
1765 (uint32_t write_group, uint32_t read_group, uint32_t test_bgn)
1766 {
1767 	uint32_t found;
1768 	uint32_t i;
1769 	uint32_t p;
1770 	uint32_t d;
1771 	uint32_t r;
1772 
1773 	const uint32_t delay_step = IO_IO_IN_DELAY_MAX /
1774 		(RW_MGR_MEM_DQ_PER_READ_DQS-1);
1775 		/* we start at zero, so have one less dq to devide among */
1776 
1777 	debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group,
1778 	      test_bgn);
1779 
1780 	/* try different dq_in_delays since the dq path is shorter than dqs */
1781 
1782 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1783 	     r += NUM_RANKS_PER_SHADOW_REG) {
1784 		for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++, d += delay_step) {
1785 			debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\
1786 				   vfifo_find_dqs_", __func__, __LINE__);
1787 			debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ",
1788 			       write_group, read_group);
1789 			debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d);
1790 			scc_mgr_set_dq_in_delay(p, d);
1791 			scc_mgr_load_dq(p);
1792 		}
1793 		writel(0, &sdr_scc_mgr->update);
1794 	}
1795 
1796 	found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group);
1797 
1798 	debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\
1799 		   en_phase_sweep_dq", __func__, __LINE__);
1800 	debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \
1801 		   chain to zero\n", write_group, read_group, found);
1802 
1803 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1804 	     r += NUM_RANKS_PER_SHADOW_REG) {
1805 		for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS;
1806 			i++, p++) {
1807 			scc_mgr_set_dq_in_delay(p, 0);
1808 			scc_mgr_load_dq(p);
1809 		}
1810 		writel(0, &sdr_scc_mgr->update);
1811 	}
1812 
1813 	return found;
1814 }
1815 
1816 /* per-bit deskew DQ and center */
1817 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
1818 	uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
1819 	uint32_t use_read_test, uint32_t update_fom)
1820 {
1821 	uint32_t i, p, d, min_index;
1822 	/*
1823 	 * Store these as signed since there are comparisons with
1824 	 * signed numbers.
1825 	 */
1826 	uint32_t bit_chk;
1827 	uint32_t sticky_bit_chk;
1828 	int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1829 	int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1830 	int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
1831 	int32_t mid;
1832 	int32_t orig_mid_min, mid_min;
1833 	int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
1834 		final_dqs_en;
1835 	int32_t dq_margin, dqs_margin;
1836 	uint32_t stop;
1837 	uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
1838 	uint32_t addr;
1839 
1840 	debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
1841 
1842 	addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
1843 	start_dqs = readl(addr + (read_group << 2));
1844 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
1845 		start_dqs_en = readl(addr + ((read_group << 2)
1846 				     - IO_DQS_EN_DELAY_OFFSET));
1847 
1848 	/* set the left and right edge of each bit to an illegal value */
1849 	/* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
1850 	sticky_bit_chk = 0;
1851 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1852 		left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
1853 		right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1854 	}
1855 
1856 	/* Search for the left edge of the window for each bit */
1857 	for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
1858 		scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
1859 
1860 		writel(0, &sdr_scc_mgr->update);
1861 
1862 		/*
1863 		 * Stop searching when the read test doesn't pass AND when
1864 		 * we've seen a passing read on every bit.
1865 		 */
1866 		if (use_read_test) {
1867 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1868 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1869 				&bit_chk, 0, 0);
1870 		} else {
1871 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1872 							0, PASS_ONE_BIT,
1873 							&bit_chk, 0);
1874 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1875 				(read_group - (write_group *
1876 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
1877 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1878 			stop = (bit_chk == 0);
1879 		}
1880 		sticky_bit_chk = sticky_bit_chk | bit_chk;
1881 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
1882 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
1883 			   && %u", __func__, __LINE__, d,
1884 			   sticky_bit_chk,
1885 			param->read_correct_mask, stop);
1886 
1887 		if (stop == 1) {
1888 			break;
1889 		} else {
1890 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1891 				if (bit_chk & 1) {
1892 					/* Remember a passing test as the
1893 					left_edge */
1894 					left_edge[i] = d;
1895 				} else {
1896 					/* If a left edge has not been seen yet,
1897 					then a future passing test will mark
1898 					this edge as the right edge */
1899 					if (left_edge[i] ==
1900 						IO_IO_IN_DELAY_MAX + 1) {
1901 						right_edge[i] = -(d + 1);
1902 					}
1903 				}
1904 				bit_chk = bit_chk >> 1;
1905 			}
1906 		}
1907 	}
1908 
1909 	/* Reset DQ delay chains to 0 */
1910 	scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
1911 	sticky_bit_chk = 0;
1912 	for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
1913 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1914 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
1915 			   i, left_edge[i], i, right_edge[i]);
1916 
1917 		/*
1918 		 * Check for cases where we haven't found the left edge,
1919 		 * which makes our assignment of the the right edge invalid.
1920 		 * Reset it to the illegal value.
1921 		 */
1922 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
1923 			right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1924 			right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1925 			debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
1926 				   right_edge[%u]: %d\n", __func__, __LINE__,
1927 				   i, right_edge[i]);
1928 		}
1929 
1930 		/*
1931 		 * Reset sticky bit (except for bits where we have seen
1932 		 * both the left and right edge).
1933 		 */
1934 		sticky_bit_chk = sticky_bit_chk << 1;
1935 		if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
1936 		    (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1937 			sticky_bit_chk = sticky_bit_chk | 1;
1938 		}
1939 
1940 		if (i == 0)
1941 			break;
1942 	}
1943 
1944 	/* Search for the right edge of the window for each bit */
1945 	for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
1946 		scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
1947 		if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1948 			uint32_t delay = d + start_dqs_en;
1949 			if (delay > IO_DQS_EN_DELAY_MAX)
1950 				delay = IO_DQS_EN_DELAY_MAX;
1951 			scc_mgr_set_dqs_en_delay(read_group, delay);
1952 		}
1953 		scc_mgr_load_dqs(read_group);
1954 
1955 		writel(0, &sdr_scc_mgr->update);
1956 
1957 		/*
1958 		 * Stop searching when the read test doesn't pass AND when
1959 		 * we've seen a passing read on every bit.
1960 		 */
1961 		if (use_read_test) {
1962 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1963 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1964 				&bit_chk, 0, 0);
1965 		} else {
1966 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1967 							0, PASS_ONE_BIT,
1968 							&bit_chk, 0);
1969 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1970 				(read_group - (write_group *
1971 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
1972 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1973 			stop = (bit_chk == 0);
1974 		}
1975 		sticky_bit_chk = sticky_bit_chk | bit_chk;
1976 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
1977 
1978 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
1979 			   %u && %u", __func__, __LINE__, d,
1980 			   sticky_bit_chk, param->read_correct_mask, stop);
1981 
1982 		if (stop == 1) {
1983 			break;
1984 		} else {
1985 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1986 				if (bit_chk & 1) {
1987 					/* Remember a passing test as
1988 					the right_edge */
1989 					right_edge[i] = d;
1990 				} else {
1991 					if (d != 0) {
1992 						/* If a right edge has not been
1993 						seen yet, then a future passing
1994 						test will mark this edge as the
1995 						left edge */
1996 						if (right_edge[i] ==
1997 						IO_IO_IN_DELAY_MAX + 1) {
1998 							left_edge[i] = -(d + 1);
1999 						}
2000 					} else {
2001 						/* d = 0 failed, but it passed
2002 						when testing the left edge,
2003 						so it must be marginal,
2004 						set it to -1 */
2005 						if (right_edge[i] ==
2006 							IO_IO_IN_DELAY_MAX + 1 &&
2007 							left_edge[i] !=
2008 							IO_IO_IN_DELAY_MAX
2009 							+ 1) {
2010 							right_edge[i] = -1;
2011 						}
2012 						/* If a right edge has not been
2013 						seen yet, then a future passing
2014 						test will mark this edge as the
2015 						left edge */
2016 						else if (right_edge[i] ==
2017 							IO_IO_IN_DELAY_MAX +
2018 							1) {
2019 							left_edge[i] = -(d + 1);
2020 						}
2021 					}
2022 				}
2023 
2024 				debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
2025 					   d=%u]: ", __func__, __LINE__, d);
2026 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
2027 					   (int)(bit_chk & 1), i, left_edge[i]);
2028 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2029 					   right_edge[i]);
2030 				bit_chk = bit_chk >> 1;
2031 			}
2032 		}
2033 	}
2034 
2035 	/* Check that all bits have a window */
2036 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2037 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
2038 			   %d right_edge[%u]: %d", __func__, __LINE__,
2039 			   i, left_edge[i], i, right_edge[i]);
2040 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
2041 			== IO_IO_IN_DELAY_MAX + 1)) {
2042 			/*
2043 			 * Restore delay chain settings before letting the loop
2044 			 * in rw_mgr_mem_calibrate_vfifo to retry different
2045 			 * dqs/ck relationships.
