1 /* 2 * Copyright Altera Corporation (C) 2012-2015 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <common.h> 8 #include <asm/io.h> 9 #include <asm/arch/sdram.h> 10 #include <errno.h> 11 #include "sequencer.h" 12 13 /* 14 * FIXME: This path is temporary until the SDRAM driver gets 15 * a proper thorough cleanup. 16 */ 17 #include "../../../board/altera/socfpga/qts/sequencer_auto.h" 18 #include "../../../board/altera/socfpga/qts/sequencer_defines.h" 19 20 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs = 21 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800); 22 23 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs = 24 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00); 25 26 static struct socfpga_sdr_reg_file *sdr_reg_file = 27 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS; 28 29 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr = 30 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00); 31 32 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd = 33 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS; 34 35 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg = 36 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40); 37 38 static struct socfpga_data_mgr *data_mgr = 39 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS; 40 41 static struct socfpga_sdr_ctrl *sdr_ctrl = 42 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS; 43 44 const struct socfpga_sdram_rw_mgr_config *rwcfg; 45 const struct socfpga_sdram_io_config *iocfg; 46 const struct socfpga_sdram_misc_config *misccfg; 47 48 #define DELTA_D 1 49 50 /* 51 * In order to reduce ROM size, most of the selectable calibration steps are 52 * decided at compile time based on the user's calibration mode selection, 53 * as captured by the STATIC_CALIB_STEPS selection below. 54 * 55 * However, to support simulation-time selection of fast simulation mode, where 56 * we skip everything except the bare minimum, we need a few of the steps to 57 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the 58 * check, which is based on the rtl-supplied value, or we dynamically compute 59 * the value to use based on the dynamically-chosen calibration mode 60 */ 61 62 #define DLEVEL 0 63 #define STATIC_IN_RTL_SIM 0 64 #define STATIC_SKIP_DELAY_LOOPS 0 65 66 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \ 67 STATIC_SKIP_DELAY_LOOPS) 68 69 /* calibration steps requested by the rtl */ 70 uint16_t dyn_calib_steps; 71 72 /* 73 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option 74 * instead of static, we use boolean logic to select between 75 * non-skip and skip values 76 * 77 * The mask is set to include all bits when not-skipping, but is 78 * zero when skipping 79 */ 80 81 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */ 82 83 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \ 84 ((non_skip_value) & skip_delay_mask) 85 86 struct gbl_type *gbl; 87 struct param_type *param; 88 89 static void set_failing_group_stage(uint32_t group, uint32_t stage, 90 uint32_t substage) 91 { 92 /* 93 * Only set the global stage if there was not been any other 94 * failing group 95 */ 96 if (gbl->error_stage == CAL_STAGE_NIL) { 97 gbl->error_substage = substage; 98 gbl->error_stage = stage; 99 gbl->error_group = group; 100 } 101 } 102 103 static void reg_file_set_group(u16 set_group) 104 { 105 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16); 106 } 107 108 static void reg_file_set_stage(u8 set_stage) 109 { 110 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff); 111 } 112 113 static void reg_file_set_sub_stage(u8 set_sub_stage) 114 { 115 set_sub_stage &= 0xff; 116 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8); 117 } 118 119 /** 120 * phy_mgr_initialize() - Initialize PHY Manager 121 * 122 * Initialize PHY Manager. 123 */ 124 static void phy_mgr_initialize(void) 125 { 126 u32 ratio; 127 128 debug("%s:%d\n", __func__, __LINE__); 129 /* Calibration has control over path to memory */ 130 /* 131 * In Hard PHY this is a 2-bit control: 132 * 0: AFI Mux Select 133 * 1: DDIO Mux Select 134 */ 135 writel(0x3, &phy_mgr_cfg->mux_sel); 136 137 /* USER memory clock is not stable we begin initialization */ 138 writel(0, &phy_mgr_cfg->reset_mem_stbl); 139 140 /* USER calibration status all set to zero */ 141 writel(0, &phy_mgr_cfg->cal_status); 142 143 writel(0, &phy_mgr_cfg->cal_debug_info); 144 145 /* Init params only if we do NOT skip calibration. */ 146 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) 147 return; 148 149 ratio = rwcfg->mem_dq_per_read_dqs / 150 rwcfg->mem_virtual_groups_per_read_dqs; 151 param->read_correct_mask_vg = (1 << ratio) - 1; 152 param->write_correct_mask_vg = (1 << ratio) - 1; 153 param->read_correct_mask = (1 << rwcfg->mem_dq_per_read_dqs) - 1; 154 param->write_correct_mask = (1 << rwcfg->mem_dq_per_write_dqs) - 1; 155 } 156 157 /** 158 * set_rank_and_odt_mask() - Set Rank and ODT mask 159 * @rank: Rank mask 160 * @odt_mode: ODT mode, OFF or READ_WRITE 161 * 162 * Set Rank and ODT mask (On-Die Termination). 163 */ 164 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode) 165 { 166 u32 odt_mask_0 = 0; 167 u32 odt_mask_1 = 0; 168 u32 cs_and_odt_mask; 169 170 if (odt_mode == RW_MGR_ODT_MODE_OFF) { 171 odt_mask_0 = 0x0; 172 odt_mask_1 = 0x0; 173 } else { /* RW_MGR_ODT_MODE_READ_WRITE */ 174 switch (rwcfg->mem_number_of_ranks) { 175 case 1: /* 1 Rank */ 176 /* Read: ODT = 0 ; Write: ODT = 1 */ 177 odt_mask_0 = 0x0; 178 odt_mask_1 = 0x1; 179 break; 180 case 2: /* 2 Ranks */ 181 if (rwcfg->mem_number_of_cs_per_dimm == 1) { 182 /* 183 * - Dual-Slot , Single-Rank (1 CS per DIMM) 184 * OR 185 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM) 186 * 187 * Since MEM_NUMBER_OF_RANKS is 2, they 188 * are both single rank with 2 CS each 189 * (special for RDIMM). 190 * 191 * Read: Turn on ODT on the opposite rank 192 * Write: Turn on ODT on all ranks 193 */ 194 odt_mask_0 = 0x3 & ~(1 << rank); 195 odt_mask_1 = 0x3; 196 } else { 197 /* 198 * - Single-Slot , Dual-Rank (2 CS per DIMM) 199 * 200 * Read: Turn on ODT off on all ranks 201 * Write: Turn on ODT on active rank 202 */ 203 odt_mask_0 = 0x0; 204 odt_mask_1 = 0x3 & (1 << rank); 205 } 206 break; 207 case 4: /* 4 Ranks */ 208 /* Read: 209 * ----------+-----------------------+ 210 * | ODT | 211 * Read From +-----------------------+ 212 * Rank | 3 | 2 | 1 | 0 | 213 * ----------+-----+-----+-----+-----+ 214 * 0 | 0 | 1 | 0 | 0 | 215 * 1 | 1 | 0 | 0 | 0 | 216 * 2 | 0 | 0 | 0 | 1 | 217 * 3 | 0 | 0 | 1 | 0 | 218 * ----------+-----+-----+-----+-----+ 219 * 220 * Write: 221 * ----------+-----------------------+ 222 * | ODT | 223 * Write To +-----------------------+ 224 * Rank | 3 | 2 | 1 | 0 | 225 * ----------+-----+-----+-----+-----+ 226 * 0 | 0 | 1 | 0 | 1 | 227 * 1 | 1 | 0 | 1 | 0 | 228 * 2 | 0 | 1 | 0 | 1 | 229 * 3 | 1 | 0 | 1 | 0 | 230 * ----------+-----+-----+-----+-----+ 231 */ 232 switch (rank) { 233 case 0: 234 odt_mask_0 = 0x4; 235 odt_mask_1 = 0x5; 236 break; 237 case 1: 238 odt_mask_0 = 0x8; 239 odt_mask_1 = 0xA; 240 break; 241 case 2: 242 odt_mask_0 = 0x1; 243 odt_mask_1 = 0x5; 244 break; 245 case 3: 246 odt_mask_0 = 0x2; 247 odt_mask_1 = 0xA; 248 break; 249 } 250 break; 251 } 252 } 253 254 cs_and_odt_mask = (0xFF & ~(1 << rank)) | 255 ((0xFF & odt_mask_0) << 8) | 256 ((0xFF & odt_mask_1) << 16); 257 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS | 258 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 259 } 260 261 /** 262 * scc_mgr_set() - Set SCC Manager register 263 * @off: Base offset in SCC Manager space 264 * @grp: Read/Write group 265 * @val: Value to be set 266 * 267 * This function sets the SCC Manager (Scan Chain Control Manager) register. 268 */ 269 static void scc_mgr_set(u32 off, u32 grp, u32 val) 270 { 271 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2)); 272 } 273 274 /** 275 * scc_mgr_initialize() - Initialize SCC Manager registers 276 * 277 * Initialize SCC Manager registers. 278 */ 279 static void scc_mgr_initialize(void) 280 { 281 /* 282 * Clear register file for HPS. 16 (2^4) is the size of the 283 * full register file in the scc mgr: 284 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + 285 * MEM_IF_READ_DQS_WIDTH - 1); 286 */ 287 int i; 288 289 for (i = 0; i < 16; i++) { 290 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n", 291 __func__, __LINE__, i); 292 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i); 293 } 294 } 295 296 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase) 297 { 298 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase); 299 } 300 301 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay) 302 { 303 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay); 304 } 305 306 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase) 307 { 308 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase); 309 } 310 311 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay) 312 { 313 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay); 314 } 315 316 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay) 317 { 318 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, rwcfg->mem_dq_per_write_dqs, 319 delay); 320 } 321 322 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay) 323 { 324 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay); 325 } 326 327 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay) 328 { 329 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay); 330 } 331 332 static void scc_mgr_set_dqs_out1_delay(uint32_t delay) 333 { 334 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, rwcfg->mem_dq_per_write_dqs, 335 delay); 336 } 337 338 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay) 339 { 340 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, 341 rwcfg->mem_dq_per_write_dqs + 1 + dm, 342 delay); 343 } 344 345 /* load up dqs config settings */ 346 static void scc_mgr_load_dqs(uint32_t dqs) 347 { 348 writel(dqs, &sdr_scc_mgr->dqs_ena); 349 } 350 351 /* load up dqs io config settings */ 352 static void scc_mgr_load_dqs_io(void) 353 { 354 writel(0, &sdr_scc_mgr->dqs_io_ena); 355 } 356 357 /* load up dq config settings */ 358 static void scc_mgr_load_dq(uint32_t dq_in_group) 359 { 360 writel(dq_in_group, &sdr_scc_mgr->dq_ena); 361 } 362 363 /* load up dm config settings */ 364 static void scc_mgr_load_dm(uint32_t dm) 365 { 366 writel(dm, &sdr_scc_mgr->dm_ena); 367 } 368 369 /** 370 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks 371 * @off: Base offset in SCC Manager space 372 * @grp: Read/Write group 373 * @val: Value to be set 374 * @update: If non-zero, trigger SCC Manager update for all ranks 375 * 376 * This function sets the SCC Manager (Scan Chain Control Manager) register 377 * and optionally triggers the SCC update for all ranks. 378 */ 379 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val, 380 const int update) 381 { 382 u32 r; 383 384 for (r = 0; r < rwcfg->mem_number_of_ranks; 385 r += NUM_RANKS_PER_SHADOW_REG) { 386 scc_mgr_set(off, grp, val); 387 388 if (update || (r == 0)) { 389 writel(grp, &sdr_scc_mgr->dqs_ena); 390 writel(0, &sdr_scc_mgr->update); 391 } 392 } 393 } 394 395 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase) 396 { 397 /* 398 * USER although the h/w doesn't support different phases per 399 * shadow register, for simplicity our scc manager modeling 400 * keeps different phase settings per shadow reg, and it's 401 * important for us to keep them in sync to match h/w. 402 * for efficiency, the scan chain update should occur only 403 * once to sr0. 404 */ 405 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET, 406 read_group, phase, 0); 407 } 408 409 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group, 410 uint32_t phase) 411 { 412 /* 413 * USER although the h/w doesn't support different phases per 414 * shadow register, for simplicity our scc manager modeling 415 * keeps different phase settings per shadow reg, and it's 416 * important for us to keep them in sync to match h/w. 417 * for efficiency, the scan chain update should occur only 418 * once to sr0. 419 */ 420 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, 421 write_group, phase, 0); 422 } 423 424 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group, 425 uint32_t delay) 426 { 427 /* 428 * In shadow register mode, the T11 settings are stored in 429 * registers in the core, which are updated by the DQS_ENA 430 * signals. Not issuing the SCC_MGR_UPD command allows us to 431 * save lots of rank switching overhead, by calling 432 * select_shadow_regs_for_update with update_scan_chains 433 * set to 0. 434 */ 435 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET, 436 read_group, delay, 1); 437 writel(0, &sdr_scc_mgr->update); 438 } 439 440 /** 441 * scc_mgr_set_oct_out1_delay() - Set OCT output delay 442 * @write_group: Write group 443 * @delay: Delay value 444 * 445 * This function sets the OCT output delay in SCC manager. 446 */ 447 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay) 448 { 449 const int ratio = rwcfg->mem_if_read_dqs_width / 450 rwcfg->mem_if_write_dqs_width; 451 const int base = write_group * ratio; 452 int i; 453 /* 454 * Load the setting in the SCC manager 455 * Although OCT affects only write data, the OCT delay is controlled 456 * by the DQS logic block which is instantiated once per read group. 457 * For protocols where a write group consists of multiple read groups, 458 * the setting must be set multiple times. 459 */ 460 for (i = 0; i < ratio; i++) 461 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay); 462 } 463 464 /** 465 * scc_mgr_set_hhp_extras() - Set HHP extras. 466 * 467 * Load the fixed setting in the SCC manager HHP extras. 468 */ 469 static void scc_mgr_set_hhp_extras(void) 470 { 471 /* 472 * Load the fixed setting in the SCC manager 473 * bits: 0:0 = 1'b1 - DQS bypass 474 * bits: 1:1 = 1'b1 - DQ bypass 475 * bits: 4:2 = 3'b001 - rfifo_mode 476 * bits: 6:5 = 2'b01 - rfifo clock_select 477 * bits: 7:7 = 1'b0 - separate gating from ungating setting 478 * bits: 8:8 = 1'b0 - separate OE from Output delay setting 479 */ 480 const u32 value = (0 << 8) | (0 << 7) | (1 << 5) | 481 (1 << 2) | (1 << 1) | (1 << 0); 482 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | 483 SCC_MGR_HHP_GLOBALS_OFFSET | 484 SCC_MGR_HHP_EXTRAS_OFFSET; 485 486 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", 487 __func__, __LINE__); 488 writel(value, addr); 489 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n", 490 __func__, __LINE__); 491 } 492 493 /** 494 * scc_mgr_zero_all() - Zero all DQS config 495 * 496 * Zero all DQS config. 497 */ 498 static void scc_mgr_zero_all(void) 499 { 500 int i, r; 501 502 /* 503 * USER Zero all DQS config settings, across all groups and all 504 * shadow registers 505 */ 506 for (r = 0; r < rwcfg->mem_number_of_ranks; 507 r += NUM_RANKS_PER_SHADOW_REG) { 508 for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) { 509 /* 510 * The phases actually don't exist on a per-rank basis, 511 * but there's no harm updating them several times, so 512 * let's keep the code simple. 513 */ 514 scc_mgr_set_dqs_bus_in_delay(i, iocfg->dqs_in_reserve); 515 scc_mgr_set_dqs_en_phase(i, 0); 516 scc_mgr_set_dqs_en_delay(i, 0); 517 } 518 519 for (i = 0; i < rwcfg->mem_if_write_dqs_width; i++) { 520 scc_mgr_set_dqdqs_output_phase(i, 0); 521 /* Arria V/Cyclone V don't have out2. */ 522 scc_mgr_set_oct_out1_delay(i, iocfg->dqs_out_reserve); 523 } 524 } 525 526 /* Multicast to all DQS group enables. */ 527 writel(0xff, &sdr_scc_mgr->dqs_ena); 528 writel(0, &sdr_scc_mgr->update); 529 } 530 531 /** 532 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update 533 * @write_group: Write group 534 * 535 * Set bypass mode and trigger SCC update. 536 */ 537 static void scc_set_bypass_mode(const u32 write_group) 538 { 539 /* Multicast to all DQ enables. */ 540 writel(0xff, &sdr_scc_mgr->dq_ena); 541 writel(0xff, &sdr_scc_mgr->dm_ena); 542 543 /* Update current DQS IO enable. */ 544 writel(0, &sdr_scc_mgr->dqs_io_ena); 545 546 /* Update the DQS logic. */ 547 writel(write_group, &sdr_scc_mgr->dqs_ena); 548 549 /* Hit update. */ 550 writel(0, &sdr_scc_mgr->update); 551 } 552 553 /** 554 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group 555 * @write_group: Write group 556 * 557 * Load DQS settings for Write Group, do not trigger SCC update. 558 */ 559 static void scc_mgr_load_dqs_for_write_group(const u32 write_group) 560 { 561 const int ratio = rwcfg->mem_if_read_dqs_width / 562 rwcfg->mem_if_write_dqs_width; 563 const int base = write_group * ratio; 564 int i; 565 /* 566 * Load the setting in the SCC manager 567 * Although OCT affects only write data, the OCT delay is controlled 568 * by the DQS logic block which is instantiated once per read group. 569 * For protocols where a write group consists of multiple read groups, 570 * the setting must be set multiple times. 571 */ 572 for (i = 0; i < ratio; i++) 573 writel(base + i, &sdr_scc_mgr->dqs_ena); 574 } 575 576 /** 577 * scc_mgr_zero_group() - Zero all configs for a group 578 * 579 * Zero DQ, DM, DQS and OCT configs for a group. 580 */ 581 static void scc_mgr_zero_group(const u32 write_group, const int out_only) 582 { 583 int i, r; 584 585 for (r = 0; r < rwcfg->mem_number_of_ranks; 586 r += NUM_RANKS_PER_SHADOW_REG) { 587 /* Zero all DQ config settings. */ 588 for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) { 589 scc_mgr_set_dq_out1_delay(i, 0); 590 if (!out_only) 591 scc_mgr_set_dq_in_delay(i, 0); 592 } 593 594 /* Multicast to all DQ enables. */ 595 writel(0xff, &sdr_scc_mgr->dq_ena); 596 597 /* Zero all DM config settings. */ 598 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 599 scc_mgr_set_dm_out1_delay(i, 0); 600 601 /* Multicast to all DM enables. */ 602 writel(0xff, &sdr_scc_mgr->dm_ena); 603 604 /* Zero all DQS IO settings. */ 605 if (!out_only) 606 scc_mgr_set_dqs_io_in_delay(0); 607 608 /* Arria V/Cyclone V don't have out2. */ 609 scc_mgr_set_dqs_out1_delay(iocfg->dqs_out_reserve); 610 scc_mgr_set_oct_out1_delay(write_group, iocfg->dqs_out_reserve); 611 scc_mgr_load_dqs_for_write_group(write_group); 612 613 /* Multicast to all DQS IO enables (only 1 in total). */ 614 writel(0, &sdr_scc_mgr->dqs_io_ena); 615 616 /* Hit update to zero everything. */ 617 writel(0, &sdr_scc_mgr->update); 618 } 619 } 620 621 /* 622 * apply and load a particular input delay for the DQ pins in a group 623 * group_bgn is the index of the first dq pin (in the write group) 624 */ 625 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay) 626 { 627 uint32_t i, p; 628 629 for (i = 0, p = group_bgn; i < rwcfg->mem_dq_per_read_dqs; i++, p++) { 630 scc_mgr_set_dq_in_delay(p, delay); 631 scc_mgr_load_dq(p); 632 } 633 } 634 635 /** 636 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group 637 * @delay: Delay value 638 * 639 * Apply and load a particular output delay for the DQ pins in a group. 640 */ 641 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay) 642 { 643 int i; 644 645 for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) { 646 scc_mgr_set_dq_out1_delay(i, delay); 647 scc_mgr_load_dq(i); 648 } 649 } 650 651 /* apply and load a particular output delay for the DM pins in a group */ 652 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1) 653 { 654 uint32_t i; 655 656 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 657 scc_mgr_set_dm_out1_delay(i, delay1); 658 scc_mgr_load_dm(i); 659 } 660 } 661 662 663 /* apply and load delay on both DQS and OCT out1 */ 664 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group, 665 uint32_t delay) 666 { 667 scc_mgr_set_dqs_out1_delay(delay); 668 scc_mgr_load_dqs_io(); 669 670 scc_mgr_set_oct_out1_delay(write_group, delay); 671 scc_mgr_load_dqs_for_write_group(write_group); 672 } 673 674 /** 675 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT 676 * @write_group: Write group 677 * @delay: Delay value 678 * 679 * Apply a delay to the entire output side: DQ, DM, DQS, OCT. 680 */ 681 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group, 682 const u32 delay) 683 { 684 u32 i, new_delay; 685 686 /* DQ shift */ 687 for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) 688 scc_mgr_load_dq(i); 689 690 /* DM shift */ 691 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 692 scc_mgr_load_dm(i); 693 694 /* DQS shift */ 695 new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay; 696 if (new_delay > iocfg->io_out2_delay_max) { 697 debug_cond(DLEVEL == 1, 698 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 699 __func__, __LINE__, write_group, delay, new_delay, 700 iocfg->io_out2_delay_max, 701 new_delay - iocfg->io_out2_delay_max); 702 new_delay -= iocfg->io_out2_delay_max; 703 scc_mgr_set_dqs_out1_delay(new_delay); 704 } 705 706 scc_mgr_load_dqs_io(); 707 708 /* OCT shift */ 709 new_delay = READ_SCC_OCT_OUT2_DELAY + delay; 710 if (new_delay > iocfg->io_out2_delay_max) { 711 debug_cond(DLEVEL == 1, 712 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 713 __func__, __LINE__, write_group, delay, 714 new_delay, iocfg->io_out2_delay_max, 715 new_delay - iocfg->io_out2_delay_max); 716 new_delay -= iocfg->io_out2_delay_max; 717 scc_mgr_set_oct_out1_delay(write_group, new_delay); 718 } 719 720 scc_mgr_load_dqs_for_write_group(write_group); 721 } 722 723 /** 724 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks 725 * @write_group: Write group 726 * @delay: Delay value 727 * 728 * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks. 729 */ 730 static void 731 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group, 732 const u32 delay) 733 { 734 int r; 735 736 for (r = 0; r < rwcfg->mem_number_of_ranks; 737 r += NUM_RANKS_PER_SHADOW_REG) { 738 scc_mgr_apply_group_all_out_delay_add(write_group, delay); 739 writel(0, &sdr_scc_mgr->update); 740 } 741 } 742 743 /** 744 * set_jump_as_return() - Return instruction optimization 745 * 746 * Optimization used to recover some slots in ddr3 inst_rom could be 747 * applied to other protocols if we wanted to 748 */ 749 static void set_jump_as_return(void) 750 { 751 /* 752 * To save space, we replace return with jump to special shared 753 * RETURN instruction so we set the counter to large value so that 754 * we always jump. 755 */ 756 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0); 757 writel(rwcfg->rreturn, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 758 } 759 760 /** 761 * delay_for_n_mem_clocks() - Delay for N memory clocks 762 * @clocks: Length of the delay 763 * 764 * Delay for N memory clocks. 765 */ 766 static void delay_for_n_mem_clocks(const u32 clocks) 767 { 768 u32 afi_clocks; 769 u16 c_loop; 770 u8 inner; 771 u8 outer; 772 773 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks); 774 775 /* Scale (rounding up) to get afi clocks. */ 776 afi_clocks = DIV_ROUND_UP(clocks, AFI_RATE_RATIO); 777 if (afi_clocks) /* Temporary underflow protection */ 778 afi_clocks--; 779 780 /* 781 * Note, we don't bother accounting for being off a little 782 * bit because of a few extra instructions in outer loops. 783 * Note, the loops have a test at the end, and do the test 784 * before the decrement, and so always perform the loop 785 * 1 time more than the counter value 786 */ 787 c_loop = afi_clocks >> 16; 788 outer = c_loop ? 0xff : (afi_clocks >> 8); 789 inner = outer ? 0xff : afi_clocks; 790 791 /* 792 * rom instructions are structured as follows: 793 * 794 * IDLE_LOOP2: jnz cntr0, TARGET_A 795 * IDLE_LOOP1: jnz cntr1, TARGET_B 796 * return 797 * 798 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and 799 * TARGET_B is set to IDLE_LOOP2 as well 800 * 801 * if we have no outer loop, though, then we can use IDLE_LOOP1 only, 802 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely 803 * 804 * a little confusing, but it helps save precious space in the inst_rom 805 * and sequencer rom and keeps the delays more accurate and reduces 806 * overhead 807 */ 808 if (afi_clocks < 0x100) { 809 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 810 &sdr_rw_load_mgr_regs->load_cntr1); 811 812 writel(rwcfg->idle_loop1, 813 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 814 815 writel(rwcfg->idle_loop1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 816 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 817 } else { 818 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 819 &sdr_rw_load_mgr_regs->load_cntr0); 820 821 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), 822 &sdr_rw_load_mgr_regs->load_cntr1); 823 824 writel(rwcfg->idle_loop2, 825 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 826 827 writel(rwcfg->idle_loop2, 828 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 829 830 do { 831 writel(rwcfg->idle_loop2, 832 SDR_PHYGRP_RWMGRGRP_ADDRESS | 833 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 834 } while (c_loop-- != 0); 835 } 836 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks); 837 } 838 839 /** 840 * rw_mgr_mem_init_load_regs() - Load instruction registers 841 * @cntr0: Counter 0 value 842 * @cntr1: Counter 1 value 843 * @cntr2: Counter 2 value 844 * @jump: Jump instruction value 845 * 846 * Load instruction registers. 847 */ 848 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump) 849 { 850 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 851 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 852 853 /* Load counters */ 854 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0), 855 &sdr_rw_load_mgr_regs->load_cntr0); 856 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1), 857 &sdr_rw_load_mgr_regs->load_cntr1); 858 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2), 859 &sdr_rw_load_mgr_regs->load_cntr2); 860 861 /* Load jump address */ 862 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 863 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1); 864 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 865 866 /* Execute count instruction */ 867 writel(jump, grpaddr); 868 } 869 870 /** 871 * rw_mgr_mem_load_user() - Load user calibration values 872 * @fin1: Final instruction 1 873 * @fin2: Final instruction 2 874 * @precharge: If 1, precharge the banks at the end 875 * 876 * Load user calibration values and optionally precharge the banks. 877 */ 878 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2, 879 const int precharge) 880 { 881 u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 882 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 883 u32 r; 884 885 for (r = 0; r < rwcfg->mem_number_of_ranks; r++) { 886 /* set rank */ 887 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 888 889 /* precharge all banks ... */ 890 if (precharge) 891 writel(rwcfg->precharge_all, grpaddr); 892 893 /* 894 * USER Use Mirror-ed commands for odd ranks if address 895 * mirrorring is on 896 */ 897 if ((rwcfg->mem_address_mirroring >> r) & 0x1) { 898 set_jump_as_return(); 899 writel(rwcfg->mrs2_mirr, grpaddr); 900 delay_for_n_mem_clocks(4); 901 set_jump_as_return(); 902 writel(rwcfg->mrs3_mirr, grpaddr); 903 delay_for_n_mem_clocks(4); 904 set_jump_as_return(); 905 writel(rwcfg->mrs1_mirr, grpaddr); 906 delay_for_n_mem_clocks(4); 907 set_jump_as_return(); 908 writel(fin1, grpaddr); 909 } else { 910 set_jump_as_return(); 911 writel(rwcfg->mrs2, grpaddr); 912 delay_for_n_mem_clocks(4); 913 set_jump_as_return(); 914 writel(rwcfg->mrs3, grpaddr); 915 delay_for_n_mem_clocks(4); 916 set_jump_as_return(); 917 writel(rwcfg->mrs1, grpaddr); 918 set_jump_as_return(); 919 writel(fin2, grpaddr); 920 } 921 922 if (precharge) 923 continue; 924 925 set_jump_as_return(); 926 writel(rwcfg->zqcl, grpaddr); 927 928 /* tZQinit = tDLLK = 512 ck cycles */ 929 delay_for_n_mem_clocks(512); 930 } 931 } 932 933 /** 934 * rw_mgr_mem_initialize() - Initialize RW Manager 935 * 936 * Initialize RW Manager. 937 */ 938 static void rw_mgr_mem_initialize(void) 939 { 940 debug("%s:%d\n", __func__, __LINE__); 941 942 /* The reset / cke part of initialization is broadcasted to all ranks */ 943 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 944 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 945 946 /* 947 * Here's how you load register for a loop 948 * Counters are located @ 0x800 949 * Jump address are located @ 0xC00 950 * For both, registers 0 to 3 are selected using bits 3 and 2, like 951 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C 952 * I know this ain't pretty, but Avalon bus throws away the 2 least 953 * significant bits 954 */ 955 956 /* Start with memory RESET activated */ 957 958 /* tINIT = 200us */ 959 960 /* 961 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles 962 * If a and b are the number of iteration in 2 nested loops 963 * it takes the following number of cycles to complete the operation: 964 * number_of_cycles = ((2 + n) * a + 2) * b 965 * where n is the number of instruction in the inner loop 966 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF, 967 * b = 6A 968 */ 969 rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL, 970 SEQ_TINIT_CNTR2_VAL, 971 rwcfg->init_reset_0_cke_0); 972 973 /* Indicate that memory is stable. */ 974 writel(1, &phy_mgr_cfg->reset_mem_stbl); 975 976 /* 977 * transition the RESET to high 978 * Wait for 500us 979 */ 980 981 /* 982 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles 983 * If a and b are the number of iteration in 2 nested loops 984 * it takes the following number of cycles to complete the operation 985 * number_of_cycles = ((2 + n) * a + 2) * b 986 * where n is the number of instruction in the inner loop 987 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83, 988 * b = FF 989 */ 990 rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL, 991 SEQ_TRESET_CNTR2_VAL, 992 rwcfg->init_reset_1_cke_0); 993 994 /* Bring up clock enable. */ 995 996 /* tXRP < 250 ck cycles */ 997 delay_for_n_mem_clocks(250); 998 999 rw_mgr_mem_load_user(rwcfg->mrs0_dll_reset_mirr, rwcfg->mrs0_dll_reset, 1000 0); 1001 } 1002 1003 /** 1004 * rw_mgr_mem_handoff() - Hand off the memory to user 1005 * 1006 * At the end of calibration we have to program the user settings in 1007 * and hand off the memory to the user. 1008 */ 1009 static void rw_mgr_mem_handoff(void) 1010 { 1011 rw_mgr_mem_load_user(rwcfg->mrs0_user_mirr, rwcfg->mrs0_user, 1); 1012 /* 1013 * Need to wait tMOD (12CK or 15ns) time before issuing other 1014 * commands, but we will have plenty of NIOS cycles before actual 1015 * handoff so its okay. 1016 */ 1017 } 1018 1019 /** 1020 * rw_mgr_mem_calibrate_write_test_issue() - Issue write test command 1021 * @group: Write Group 1022 * @use_dm: Use DM 1023 * 1024 * Issue write test command. Two variants are provided, one that just tests 1025 * a write pattern and another that tests datamask functionality. 