2046 			 */
2047 			scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
2048 			if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2049 				scc_mgr_set_dqs_en_delay(read_group,
2050 							 start_dqs_en);
2051 			}
2052 			scc_mgr_load_dqs(read_group);
2053 			writel(0, &sdr_scc_mgr->update);
2054 
2055 			debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
2056 				   find edge [%u]: %d %d", __func__, __LINE__,
2057 				   i, left_edge[i], right_edge[i]);
2058 			if (use_read_test) {
2059 				set_failing_group_stage(read_group *
2060 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
2061 					CAL_STAGE_VFIFO,
2062 					CAL_SUBSTAGE_VFIFO_CENTER);
2063 			} else {
2064 				set_failing_group_stage(read_group *
2065 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
2066 					CAL_STAGE_VFIFO_AFTER_WRITES,
2067 					CAL_SUBSTAGE_VFIFO_CENTER);
2068 			}
2069 			return 0;
2070 		}
2071 	}
2072 
2073 	/* Find middle of window for each DQ bit */
2074 	mid_min = left_edge[0] - right_edge[0];
2075 	min_index = 0;
2076 	for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2077 		mid = left_edge[i] - right_edge[i];
2078 		if (mid < mid_min) {
2079 			mid_min = mid;
2080 			min_index = i;
2081 		}
2082 	}
2083 
2084 	/*
2085 	 * -mid_min/2 represents the amount that we need to move DQS.
2086 	 * If mid_min is odd and positive we'll need to add one to
2087 	 * make sure the rounding in further calculations is correct
2088 	 * (always bias to the right), so just add 1 for all positive values.
2089 	 */
2090 	if (mid_min > 0)
2091 		mid_min++;
2092 
2093 	mid_min = mid_min / 2;
2094 
2095 	debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2096 		   __func__, __LINE__, mid_min, min_index);
2097 
2098 	/* Determine the amount we can change DQS (which is -mid_min) */
2099 	orig_mid_min = mid_min;
2100 	new_dqs = start_dqs - mid_min;
2101 	if (new_dqs > IO_DQS_IN_DELAY_MAX)
2102 		new_dqs = IO_DQS_IN_DELAY_MAX;
2103 	else if (new_dqs < 0)
2104 		new_dqs = 0;
2105 
2106 	mid_min = start_dqs - new_dqs;
2107 	debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2108 		   mid_min, new_dqs);
2109 
2110 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2111 		if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2112 			mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2113 		else if (start_dqs_en - mid_min < 0)
2114 			mid_min += start_dqs_en - mid_min;
2115 	}
2116 	new_dqs = start_dqs - mid_min;
2117 
2118 	debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2119 		   new_dqs=%d mid_min=%d\n", start_dqs,
2120 		   IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2121 		   new_dqs, mid_min);
2122 
2123 	/* Initialize data for export structures */
2124 	dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2125 	dq_margin  = IO_IO_IN_DELAY_MAX + 1;
2126 
2127 	/* add delay to bring centre of all DQ windows to the same "level" */
2128 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2129 		/* Use values before divide by 2 to reduce round off error */
2130 		shift_dq = (left_edge[i] - right_edge[i] -
2131 			(left_edge[min_index] - right_edge[min_index]))/2  +
2132 			(orig_mid_min - mid_min);
2133 
2134 		debug_cond(DLEVEL == 2, "vfifo_center: before: \
2135 			   shift_dq[%u]=%d\n", i, shift_dq);
2136 
2137 		addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
2138 		temp_dq_in_delay1 = readl(addr + (p << 2));
2139 		temp_dq_in_delay2 = readl(addr + (i << 2));
2140 
2141 		if (shift_dq + (int32_t)temp_dq_in_delay1 >
2142 			(int32_t)IO_IO_IN_DELAY_MAX) {
2143 			shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2144 		} else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2145 			shift_dq = -(int32_t)temp_dq_in_delay1;
2146 		}
2147 		debug_cond(DLEVEL == 2, "vfifo_center: after: \
2148 			   shift_dq[%u]=%d\n", i, shift_dq);
2149 		final_dq[i] = temp_dq_in_delay1 + shift_dq;
2150 		scc_mgr_set_dq_in_delay(p, final_dq[i]);
2151 		scc_mgr_load_dq(p);
2152 
2153 		debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2154 			   left_edge[i] - shift_dq + (-mid_min),
2155 			   right_edge[i] + shift_dq - (-mid_min));
2156 		/* To determine values for export structures */
2157 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2158 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
2159 
2160 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2161 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2162 	}
2163 
2164 	final_dqs = new_dqs;
2165 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2166 		final_dqs_en = start_dqs_en - mid_min;
2167 
2168 	/* Move DQS-en */
2169 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2170 		scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2171 		scc_mgr_load_dqs(read_group);
2172 	}
2173 
2174 	/* Move DQS */
2175 	scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2176 	scc_mgr_load_dqs(read_group);
2177 	debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2178 		   dqs_margin=%d", __func__, __LINE__,
2179 		   dq_margin, dqs_margin);
2180 
2181 	/*
2182 	 * Do not remove this line as it makes sure all of our decisions
2183 	 * have been applied. Apply the update bit.
2184 	 */
2185 	writel(0, &sdr_scc_mgr->update);
2186 
2187 	return (dq_margin >= 0) && (dqs_margin >= 0);
2188 }
2189 
2190 /**
2191  * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2192  * @rw_group:	Read/Write Group
2193  * @phase:	DQ/DQS phase
2194  *
2195  * Because initially no communication ca be reliably performed with the memory
2196  * device, the sequencer uses a guaranteed write mechanism to write data into
2197  * the memory device.
2198  */
2199 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2200 						 const u32 phase)
2201 {
2202 	u32 bit_chk;
2203 	int ret;
2204 
2205 	/* Set a particular DQ/DQS phase. */
2206 	scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2207 
2208 	debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
2209 		   __func__, __LINE__, rw_group, phase);
2210 
2211 	/*
2212 	 * Altera EMI_RM 2015.05.04 :: Figure 1-25
2213 	 * Load up the patterns used by read calibration using the
2214 	 * current DQDQS phase.
2215 	 */
2216 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2217 
2218 	if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2219 		return 0;
2220 
2221 	/*
2222 	 * Altera EMI_RM 2015.05.04 :: Figure 1-26
2223 	 * Back-to-Back reads of the patterns used for calibration.
2224 	 */
2225 	ret = rw_mgr_mem_calibrate_read_test_patterns_all_ranks(rw_group, 1,
2226 								&bit_chk);
2227 	if (!ret) {	/* FIXME: 0 means failure in this old code :-( */
2228 		debug_cond(DLEVEL == 1,
2229 			   "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2230 			   __func__, __LINE__, rw_group, phase);
2231 		return -EIO;
2232 	}
2233 
2234 	return 0;
2235 }
2236 
2237 /**
2238  * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2239  * @rw_group:		Read/Write Group
2240  * @test_bgn:		Rank at which the test begins
2241  *
2242  * Stage 1: Calibrate the read valid prediction FIFO.