1026 */ 1027 static void rw_mgr_mem_calibrate_write_test_issue(u32 group, 1028 u32 test_dm) 1029 { 1030 const u32 quick_write_mode = 1031 (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) && 1032 ENABLE_SUPER_QUICK_CALIBRATION; 1033 u32 mcc_instruction; 1034 u32 rw_wl_nop_cycles; 1035 1036 /* 1037 * Set counter and jump addresses for the right 1038 * number of NOP cycles. 1039 * The number of supported NOP cycles can range from -1 to infinity 1040 * Three different cases are handled: 1041 * 1042 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping 1043 * mechanism will be used to insert the right number of NOPs 1044 * 1045 * 2. For a number of NOP cycles equals to 0, the micro-instruction 1046 * issuing the write command will jump straight to the 1047 * micro-instruction that turns on DQS (for DDRx), or outputs write 1048 * data (for RLD), skipping 1049 * the NOP micro-instruction all together 1050 * 1051 * 3. A number of NOP cycles equal to -1 indicates that DQS must be 1052 * turned on in the same micro-instruction that issues the write 1053 * command. Then we need 1054 * to directly jump to the micro-instruction that sends out the data 1055 * 1056 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters 1057 * (2 and 3). One jump-counter (0) is used to perform multiple 1058 * write-read operations. 1059 * one counter left to issue this command in "multiple-group" mode 1060 */ 1061 1062 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles; 1063 1064 if (rw_wl_nop_cycles == -1) { 1065 /* 1066 * CNTR 2 - We want to execute the special write operation that 1067 * turns on DQS right away and then skip directly to the 1068 * instruction that sends out the data. We set the counter to a 1069 * large number so that the jump is always taken. 1070 */ 1071 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 1072 1073 /* CNTR 3 - Not used */ 1074 if (test_dm) { 1075 mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0_wl_1; 1076 writel(rwcfg->lfsr_wr_rd_dm_bank_0_data, 1077 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1078 writel(rwcfg->lfsr_wr_rd_dm_bank_0_nop, 1079 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1080 } else { 1081 mcc_instruction = rwcfg->lfsr_wr_rd_bank_0_wl_1; 1082 writel(rwcfg->lfsr_wr_rd_bank_0_data, 1083 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1084 writel(rwcfg->lfsr_wr_rd_bank_0_nop, 1085 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1086 } 1087 } else if (rw_wl_nop_cycles == 0) { 1088 /* 1089 * CNTR 2 - We want to skip the NOP operation and go straight 1090 * to the DQS enable instruction. We set the counter to a large 1091 * number so that the jump is always taken. 1092 */ 1093 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 1094 1095 /* CNTR 3 - Not used */ 1096 if (test_dm) { 1097 mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0; 1098 writel(rwcfg->lfsr_wr_rd_dm_bank_0_dqs, 1099 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1100 } else { 1101 mcc_instruction = rwcfg->lfsr_wr_rd_bank_0; 1102 writel(rwcfg->lfsr_wr_rd_bank_0_dqs, 1103 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1104 } 1105 } else { 1106 /* 1107 * CNTR 2 - In this case we want to execute the next instruction 1108 * and NOT take the jump. So we set the counter to 0. The jump 1109 * address doesn't count. 1110 */ 1111 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2); 1112 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1113 1114 /* 1115 * CNTR 3 - Set the nop counter to the number of cycles we 1116 * need to loop for, minus 1. 1117 */ 1118 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3); 1119 if (test_dm) { 1120 mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0; 1121 writel(rwcfg->lfsr_wr_rd_dm_bank_0_nop, 1122 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1123 } else { 1124 mcc_instruction = rwcfg->lfsr_wr_rd_bank_0; 1125 writel(rwcfg->lfsr_wr_rd_bank_0_nop, 1126 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1127 } 1128 } 1129 1130 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1131 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1132 1133 if (quick_write_mode) 1134 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0); 1135 else 1136 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0); 1137 1138 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1139 1140 /* 1141 * CNTR 1 - This is used to ensure enough time elapses 1142 * for read data to come back. 1143 */ 1144 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1); 1145 1146 if (test_dm) { 1147 writel(rwcfg->lfsr_wr_rd_dm_bank_0_wait, 1148 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1149 } else { 1150 writel(rwcfg->lfsr_wr_rd_bank_0_wait, 1151 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1152 } 1153 1154 writel(mcc_instruction, (SDR_PHYGRP_RWMGRGRP_ADDRESS | 1155 RW_MGR_RUN_SINGLE_GROUP_OFFSET) + 1156 (group << 2)); 1157 } 1158 1159 /** 1160 * rw_mgr_mem_calibrate_write_test() - Test writes, check for single/multiple pass 1161 * @rank_bgn: Rank number 1162 * @write_group: Write Group 1163 * @use_dm: Use DM 1164 * @all_correct: All bits must be correct in the mask 1165 * @bit_chk: Resulting bit mask after the test 1166 * @all_ranks: Test all ranks 1167 * 1168 * Test writes, can check for a single bit pass or multiple bit pass. 1169 */ 1170 static int 1171 rw_mgr_mem_calibrate_write_test(const u32 rank_bgn, const u32 write_group, 1172 const u32 use_dm, const u32 all_correct, 1173 u32 *bit_chk, const u32 all_ranks) 1174 { 1175 const u32 rank_end = all_ranks ? 1176 rwcfg->mem_number_of_ranks : 1177 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1178 const u32 shift_ratio = rwcfg->mem_dq_per_write_dqs / 1179 rwcfg->mem_virtual_groups_per_write_dqs; 1180 const u32 correct_mask_vg = param->write_correct_mask_vg; 1181 1182 u32 tmp_bit_chk, base_rw_mgr; 1183 int vg, r; 1184 1185 *bit_chk = param->write_correct_mask; 1186 1187 for (r = rank_bgn; r < rank_end; r++) { 1188 /* Set rank */ 1189 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1190 1191 tmp_bit_chk = 0; 1192 for (vg = rwcfg->mem_virtual_groups_per_write_dqs - 1; 1193 vg >= 0; vg--) { 1194 /* Reset the FIFOs to get pointers to known state. */ 1195 writel(0, &phy_mgr_cmd->fifo_reset); 1196 1197 rw_mgr_mem_calibrate_write_test_issue( 1198 write_group * 1199 rwcfg->mem_virtual_groups_per_write_dqs + vg, 1200 use_dm); 1201 1202 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1203 tmp_bit_chk <<= shift_ratio; 1204 tmp_bit_chk |= (correct_mask_vg & ~(base_rw_mgr)); 1205 } 1206 1207 *bit_chk &= tmp_bit_chk; 1208 } 1209 1210 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1211 if (all_correct) { 1212 debug_cond(DLEVEL == 2, 1213 "write_test(%u,%u,ALL) : %u == %u => %i\n", 1214 write_group, use_dm, *bit_chk, 1215 param->write_correct_mask, 1216 *bit_chk == param->write_correct_mask); 1217 return *bit_chk == param->write_correct_mask; 1218 } else { 1219 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1220 debug_cond(DLEVEL == 2, 1221 "write_test(%u,%u,ONE) : %u != %i => %i\n", 1222 write_group, use_dm, *bit_chk, 0, *bit_chk != 0); 1223 return *bit_chk != 0x00; 1224 } 1225 } 1226 1227 /** 1228 * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns 1229 * @rank_bgn: Rank number 1230 * @group: Read/Write Group 1231 * @all_ranks: Test all ranks 1232 * 1233 * Performs a guaranteed read on the patterns we are going to use during a 1234 * read test to ensure memory works. 1235 */ 1236 static int 1237 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group, 1238 const u32 all_ranks) 1239 { 1240 const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1241 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1242 const u32 addr_offset = 1243 (group * rwcfg->mem_virtual_groups_per_read_dqs) << 2; 1244 const u32 rank_end = all_ranks ? 1245 rwcfg->mem_number_of_ranks : 1246 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1247 const u32 shift_ratio = rwcfg->mem_dq_per_read_dqs / 1248 rwcfg->mem_virtual_groups_per_read_dqs; 1249 const u32 correct_mask_vg = param->read_correct_mask_vg; 1250 1251 u32 tmp_bit_chk, base_rw_mgr, bit_chk; 1252 int vg, r; 1253 int ret = 0; 1254 1255 bit_chk = param->read_correct_mask; 1256 1257 for (r = rank_bgn; r < rank_end; r++) { 1258 /* Set rank */ 1259 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1260 1261 /* Load up a constant bursts of read commands */ 1262 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1263 writel(rwcfg->guaranteed_read, 1264 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1265 1266 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1267 writel(rwcfg->guaranteed_read_cont, 1268 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1269 1270 tmp_bit_chk = 0; 1271 for (vg = rwcfg->mem_virtual_groups_per_read_dqs - 1; 1272 vg >= 0; vg--) { 1273 /* Reset the FIFOs to get pointers to known state. */ 1274 writel(0, &phy_mgr_cmd->fifo_reset); 1275 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1276 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1277 writel(rwcfg->guaranteed_read, 1278 addr + addr_offset + (vg << 2)); 1279 1280 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1281 tmp_bit_chk <<= shift_ratio; 1282 tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr; 1283 } 1284 1285 bit_chk &= tmp_bit_chk; 1286 } 1287 1288 writel(rwcfg->clear_dqs_enable, addr + (group << 2)); 1289 1290 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1291 1292 if (bit_chk != param->read_correct_mask) 1293 ret = -EIO; 1294 1295 debug_cond(DLEVEL == 1, 1296 "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n", 1297 __func__, __LINE__, group, bit_chk, 1298 param->read_correct_mask, ret); 1299 1300 return ret; 1301 } 1302 1303 /** 1304 * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test 1305 * @rank_bgn: Rank number 1306 * @all_ranks: Test all ranks 1307 * 1308 * Load up the patterns we are going to use during a read test. 1309 */ 1310 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn, 1311 const int all_ranks) 1312 { 1313 const u32 rank_end = all_ranks ? 1314 rwcfg->mem_number_of_ranks : 1315 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1316 u32 r; 1317 1318 debug("%s:%d\n", __func__, __LINE__); 1319 1320 for (r = rank_bgn; r < rank_end; r++) { 1321 /* set rank */ 1322 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1323 1324 /* Load up a constant bursts */ 1325 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1326 1327 writel(rwcfg->guaranteed_write_wait0, 1328 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1329 1330 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1331 1332 writel(rwcfg->guaranteed_write_wait1, 1333 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1334 1335 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2); 1336 1337 writel(rwcfg->guaranteed_write_wait2, 1338 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1339 1340 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3); 1341 1342 writel(rwcfg->guaranteed_write_wait3, 1343 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1344 1345 writel(rwcfg->guaranteed_write, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1346 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 1347 } 1348 1349 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1350 } 1351 1352 /** 1353 * rw_mgr_mem_calibrate_read_test() - Perform READ test on single rank 1354 * @rank_bgn: Rank number 1355 * @group: Read/Write group 1356 * @num_tries: Number of retries of the test 1357 * @all_correct: All bits must be correct in the mask 1358 * @bit_chk: Resulting bit mask after the test 1359 * @all_groups: Test all R/W groups 1360 * @all_ranks: Test all ranks 1361 * 1362 * Try a read and see if it returns correct data back. Test has dummy reads 1363 * inserted into the mix used to align DQS enable. Test has more thorough 1364 * checks than the regular read test. 1365 */ 1366 static int 1367 rw_mgr_mem_calibrate_read_test(const u32 rank_bgn, const u32 group, 1368 const u32 num_tries, const u32 all_correct, 1369 u32 *bit_chk, 1370 const u32 all_groups, const u32 all_ranks) 1371 { 1372 const u32 rank_end = all_ranks ? rwcfg->mem_number_of_ranks : 1373 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1374 const u32 quick_read_mode = 1375 ((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) && 1376 ENABLE_SUPER_QUICK_CALIBRATION); 1377 u32 correct_mask_vg = param->read_correct_mask_vg; 1378 u32 tmp_bit_chk; 1379 u32 base_rw_mgr; 1380 u32 addr; 1381 1382 int r, vg, ret; 1383 1384 *bit_chk = param->read_correct_mask; 1385 1386 for (r = rank_bgn; r < rank_end; r++) { 1387 /* set rank */ 1388 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1389 1390 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1); 1391 1392 writel(rwcfg->read_b2b_wait1, 1393 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1394 1395 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2); 1396 writel(rwcfg->read_b2b_wait2, 1397 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1398 1399 if (quick_read_mode) 1400 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0); 1401 /* need at least two (1+1) reads to capture failures */ 1402 else if (all_groups) 1403 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0); 1404 else 1405 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0); 1406 1407 writel(rwcfg->read_b2b, 1408 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1409 if (all_groups) 1410 writel(rwcfg->mem_if_read_dqs_width * 1411 rwcfg->mem_virtual_groups_per_read_dqs - 1, 1412 &sdr_rw_load_mgr_regs->load_cntr3); 1413 else 1414 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3); 1415 1416 writel(rwcfg->read_b2b, 1417 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1418 1419 tmp_bit_chk = 0; 1420 for (vg = rwcfg->mem_virtual_groups_per_read_dqs - 1; vg >= 0; 1421 vg--) { 1422 /* Reset the FIFOs to get pointers to known state. */ 1423 writel(0, &phy_mgr_cmd->fifo_reset); 1424 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1425 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1426 1427 if (all_groups) { 1428 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1429 RW_MGR_RUN_ALL_GROUPS_OFFSET; 1430 } else { 1431 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1432 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1433 } 1434 1435 writel(rwcfg->read_b2b, addr + 1436 ((group * rwcfg->mem_virtual_groups_per_read_dqs + 1437 vg) << 2)); 1438 1439 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1440 tmp_bit_chk <<= rwcfg->mem_dq_per_read_dqs / 1441 rwcfg->mem_virtual_groups_per_read_dqs; 1442 tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr); 1443 } 1444 1445 *bit_chk &= tmp_bit_chk; 1446 } 1447 1448 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1449 writel(rwcfg->clear_dqs_enable, addr + (group << 2)); 1450 1451 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1452 1453 if (all_correct) { 1454 ret = (*bit_chk == param->read_correct_mask); 1455 debug_cond(DLEVEL == 2, 1456 "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n", 1457 __func__, __LINE__, group, all_groups, *bit_chk, 1458 param->read_correct_mask, ret); 1459 } else { 1460 ret = (*bit_chk != 0x00); 1461 debug_cond(DLEVEL == 2, 1462 "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n", 1463 __func__, __LINE__, group, all_groups, *bit_chk, 1464 0, ret); 1465 } 1466 1467 return ret; 1468 } 1469 1470 /** 1471 * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks 1472 * @grp: Read/Write group 1473 * @num_tries: Number of retries of the test 1474 * @all_correct: All bits must be correct in the mask 1475 * @all_groups: Test all R/W groups 1476 * 1477 * Perform a READ test across all memory ranks. 1478 */ 1479 static int 1480 rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries, 1481 const u32 all_correct, 1482 const u32 all_groups) 1483 { 1484 u32 bit_chk; 1485 return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct, 1486 &bit_chk, all_groups, 1); 1487 } 1488 1489 /** 1490 * rw_mgr_incr_vfifo() - Increase VFIFO value 1491 * @grp: Read/Write group 1492 * 1493 * Increase VFIFO value. 1494 */ 1495 static void rw_mgr_incr_vfifo(const u32 grp) 1496 { 1497 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy); 1498 } 1499 1500 /** 1501 * rw_mgr_decr_vfifo() - Decrease VFIFO value 1502 * @grp: Read/Write group 1503 * 1504 * Decrease VFIFO value. 1505 */ 1506 static void rw_mgr_decr_vfifo(const u32 grp) 1507 { 1508 u32 i; 1509 1510 for (i = 0; i < VFIFO_SIZE - 1; i++) 1511 rw_mgr_incr_vfifo(grp); 1512 } 1513 1514 /** 1515 * find_vfifo_failing_read() - Push VFIFO to get a failing read 1516 * @grp: Read/Write group 1517 * 1518 * Push VFIFO until a failing read happens. 1519 */ 1520 static int find_vfifo_failing_read(const u32 grp) 1521 { 1522 u32 v, ret, fail_cnt = 0; 1523 1524 for (v = 0; v < VFIFO_SIZE; v++) { 1525 debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n", 1526 __func__, __LINE__, v); 1527 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1528 PASS_ONE_BIT, 0); 1529 if (!ret) { 1530 fail_cnt++; 1531 1532 if (fail_cnt == 2) 1533 return v; 1534 } 1535 1536 /* Fiddle with FIFO. */ 1537 rw_mgr_incr_vfifo(grp); 1538 } 1539 1540 /* No failing read found! Something must have gone wrong. */ 1541 debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__); 1542 return 0; 1543 } 1544 1545 /** 1546 * sdr_find_phase_delay() - Find DQS enable phase or delay 1547 * @working: If 1, look for working phase/delay, if 0, look for non-working 1548 * @delay: If 1, look for delay, if 0, look for phase 1549 * @grp: Read/Write group 1550 * @work: Working window position 1551 * @work_inc: Working window increment 1552 * @pd: DQS Phase/Delay Iterator 1553 * 1554 * Find working or non-working DQS enable phase setting. 1555 */ 1556 static int sdr_find_phase_delay(int working, int delay, const u32 grp, 1557 u32 *work, const u32 work_inc, u32 *pd) 1558 { 1559 const u32 max = delay ? iocfg->dqs_en_delay_max : iocfg->dqs_en_phase_max; 1560 u32 ret; 1561 1562 for (; *pd <= max; (*pd)++) { 1563 if (delay) 1564 scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd); 1565 else 1566 scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd); 1567 1568 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1569 PASS_ONE_BIT, 0); 1570 if (!working) 1571 ret = !ret; 1572 1573 if (ret) 1574 return 0; 1575 1576 if (work) 1577 *work += work_inc; 1578 } 1579 1580 return -EINVAL; 1581 } 1582 /** 1583 * sdr_find_phase() - Find DQS enable phase 1584 * @working: If 1, look for working phase, if 0, look for non-working phase 1585 * @grp: Read/Write group 1586 * @work: Working window position 1587 * @i: Iterator 1588 * @p: DQS Phase Iterator 1589 * 1590 * Find working or non-working DQS enable phase setting. 1591 */ 1592 static int sdr_find_phase(int working, const u32 grp, u32 *work, 1593 u32 *i, u32 *p) 1594 { 1595 const u32 end = VFIFO_SIZE + (working ? 0 : 1); 1596 int ret; 1597 1598 for (; *i < end; (*i)++) { 1599 if (working) 1600 *p = 0; 1601 1602 ret = sdr_find_phase_delay(working, 0, grp, work, 1603 iocfg->delay_per_opa_tap, p); 1604 if (!ret) 1605 return 0; 1606 1607 if (*p > iocfg->dqs_en_phase_max) { 1608 /* Fiddle with FIFO. */ 1609 rw_mgr_incr_vfifo(grp); 1610 if (!working) 1611 *p = 0; 1612 } 1613 } 1614 1615 return -EINVAL; 1616 } 1617 1618 /** 1619 * sdr_working_phase() - Find working DQS enable phase 1620 * @grp: Read/Write group 1621 * @work_bgn: Working window start position 1622 * @d: dtaps output value 1623 * @p: DQS Phase Iterator 1624 * @i: Iterator 1625 * 1626 * Find working DQS enable phase setting. 1627 */ 1628 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d, 1629 u32 *p, u32 *i) 1630 { 1631 const u32 dtaps_per_ptap = iocfg->delay_per_opa_tap / 1632 iocfg->delay_per_dqs_en_dchain_tap; 1633 int ret; 1634 1635 *work_bgn = 0; 1636 1637 for (*d = 0; *d <= dtaps_per_ptap; (*d)++) { 1638 *i = 0; 1639 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d); 1640 ret = sdr_find_phase(1, grp, work_bgn, i, p); 1641 if (!ret) 1642 return 0; 1643 *work_bgn += iocfg->delay_per_dqs_en_dchain_tap; 1644 } 1645 1646 /* Cannot find working solution */ 1647 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n", 1648 __func__, __LINE__); 1649 return -EINVAL; 1650 } 1651 1652 /** 1653 * sdr_backup_phase() - Find DQS enable backup phase 1654 * @grp: Read/Write group 1655 * @work_bgn: Working window start position 1656 * @p: DQS Phase Iterator 1657 * 1658 * Find DQS enable backup phase setting. 1659 */ 1660 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p) 1661 { 1662 u32 tmp_delay, d; 1663 int ret; 1664 1665 /* Special case code for backing up a phase */ 1666 if (*p == 0) { 1667 *p = iocfg->dqs_en_phase_max; 1668 rw_mgr_decr_vfifo(grp); 1669 } else { 1670 (*p)--; 1671 } 1672 tmp_delay = *work_bgn - iocfg->delay_per_opa_tap; 1673 scc_mgr_set_dqs_en_phase_all_ranks(grp, *p); 1674 1675 for (d = 0; d <= iocfg->dqs_en_delay_max && tmp_delay < *work_bgn; d++) { 1676 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1677 1678 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1679 PASS_ONE_BIT, 0); 1680 if (ret) { 1681 *work_bgn = tmp_delay; 1682 break; 1683 } 1684 1685 tmp_delay += iocfg->delay_per_dqs_en_dchain_tap; 1686 } 1687 1688 /* Restore VFIFO to old state before we decremented it (if needed). */ 1689 (*p)++; 1690 if (*p > iocfg->dqs_en_phase_max) { 1691 *p = 0; 1692 rw_mgr_incr_vfifo(grp); 1693 } 1694 1695 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1696 } 1697 1698 /** 1699 * sdr_nonworking_phase() - Find non-working DQS enable phase 1700 * @grp: Read/Write group 1701 * @work_end: Working window end position 1702 * @p: DQS Phase Iterator 1703 * @i: Iterator 1704 * 1705 * Find non-working DQS enable phase setting. 1706 */ 1707 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i) 1708 { 1709 int ret; 1710 1711 (*p)++; 1712 *work_end += iocfg->delay_per_opa_tap; 1713 if (*p > iocfg->dqs_en_phase_max) { 1714 /* Fiddle with FIFO. */ 1715 *p = 0; 1716 rw_mgr_incr_vfifo(grp); 1717 } 1718 1719 ret = sdr_find_phase(0, grp, work_end, i, p); 1720 if (ret) { 1721 /* Cannot see edge of failing read. */ 1722 debug_cond(DLEVEL == 2, "%s:%d: end: failed\n", 1723 __func__, __LINE__); 1724 } 1725 1726 return ret; 1727 } 1728 1729 /** 1730 * sdr_find_window_center() - Find center of the working DQS window. 1731 * @grp: Read/Write group 1732 * @work_bgn: First working settings 1733 * @work_end: Last working settings 1734 * 1735 * Find center of the working DQS enable window. 1736 */ 1737 static int sdr_find_window_center(const u32 grp, const u32 work_bgn, 1738 const u32 work_end) 1739 { 1740 u32 work_mid; 1741 int tmp_delay = 0; 1742 int i, p, d; 1743 1744 work_mid = (work_bgn + work_end) / 2; 1745 1746 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n", 1747 work_bgn, work_end, work_mid); 1748 /* Get the middle delay to be less than a VFIFO delay */ 1749 tmp_delay = (iocfg->dqs_en_phase_max + 1) * iocfg->delay_per_opa_tap; 1750 1751 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay); 1752 work_mid %= tmp_delay; 1753 debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid); 1754 1755 tmp_delay = rounddown(work_mid, iocfg->delay_per_opa_tap); 1756 if (tmp_delay > iocfg->dqs_en_phase_max * iocfg->delay_per_opa_tap) 1757 tmp_delay = iocfg->dqs_en_phase_max * iocfg->delay_per_opa_tap; 1758 p = tmp_delay / iocfg->delay_per_opa_tap; 1759 1760 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay); 1761 1762 d = DIV_ROUND_UP(work_mid - tmp_delay, iocfg->delay_per_dqs_en_dchain_tap); 1763 if (d > iocfg->dqs_en_delay_max) 1764 d = iocfg->dqs_en_delay_max; 1765 tmp_delay += d * iocfg->delay_per_dqs_en_dchain_tap; 1766 1767 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay); 1768 1769 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1770 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1771 1772 /* 1773 * push vfifo until we can successfully calibrate. We can do this 1774 * because the largest possible margin in 1 VFIFO cycle. 1775 */ 1776 for (i = 0; i < VFIFO_SIZE; i++) { 1777 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n"); 1778 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1779 PASS_ONE_BIT, 1780 0)) { 1781 debug_cond(DLEVEL == 2, 1782 "%s:%d center: found: ptap=%u dtap=%u\n", 1783 __func__, __LINE__, p, d); 1784 return 0; 1785 } 1786 1787 /* Fiddle with FIFO. */ 1788 rw_mgr_incr_vfifo(grp); 1789 } 1790 1791 debug_cond(DLEVEL == 2, "%s:%d center: failed.\n", 1792 __func__, __LINE__); 1793 return -EINVAL; 1794 } 1795 1796 /** 1797 * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use 1798 * @grp: Read/Write Group 1799 * 1800 * Find a good DQS enable to use. 1801 */ 1802 static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp) 1803 { 1804 u32 d, p, i; 1805 u32 dtaps_per_ptap; 1806 u32 work_bgn, work_end; 1807 u32 found_passing_read, found_failing_read, initial_failing_dtap; 1808 int ret; 1809 1810 debug("%s:%d %u\n", __func__, __LINE__, grp); 1811 1812 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 1813 1814 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1815 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); 1816 1817 /* Step 0: Determine number of delay taps for each phase tap. */ 1818 dtaps_per_ptap = iocfg->delay_per_opa_tap / iocfg->delay_per_dqs_en_dchain_tap; 1819 1820 /* Step 1: First push vfifo until we get a failing read. */ 1821 find_vfifo_failing_read(grp); 1822 1823 /* Step 2: Find first working phase, increment in ptaps. */ 1824 work_bgn = 0; 1825 ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i); 1826 if (ret) 1827 return ret; 1828 1829 work_end = work_bgn; 1830 1831 /* 1832 * If d is 0 then the working window covers a phase tap and we can 1833 * follow the old procedure. Otherwise, we've found the beginning 1834 * and we need to increment the dtaps until we find the end. 1835 */ 1836 if (d == 0) { 1837 /* 1838 * Step 3a: If we have room, back off by one and 1839 * increment in dtaps. 1840 */ 1841 sdr_backup_phase(grp, &work_bgn, &p); 1842 1843 /* 1844 * Step 4a: go forward from working phase to non working 1845 * phase, increment in ptaps. 1846 */ 1847 ret = sdr_nonworking_phase(grp, &work_end, &p, &i); 1848 if (ret) 1849 return ret; 1850 1851 /* Step 5a: Back off one from last, increment in dtaps. */ 1852 1853 /* Special case code for backing up a phase */ 1854 if (p == 0) { 1855 p = iocfg->dqs_en_phase_max; 1856 rw_mgr_decr_vfifo(grp); 1857 } else { 1858 p = p - 1; 1859 } 1860 1861 work_end -= iocfg->delay_per_opa_tap; 1862 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1863 1864 d = 0; 1865 1866 debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n", 1867 __func__, __LINE__, p); 1868 } 1869 1870 /* The dtap increment to find the failing edge is done here. */ 1871 sdr_find_phase_delay(0, 1, grp, &work_end, 1872 iocfg->delay_per_dqs_en_dchain_tap, &d); 1873 1874 /* Go back to working dtap */ 1875 if (d != 0) 1876 work_end -= iocfg->delay_per_dqs_en_dchain_tap; 1877 1878 debug_cond(DLEVEL == 2, 1879 "%s:%d p/d: ptap=%u dtap=%u end=%u\n", 1880 __func__, __LINE__, p, d - 1, work_end); 1881 1882 if (work_end < work_bgn) { 1883 /* nil range */ 1884 debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n", 1885 __func__, __LINE__); 1886 return -EINVAL; 1887 } 1888 1889 debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n", 1890 __func__, __LINE__, work_bgn, work_end); 1891 1892 /* 1893 * We need to calculate the number of dtaps that equal a ptap. 1894 * To do that we'll back up a ptap and re-find the edge of the 1895 * window using dtaps 1896 */ 1897 debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n", 1898 __func__, __LINE__); 1899 1900 /* Special case code for backing up a phase */ 1901 if (p == 0) { 1902 p = iocfg->dqs_en_phase_max; 1903 rw_mgr_decr_vfifo(grp); 1904 debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n", 1905 __func__, __LINE__, p); 1906 } else { 1907 p = p - 1; 1908 debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u", 1909 __func__, __LINE__, p); 1910 } 1911 1912 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1913 1914 /* 1915 * Increase dtap until we first see a passing read (in case the 1916 * window is smaller than a ptap), and then a failing read to 1917 * mark the edge of the window again. 