2243  *
2244  * This function implements UniPHY calibration Stage 1, as explained in
2245  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2246  *
2247  * - read valid prediction will consist of finding:
2248  *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2249  *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
2250  *  - we also do a per-bit deskew on the DQ lines.
2251  */
2252 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2253 {
2254 	uint32_t p, d, rank_bgn, sr;
2255 	uint32_t dtaps_per_ptap;
2256 	uint32_t grp_calibrated;
2257 	uint32_t failed_substage;
2258 
2259 	int ret;
2260 
2261 	debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2262 
2263 	/* Update info for sims */
2264 	reg_file_set_group(rw_group);
2265 	reg_file_set_stage(CAL_STAGE_VFIFO);
2266 	reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2267 
2268 	failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2269 
2270 	/* USER Determine number of delay taps for each phase tap. */
2271 	dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2272 				      IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
2273 
2274 	for (d = 0; d <= dtaps_per_ptap; d += 2) {
2275 		/*
2276 		 * In RLDRAMX we may be messing the delay of pins in
2277 		 * the same write rw_group but outside of the current read
2278 		 * the rw_group, but that's ok because we haven't calibrated
2279 		 * output side yet.
2280 		 */
2281 		if (d > 0) {
2282 			scc_mgr_apply_group_all_out_delay_add_all_ranks(
2283 								rw_group, d);
2284 		}
2285 
2286 		for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
2287 			/* 1) Guaranteed Write */
2288 			ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2289 			if (ret)
2290 				break;
2291 
2292 			/* case:56390 */
2293 			if (!rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
2294 			    (rw_group, rw_group, test_bgn)) {
2295 				failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2296 				continue;
2297 			}
2298 
2299 			/*
2300 			 * USER Read per-bit deskew can be done on a
2301 			 * per shadow register basis.
2302 			 */
2303 			grp_calibrated = 1;
2304 			for (rank_bgn = 0, sr = 0;
2305 			     rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2306 			     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2307 				/*
2308 				 * Determine if this set of ranks
2309 				 * should be skipped entirely.
2310 				 */
2311 				if (param->skip_shadow_regs[sr])
2312 					continue;
2313 				/*
2314 				 * If doing read after write
2315 				 * calibration, do not update
2316 				 * FOM, now - do it then.
2317 				 */
2318 				if (rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2319 							rw_group, rw_group,
2320 							test_bgn, 1, 0))
2321 					continue;
2322 
2323 				grp_calibrated = 0;
2324 				failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2325 			}
2326 
2327 			if (grp_calibrated)
2328 				goto cal_done_ok;
2329 		}
2330 	}
2331 
2332 	/* Calibration Stage 1 failed. */
2333 	set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2334 	return 0;
2335 
2336 	/* Calibration Stage 1 completed OK. */
2337 cal_done_ok:
2338 	/*
2339 	 * Reset the delay chains back to zero if they have moved > 1
2340 	 * (check for > 1 because loop will increase d even when pass in
2341 	 * first case).
2342 	 */
2343 	if (d > 2)
2344 		scc_mgr_zero_group(rw_group, 1);
2345 
2346 	return 1;
2347 }
2348 
2349 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2350 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2351 					       uint32_t test_bgn)
2352 {
2353 	uint32_t rank_bgn, sr;
2354 	uint32_t grp_calibrated;
2355 	uint32_t write_group;
2356 
2357 	debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2358 
2359 	/* update info for sims */
2360 
2361 	reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2362 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2363 
2364 	write_group = read_group;
2365 
2366 	/* update info for sims */
2367 	reg_file_set_group(read_group);
2368 
2369 	grp_calibrated = 1;
2370 	/* Read per-bit deskew can be done on a per shadow register basis */
2371 	for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2372 		rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2373 		/* Determine if this set of ranks should be skipped entirely */
2374 		if (!param->skip_shadow_regs[sr]) {
2375 		/* This is the last calibration round, update FOM here */
2376 			if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2377 								write_group,
2378 								read_group,
2379 								test_bgn, 0,
2380 								1)) {
2381 				grp_calibrated = 0;
2382 			}
2383 		}
2384 	}
2385 
2386 
2387 	if (grp_calibrated == 0) {
2388 		set_failing_group_stage(write_group,
2389 					CAL_STAGE_VFIFO_AFTER_WRITES,
2390 					CAL_SUBSTAGE_VFIFO_CENTER);
2391 		return 0;
2392 	}
2393 
2394 	return 1;
2395 }
2396 
2397 /* Calibrate LFIFO to find smallest read latency */
2398 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2399 {
2400 	uint32_t found_one;
2401 	uint32_t bit_chk;
2402 
2403 	debug("%s:%d\n", __func__, __LINE__);
2404 
2405 	/* update info for sims */
2406 	reg_file_set_stage(CAL_STAGE_LFIFO);
2407 	reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2408 
2409 	/* Load up the patterns used by read calibration for all ranks */
2410 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2411 	found_one = 0;
2412 
2413 	do {
2414 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2415 		debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2416 			   __func__, __LINE__, gbl->curr_read_lat);
2417 
2418 		if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2419 							      NUM_READ_TESTS,
2420 							      PASS_ALL_BITS,
2421 							      &bit_chk, 1)) {
2422 			break;
2423 		}
2424 
2425 		found_one = 1;
2426 		/* reduce read latency and see if things are working */
2427 		/* correctly */
2428 		gbl->curr_read_lat--;
2429 	} while (gbl->curr_read_lat > 0);
2430 
2431 	/* reset the fifos to get pointers to known state */
2432 
2433 	writel(0, &phy_mgr_cmd->fifo_reset);
2434 
2435 	if (found_one) {
2436 		/* add a fudge factor to the read latency that was determined */
2437 		gbl->curr_read_lat += 2;
2438 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2439 		debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2440 			   read_lat=%u\n", __func__, __LINE__,
2441 			   gbl->curr_read_lat);
2442 		return 1;
2443 	} else {
2444 		set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2445 					CAL_SUBSTAGE_READ_LATENCY);
2446 
2447 		debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2448 			   read_lat=%u\n", __func__, __LINE__,
2449 			   gbl->curr_read_lat);
2450 		return 0;
2451 	}
2452 }
2453 
2454 /*
2455  * issue write test command.
2456  * two variants are provided. one that just tests a write pattern and
2457  * another that tests datamask functionality.
2458  */
2459 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2460 						  uint32_t test_dm)
2461 {
2462 	uint32_t mcc_instruction;
2463 	uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2464 		ENABLE_SUPER_QUICK_CALIBRATION);
2465 	uint32_t rw_wl_nop_cycles;
2466 	uint32_t addr;
2467 
2468 	/*
2469 	 * Set counter and jump addresses for the right
2470 	 * number of NOP cycles.
2471 	 * The number of supported NOP cycles can range from -1 to infinity
2472 	 * Three different cases are handled:
2473 	 *
2474 	 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2475 	 *    mechanism will be used to insert the right number of NOPs
2476 	 *
2477 	 * 2. For a number of NOP cycles equals to 0, the micro-instruction
2478 	 *    issuing the write command will jump straight to the
2479 	 *    micro-instruction that turns on DQS (for DDRx), or outputs write
2480 	 *    data (for RLD), skipping
2481 	 *    the NOP micro-instruction all together
2482 	 *
2483 	 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2484 	 *    turned on in the same micro-instruction that issues the write
2485 	 *    command. Then we need
2486 	 *    to directly jump to the micro-instruction that sends out the data
2487 	 *
2488 	 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2489 	 *       (2 and 3). One jump-counter (0) is used to perform multiple
2490 	 *       write-read operations.
2491 	 *       one counter left to issue this command in "multiple-group" mode
2492 	 */
2493 
2494 	rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2495 
2496 	if (rw_wl_nop_cycles == -1) {
2497 		/*
2498 		 * CNTR 2 - We want to execute the special write operation that
2499 		 * turns on DQS right away and then skip directly to the
2500 		 * instruction that sends out the data. We set the counter to a
2501 		 * large number so that the jump is always taken.