1918 */ 1919 1920 /* Find a passing read. */ 1921 debug_cond(DLEVEL == 2, "%s:%d find passing read\n", 1922 __func__, __LINE__); 1923 1924 initial_failing_dtap = d; 1925 1926 found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d); 1927 if (found_passing_read) { 1928 /* Find a failing read. */ 1929 debug_cond(DLEVEL == 2, "%s:%d find failing read\n", 1930 __func__, __LINE__); 1931 d++; 1932 found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0, 1933 &d); 1934 } else { 1935 debug_cond(DLEVEL == 1, 1936 "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n", 1937 __func__, __LINE__); 1938 } 1939 1940 /* 1941 * The dynamically calculated dtaps_per_ptap is only valid if we 1942 * found a passing/failing read. If we didn't, it means d hit the max 1943 * (iocfg->dqs_en_delay_max). Otherwise, dtaps_per_ptap retains its 1944 * statically calculated value. 1945 */ 1946 if (found_passing_read && found_failing_read) 1947 dtaps_per_ptap = d - initial_failing_dtap; 1948 1949 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 1950 debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u", 1951 __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap); 1952 1953 /* Step 6: Find the centre of the window. */ 1954 ret = sdr_find_window_center(grp, work_bgn, work_end); 1955 1956 return ret; 1957 } 1958 1959 /** 1960 * search_stop_check() - Check if the detected edge is valid 1961 * @write: Perform read (Stage 2) or write (Stage 3) calibration 1962 * @d: DQS delay 1963 * @rank_bgn: Rank number 1964 * @write_group: Write Group 1965 * @read_group: Read Group 1966 * @bit_chk: Resulting bit mask after the test 1967 * @sticky_bit_chk: Resulting sticky bit mask after the test 1968 * @use_read_test: Perform read test 1969 * 1970 * Test if the found edge is valid. 1971 */ 1972 static u32 search_stop_check(const int write, const int d, const int rank_bgn, 1973 const u32 write_group, const u32 read_group, 1974 u32 *bit_chk, u32 *sticky_bit_chk, 1975 const u32 use_read_test) 1976 { 1977 const u32 ratio = rwcfg->mem_if_read_dqs_width / 1978 rwcfg->mem_if_write_dqs_width; 1979 const u32 correct_mask = write ? param->write_correct_mask : 1980 param->read_correct_mask; 1981 const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs : 1982 rwcfg->mem_dq_per_read_dqs; 1983 u32 ret; 1984 /* 1985 * Stop searching when the read test doesn't pass AND when 1986 * we've seen a passing read on every bit. 1987 */ 1988 if (write) { /* WRITE-ONLY */ 1989 ret = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1990 0, PASS_ONE_BIT, 1991 bit_chk, 0); 1992 } else if (use_read_test) { /* READ-ONLY */ 1993 ret = !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group, 1994 NUM_READ_PB_TESTS, 1995 PASS_ONE_BIT, bit_chk, 1996 0, 0); 1997 } else { /* READ-ONLY */ 1998 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0, 1999 PASS_ONE_BIT, bit_chk, 0); 2000 *bit_chk = *bit_chk >> (per_dqs * 2001 (read_group - (write_group * ratio))); 2002 ret = (*bit_chk == 0); 2003 } 2004 *sticky_bit_chk = *sticky_bit_chk | *bit_chk; 2005 ret = ret && (*sticky_bit_chk == correct_mask); 2006 debug_cond(DLEVEL == 2, 2007 "%s:%d center(left): dtap=%u => %u == %u && %u", 2008 __func__, __LINE__, d, 2009 *sticky_bit_chk, correct_mask, ret); 2010 return ret; 2011 } 2012 2013 /** 2014 * search_left_edge() - Find left edge of DQ/DQS working phase 2015 * @write: Perform read (Stage 2) or write (Stage 3) calibration 2016 * @rank_bgn: Rank number 2017 * @write_group: Write Group 2018 * @read_group: Read Group 2019 * @test_bgn: Rank number to begin the test 2020 * @sticky_bit_chk: Resulting sticky bit mask after the test 2021 * @left_edge: Left edge of the DQ/DQS phase 2022 * @right_edge: Right edge of the DQ/DQS phase 2023 * @use_read_test: Perform read test 2024 * 2025 * Find left edge of DQ/DQS working phase. 2026 */ 2027 static void search_left_edge(const int write, const int rank_bgn, 2028 const u32 write_group, const u32 read_group, const u32 test_bgn, 2029 u32 *sticky_bit_chk, 2030 int *left_edge, int *right_edge, const u32 use_read_test) 2031 { 2032 const u32 delay_max = write ? iocfg->io_out1_delay_max : iocfg->io_in_delay_max; 2033 const u32 dqs_max = write ? iocfg->io_out1_delay_max : iocfg->dqs_in_delay_max; 2034 const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs : 2035 rwcfg->mem_dq_per_read_dqs; 2036 u32 stop, bit_chk; 2037 int i, d; 2038 2039 for (d = 0; d <= dqs_max; d++) { 2040 if (write) 2041 scc_mgr_apply_group_dq_out1_delay(d); 2042 else 2043 scc_mgr_apply_group_dq_in_delay(test_bgn, d); 2044 2045 writel(0, &sdr_scc_mgr->update); 2046 2047 stop = search_stop_check(write, d, rank_bgn, write_group, 2048 read_group, &bit_chk, sticky_bit_chk, 2049 use_read_test); 2050 if (stop == 1) 2051 break; 2052 2053 /* stop != 1 */ 2054 for (i = 0; i < per_dqs; i++) { 2055 if (bit_chk & 1) { 2056 /* 2057 * Remember a passing test as 2058 * the left_edge. 2059 */ 2060 left_edge[i] = d; 2061 } else { 2062 /* 2063 * If a left edge has not been seen 2064 * yet, then a future passing test 2065 * will mark this edge as the right 2066 * edge. 2067 */ 2068 if (left_edge[i] == delay_max + 1) 2069 right_edge[i] = -(d + 1); 2070 } 2071 bit_chk >>= 1; 2072 } 2073 } 2074 2075 /* Reset DQ delay chains to 0 */ 2076 if (write) 2077 scc_mgr_apply_group_dq_out1_delay(0); 2078 else 2079 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 2080 2081 *sticky_bit_chk = 0; 2082 for (i = per_dqs - 1; i >= 0; i--) { 2083 debug_cond(DLEVEL == 2, 2084 "%s:%d vfifo_center: left_edge[%u]: %d right_edge[%u]: %d\n", 2085 __func__, __LINE__, i, left_edge[i], 2086 i, right_edge[i]); 2087 2088 /* 2089 * Check for cases where we haven't found the left edge, 2090 * which makes our assignment of the the right edge invalid. 2091 * Reset it to the illegal value. 2092 */ 2093 if ((left_edge[i] == delay_max + 1) && 2094 (right_edge[i] != delay_max + 1)) { 2095 right_edge[i] = delay_max + 1; 2096 debug_cond(DLEVEL == 2, 2097 "%s:%d vfifo_center: reset right_edge[%u]: %d\n", 2098 __func__, __LINE__, i, right_edge[i]); 2099 } 2100 2101 /* 2102 * Reset sticky bit 2103 * READ: except for bits where we have seen both 2104 * the left and right edge. 2105 * WRITE: except for bits where we have seen the 2106 * left edge. 2107 */ 2108 *sticky_bit_chk <<= 1; 2109 if (write) { 2110 if (left_edge[i] != delay_max + 1) 2111 *sticky_bit_chk |= 1; 2112 } else { 2113 if ((left_edge[i] != delay_max + 1) && 2114 (right_edge[i] != delay_max + 1)) 2115 *sticky_bit_chk |= 1; 2116 } 2117 } 2118 2119 2120 } 2121 2122 /** 2123 * search_right_edge() - Find right edge of DQ/DQS working phase 2124 * @write: Perform read (Stage 2) or write (Stage 3) calibration 2125 * @rank_bgn: Rank number 2126 * @write_group: Write Group 2127 * @read_group: Read Group 2128 * @start_dqs: DQS start phase 2129 * @start_dqs_en: DQS enable start phase 2130 * @sticky_bit_chk: Resulting sticky bit mask after the test 2131 * @left_edge: Left edge of the DQ/DQS phase 2132 * @right_edge: Right edge of the DQ/DQS phase 2133 * @use_read_test: Perform read test 2134 * 2135 * Find right edge of DQ/DQS working phase. 2136 */ 2137 static int search_right_edge(const int write, const int rank_bgn, 2138 const u32 write_group, const u32 read_group, 2139 const int start_dqs, const int start_dqs_en, 2140 u32 *sticky_bit_chk, 2141 int *left_edge, int *right_edge, const u32 use_read_test) 2142 { 2143 const u32 delay_max = write ? iocfg->io_out1_delay_max : iocfg->io_in_delay_max; 2144 const u32 dqs_max = write ? iocfg->io_out1_delay_max : iocfg->dqs_in_delay_max; 2145 const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs : 2146 rwcfg->mem_dq_per_read_dqs; 2147 u32 stop, bit_chk; 2148 int i, d; 2149 2150 for (d = 0; d <= dqs_max - start_dqs; d++) { 2151 if (write) { /* WRITE-ONLY */ 2152 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2153 d + start_dqs); 2154 } else { /* READ-ONLY */ 2155 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs); 2156 if (iocfg->shift_dqs_en_when_shift_dqs) { 2157 uint32_t delay = d + start_dqs_en; 2158 if (delay > iocfg->dqs_en_delay_max) 2159 delay = iocfg->dqs_en_delay_max; 2160 scc_mgr_set_dqs_en_delay(read_group, delay); 2161 } 2162 scc_mgr_load_dqs(read_group); 2163 } 2164 2165 writel(0, &sdr_scc_mgr->update); 2166 2167 stop = search_stop_check(write, d, rank_bgn, write_group, 2168 read_group, &bit_chk, sticky_bit_chk, 2169 use_read_test); 2170 if (stop == 1) { 2171 if (write && (d == 0)) { /* WRITE-ONLY */ 2172 for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) { 2173 /* 2174 * d = 0 failed, but it passed when 2175 * testing the left edge, so it must be 2176 * marginal, set it to -1 2177 */ 2178 if (right_edge[i] == delay_max + 1 && 2179 left_edge[i] != delay_max + 1) 2180 right_edge[i] = -1; 2181 } 2182 } 2183 break; 2184 } 2185 2186 /* stop != 1 */ 2187 for (i = 0; i < per_dqs; i++) { 2188 if (bit_chk & 1) { 2189 /* 2190 * Remember a passing test as 2191 * the right_edge. 2192 */ 2193 right_edge[i] = d; 2194 } else { 2195 if (d != 0) { 2196 /* 2197 * If a right edge has not 2198 * been seen yet, then a future 2199 * passing test will mark this 2200 * edge as the left edge. 2201 */ 2202 if (right_edge[i] == delay_max + 1) 2203 left_edge[i] = -(d + 1); 2204 } else { 2205 /* 2206 * d = 0 failed, but it passed 2207 * when testing the left edge, 2208 * so it must be marginal, set 2209 * it to -1 2210 */ 2211 if (right_edge[i] == delay_max + 1 && 2212 left_edge[i] != delay_max + 1) 2213 right_edge[i] = -1; 2214 /* 2215 * If a right edge has not been 2216 * seen yet, then a future 2217 * passing test will mark this 2218 * edge as the left edge. 2219 */ 2220 else if (right_edge[i] == delay_max + 1) 2221 left_edge[i] = -(d + 1); 2222 } 2223 } 2224 2225 debug_cond(DLEVEL == 2, "%s:%d center[r,d=%u]: ", 2226 __func__, __LINE__, d); 2227 debug_cond(DLEVEL == 2, 2228 "bit_chk_test=%i left_edge[%u]: %d ", 2229 bit_chk & 1, i, left_edge[i]); 2230 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2231 right_edge[i]); 2232 bit_chk >>= 1; 2233 } 2234 } 2235 2236 /* Check that all bits have a window */ 2237 for (i = 0; i < per_dqs; i++) { 2238 debug_cond(DLEVEL == 2, 2239 "%s:%d write_center: left_edge[%u]: %d right_edge[%u]: %d", 2240 __func__, __LINE__, i, left_edge[i], 2241 i, right_edge[i]); 2242 if ((left_edge[i] == dqs_max + 1) || 2243 (right_edge[i] == dqs_max + 1)) 2244 return i + 1; /* FIXME: If we fail, retval > 0 */ 2245 } 2246 2247 return 0; 2248 } 2249 2250 /** 2251 * get_window_mid_index() - Find the best middle setting of DQ/DQS phase 2252 * @write: Perform read (Stage 2) or write (Stage 3) calibration 2253 * @left_edge: Left edge of the DQ/DQS phase 2254 * @right_edge: Right edge of the DQ/DQS phase 2255 * @mid_min: Best DQ/DQS phase middle setting 2256 * 2257 * Find index and value of the middle of the DQ/DQS working phase. 2258 */ 2259 static int get_window_mid_index(const int write, int *left_edge, 2260 int *right_edge, int *mid_min) 2261 { 2262 const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs : 2263 rwcfg->mem_dq_per_read_dqs; 2264 int i, mid, min_index; 2265 2266 /* Find middle of window for each DQ bit */ 2267 *mid_min = left_edge[0] - right_edge[0]; 2268 min_index = 0; 2269 for (i = 1; i < per_dqs; i++) { 2270 mid = left_edge[i] - right_edge[i]; 2271 if (mid < *mid_min) { 2272 *mid_min = mid; 2273 min_index = i; 2274 } 2275 } 2276 2277 /* 2278 * -mid_min/2 represents the amount that we need to move DQS. 2279 * If mid_min is odd and positive we'll need to add one to make 2280 * sure the rounding in further calculations is correct (always 2281 * bias to the right), so just add 1 for all positive values. 2282 */ 2283 if (*mid_min > 0) 2284 (*mid_min)++; 2285 *mid_min = *mid_min / 2; 2286 2287 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: *mid_min=%d (index=%u)\n", 2288 __func__, __LINE__, *mid_min, min_index); 2289 return min_index; 2290 } 2291 2292 /** 2293 * center_dq_windows() - Center the DQ/DQS windows 2294 * @write: Perform read (Stage 2) or write (Stage 3) calibration 2295 * @left_edge: Left edge of the DQ/DQS phase 2296 * @right_edge: Right edge of the DQ/DQS phase 2297 * @mid_min: Adjusted DQ/DQS phase middle setting 2298 * @orig_mid_min: Original DQ/DQS phase middle setting 2299 * @min_index: DQ/DQS phase middle setting index 2300 * @test_bgn: Rank number to begin the test 2301 * @dq_margin: Amount of shift for the DQ 2302 * @dqs_margin: Amount of shift for the DQS 2303 * 2304 * Align the DQ/DQS windows in each group. 2305 */ 2306 static void center_dq_windows(const int write, int *left_edge, int *right_edge, 2307 const int mid_min, const int orig_mid_min, 2308 const int min_index, const int test_bgn, 2309 int *dq_margin, int *dqs_margin) 2310 { 2311 const u32 delay_max = write ? iocfg->io_out1_delay_max : iocfg->io_in_delay_max; 2312 const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs : 2313 rwcfg->mem_dq_per_read_dqs; 2314 const u32 delay_off = write ? SCC_MGR_IO_OUT1_DELAY_OFFSET : 2315 SCC_MGR_IO_IN_DELAY_OFFSET; 2316 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | delay_off; 2317 2318 u32 temp_dq_io_delay1, temp_dq_io_delay2; 2319 int shift_dq, i, p; 2320 2321 /* Initialize data for export structures */ 2322 *dqs_margin = delay_max + 1; 2323 *dq_margin = delay_max + 1; 2324 2325 /* add delay to bring centre of all DQ windows to the same "level" */ 2326 for (i = 0, p = test_bgn; i < per_dqs; i++, p++) { 2327 /* Use values before divide by 2 to reduce round off error */ 2328 shift_dq = (left_edge[i] - right_edge[i] - 2329 (left_edge[min_index] - right_edge[min_index]))/2 + 2330 (orig_mid_min - mid_min); 2331 2332 debug_cond(DLEVEL == 2, 2333 "vfifo_center: before: shift_dq[%u]=%d\n", 2334 i, shift_dq); 2335 2336 temp_dq_io_delay1 = readl(addr + (p << 2)); 2337 temp_dq_io_delay2 = readl(addr + (i << 2)); 2338 2339 if (shift_dq + temp_dq_io_delay1 > delay_max) 2340 shift_dq = delay_max - temp_dq_io_delay2; 2341 else if (shift_dq + temp_dq_io_delay1 < 0) 2342 shift_dq = -temp_dq_io_delay1; 2343 2344 debug_cond(DLEVEL == 2, 2345 "vfifo_center: after: shift_dq[%u]=%d\n", 2346 i, shift_dq); 2347 2348 if (write) 2349 scc_mgr_set_dq_out1_delay(i, temp_dq_io_delay1 + shift_dq); 2350 else 2351 scc_mgr_set_dq_in_delay(p, temp_dq_io_delay1 + shift_dq); 2352 2353 scc_mgr_load_dq(p); 2354 2355 debug_cond(DLEVEL == 2, 2356 "vfifo_center: margin[%u]=[%d,%d]\n", i, 2357 left_edge[i] - shift_dq + (-mid_min), 2358 right_edge[i] + shift_dq - (-mid_min)); 2359 2360 /* To determine values for export structures */ 2361 if (left_edge[i] - shift_dq + (-mid_min) < *dq_margin) 2362 *dq_margin = left_edge[i] - shift_dq + (-mid_min); 2363 2364 if (right_edge[i] + shift_dq - (-mid_min) < *dqs_margin) 2365 *dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2366 } 2367 2368 } 2369 2370 /** 2371 * rw_mgr_mem_calibrate_vfifo_center() - Per-bit deskew DQ and centering 2372 * @rank_bgn: Rank number 2373 * @rw_group: Read/Write Group 2374 * @test_bgn: Rank at which the test begins 2375 * @use_read_test: Perform a read test 2376 * @update_fom: Update FOM 2377 * 2378 * Per-bit deskew DQ and centering. 