2502 		 */
2503 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2504 
2505 		/* CNTR 3 - Not used */
2506 		if (test_dm) {
2507 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
2508 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
2509 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2510 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2511 			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2512 		} else {
2513 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
2514 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
2515 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2516 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2517 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2518 		}
2519 	} else if (rw_wl_nop_cycles == 0) {
2520 		/*
2521 		 * CNTR 2 - We want to skip the NOP operation and go straight
2522 		 * to the DQS enable instruction. We set the counter to a large
2523 		 * number so that the jump is always taken.
2524 		 */
2525 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2526 
2527 		/* CNTR 3 - Not used */
2528 		if (test_dm) {
2529 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2530 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
2531 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2532 		} else {
2533 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2534 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
2535 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2536 		}
2537 	} else {
2538 		/*
2539 		 * CNTR 2 - In this case we want to execute the next instruction
2540 		 * and NOT take the jump. So we set the counter to 0. The jump
2541 		 * address doesn't count.
2542 		 */
2543 		writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
2544 		writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2545 
2546 		/*
2547 		 * CNTR 3 - Set the nop counter to the number of cycles we
2548 		 * need to loop for, minus 1.
2549 		 */
2550 		writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
2551 		if (test_dm) {
2552 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2553 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2554 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2555 		} else {
2556 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2557 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2558 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2559 		}
2560 	}
2561 
2562 	writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
2563 		  RW_MGR_RESET_READ_DATAPATH_OFFSET);
2564 
2565 	if (quick_write_mode)
2566 		writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
2567 	else
2568 		writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
2569 
2570 	writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
2571 
2572 	/*
2573 	 * CNTR 1 - This is used to ensure enough time elapses
2574 	 * for read data to come back.
2575 	 */
2576 	writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
2577 
2578 	if (test_dm) {
2579 		writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
2580 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2581 	} else {
2582 		writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
2583 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2584 	}
2585 
2586 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
2587 	writel(mcc_instruction, addr + (group << 2));
2588 }
2589 
2590 /* Test writes, can check for a single bit pass or multiple bit pass */
2591 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2592 	uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2593 	uint32_t *bit_chk, uint32_t all_ranks)
2594 {
2595 	uint32_t r;
2596 	uint32_t correct_mask_vg;
2597 	uint32_t tmp_bit_chk;
2598 	uint32_t vg;
2599 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2600 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2601 	uint32_t addr_rw_mgr;
2602 	uint32_t base_rw_mgr;
2603 
2604 	*bit_chk = param->write_correct_mask;
2605 	correct_mask_vg = param->write_correct_mask_vg;
2606 
2607 	for (r = rank_bgn; r < rank_end; r++) {
2608 		if (param->skip_ranks[r]) {
2609 			/* request to skip the rank */
2610 			continue;
2611 		}
2612 
2613 		/* set rank */
2614 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2615 
2616 		tmp_bit_chk = 0;
2617 		addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
2618 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2619 			/* reset the fifos to get pointers to known state */
2620 			writel(0, &phy_mgr_cmd->fifo_reset);
2621 
2622 			tmp_bit_chk = tmp_bit_chk <<
2623 				(RW_MGR_MEM_DQ_PER_WRITE_DQS /
2624 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2625 			rw_mgr_mem_calibrate_write_test_issue(write_group *
2626 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2627 				use_dm);
2628 
2629 			base_rw_mgr = readl(addr_rw_mgr);
2630 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2631 			if (vg == 0)
2632 				break;
2633 		}
2634 		*bit_chk &= tmp_bit_chk;
2635 	}
2636 
2637 	if (all_correct) {
2638 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2639 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2640 			   %u => %lu", write_group, use_dm,
2641 			   *bit_chk, param->write_correct_mask,
2642 			   (long unsigned int)(*bit_chk ==
2643 			   param->write_correct_mask));
2644 		return *bit_chk == param->write_correct_mask;
2645 	} else {
2646 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2647 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2648 		       write_group, use_dm, *bit_chk);
2649 		debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2650 			(long unsigned int)(*bit_chk != 0));
2651 		return *bit_chk != 0x00;
2652 	}
2653 }
2654 
2655 /*
2656  * center all windows. do per-bit-deskew to possibly increase size of
2657  * certain windows.
2658  */
2659 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2660 	uint32_t write_group, uint32_t test_bgn)
2661 {
2662 	uint32_t i, p, min_index;
2663 	int32_t d;
2664 	/*
2665 	 * Store these as signed since there are comparisons with
2666 	 * signed numbers.
2667 	 */
2668 	uint32_t bit_chk;
2669 	uint32_t sticky_bit_chk;
2670 	int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2671 	int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2672 	int32_t mid;
2673 	int32_t mid_min, orig_mid_min;
2674 	int32_t new_dqs, start_dqs, shift_dq;
2675 	int32_t dq_margin, dqs_margin, dm_margin;
2676 	uint32_t stop;
2677 	uint32_t temp_dq_out1_delay;
2678 	uint32_t addr;
2679 
2680 	debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2681 
2682 	dm_margin = 0;
2683 
2684 	addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2685 	start_dqs = readl(addr +
2686 			  (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2687 
2688 	/* per-bit deskew */
2689 
2690 	/*
2691 	 * set the left and right edge of each bit to an illegal value
2692 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2693 	 */
2694 	sticky_bit_chk = 0;
2695 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2696 		left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2697 		right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2698 	}
2699 
2700 	/* Search for the left edge of the window for each bit */
2701 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
2702 		scc_mgr_apply_group_dq_out1_delay(write_group, d);
2703 
2704 		writel(0, &sdr_scc_mgr->update);
2705 
2706 		/*
2707 		 * Stop searching when the read test doesn't pass AND when
2708 		 * we've seen a passing read on every bit.
2709 		 */
2710 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2711 			0, PASS_ONE_BIT, &bit_chk, 0);
2712 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2713 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2714 		debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
2715 			   == %u && %u [bit_chk= %u ]\n",
2716 			d, sticky_bit_chk, param->write_correct_mask,
2717 			stop, bit_chk);
2718 
2719 		if (stop == 1) {
2720 			break;
2721 		} else {
2722 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2723 				if (bit_chk & 1) {
2724 					/*
2725 					 * Remember a passing test as the
2726 					 * left_edge.
2727 					 */
2728 					left_edge[i] = d;
2729 				} else {
2730 					/*
2731 					 * If a left edge has not been seen
2732 					 * yet, then a future passing test will
2733 					 * mark this edge as the right edge.
2734 					 */
2735 					if (left_edge[i] ==
2736 						IO_IO_OUT1_DELAY_MAX + 1) {
2737 						right_edge[i] = -(d + 1);
2738 					}
2739 				}
2740 				debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
2741 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2742 					   (int)(bit_chk & 1), i, left_edge[i]);
2743 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2744 				       right_edge[i]);
2745 				bit_chk = bit_chk >> 1;
2746 			}
2747 		}
2748 	}
2749 
2750 	/* Reset DQ delay chains to 0 */
2751 	scc_mgr_apply_group_dq_out1_delay(0);
2752 	sticky_bit_chk = 0;
2753 	for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
2754 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2755 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
2756 			   i, left_edge[i], i, right_edge[i]);
2757 
2758 		/*
2759 		 * Check for cases where we haven't found the left edge,
2760 		 * which makes our assignment of the the right edge invalid.
2761 		 * Reset it to the illegal value.
2762 		 */
2763 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
2764 		    (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
2765 			right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2766 			debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
2767 				   right_edge[%u]: %d\n", __func__, __LINE__,
2768 				   i, right_edge[i]);
2769 		}
2770 
2771 		/*
2772 		 * Reset sticky bit (except for bits where we have
2773 		 * seen the left edge).
2774 		 */
2775 		sticky_bit_chk = sticky_bit_chk << 1;
2776 		if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
2777 			sticky_bit_chk = sticky_bit_chk | 1;
2778 
2779 		if (i == 0)
2780 			break;
2781 	}
2782 
2783 	/* Search for the right edge of the window for each bit */
2784 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
2785 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2786 							d + start_dqs);
2787 
2788 		writel(0, &sdr_scc_mgr->update);
2789 
2790 		/*
2791 		 * Stop searching when the read test doesn't pass AND when
2792 		 * we've seen a passing read on every bit.
2793 		 */
2794 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2795 			0, PASS_ONE_BIT, &bit_chk, 0);
2796 
2797 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2798 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2799 
2800 		debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
2801 			   %u && %u\n", d, sticky_bit_chk,
2802 			   param->write_correct_mask, stop);
2803 
2804 		if (stop == 1) {
2805 			if (d == 0) {
2806 				for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
2807 					i++) {
2808 					/* d = 0 failed, but it passed when
2809 					testing the left edge, so it must be
2810 					marginal, set it to -1 */
2811 					if (right_edge[i] ==
2812 						IO_IO_OUT1_DELAY_MAX + 1 &&
2813 						left_edge[i] !=
2814 						IO_IO_OUT1_DELAY_MAX + 1) {
2815 						right_edge[i] = -1;
2816 					}
2817 				}
2818 			}
2819 			break;
2820 		} else {
2821 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2822 				if (bit_chk & 1) {
2823 					/*
2824 					 * Remember a passing test as
2825 					 * the right_edge.
2826 					 */
2827 					right_edge[i] = d;
2828 				} else {
2829 					if (d != 0) {
2830 						/*
2831 						 * If a right edge has not
2832 						 * been seen yet, then a future
2833 						 * passing test will mark this
2834 						 * edge as the left edge.
2835 						 */
2836 						if (right_edge[i] ==
2837 						    IO_IO_OUT1_DELAY_MAX + 1)
2838 							left_edge[i] = -(d + 1);
2839 					} else {
2840 						/*
2841 						 * d = 0 failed, but it passed
2842 						 * when testing the left edge,
2843 						 * so it must be marginal, set
2844 						 * it to -1.
2845 						 */
2846 						if (right_edge[i] ==
2847 						    IO_IO_OUT1_DELAY_MAX + 1 &&
2848 						    left_edge[i] !=
2849 						    IO_IO_OUT1_DELAY_MAX + 1)
2850 							right_edge[i] = -1;
2851 						/*
2852 						 * If a right edge has not been
2853 						 * seen yet, then a future
2854 						 * passing test will mark this
2855 						 * edge as the left edge.
2856 						 */
2857 						else if (right_edge[i] ==
2858 							IO_IO_OUT1_DELAY_MAX +
2859 							1)
2860 							left_edge[i] = -(d + 1);
2861 					}
2862 				}
2863 				debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
2864 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2865 					   (int)(bit_chk & 1), i, left_edge[i]);
2866 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2867 					   right_edge[i]);
2868 				bit_chk = bit_chk >> 1;
2869 			}
2870 		}
2871 	}
2872 
2873 	/* Check that all bits have a window */
2874 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2875 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2876 			   %d right_edge[%u]: %d", __func__, __LINE__,
2877 			   i, left_edge[i], i, right_edge[i]);
2878 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
2879 		    (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
2880 			set_failing_group_stage(test_bgn + i,
2881 						CAL_STAGE_WRITES,
2882 						CAL_SUBSTAGE_WRITES_CENTER);
2883 			return 0;
2884 		}
2885 	}
2886 
2887 	/* Find middle of window for each DQ bit */
2888 	mid_min = left_edge[0] - right_edge[0];
2889 	min_index = 0;
2890 	for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2891 		mid = left_edge[i] - right_edge[i];
2892 		if (mid < mid_min) {
2893 			mid_min = mid;
2894 			min_index = i;
2895 		}
2896 	}
2897 
2898 	/*
2899 	 * -mid_min/2 represents the amount that we need to move DQS.
2900 	 * If mid_min is odd and positive we'll need to add one to
2901 	 * make sure the rounding in further calculations is correct
2902 	 * (always bias to the right), so just add 1 for all positive values.
2903 	 */
2904 	if (mid_min > 0)
2905 		mid_min++;
2906 	mid_min = mid_min / 2;
2907 	debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
2908 		   __LINE__, mid_min);
2909 
2910 	/* Determine the amount we can change DQS (which is -mid_min) */
2911 	orig_mid_min = mid_min;
2912 	new_dqs = start_dqs;
2913 	mid_min = 0;
2914 	debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
2915 		   mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
2916 	/* Initialize data for export structures */
2917 	dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
2918 	dq_margin  = IO_IO_OUT1_DELAY_MAX + 1;
2919 
2920 	/* add delay to bring centre of all DQ windows to the same "level" */
2921 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
2922 		/* Use values before divide by 2 to reduce round off error */
2923 		shift_dq = (left_edge[i] - right_edge[i] -
2924 			(left_edge[min_index] - right_edge[min_index]))/2  +
2925 		(orig_mid_min - mid_min);
2926 
2927 		debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
2928 			   [%u]=%d\n", __func__, __LINE__, i, shift_dq);
2929 
2930 		addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2931 		temp_dq_out1_delay = readl(addr + (i << 2));
2932 		if (shift_dq + (int32_t)temp_dq_out1_delay >
2933 			(int32_t)IO_IO_OUT1_DELAY_MAX) {
2934 			shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
2935 		} else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
2936 			shift_dq = -(int32_t)temp_dq_out1_delay;
2937 		}
2938 		debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
2939 			   i, shift_dq);
2940 		scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq);
2941 		scc_mgr_load_dq(i);
2942 
2943 		debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
2944 			   left_edge[i] - shift_dq + (-mid_min),
2945 			   right_edge[i] + shift_dq - (-mid_min));
2946 		/* To determine values for export structures */
2947 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2948 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
2949 
2950 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2951 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2952 	}
2953 
2954 	/* Move DQS */
2955 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
2956 	writel(0, &sdr_scc_mgr->update);
2957 
2958 	/* Centre DM */
2959 	debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
2960 
2961 	/*
2962 	 * set the left and right edge of each bit to an illegal value,
2963 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
2964 	 */
2965 	left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
2966 	right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
2967 	int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2968 	int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2969 	int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
2970 	int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
2971 	int32_t win_best = 0;
2972 
2973 	/* Search for the/part of the window with DM shift */
2974 	for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
2975 		scc_mgr_apply_group_dm_out1_delay(d);
2976 		writel(0, &sdr_scc_mgr->update);
2977 
2978 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2979 						    PASS_ALL_BITS, &bit_chk,
2980 						    0)) {
2981 			/* USE Set current end of the window */
2982 			end_curr = -d;
2983 			/*
2984 			 * If a starting edge of our window has not been seen
2985 			 * this is our current start of the DM window.
2986 			 */
2987 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
2988 				bgn_curr = -d;
2989 
2990 			/*
2991 			 * If current window is bigger than best seen.
2992 			 * Set best seen to be current window.
2993 			 */
2994 			if ((end_curr-bgn_curr+1) > win_best) {
2995 				win_best = end_curr-bgn_curr+1;
2996 				bgn_best = bgn_curr;
2997 				end_best = end_curr;
2998 			}
2999 		} else {
3000 			/* We just saw a failing test. Reset temp edge */
3001 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3002 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3003 			}
3004 		}
3005 
3006 
3007 	/* Reset DM delay chains to 0 */
3008 	scc_mgr_apply_group_dm_out1_delay(0);
3009 
3010 	/*
3011 	 * Check to see if the current window nudges up aganist 0 delay.
3012 	 * If so we need to continue the search by shifting DQS otherwise DQS
3013 	 * search begins as a new search. */
3014 	if (end_curr != 0) {
3015 		bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3016 		end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3017 	}
3018 
3019 	/* Search for the/part of the window with DQS shifts */
3020 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
3021 		/*
3022 		 * Note: This only shifts DQS, so are we limiting ourselve to
3023 		 * width of DQ unnecessarily.