2379 */ 2380 static int rw_mgr_mem_calibrate_vfifo_center(const u32 rank_bgn, 2381 const u32 rw_group, const u32 test_bgn, 2382 const int use_read_test, const int update_fom) 2383 { 2384 const u32 addr = 2385 SDR_PHYGRP_SCCGRP_ADDRESS + SCC_MGR_DQS_IN_DELAY_OFFSET + 2386 (rw_group << 2); 2387 /* 2388 * Store these as signed since there are comparisons with 2389 * signed numbers. 2390 */ 2391 uint32_t sticky_bit_chk; 2392 int32_t left_edge[rwcfg->mem_dq_per_read_dqs]; 2393 int32_t right_edge[rwcfg->mem_dq_per_read_dqs]; 2394 int32_t orig_mid_min, mid_min; 2395 int32_t new_dqs, start_dqs, start_dqs_en = 0, final_dqs_en; 2396 int32_t dq_margin, dqs_margin; 2397 int i, min_index; 2398 int ret; 2399 2400 debug("%s:%d: %u %u", __func__, __LINE__, rw_group, test_bgn); 2401 2402 start_dqs = readl(addr); 2403 if (iocfg->shift_dqs_en_when_shift_dqs) 2404 start_dqs_en = readl(addr - iocfg->dqs_en_delay_offset); 2405 2406 /* set the left and right edge of each bit to an illegal value */ 2407 /* use (iocfg->io_in_delay_max + 1) as an illegal value */ 2408 sticky_bit_chk = 0; 2409 for (i = 0; i < rwcfg->mem_dq_per_read_dqs; i++) { 2410 left_edge[i] = iocfg->io_in_delay_max + 1; 2411 right_edge[i] = iocfg->io_in_delay_max + 1; 2412 } 2413 2414 /* Search for the left edge of the window for each bit */ 2415 search_left_edge(0, rank_bgn, rw_group, rw_group, test_bgn, 2416 &sticky_bit_chk, 2417 left_edge, right_edge, use_read_test); 2418 2419 2420 /* Search for the right edge of the window for each bit */ 2421 ret = search_right_edge(0, rank_bgn, rw_group, rw_group, 2422 start_dqs, start_dqs_en, 2423 &sticky_bit_chk, 2424 left_edge, right_edge, use_read_test); 2425 if (ret) { 2426 /* 2427 * Restore delay chain settings before letting the loop 2428 * in rw_mgr_mem_calibrate_vfifo to retry different 2429 * dqs/ck relationships. 2430 */ 2431 scc_mgr_set_dqs_bus_in_delay(rw_group, start_dqs); 2432 if (iocfg->shift_dqs_en_when_shift_dqs) 2433 scc_mgr_set_dqs_en_delay(rw_group, start_dqs_en); 2434 2435 scc_mgr_load_dqs(rw_group); 2436 writel(0, &sdr_scc_mgr->update); 2437 2438 debug_cond(DLEVEL == 1, 2439 "%s:%d vfifo_center: failed to find edge [%u]: %d %d", 2440 __func__, __LINE__, i, left_edge[i], right_edge[i]); 2441 if (use_read_test) { 2442 set_failing_group_stage(rw_group * 2443 rwcfg->mem_dq_per_read_dqs + i, 2444 CAL_STAGE_VFIFO, 2445 CAL_SUBSTAGE_VFIFO_CENTER); 2446 } else { 2447 set_failing_group_stage(rw_group * 2448 rwcfg->mem_dq_per_read_dqs + i, 2449 CAL_STAGE_VFIFO_AFTER_WRITES, 2450 CAL_SUBSTAGE_VFIFO_CENTER); 2451 } 2452 return -EIO; 2453 } 2454 2455 min_index = get_window_mid_index(0, left_edge, right_edge, &mid_min); 2456 2457 /* Determine the amount we can change DQS (which is -mid_min) */ 2458 orig_mid_min = mid_min; 2459 new_dqs = start_dqs - mid_min; 2460 if (new_dqs > iocfg->dqs_in_delay_max) 2461 new_dqs = iocfg->dqs_in_delay_max; 2462 else if (new_dqs < 0) 2463 new_dqs = 0; 2464 2465 mid_min = start_dqs - new_dqs; 2466 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n", 2467 mid_min, new_dqs); 2468 2469 if (iocfg->shift_dqs_en_when_shift_dqs) { 2470 if (start_dqs_en - mid_min > iocfg->dqs_en_delay_max) 2471 mid_min += start_dqs_en - mid_min - iocfg->dqs_en_delay_max; 2472 else if (start_dqs_en - mid_min < 0) 2473 mid_min += start_dqs_en - mid_min; 2474 } 2475 new_dqs = start_dqs - mid_min; 2476 2477 debug_cond(DLEVEL == 1, 2478 "vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d\n", 2479 start_dqs, 2480 iocfg->shift_dqs_en_when_shift_dqs ? start_dqs_en : -1, 2481 new_dqs, mid_min); 2482 2483 /* Add delay to bring centre of all DQ windows to the same "level". */ 2484 center_dq_windows(0, left_edge, right_edge, mid_min, orig_mid_min, 2485 min_index, test_bgn, &dq_margin, &dqs_margin); 2486 2487 /* Move DQS-en */ 2488 if (iocfg->shift_dqs_en_when_shift_dqs) { 2489 final_dqs_en = start_dqs_en - mid_min; 2490 scc_mgr_set_dqs_en_delay(rw_group, final_dqs_en); 2491 scc_mgr_load_dqs(rw_group); 2492 } 2493 2494 /* Move DQS */ 2495 scc_mgr_set_dqs_bus_in_delay(rw_group, new_dqs); 2496 scc_mgr_load_dqs(rw_group); 2497 debug_cond(DLEVEL == 2, 2498 "%s:%d vfifo_center: dq_margin=%d dqs_margin=%d", 2499 __func__, __LINE__, dq_margin, dqs_margin); 2500 2501 /* 2502 * Do not remove this line as it makes sure all of our decisions 2503 * have been applied. Apply the update bit. 2504 */ 2505 writel(0, &sdr_scc_mgr->update); 2506 2507 if ((dq_margin < 0) || (dqs_margin < 0)) 2508 return -EINVAL; 2509 2510 return 0; 2511 } 2512 2513 /** 2514 * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device 2515 * @rw_group: Read/Write Group 2516 * @phase: DQ/DQS phase 2517 * 2518 * Because initially no communication ca be reliably performed with the memory 2519 * device, the sequencer uses a guaranteed write mechanism to write data into 2520 * the memory device. 2521 */ 2522 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group, 2523 const u32 phase) 2524 { 2525 int ret; 2526 2527 /* Set a particular DQ/DQS phase. */ 2528 scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase); 2529 2530 debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n", 2531 __func__, __LINE__, rw_group, phase); 2532 2533 /* 2534 * Altera EMI_RM 2015.05.04 :: Figure 1-25 2535 * Load up the patterns used by read calibration using the 2536 * current DQDQS phase. 2537 */ 2538 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2539 2540 if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ) 2541 return 0; 2542 2543 /* 2544 * Altera EMI_RM 2015.05.04 :: Figure 1-26 2545 * Back-to-Back reads of the patterns used for calibration. 2546 */ 2547 ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1); 2548 if (ret) 2549 debug_cond(DLEVEL == 1, 2550 "%s:%d Guaranteed read test failed: g=%u p=%u\n", 2551 __func__, __LINE__, rw_group, phase); 2552 return ret; 2553 } 2554 2555 /** 2556 * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration 2557 * @rw_group: Read/Write Group 2558 * @test_bgn: Rank at which the test begins 2559 * 2560 * DQS enable calibration ensures reliable capture of the DQ signal without 2561 * glitches on the DQS line. 2562 */ 2563 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group, 2564 const u32 test_bgn) 2565 { 2566 /* 2567 * Altera EMI_RM 2015.05.04 :: Figure 1-27 2568 * DQS and DQS Eanble Signal Relationships. 2569 */ 2570 2571 /* We start at zero, so have one less dq to devide among */ 2572 const u32 delay_step = iocfg->io_in_delay_max / 2573 (rwcfg->mem_dq_per_read_dqs - 1); 2574 int ret; 2575 u32 i, p, d, r; 2576 2577 debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn); 2578 2579 /* Try different dq_in_delays since the DQ path is shorter than DQS. */ 2580 for (r = 0; r < rwcfg->mem_number_of_ranks; 2581 r += NUM_RANKS_PER_SHADOW_REG) { 2582 for (i = 0, p = test_bgn, d = 0; 2583 i < rwcfg->mem_dq_per_read_dqs; 2584 i++, p++, d += delay_step) { 2585 debug_cond(DLEVEL == 1, 2586 "%s:%d: g=%u r=%u i=%u p=%u d=%u\n", 2587 __func__, __LINE__, rw_group, r, i, p, d); 2588 2589 scc_mgr_set_dq_in_delay(p, d); 2590 scc_mgr_load_dq(p); 2591 } 2592 2593 writel(0, &sdr_scc_mgr->update); 2594 } 2595 2596 /* 2597 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different 2598 * dq_in_delay values 2599 */ 2600 ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group); 2601 2602 debug_cond(DLEVEL == 1, 2603 "%s:%d: g=%u found=%u; Reseting delay chain to zero\n", 2604 __func__, __LINE__, rw_group, !ret); 2605 2606 for (r = 0; r < rwcfg->mem_number_of_ranks; 2607 r += NUM_RANKS_PER_SHADOW_REG) { 2608 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 2609 writel(0, &sdr_scc_mgr->update); 2610 } 2611 2612 return ret; 2613 } 2614 2615 /** 2616 * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS 2617 * @rw_group: Read/Write Group 2618 * @test_bgn: Rank at which the test begins 2619 * @use_read_test: Perform a read test 2620 * @update_fom: Update FOM 2621 * 2622 * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads 2623 * within a group. 2624 */ 2625 static int 2626 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn, 2627 const int use_read_test, 2628 const int update_fom) 2629 2630 { 2631 int ret, grp_calibrated; 2632 u32 rank_bgn, sr; 2633 2634 /* 2635 * Altera EMI_RM 2015.05.04 :: Figure 1-28 2636 * Read per-bit deskew can be done on a per shadow register basis. 2637 */ 2638 grp_calibrated = 1; 2639 for (rank_bgn = 0, sr = 0; 2640 rank_bgn < rwcfg->mem_number_of_ranks; 2641 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 2642 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group, 2643 test_bgn, 2644 use_read_test, 2645 update_fom); 2646 if (!ret) 2647 continue; 2648 2649 grp_calibrated = 0; 2650 } 2651 2652 if (!grp_calibrated) 2653 return -EIO; 2654 2655 return 0; 2656 } 2657 2658 /** 2659 * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO 2660 * @rw_group: Read/Write Group 2661 * @test_bgn: Rank at which the test begins 2662 * 2663 * Stage 1: Calibrate the read valid prediction FIFO. 2664 * 2665 * This function implements UniPHY calibration Stage 1, as explained in 2666 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 2667 * 2668 * - read valid prediction will consist of finding: 2669 * - DQS enable phase and DQS enable delay (DQS Enable Calibration) 2670 * - DQS input phase and DQS input delay (DQ/DQS Centering) 2671 * - we also do a per-bit deskew on the DQ lines. 2672 */ 2673 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn) 2674 { 2675 uint32_t p, d; 2676 uint32_t dtaps_per_ptap; 2677 uint32_t failed_substage; 2678 2679 int ret; 2680 2681 debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn); 2682 2683 /* Update info for sims */ 2684 reg_file_set_group(rw_group); 2685 reg_file_set_stage(CAL_STAGE_VFIFO); 2686 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ); 2687 2688 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ; 2689 2690 /* USER Determine number of delay taps for each phase tap. */ 2691 dtaps_per_ptap = DIV_ROUND_UP(iocfg->delay_per_opa_tap, 2692 iocfg->delay_per_dqs_en_dchain_tap) - 1; 2693 2694 for (d = 0; d <= dtaps_per_ptap; d += 2) { 2695 /* 2696 * In RLDRAMX we may be messing the delay of pins in 2697 * the same write rw_group but outside of the current read 2698 * the rw_group, but that's ok because we haven't calibrated 2699 * output side yet. 2700 */ 2701 if (d > 0) { 2702 scc_mgr_apply_group_all_out_delay_add_all_ranks( 2703 rw_group, d); 2704 } 2705 2706 for (p = 0; p <= iocfg->dqdqs_out_phase_max; p++) { 2707 /* 1) Guaranteed Write */ 2708 ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p); 2709 if (ret) 2710 break; 2711 2712 /* 2) DQS Enable Calibration */ 2713 ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group, 2714 test_bgn); 2715 if (ret) { 2716 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE; 2717 continue; 2718 } 2719 2720 /* 3) Centering DQ/DQS */ 2721 /* 2722 * If doing read after write calibration, do not update 2723 * FOM now. Do it then. 2724 */ 2725 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, 2726 test_bgn, 1, 0); 2727 if (ret) { 2728 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER; 2729 continue; 2730 } 2731 2732 /* All done. */ 2733 goto cal_done_ok; 2734 } 2735 } 2736 2737 /* Calibration Stage 1 failed. */ 2738 set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage); 2739 return 0; 2740 2741 /* Calibration Stage 1 completed OK. */ 2742 cal_done_ok: 2743 /* 2744 * Reset the delay chains back to zero if they have moved > 1 2745 * (check for > 1 because loop will increase d even when pass in 2746 * first case). 2747 */ 2748 if (d > 2) 2749 scc_mgr_zero_group(rw_group, 1); 2750 2751 return 1; 2752 } 2753 2754 /** 2755 * rw_mgr_mem_calibrate_vfifo_end() - DQ/DQS Centering. 2756 * @rw_group: Read/Write Group 2757 * @test_bgn: Rank at which the test begins 2758 * 2759 * Stage 3: DQ/DQS Centering. 2760 * 2761 * This function implements UniPHY calibration Stage 3, as explained in 2762 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 2763 */ 2764 static int rw_mgr_mem_calibrate_vfifo_end(const u32 rw_group, 2765 const u32 test_bgn) 2766 { 2767 int ret; 2768 2769 debug("%s:%d %u %u", __func__, __LINE__, rw_group, test_bgn); 2770 2771 /* Update info for sims. */ 2772 reg_file_set_group(rw_group); 2773 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES); 2774 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 2775 2776 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, test_bgn, 0, 1); 2777 if (ret) 2778 set_failing_group_stage(rw_group, 2779 CAL_STAGE_VFIFO_AFTER_WRITES, 2780 CAL_SUBSTAGE_VFIFO_CENTER); 2781 return ret; 2782 } 2783 2784 /** 2785 * rw_mgr_mem_calibrate_lfifo() - Minimize latency 2786 * 2787 * Stage 4: Minimize latency. 2788 * 2789 * This function implements UniPHY calibration Stage 4, as explained in 2790 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 2791 * Calibrate LFIFO to find smallest read latency. 2792 */ 2793 static uint32_t rw_mgr_mem_calibrate_lfifo(void) 2794 { 2795 int found_one = 0; 2796 2797 debug("%s:%d\n", __func__, __LINE__); 2798 2799 /* Update info for sims. */ 2800 reg_file_set_stage(CAL_STAGE_LFIFO); 2801 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY); 2802 2803 /* Load up the patterns used by read calibration for all ranks */ 2804 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2805 2806 do { 2807 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2808 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u", 2809 __func__, __LINE__, gbl->curr_read_lat); 2810 2811 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, NUM_READ_TESTS, 2812 PASS_ALL_BITS, 1)) 2813 break; 2814 2815 found_one = 1; 2816 /* 2817 * Reduce read latency and see if things are 2818 * working correctly. 