3024 		 */
3025 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
3026 							d + new_dqs);
3027 
3028 		writel(0, &sdr_scc_mgr->update);
3029 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3030 						    PASS_ALL_BITS, &bit_chk,
3031 						    0)) {
3032 			/* USE Set current end of the window */
3033 			end_curr = d;
3034 			/*
3035 			 * If a beginning edge of our window has not been seen
3036 			 * this is our current begin of the DM window.
3037 			 */
3038 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3039 				bgn_curr = d;
3040 
3041 			/*
3042 			 * If current window is bigger than best seen. Set best
3043 			 * seen to be current window.
3044 			 */
3045 			if ((end_curr-bgn_curr+1) > win_best) {
3046 				win_best = end_curr-bgn_curr+1;
3047 				bgn_best = bgn_curr;
3048 				end_best = end_curr;
3049 			}
3050 		} else {
3051 			/* We just saw a failing test. Reset temp edge */
3052 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3053 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3054 
3055 			/* Early exit optimization: if ther remaining delay
3056 			chain space is less than already seen largest window
3057 			we can exit */
3058 			if ((win_best-1) >
3059 				(IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3060 					break;
3061 				}
3062 			}
3063 		}
3064 
3065 	/* assign left and right edge for cal and reporting; */
3066 	left_edge[0] = -1*bgn_best;
3067 	right_edge[0] = end_best;
3068 
3069 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3070 		   __LINE__, left_edge[0], right_edge[0]);
3071 
3072 	/* Move DQS (back to orig) */
3073 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3074 
3075 	/* Move DM */
3076 
3077 	/* Find middle of window for the DM bit */
3078 	mid = (left_edge[0] - right_edge[0]) / 2;
3079 
3080 	/* only move right, since we are not moving DQS/DQ */
3081 	if (mid < 0)
3082 		mid = 0;
3083 
3084 	/* dm_marign should fail if we never find a window */
3085 	if (win_best == 0)
3086 		dm_margin = -1;
3087 	else
3088 		dm_margin = left_edge[0] - mid;
3089 
3090 	scc_mgr_apply_group_dm_out1_delay(mid);
3091 	writel(0, &sdr_scc_mgr->update);
3092 
3093 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3094 		   dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3095 		   right_edge[0], mid, dm_margin);
3096 	/* Export values */
3097 	gbl->fom_out += dq_margin + dqs_margin;
3098 
3099 	debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3100 		   dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3101 		   dq_margin, dqs_margin, dm_margin);
3102 
3103 	/*
3104 	 * Do not remove this line as it makes sure all of our
3105 	 * decisions have been applied.
3106 	 */
3107 	writel(0, &sdr_scc_mgr->update);
3108 	return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3109 }
3110 
3111 /* calibrate the write operations */
3112 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
3113 	uint32_t test_bgn)
3114 {
3115 	/* update info for sims */
3116 	debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
3117 
3118 	reg_file_set_stage(CAL_STAGE_WRITES);
3119 	reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3120 
3121 	reg_file_set_group(g);
3122 
3123 	if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
3124 		set_failing_group_stage(g, CAL_STAGE_WRITES,
3125 					CAL_SUBSTAGE_WRITES_CENTER);
3126 		return 0;
3127 	}
3128 
3129 	return 1;
3130 }
3131 
3132 /**
3133  * mem_precharge_and_activate() - Precharge all banks and activate
3134  *
3135  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3136  */
3137 static void mem_precharge_and_activate(void)
3138 {
3139 	int r;
3140 
3141 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3142 		/* Test if the rank should be skipped. */
3143 		if (param->skip_ranks[r])
3144 			continue;
3145 
3146 		/* Set rank. */
3147 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3148 
3149 		/* Precharge all banks. */
3150 		writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3151 					     RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3152 
3153 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3154 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3155 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
3156 
3157 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3158 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3159 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
3160 
3161 		/* Activate rows. */
3162 		writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3163 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3164 	}
3165 }
3166 
3167 /**
3168  * mem_init_latency() - Configure memory RLAT and WLAT settings
3169  *
3170  * Configure memory RLAT and WLAT parameters.
3171  */
3172 static void mem_init_latency(void)
3173 {
3174 	/*
3175 	 * For AV/CV, LFIFO is hardened and always runs at full rate
3176 	 * so max latency in AFI clocks, used here, is correspondingly
3177 	 * smaller.
3178 	 */
3179 	const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3180 	u32 rlat, wlat;
3181 
3182 	debug("%s:%d\n", __func__, __LINE__);
3183 
3184 	/*
3185 	 * Read in write latency.
3186 	 * WL for Hard PHY does not include additive latency.
3187 	 */
3188 	wlat = readl(&data_mgr->t_wl_add);
3189 	wlat += readl(&data_mgr->mem_t_add);
3190 
3191 	gbl->rw_wl_nop_cycles = wlat - 1;
3192 
3193 	/* Read in readl latency. */
3194 	rlat = readl(&data_mgr->t_rl_add);
3195 
3196 	/* Set a pretty high read latency initially. */
3197 	gbl->curr_read_lat = rlat + 16;
3198 	if (gbl->curr_read_lat > max_latency)
3199 		gbl->curr_read_lat = max_latency;
3200 
3201 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3202 
3203 	/* Advertise write latency. */
3204 	writel(wlat, &phy_mgr_cfg->afi_wlat);
3205 }
3206 
3207 /**
3208  * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3209  *
3210  * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3211  */
3212 static void mem_skip_calibrate(void)
3213 {
3214 	uint32_t vfifo_offset;
3215 	uint32_t i, j, r;
3216 
3217 	debug("%s:%d\n", __func__, __LINE__);
3218 	/* Need to update every shadow register set used by the interface */
3219 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3220 	     r += NUM_RANKS_PER_SHADOW_REG) {
3221 		/*
3222 		 * Set output phase alignment settings appropriate for
3223 		 * skip calibration.
3224 		 */
3225 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3226 			scc_mgr_set_dqs_en_phase(i, 0);
3227 #if IO_DLL_CHAIN_LENGTH == 6
3228 			scc_mgr_set_dqdqs_output_phase(i, 6);
3229 #else
3230 			scc_mgr_set_dqdqs_output_phase(i, 7);
3231 #endif
3232 			/*
3233 			 * Case:33398
3234 			 *
3235 			 * Write data arrives to the I/O two cycles before write
3236 			 * latency is reached (720 deg).
3237 			 *   -> due to bit-slip in a/c bus
3238 			 *   -> to allow board skew where dqs is longer than ck
3239 			 *      -> how often can this happen!?
3240 			 *      -> can claim back some ptaps for high freq
3241 			 *       support if we can relax this, but i digress...
3242 			 *
3243 			 * The write_clk leads mem_ck by 90 deg
3244 			 * The minimum ptap of the OPA is 180 deg
3245 			 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3246 			 * The write_clk is always delayed by 2 ptaps
3247 			 *
3248 			 * Hence, to make DQS aligned to CK, we need to delay
3249 			 * DQS by:
3250 			 *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3251 			 *
3252 			 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3253 			 * gives us the number of ptaps, which simplies to:
3254 			 *
3255 			 *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3256 			 */
3257 			scc_mgr_set_dqdqs_output_phase(i,
3258 					1.25 * IO_DLL_CHAIN_LENGTH - 2);
3259 		}
3260 		writel(0xff, &sdr_scc_mgr->dqs_ena);
3261 		writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3262 
3263 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3264 			writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3265 				  SCC_MGR_GROUP_COUNTER_OFFSET);
3266 		}
3267 		writel(0xff, &sdr_scc_mgr->dq_ena);
3268 		writel(0xff, &sdr_scc_mgr->dm_ena);
3269 		writel(0, &sdr_scc_mgr->update);
3270 	}
3271 
3272 	/* Compensate for simulation model behaviour */
3273 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3274 		scc_mgr_set_dqs_bus_in_delay(i, 10);
3275 		scc_mgr_load_dqs(i);
3276 	}
3277 	writel(0, &sdr_scc_mgr->update);
3278 
3279 	/*
3280 	 * ArriaV has hard FIFOs that can only be initialized by incrementing
3281 	 * in sequencer.
3282 	 */
3283 	vfifo_offset = CALIB_VFIFO_OFFSET;
3284 	for (j = 0; j < vfifo_offset; j++)
3285 		writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3286 	writel(0, &phy_mgr_cmd->fifo_reset);
3287 
3288 	/*
3289 	 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3290 	 * setting from generation-time constant.
3291 	 */
3292 	gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3293 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3294 }
3295 
3296 /**
3297  * mem_calibrate() - Memory calibration entry point.
3298  *
3299  * Perform memory calibration.
3300  */
3301 static uint32_t mem_calibrate(void)
3302 {
3303 	uint32_t i;
3304 	uint32_t rank_bgn, sr;
3305 	uint32_t write_group, write_test_bgn;
3306 	uint32_t read_group, read_test_bgn;
3307 	uint32_t run_groups, current_run;
3308 	uint32_t failing_groups = 0;
3309 	uint32_t group_failed = 0;
3310 
3311 	const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
3312 				RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
3313 
3314 	debug("%s:%d\n", __func__, __LINE__);
3315 
3316 	/* Initialize the data settings */
3317 	gbl->error_substage = CAL_SUBSTAGE_NIL;
3318 	gbl->error_stage = CAL_STAGE_NIL;
3319 	gbl->error_group = 0xff;
3320 	gbl->fom_in = 0;
3321 	gbl->fom_out = 0;
3322 
3323 	/* Initialize WLAT and RLAT. */
3324 	mem_init_latency();
3325 
3326 	/* Initialize bit slips. */
3327 	mem_precharge_and_activate();
3328 
3329 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3330 		writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3331 			  SCC_MGR_GROUP_COUNTER_OFFSET);
3332 		/* Only needed once to set all groups, pins, DQ, DQS, DM. */
3333 		if (i == 0)
3334 			scc_mgr_set_hhp_extras();
3335 
3336 		scc_set_bypass_mode(i);
3337 	}
3338 
3339 	/* Calibration is skipped. */
3340 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3341 		/*
3342 		 * Set VFIFO and LFIFO to instant-on settings in skip
3343 		 * calibration mode.
3344 		 */
3345 		mem_skip_calibrate();
3346 
3347 		/*
3348 		 * Do not remove this line as it makes sure all of our
3349 		 * decisions have been applied.
3350 		 */
3351 		writel(0, &sdr_scc_mgr->update);
3352 		return 1;
3353 	}
3354 
3355 	/* Calibration is not skipped. */
3356 	for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3357 		/*
3358 		 * Zero all delay chain/phase settings for all
3359 		 * groups and all shadow register sets.
3360 		 */
3361 		scc_mgr_zero_all();
3362 
3363 		run_groups = ~param->skip_groups;
3364 
3365 		for (write_group = 0, write_test_bgn = 0; write_group
3366 			< RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3367 			write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3368 
3369 			/* Initialize the group failure */
3370 			group_failed = 0;
3371 
3372 			current_run = run_groups & ((1 <<
3373 				RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3374 			run_groups = run_groups >>
3375 				RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3376 
3377 			if (current_run == 0)
3378 				continue;
3379 
3380 			writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3381 					    SCC_MGR_GROUP_COUNTER_OFFSET);
3382 			scc_mgr_zero_group(write_group, 0);
3383 
3384 			for (read_group = write_group * rwdqs_ratio,
3385 			     read_test_bgn = 0;
3386 			     read_group < (write_group + 1) * rwdqs_ratio;
3387 			     read_group++,
3388 			     read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3389 				if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3390 					continue;
3391 
3392 				/* Calibrate the VFIFO */
3393 				if (rw_mgr_mem_calibrate_vfifo(read_group,
3394 							       read_test_bgn))
3395 					continue;
3396 
3397 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3398 					return 0;
3399 
3400 				/* The group failed, we're done. */
3401 				goto grp_failed;
3402 			}
3403 
3404 			/* Calibrate the output side */
3405 			for (rank_bgn = 0, sr = 0;
3406 			     rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
3407 			     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3408 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3409 					continue;
3410 
3411 				/* Not needed in quick mode! */
3412 				if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
3413 					continue;
3414 
3415 				/*
3416 				 * Determine if this set of ranks
3417 				 * should be skipped entirely.
3418 				 */
3419 				if (param->skip_shadow_regs[sr])
3420 					continue;
3421 
3422 				/* Calibrate WRITEs */
3423 				if (rw_mgr_mem_calibrate_writes(rank_bgn,
3424 						write_group, write_test_bgn))
3425 					continue;
3426 
3427 				group_failed = 1;
3428 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3429 					return 0;
3430 			}
3431 
3432 			/* Some group failed, we're done. */
3433 			if (group_failed)
3434 				goto grp_failed;
3435 
3436 			for (read_group = write_group * rwdqs_ratio,
3437 			     read_test_bgn = 0;
3438 			     read_group < (write_group + 1) * rwdqs_ratio;
3439 			     read_group++,
3440 			     read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3441 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3442 					continue;
3443 
3444 				if (rw_mgr_mem_calibrate_vfifo_end(read_group,
3445 								read_test_bgn))
3446 					continue;
3447 
3448 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3449 					return 0;
3450 
3451 				/* The group failed, we're done. */
3452 				goto grp_failed;
3453 			}
3454 
3455 			/* No group failed, continue as usual. */
3456 			continue;
3457 
3458 grp_failed:		/* A group failed, increment the counter. */
3459 			failing_groups++;
3460 		}
3461 
3462 		/*
3463 		 * USER If there are any failing groups then report
3464 		 * the failure.
3465 		 */
3466 		if (failing_groups != 0)
3467 			return 0;
3468 
3469 		if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3470 			continue;
3471 
3472 		/*
3473 		 * If we're skipping groups as part of debug,
3474 		 * don't calibrate LFIFO.
3475 		 */
3476 		if (param->skip_groups != 0)
3477 			continue;
3478 
3479 		/* Calibrate the LFIFO */
3480 		if (!rw_mgr_mem_calibrate_lfifo())
3481 			return 0;
3482 	}
3483 
3484 	/*
3485 	 * Do not remove this line as it makes sure all of our decisions
3486 	 * have been applied.
3487 	 */
3488 	writel(0, &sdr_scc_mgr->update);
3489 	return 1;
3490 }
3491 
3492 /**
3493  * run_mem_calibrate() - Perform memory calibration
3494  *
3495  * This function triggers the entire memory calibration procedure.
3496  */
3497 static int run_mem_calibrate(void)
3498 {
3499 	int pass;
3500 
3501 	debug("%s:%d\n", __func__, __LINE__);
3502 
3503 	/* Reset pass/fail status shown on afi_cal_success/fail */
3504 	writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3505 
3506 	/* Stop tracking manager. */
3507 	clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3508 
3509 	phy_mgr_initialize();
3510 	rw_mgr_mem_initialize();
3511 
3512 	/* Perform the actual memory calibration. */
3513 	pass = mem_calibrate();
3514 
3515 	mem_precharge_and_activate();
3516 	writel(0, &phy_mgr_cmd->fifo_reset);
3517 
3518 	/* Handoff. */
3519 	rw_mgr_mem_handoff();
3520 	/*
3521 	 * In Hard PHY this is a 2-bit control:
3522 	 * 0: AFI Mux Select
3523 	 * 1: DDIO Mux Select
3524 	 */
3525 	writel(0x2, &phy_mgr_cfg->mux_sel);
3526 
3527 	/* Start tracking manager. */
3528 	setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3529 
3530 	return pass;
3531 }
3532 
3533 /**
3534  * debug_mem_calibrate() - Report result of memory calibration
3535  * @pass:	Value indicating whether calibration passed or failed
3536  *
3537  * This function reports the results of the memory calibration
3538  * and writes debug information into the register file.