2819 */ 2820 gbl->curr_read_lat--; 2821 } while (gbl->curr_read_lat > 0); 2822 2823 /* Reset the fifos to get pointers to known state. */ 2824 writel(0, &phy_mgr_cmd->fifo_reset); 2825 2826 if (found_one) { 2827 /* Add a fudge factor to the read latency that was determined */ 2828 gbl->curr_read_lat += 2; 2829 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2830 debug_cond(DLEVEL == 2, 2831 "%s:%d lfifo: success: using read_lat=%u\n", 2832 __func__, __LINE__, gbl->curr_read_lat); 2833 } else { 2834 set_failing_group_stage(0xff, CAL_STAGE_LFIFO, 2835 CAL_SUBSTAGE_READ_LATENCY); 2836 2837 debug_cond(DLEVEL == 2, 2838 "%s:%d lfifo: failed at initial read_lat=%u\n", 2839 __func__, __LINE__, gbl->curr_read_lat); 2840 } 2841 2842 return found_one; 2843 } 2844 2845 /** 2846 * search_window() - Search for the/part of the window with DM/DQS shift 2847 * @search_dm: If 1, search for the DM shift, if 0, search for DQS shift 2848 * @rank_bgn: Rank number 2849 * @write_group: Write Group 2850 * @bgn_curr: Current window begin 2851 * @end_curr: Current window end 2852 * @bgn_best: Current best window begin 2853 * @end_best: Current best window end 2854 * @win_best: Size of the best window 2855 * @new_dqs: New DQS value (only applicable if search_dm = 0). 2856 * 2857 * Search for the/part of the window with DM/DQS shift. 2858 */ 2859 static void search_window(const int search_dm, 2860 const u32 rank_bgn, const u32 write_group, 2861 int *bgn_curr, int *end_curr, int *bgn_best, 2862 int *end_best, int *win_best, int new_dqs) 2863 { 2864 u32 bit_chk; 2865 const int max = iocfg->io_out1_delay_max - new_dqs; 2866 int d, di; 2867 2868 /* Search for the/part of the window with DM/DQS shift. */ 2869 for (di = max; di >= 0; di -= DELTA_D) { 2870 if (search_dm) { 2871 d = di; 2872 scc_mgr_apply_group_dm_out1_delay(d); 2873 } else { 2874 /* For DQS, we go from 0...max */ 2875 d = max - di; 2876 /* 2877 * Note: This only shifts DQS, so are we limiting ourselve to 2878 * width of DQ unnecessarily. 2879 */ 2880 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2881 d + new_dqs); 2882 } 2883 2884 writel(0, &sdr_scc_mgr->update); 2885 2886 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 2887 PASS_ALL_BITS, &bit_chk, 2888 0)) { 2889 /* Set current end of the window. */ 2890 *end_curr = search_dm ? -d : d; 2891 2892 /* 2893 * If a starting edge of our window has not been seen 2894 * this is our current start of the DM window. 2895 */ 2896 if (*bgn_curr == iocfg->io_out1_delay_max + 1) 2897 *bgn_curr = search_dm ? -d : d; 2898 2899 /* 2900 * If current window is bigger than best seen. 2901 * Set best seen to be current window. 2902 */ 2903 if ((*end_curr - *bgn_curr + 1) > *win_best) { 2904 *win_best = *end_curr - *bgn_curr + 1; 2905 *bgn_best = *bgn_curr; 2906 *end_best = *end_curr; 2907 } 2908 } else { 2909 /* We just saw a failing test. Reset temp edge. */ 2910 *bgn_curr = iocfg->io_out1_delay_max + 1; 2911 *end_curr = iocfg->io_out1_delay_max + 1; 2912 2913 /* Early exit is only applicable to DQS. */ 2914 if (search_dm) 2915 continue; 2916 2917 /* 2918 * Early exit optimization: if the remaining delay 2919 * chain space is less than already seen largest 2920 * window we can exit. 2921 */ 2922 if (*win_best - 1 > iocfg->io_out1_delay_max - new_dqs - d) 2923 break; 2924 } 2925 } 2926 } 2927 2928 /* 2929 * rw_mgr_mem_calibrate_writes_center() - Center all windows 2930 * @rank_bgn: Rank number 2931 * @write_group: Write group 2932 * @test_bgn: Rank at which the test begins 2933 * 2934 * Center all windows. Do per-bit-deskew to possibly increase size of 2935 * certain windows. 2936 */ 2937 static int 2938 rw_mgr_mem_calibrate_writes_center(const u32 rank_bgn, const u32 write_group, 2939 const u32 test_bgn) 2940 { 2941 int i; 2942 u32 sticky_bit_chk; 2943 u32 min_index; 2944 int left_edge[rwcfg->mem_dq_per_write_dqs]; 2945 int right_edge[rwcfg->mem_dq_per_write_dqs]; 2946 int mid; 2947 int mid_min, orig_mid_min; 2948 int new_dqs, start_dqs; 2949 int dq_margin, dqs_margin, dm_margin; 2950 int bgn_curr = iocfg->io_out1_delay_max + 1; 2951 int end_curr = iocfg->io_out1_delay_max + 1; 2952 int bgn_best = iocfg->io_out1_delay_max + 1; 2953 int end_best = iocfg->io_out1_delay_max + 1; 2954 int win_best = 0; 2955 2956 int ret; 2957 2958 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn); 2959 2960 dm_margin = 0; 2961 2962 start_dqs = readl((SDR_PHYGRP_SCCGRP_ADDRESS | 2963 SCC_MGR_IO_OUT1_DELAY_OFFSET) + 2964 (rwcfg->mem_dq_per_write_dqs << 2)); 2965 2966 /* Per-bit deskew. */ 2967 2968 /* 2969 * Set the left and right edge of each bit to an illegal value. 2970 * Use (iocfg->io_out1_delay_max + 1) as an illegal value. 2971 */ 2972 sticky_bit_chk = 0; 2973 for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) { 2974 left_edge[i] = iocfg->io_out1_delay_max + 1; 2975 right_edge[i] = iocfg->io_out1_delay_max + 1; 2976 } 2977 2978 /* Search for the left edge of the window for each bit. */ 2979 search_left_edge(1, rank_bgn, write_group, 0, test_bgn, 2980 &sticky_bit_chk, 2981 left_edge, right_edge, 0); 2982 2983 /* Search for the right edge of the window for each bit. */ 2984 ret = search_right_edge(1, rank_bgn, write_group, 0, 2985 start_dqs, 0, 2986 &sticky_bit_chk, 2987 left_edge, right_edge, 0); 2988 if (ret) { 2989 set_failing_group_stage(test_bgn + ret - 1, CAL_STAGE_WRITES, 2990 CAL_SUBSTAGE_WRITES_CENTER); 2991 return -EINVAL; 2992 } 2993 2994 min_index = get_window_mid_index(1, left_edge, right_edge, &mid_min); 2995 2996 /* Determine the amount we can change DQS (which is -mid_min). */ 2997 orig_mid_min = mid_min; 2998 new_dqs = start_dqs; 2999 mid_min = 0; 3000 debug_cond(DLEVEL == 1, 3001 "%s:%d write_center: start_dqs=%d new_dqs=%d mid_min=%d\n", 3002 __func__, __LINE__, start_dqs, new_dqs, mid_min); 3003 3004 /* Add delay to bring centre of all DQ windows to the same "level". */ 3005 center_dq_windows(1, left_edge, right_edge, mid_min, orig_mid_min, 3006 min_index, 0, &dq_margin, &dqs_margin); 3007 3008 /* Move DQS */ 3009 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3010 writel(0, &sdr_scc_mgr->update); 3011 3012 /* Centre DM */ 3013 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__); 3014 3015 /* 3016 * Set the left and right edge of each bit to an illegal value. 3017 * Use (iocfg->io_out1_delay_max + 1) as an illegal value. 3018 */ 3019 left_edge[0] = iocfg->io_out1_delay_max + 1; 3020 right_edge[0] = iocfg->io_out1_delay_max + 1; 3021 3022 /* Search for the/part of the window with DM shift. */ 3023 search_window(1, rank_bgn, write_group, &bgn_curr, &end_curr, 3024 &bgn_best, &end_best, &win_best, 0); 3025 3026 /* Reset DM delay chains to 0. */ 3027 scc_mgr_apply_group_dm_out1_delay(0); 3028 3029 /* 3030 * Check to see if the current window nudges up aganist 0 delay. 3031 * If so we need to continue the search by shifting DQS otherwise DQS 3032 * search begins as a new search. 3033 */ 3034 if (end_curr != 0) { 3035 bgn_curr = iocfg->io_out1_delay_max + 1; 3036 end_curr = iocfg->io_out1_delay_max + 1; 3037 } 3038 3039 /* Search for the/part of the window with DQS shifts. */ 3040 search_window(0, rank_bgn, write_group, &bgn_curr, &end_curr, 3041 &bgn_best, &end_best, &win_best, new_dqs); 3042 3043 /* Assign left and right edge for cal and reporting. */ 3044 left_edge[0] = -1 * bgn_best; 3045 right_edge[0] = end_best; 3046 3047 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", 3048 __func__, __LINE__, left_edge[0], right_edge[0]); 3049 3050 /* Move DQS (back to orig). */ 3051 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3052 3053 /* Move DM */ 3054 3055 /* Find middle of window for the DM bit. */ 3056 mid = (left_edge[0] - right_edge[0]) / 2; 3057 3058 /* Only move right, since we are not moving DQS/DQ. */ 3059 if (mid < 0) 3060 mid = 0; 3061 3062 /* dm_marign should fail if we never find a window. */ 3063 if (win_best == 0) 3064 dm_margin = -1; 3065 else 3066 dm_margin = left_edge[0] - mid; 3067 3068 scc_mgr_apply_group_dm_out1_delay(mid); 3069 writel(0, &sdr_scc_mgr->update); 3070 3071 debug_cond(DLEVEL == 2, 3072 "%s:%d dm_calib: left=%d right=%d mid=%d dm_margin=%d\n", 3073 __func__, __LINE__, left_edge[0], right_edge[0], 3074 mid, dm_margin); 3075 /* Export values. */ 3076 gbl->fom_out += dq_margin + dqs_margin; 3077 3078 debug_cond(DLEVEL == 2, 3079 "%s:%d write_center: dq_margin=%d dqs_margin=%d dm_margin=%d\n", 3080 __func__, __LINE__, dq_margin, dqs_margin, dm_margin); 3081 3082 /* 3083 * Do not remove this line as it makes sure all of our 3084 * decisions have been applied. 3085 */ 3086 writel(0, &sdr_scc_mgr->update); 3087 3088 if ((dq_margin < 0) || (dqs_margin < 0) || (dm_margin < 0)) 3089 return -EINVAL; 3090 3091 return 0; 3092 } 3093 3094 /** 3095 * rw_mgr_mem_calibrate_writes() - Write Calibration Part One 3096 * @rank_bgn: Rank number 3097 * @group: Read/Write Group 3098 * @test_bgn: Rank at which the test begins 3099 * 3100 * Stage 2: Write Calibration Part One. 3101 * 3102 * This function implements UniPHY calibration Stage 2, as explained in 3103 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 3104 */ 3105 static int rw_mgr_mem_calibrate_writes(const u32 rank_bgn, const u32 group, 3106 const u32 test_bgn) 3107 { 3108 int ret; 3109 3110 /* Update info for sims */ 3111 debug("%s:%d %u %u\n", __func__, __LINE__, group, test_bgn); 3112 3113 reg_file_set_group(group); 3114 reg_file_set_stage(CAL_STAGE_WRITES); 3115 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER); 3116 3117 ret = rw_mgr_mem_calibrate_writes_center(rank_bgn, group, test_bgn); 3118 if (ret) 3119 set_failing_group_stage(group, CAL_STAGE_WRITES, 3120 CAL_SUBSTAGE_WRITES_CENTER); 3121 3122 return ret; 3123 } 3124 3125 /** 3126 * mem_precharge_and_activate() - Precharge all banks and activate 3127 * 3128 * Precharge all banks and activate row 0 in bank "000..." and bank "111...". 3129 */ 3130 static void mem_precharge_and_activate(void) 3131 { 3132 int r; 3133 3134 for (r = 0; r < rwcfg->mem_number_of_ranks; r++) { 3135 /* Set rank. */ 3136 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 3137 3138 /* Precharge all banks. */ 3139 writel(rwcfg->precharge_all, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3140 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3141 3142 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0); 3143 writel(rwcfg->activate_0_and_1_wait1, 3144 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 3145 3146 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1); 3147 writel(rwcfg->activate_0_and_1_wait2, 3148 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 3149 3150 /* Activate rows. */ 3151 writel(rwcfg->activate_0_and_1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3152 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3153 } 3154 } 3155 3156 /** 3157 * mem_init_latency() - Configure memory RLAT and WLAT settings 3158 * 3159 * Configure memory RLAT and WLAT parameters. 3160 */ 3161 static void mem_init_latency(void) 3162 { 3163 /* 3164 * For AV/CV, LFIFO is hardened and always runs at full rate 3165 * so max latency in AFI clocks, used here, is correspondingly 3166 * smaller. 3167 */ 3168 const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1; 3169 u32 rlat, wlat; 3170 3171 debug("%s:%d\n", __func__, __LINE__); 3172 3173 /* 3174 * Read in write latency. 3175 * WL for Hard PHY does not include additive latency. 3176 */ 3177 wlat = readl(&data_mgr->t_wl_add); 3178 wlat += readl(&data_mgr->mem_t_add); 3179 3180 gbl->rw_wl_nop_cycles = wlat - 1; 3181 3182 /* Read in readl latency. */ 3183 rlat = readl(&data_mgr->t_rl_add); 3184 3185 /* Set a pretty high read latency initially. */ 3186 gbl->curr_read_lat = rlat + 16; 3187 if (gbl->curr_read_lat > max_latency) 3188 gbl->curr_read_lat = max_latency; 3189 3190 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3191 3192 /* Advertise write latency. */ 3193 writel(wlat, &phy_mgr_cfg->afi_wlat); 3194 } 3195 3196 /** 3197 * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings 3198 * 3199 * Set VFIFO and LFIFO to instant-on settings in skip calibration mode. 3200 */ 3201 static void mem_skip_calibrate(void) 3202 { 3203 uint32_t vfifo_offset; 3204 uint32_t i, j, r; 3205 3206 debug("%s:%d\n", __func__, __LINE__); 3207 /* Need to update every shadow register set used by the interface */ 3208 for (r = 0; r < rwcfg->mem_number_of_ranks; 3209 r += NUM_RANKS_PER_SHADOW_REG) { 3210 /* 3211 * Set output phase alignment settings appropriate for 3212 * skip calibration. 3213 */ 3214 for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) { 3215 scc_mgr_set_dqs_en_phase(i, 0); 3216 if (iocfg->dll_chain_length == 6) 3217 scc_mgr_set_dqdqs_output_phase(i, 6); 3218 else 3219 scc_mgr_set_dqdqs_output_phase(i, 7); 3220 /* 3221 * Case:33398 3222 * 3223 * Write data arrives to the I/O two cycles before write 3224 * latency is reached (720 deg). 3225 * -> due to bit-slip in a/c bus 3226 * -> to allow board skew where dqs is longer than ck 3227 * -> how often can this happen!? 3228 * -> can claim back some ptaps for high freq 3229 * support if we can relax this, but i digress... 3230 * 3231 * The write_clk leads mem_ck by 90 deg 3232 * The minimum ptap of the OPA is 180 deg 3233 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay 3234 * The write_clk is always delayed by 2 ptaps 3235 * 3236 * Hence, to make DQS aligned to CK, we need to delay 3237 * DQS by: 3238 * (720 - 90 - 180 - 2 * (360 / iocfg->dll_chain_length)) 3239 * 3240 * Dividing the above by (360 / iocfg->dll_chain_length) 3241 * gives us the number of ptaps, which simplies to: 3242 * 3243 * (1.25 * iocfg->dll_chain_length - 2) 3244 */ 3245 scc_mgr_set_dqdqs_output_phase(i, 3246 1.25 * iocfg->dll_chain_length - 2); 3247 } 3248 writel(0xff, &sdr_scc_mgr->dqs_ena); 3249 writel(0xff, &sdr_scc_mgr->dqs_io_ena); 3250 3251 for (i = 0; i < rwcfg->mem_if_write_dqs_width; i++) { 3252 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3253 SCC_MGR_GROUP_COUNTER_OFFSET); 3254 } 3255 writel(0xff, &sdr_scc_mgr->dq_ena); 3256 writel(0xff, &sdr_scc_mgr->dm_ena); 3257 writel(0, &sdr_scc_mgr->update); 3258 } 3259 3260 /* Compensate for simulation model behaviour */ 3261 for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) { 3262 scc_mgr_set_dqs_bus_in_delay(i, 10); 3263 scc_mgr_load_dqs(i); 3264 } 3265 writel(0, &sdr_scc_mgr->update); 3266 3267 /* 3268 * ArriaV has hard FIFOs that can only be initialized by incrementing 3269 * in sequencer. 3270 */ 3271 vfifo_offset = CALIB_VFIFO_OFFSET; 3272 for (j = 0; j < vfifo_offset; j++) 3273 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy); 3274 writel(0, &phy_mgr_cmd->fifo_reset); 3275 3276 /* 3277 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal 3278 * setting from generation-time constant. 3279 */ 3280 gbl->curr_read_lat = CALIB_LFIFO_OFFSET; 3281 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3282 } 3283 3284 /** 3285 * mem_calibrate() - Memory calibration entry point. 