3539  */
3540 static void debug_mem_calibrate(int pass)
3541 {
3542 	uint32_t debug_info;
3543 
3544 	if (pass) {
3545 		printf("%s: CALIBRATION PASSED\n", __FILE__);
3546 
3547 		gbl->fom_in /= 2;
3548 		gbl->fom_out /= 2;
3549 
3550 		if (gbl->fom_in > 0xff)
3551 			gbl->fom_in = 0xff;
3552 
3553 		if (gbl->fom_out > 0xff)
3554 			gbl->fom_out = 0xff;
3555 
3556 		/* Update the FOM in the register file */
3557 		debug_info = gbl->fom_in;
3558 		debug_info |= gbl->fom_out << 8;
3559 		writel(debug_info, &sdr_reg_file->fom);
3560 
3561 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3562 		writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3563 	} else {
3564 		printf("%s: CALIBRATION FAILED\n", __FILE__);
3565 
3566 		debug_info = gbl->error_stage;
3567 		debug_info |= gbl->error_substage << 8;
3568 		debug_info |= gbl->error_group << 16;
3569 
3570 		writel(debug_info, &sdr_reg_file->failing_stage);
3571 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3572 		writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3573 
3574 		/* Update the failing group/stage in the register file */
3575 		debug_info = gbl->error_stage;
3576 		debug_info |= gbl->error_substage << 8;
3577 		debug_info |= gbl->error_group << 16;
3578 		writel(debug_info, &sdr_reg_file->failing_stage);
3579 	}
3580 
3581 	printf("%s: Calibration complete\n", __FILE__);
3582 }
3583 
3584 /**
3585  * hc_initialize_rom_data() - Initialize ROM data
3586  *
3587  * Initialize ROM data.
3588  */
3589 static void hc_initialize_rom_data(void)
3590 {
3591 	u32 i, addr;
3592 
3593 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3594 	for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3595 		writel(inst_rom_init[i], addr + (i << 2));
3596 
3597 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3598 	for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3599 		writel(ac_rom_init[i], addr + (i << 2));
3600 }
3601 
3602 /**
3603  * initialize_reg_file() - Initialize SDR register file
3604  *
3605  * Initialize SDR register file.
3606  */
3607 static void initialize_reg_file(void)
3608 {
3609 	/* Initialize the register file with the correct data */
3610 	writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3611 	writel(0, &sdr_reg_file->debug_data_addr);
3612 	writel(0, &sdr_reg_file->cur_stage);
3613 	writel(0, &sdr_reg_file->fom);
3614 	writel(0, &sdr_reg_file->failing_stage);
3615 	writel(0, &sdr_reg_file->debug1);
3616 	writel(0, &sdr_reg_file->debug2);
3617 }
3618 
3619 /**
3620  * initialize_hps_phy() - Initialize HPS PHY
3621  *
3622  * Initialize HPS PHY.
3623  */
3624 static void initialize_hps_phy(void)
3625 {
3626 	uint32_t reg;
3627 	/*
3628 	 * Tracking also gets configured here because it's in the
3629 	 * same register.
3630 	 */
3631 	uint32_t trk_sample_count = 7500;
3632 	uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3633 	/*
3634 	 * Format is number of outer loops in the 16 MSB, sample
3635 	 * count in 16 LSB.
3636 	 */
3637 
3638 	reg = 0;
3639 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3640 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3641 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3642 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3643 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3644 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3645 	/*
3646 	 * This field selects the intrinsic latency to RDATA_EN/FULL path.
3647 	 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3648 	 */
3649 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3650 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3651 		trk_sample_count);
3652 	writel(reg, &sdr_ctrl->phy_ctrl0);
3653 
3654 	reg = 0;
3655 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3656 		trk_sample_count >>
3657 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3658 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3659 		trk_long_idle_sample_count);
3660 	writel(reg, &sdr_ctrl->phy_ctrl1);
3661 
3662 	reg = 0;
3663 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3664 		trk_long_idle_sample_count >>
3665 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3666 	writel(reg, &sdr_ctrl->phy_ctrl2);
3667 }
3668 
3669 /**
3670  * initialize_tracking() - Initialize tracking
3671  *
3672  * Initialize the register file with usable initial data.
3673  */
3674 static void initialize_tracking(void)
3675 {
3676 	/*
3677 	 * Initialize the register file with the correct data.
3678 	 * Compute usable version of value in case we skip full
3679 	 * computation later.
3680 	 */
3681 	writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3682 	       &sdr_reg_file->dtaps_per_ptap);
3683 
3684 	/* trk_sample_count */
3685 	writel(7500, &sdr_reg_file->trk_sample_count);
3686 
3687 	/* longidle outer loop [15:0] */
3688 	writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3689 
3690 	/*
3691 	 * longidle sample count [31:24]
3692 	 * trfc, worst case of 933Mhz 4Gb [23:16]
3693 	 * trcd, worst case [15:8]
3694 	 * vfifo wait [7:0]
3695 	 */
3696 	writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3697 	       &sdr_reg_file->delays);
3698 
3699 	/* mux delay */
3700 	writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
3701 	       (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
3702 	       &sdr_reg_file->trk_rw_mgr_addr);
3703 
3704 	writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
3705 	       &sdr_reg_file->trk_read_dqs_width);
3706 
3707 	/* trefi [7:0] */
3708 	writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
3709 	       &sdr_reg_file->trk_rfsh);
3710 }
3711 
3712 int sdram_calibration_full(void)
3713 {
3714 	struct param_type my_param;
3715 	struct gbl_type my_gbl;
3716 	uint32_t pass;
3717 
3718 	memset(&my_param, 0, sizeof(my_param));
3719 	memset(&my_gbl, 0, sizeof(my_gbl));
3720 
3721 	param = &my_param;
3722 	gbl = &my_gbl;
3723 
3724 	/* Set the calibration enabled by default */
3725 	gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3726 	/*
3727 	 * Only sweep all groups (regardless of fail state) by default
3728 	 * Set enabled read test by default.
3729 	 */
3730 #if DISABLE_GUARANTEED_READ
3731 	gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3732 #endif
3733 	/* Initialize the register file */
3734 	initialize_reg_file();
3735 
3736 	/* Initialize any PHY CSR */
3737 	initialize_hps_phy();
3738 
3739 	scc_mgr_initialize();
3740 
3741 	initialize_tracking();
3742 
3743 	printf("%s: Preparing to start memory calibration\n", __FILE__);
3744 
3745 	debug("%s:%d\n", __func__, __LINE__);
3746 	debug_cond(DLEVEL == 1,
3747 		   "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3748 		   RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3749 		   RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3750 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3751 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3752 	debug_cond(DLEVEL == 1,
3753 		   "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3754 		   RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3755 		   RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3756 		   IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3757 	debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3758 		   IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3759 	debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3760 		   IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3761 		   IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3762 	debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3763 		   IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3764 		   IO_IO_OUT2_DELAY_MAX);
3765 	debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3766 		   IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3767 
3768 	hc_initialize_rom_data();
3769 
3770 	/* update info for sims */
3771 	reg_file_set_stage(CAL_STAGE_NIL);
3772 	reg_file_set_group(0);
3773 
3774 	/*
3775 	 * Load global needed for those actions that require
3776 	 * some dynamic calibration support.
3777 	 */
3778 	dyn_calib_steps = STATIC_CALIB_STEPS;
3779 	/*
3780 	 * Load global to allow dynamic selection of delay loop settings
3781 	 * based on calibration mode.
3782 	 */
3783 	if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3784 		skip_delay_mask = 0xff;
3785 	else
3786 		skip_delay_mask = 0x0;
3787 
3788 	pass = run_mem_calibrate();
3789 	debug_mem_calibrate(pass);
3790 	return pass;
3791 }
3792