3286 * 3287 * Perform memory calibration. 3288 */ 3289 static uint32_t mem_calibrate(void) 3290 { 3291 uint32_t i; 3292 uint32_t rank_bgn, sr; 3293 uint32_t write_group, write_test_bgn; 3294 uint32_t read_group, read_test_bgn; 3295 uint32_t run_groups, current_run; 3296 uint32_t failing_groups = 0; 3297 uint32_t group_failed = 0; 3298 3299 const u32 rwdqs_ratio = rwcfg->mem_if_read_dqs_width / 3300 rwcfg->mem_if_write_dqs_width; 3301 3302 debug("%s:%d\n", __func__, __LINE__); 3303 3304 /* Initialize the data settings */ 3305 gbl->error_substage = CAL_SUBSTAGE_NIL; 3306 gbl->error_stage = CAL_STAGE_NIL; 3307 gbl->error_group = 0xff; 3308 gbl->fom_in = 0; 3309 gbl->fom_out = 0; 3310 3311 /* Initialize WLAT and RLAT. */ 3312 mem_init_latency(); 3313 3314 /* Initialize bit slips. */ 3315 mem_precharge_and_activate(); 3316 3317 for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) { 3318 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3319 SCC_MGR_GROUP_COUNTER_OFFSET); 3320 /* Only needed once to set all groups, pins, DQ, DQS, DM. */ 3321 if (i == 0) 3322 scc_mgr_set_hhp_extras(); 3323 3324 scc_set_bypass_mode(i); 3325 } 3326 3327 /* Calibration is skipped. */ 3328 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) { 3329 /* 3330 * Set VFIFO and LFIFO to instant-on settings in skip 3331 * calibration mode. 3332 */ 3333 mem_skip_calibrate(); 3334 3335 /* 3336 * Do not remove this line as it makes sure all of our 3337 * decisions have been applied. 3338 */ 3339 writel(0, &sdr_scc_mgr->update); 3340 return 1; 3341 } 3342 3343 /* Calibration is not skipped. */ 3344 for (i = 0; i < NUM_CALIB_REPEAT; i++) { 3345 /* 3346 * Zero all delay chain/phase settings for all 3347 * groups and all shadow register sets. 3348 */ 3349 scc_mgr_zero_all(); 3350 3351 run_groups = ~0; 3352 3353 for (write_group = 0, write_test_bgn = 0; write_group 3354 < rwcfg->mem_if_write_dqs_width; write_group++, 3355 write_test_bgn += rwcfg->mem_dq_per_write_dqs) { 3356 3357 /* Initialize the group failure */ 3358 group_failed = 0; 3359 3360 current_run = run_groups & ((1 << 3361 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1); 3362 run_groups = run_groups >> 3363 RW_MGR_NUM_DQS_PER_WRITE_GROUP; 3364 3365 if (current_run == 0) 3366 continue; 3367 3368 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS | 3369 SCC_MGR_GROUP_COUNTER_OFFSET); 3370 scc_mgr_zero_group(write_group, 0); 3371 3372 for (read_group = write_group * rwdqs_ratio, 3373 read_test_bgn = 0; 3374 read_group < (write_group + 1) * rwdqs_ratio; 3375 read_group++, 3376 read_test_bgn += rwcfg->mem_dq_per_read_dqs) { 3377 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO) 3378 continue; 3379 3380 /* Calibrate the VFIFO */ 3381 if (rw_mgr_mem_calibrate_vfifo(read_group, 3382 read_test_bgn)) 3383 continue; 3384 3385 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3386 return 0; 3387 3388 /* The group failed, we're done. */ 3389 goto grp_failed; 3390 } 3391 3392 /* Calibrate the output side */ 3393 for (rank_bgn = 0, sr = 0; 3394 rank_bgn < rwcfg->mem_number_of_ranks; 3395 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 3396 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3397 continue; 3398 3399 /* Not needed in quick mode! */ 3400 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) 3401 continue; 3402 3403 /* Calibrate WRITEs */ 3404 if (!rw_mgr_mem_calibrate_writes(rank_bgn, 3405 write_group, write_test_bgn)) 3406 continue; 3407 3408 group_failed = 1; 3409 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3410 return 0; 3411 } 3412 3413 /* Some group failed, we're done. */ 3414 if (group_failed) 3415 goto grp_failed; 3416 3417 for (read_group = write_group * rwdqs_ratio, 3418 read_test_bgn = 0; 3419 read_group < (write_group + 1) * rwdqs_ratio; 3420 read_group++, 3421 read_test_bgn += rwcfg->mem_dq_per_read_dqs) { 3422 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3423 continue; 3424 3425 if (!rw_mgr_mem_calibrate_vfifo_end(read_group, 3426 read_test_bgn)) 3427 continue; 3428 3429 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3430 return 0; 3431 3432 /* The group failed, we're done. */ 3433 goto grp_failed; 3434 } 3435 3436 /* No group failed, continue as usual. */ 3437 continue; 3438 3439 grp_failed: /* A group failed, increment the counter. */ 3440 failing_groups++; 3441 } 3442 3443 /* 3444 * USER If there are any failing groups then report 3445 * the failure. 3446 */ 3447 if (failing_groups != 0) 3448 return 0; 3449 3450 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO) 3451 continue; 3452 3453 /* Calibrate the LFIFO */ 3454 if (!rw_mgr_mem_calibrate_lfifo()) 3455 return 0; 3456 } 3457 3458 /* 3459 * Do not remove this line as it makes sure all of our decisions 3460 * have been applied. 3461 */ 3462 writel(0, &sdr_scc_mgr->update); 3463 return 1; 3464 } 3465 3466 /** 3467 * run_mem_calibrate() - Perform memory calibration 3468 * 3469 * This function triggers the entire memory calibration procedure. 3470 */ 3471 static int run_mem_calibrate(void) 3472 { 3473 int pass; 3474 3475 debug("%s:%d\n", __func__, __LINE__); 3476 3477 /* Reset pass/fail status shown on afi_cal_success/fail */ 3478 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status); 3479 3480 /* Stop tracking manager. */ 3481 clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3482 3483 phy_mgr_initialize(); 3484 rw_mgr_mem_initialize(); 3485 3486 /* Perform the actual memory calibration. */ 3487 pass = mem_calibrate(); 3488 3489 mem_precharge_and_activate(); 3490 writel(0, &phy_mgr_cmd->fifo_reset); 3491 3492 /* Handoff. */ 3493 rw_mgr_mem_handoff(); 3494 /* 3495 * In Hard PHY this is a 2-bit control: 3496 * 0: AFI Mux Select 3497 * 1: DDIO Mux Select 3498 */ 3499 writel(0x2, &phy_mgr_cfg->mux_sel); 3500 3501 /* Start tracking manager. */ 3502 setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3503 3504 return pass; 3505 } 3506 3507 /** 3508 * debug_mem_calibrate() - Report result of memory calibration 3509 * @pass: Value indicating whether calibration passed or failed 3510 * 3511 * This function reports the results of the memory calibration 3512 * and writes debug information into the register file. 3513 */ 3514 static void debug_mem_calibrate(int pass) 3515 { 3516 uint32_t debug_info; 3517 3518 if (pass) { 3519 printf("%s: CALIBRATION PASSED\n", __FILE__); 3520 3521 gbl->fom_in /= 2; 3522 gbl->fom_out /= 2; 3523 3524 if (gbl->fom_in > 0xff) 3525 gbl->fom_in = 0xff; 3526 3527 if (gbl->fom_out > 0xff) 3528 gbl->fom_out = 0xff; 3529 3530 /* Update the FOM in the register file */ 3531 debug_info = gbl->fom_in; 3532 debug_info |= gbl->fom_out << 8; 3533 writel(debug_info, &sdr_reg_file->fom); 3534 3535 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3536 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status); 3537 } else { 3538 printf("%s: CALIBRATION FAILED\n", __FILE__); 3539 3540 debug_info = gbl->error_stage; 3541 debug_info |= gbl->error_substage << 8; 3542 debug_info |= gbl->error_group << 16; 3543 3544 writel(debug_info, &sdr_reg_file->failing_stage); 3545 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3546 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status); 3547 3548 /* Update the failing group/stage in the register file */ 3549 debug_info = gbl->error_stage; 3550 debug_info |= gbl->error_substage << 8; 3551 debug_info |= gbl->error_group << 16; 3552 writel(debug_info, &sdr_reg_file->failing_stage); 3553 } 3554 3555 printf("%s: Calibration complete\n", __FILE__); 3556 } 3557 3558 /** 3559 * hc_initialize_rom_data() - Initialize ROM data 3560 * 3561 * Initialize ROM data. 3562 */ 3563 static void hc_initialize_rom_data(void) 3564 { 3565 unsigned int nelem = 0; 3566 const u32 *rom_init; 3567 u32 i, addr; 3568 3569 socfpga_get_seq_inst_init(&rom_init, &nelem); 3570 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET; 3571 for (i = 0; i < nelem; i++) 3572 writel(rom_init[i], addr + (i << 2)); 3573 3574 socfpga_get_seq_ac_init(&rom_init, &nelem); 3575 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET; 3576 for (i = 0; i < nelem; i++) 3577 writel(rom_init[i], addr + (i << 2)); 3578 } 3579 3580 /** 3581 * initialize_reg_file() - Initialize SDR register file 3582 * 3583 * Initialize SDR register file. 3584 */ 3585 static void initialize_reg_file(void) 3586 { 3587 /* Initialize the register file with the correct data */ 3588 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature); 3589 writel(0, &sdr_reg_file->debug_data_addr); 3590 writel(0, &sdr_reg_file->cur_stage); 3591 writel(0, &sdr_reg_file->fom); 3592 writel(0, &sdr_reg_file->failing_stage); 3593 writel(0, &sdr_reg_file->debug1); 3594 writel(0, &sdr_reg_file->debug2); 3595 } 3596 3597 /** 3598 * initialize_hps_phy() - Initialize HPS PHY 3599 * 3600 * Initialize HPS PHY. 3601 */ 3602 static void initialize_hps_phy(void) 3603 { 3604 uint32_t reg; 3605 /* 3606 * Tracking also gets configured here because it's in the 3607 * same register. 3608 */ 3609 uint32_t trk_sample_count = 7500; 3610 uint32_t trk_long_idle_sample_count = (10 << 16) | 100; 3611 /* 3612 * Format is number of outer loops in the 16 MSB, sample 3613 * count in 16 LSB. 3614 */ 3615 3616 reg = 0; 3617 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2); 3618 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1); 3619 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1); 3620 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1); 3621 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0); 3622 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1); 3623 /* 3624 * This field selects the intrinsic latency to RDATA_EN/FULL path. 3625 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles. 3626 */ 3627 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0); 3628 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET( 3629 trk_sample_count); 3630 writel(reg, &sdr_ctrl->phy_ctrl0); 3631 3632 reg = 0; 3633 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET( 3634 trk_sample_count >> 3635 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH); 3636 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET( 3637 trk_long_idle_sample_count); 3638 writel(reg, &sdr_ctrl->phy_ctrl1); 3639 3640 reg = 0; 3641 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET( 3642 trk_long_idle_sample_count >> 3643 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH); 3644 writel(reg, &sdr_ctrl->phy_ctrl2); 3645 } 3646 3647 /** 3648 * initialize_tracking() - Initialize tracking 3649 * 3650 * Initialize the register file with usable initial data. 3651 */ 3652 static void initialize_tracking(void) 3653 { 3654 /* 3655 * Initialize the register file with the correct data. 3656 * Compute usable version of value in case we skip full 3657 * computation later. 3658 */ 3659 writel(DIV_ROUND_UP(iocfg->delay_per_opa_tap, iocfg->delay_per_dchain_tap) - 1, 3660 &sdr_reg_file->dtaps_per_ptap); 3661 3662 /* trk_sample_count */ 3663 writel(7500, &sdr_reg_file->trk_sample_count); 3664 3665 /* longidle outer loop [15:0] */ 3666 writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle); 3667 3668 /* 3669 * longidle sample count [31:24] 3670 * trfc, worst case of 933Mhz 4Gb [23:16] 3671 * trcd, worst case [15:8] 3672 * vfifo wait [7:0] 3673 */ 3674 writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0), 3675 &sdr_reg_file->delays); 3676 3677 /* mux delay */ 3678 writel((rwcfg->idle << 24) | (rwcfg->activate_1 << 16) | 3679 (rwcfg->sgle_read << 8) | (rwcfg->precharge_all << 0), 3680 &sdr_reg_file->trk_rw_mgr_addr); 3681 3682 writel(rwcfg->mem_if_read_dqs_width, 3683 &sdr_reg_file->trk_read_dqs_width); 3684 3685 /* trefi [7:0] */ 3686 writel((rwcfg->refresh_all << 24) | (1000 << 0), 3687 &sdr_reg_file->trk_rfsh); 3688 } 3689 3690 int sdram_calibration_full(void) 3691 { 3692 struct param_type my_param; 3693 struct gbl_type my_gbl; 3694 uint32_t pass; 3695 3696 memset(&my_param, 0, sizeof(my_param)); 3697 memset(&my_gbl, 0, sizeof(my_gbl)); 3698 3699 param = &my_param; 3700 gbl = &my_gbl; 3701 3702 rwcfg = socfpga_get_sdram_rwmgr_config(); 3703 iocfg = socfpga_get_sdram_io_config(); 3704 misccfg = socfpga_get_sdram_misc_config(); 3705 3706 /* Set the calibration enabled by default */ 3707 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT; 3708 /* 3709 * Only sweep all groups (regardless of fail state) by default 3710 * Set enabled read test by default. 3711 */ 3712 #if DISABLE_GUARANTEED_READ 3713 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ; 3714 #endif 3715 /* Initialize the register file */ 3716 initialize_reg_file(); 3717 3718 /* Initialize any PHY CSR */ 3719 initialize_hps_phy(); 3720 3721 scc_mgr_initialize(); 3722 3723 initialize_tracking(); 3724 3725 printf("%s: Preparing to start memory calibration\n", __FILE__); 3726 3727 debug("%s:%d\n", __func__, __LINE__); 3728 debug_cond(DLEVEL == 1, 3729 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ", 3730 rwcfg->mem_number_of_ranks, rwcfg->mem_number_of_cs_per_dimm, 3731 rwcfg->mem_dq_per_read_dqs, rwcfg->mem_dq_per_write_dqs, 3732 rwcfg->mem_virtual_groups_per_read_dqs, 3733 rwcfg->mem_virtual_groups_per_write_dqs); 3734 debug_cond(DLEVEL == 1, 3735 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ", 3736 rwcfg->mem_if_read_dqs_width, rwcfg->mem_if_write_dqs_width, 3737 rwcfg->mem_data_width, rwcfg->mem_data_mask_width, 3738 iocfg->delay_per_opa_tap, iocfg->delay_per_dchain_tap); 3739 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u", 3740 iocfg->delay_per_dqs_en_dchain_tap, iocfg->dll_chain_length); 3741 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ", 3742 iocfg->dqs_en_phase_max, iocfg->dqdqs_out_phase_max, 3743 iocfg->dqs_en_delay_max, iocfg->dqs_in_delay_max); 3744 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ", 3745 iocfg->io_in_delay_max, iocfg->io_out1_delay_max, 3746 iocfg->io_out2_delay_max); 3747 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n", 3748 iocfg->dqs_in_reserve, iocfg->dqs_out_reserve); 3749 3750 hc_initialize_rom_data(); 3751 3752 /* update info for sims */ 3753 reg_file_set_stage(CAL_STAGE_NIL); 3754 reg_file_set_group(0); 3755 3756 /* 3757 * Load global needed for those actions that require 3758 * some dynamic calibration support. 3759 */ 3760 dyn_calib_steps = STATIC_CALIB_STEPS; 3761 /* 3762 * Load global to allow dynamic selection of delay loop settings 3763 * based on calibration mode. 3764 */ 3765 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS)) 3766 skip_delay_mask = 0xff; 3767 else 3768 skip_delay_mask = 0x0; 3769 3770 pass = run_mem_calibrate(); 3771 debug_mem_calibrate(pass); 3772 return pass; 3773 } 3774