1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * SEC Descriptor Construction Library 4 * Basic job descriptor construction 5 * 6 * Copyright 2014 Freescale Semiconductor, Inc. 7 * 8 */ 9 10 #include <common.h> 11 #include <fsl_sec.h> 12 #include "desc_constr.h" 13 #include "jobdesc.h" 14 #include "rsa_caam.h" 15 16 #if defined(CONFIG_MX6) || defined(CONFIG_MX7) 17 /*! 18 * Secure memory run command 19 * 20 * @param sec_mem_cmd Secure memory command register 21 * @return cmd_status Secure memory command status register 22 */ 23 uint32_t secmem_set_cmd(uint32_t sec_mem_cmd) 24 { 25 uint32_t temp_reg; 26 27 ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR; 28 uint32_t sm_vid = SM_VERSION(sec_in32(&sec->smvid)); 29 uint32_t jr_id = 0; 30 31 sec_out32(CAAM_SMCJR(sm_vid, jr_id), sec_mem_cmd); 32 33 do { 34 temp_reg = sec_in32(CAAM_SMCSJR(sm_vid, jr_id)); 35 } while (temp_reg & CMD_COMPLETE); 36 37 return temp_reg; 38 } 39 40 /*! 41 * CAAM page allocation: 42 * Allocates a partition from secure memory, with the id 43 * equal to partition_num. This will de-allocate the page 44 * if it is already allocated. The partition will have 45 * full access permissions. The permissions are set before, 46 * running a job descriptor. A memory page of secure RAM 47 * is allocated for the partition. 48 * 49 * @param page Number of the page to allocate. 50 * @param partition Number of the partition to allocate. 51 * @return 0 on success, ERROR_IN_PAGE_ALLOC otherwise 52 */ 53 int caam_page_alloc(uint8_t page_num, uint8_t partition_num) 54 { 55 uint32_t temp_reg; 56 57 ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR; 58 uint32_t sm_vid = SM_VERSION(sec_in32(&sec->smvid)); 59 uint32_t jr_id = 0; 60 61 /* 62 * De-Allocate partition_num if already allocated to ARM core 63 */ 64 if (sec_in32(CAAM_SMPO_0) & PARTITION_OWNER(partition_num)) { 65 temp_reg = secmem_set_cmd(PARTITION(partition_num) | 66 CMD_PART_DEALLOC); 67 if (temp_reg & SMCSJR_AERR) { 68 printf("Error: De-allocation status 0x%X\n", temp_reg); 69 return ERROR_IN_PAGE_ALLOC; 70 } 71 } 72 73 /* set the access rights to allow full access */ 74 sec_out32(CAAM_SMAG1JR(sm_vid, jr_id, partition_num), 0xF); 75 sec_out32(CAAM_SMAG2JR(sm_vid, jr_id, partition_num), 0xF); 76 sec_out32(CAAM_SMAPJR(sm_vid, jr_id, partition_num), 0xFF); 77 78 /* Now need to allocate partition_num of secure RAM. */ 79 /* De-Allocate page_num by starting with a page inquiry command */ 80 temp_reg = secmem_set_cmd(PAGE(page_num) | CMD_INQUIRY); 81 82 /* if the page is owned, de-allocate it */ 83 if ((temp_reg & SMCSJR_PO) == PAGE_OWNED) { 84 temp_reg = secmem_set_cmd(PAGE(page_num) | CMD_PAGE_DEALLOC); 85 if (temp_reg & SMCSJR_AERR) { 86 printf("Error: Allocation status 0x%X\n", temp_reg); 87 return ERROR_IN_PAGE_ALLOC; 88 } 89 } 90 91 /* Allocate page_num to partition_num */ 92 temp_reg = secmem_set_cmd(PAGE(page_num) | PARTITION(partition_num) 93 | CMD_PAGE_ALLOC); 94 if (temp_reg & SMCSJR_AERR) { 95 printf("Error: Allocation status 0x%X\n", temp_reg); 96 return ERROR_IN_PAGE_ALLOC; 97 } 98 /* page inquiry command to ensure that the page was allocated */ 99 temp_reg = secmem_set_cmd(PAGE(page_num) | CMD_INQUIRY); 100 101 /* if the page is not owned => problem */ 102 if ((temp_reg & SMCSJR_PO) != PAGE_OWNED) { 103 printf("Allocation of page %d in partition %d failed 0x%X\n", 104 temp_reg, page_num, partition_num); 105 106 return ERROR_IN_PAGE_ALLOC; 107 } 108 109 return 0; 110 } 111 112 int inline_cnstr_jobdesc_blob_dek(uint32_t *desc, const uint8_t *plain_txt, 113 uint8_t *dek_blob, uint32_t in_sz) 114 { 115 ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR; 116 uint32_t sm_vid = SM_VERSION(sec_in32(&sec->smvid)); 117 uint32_t jr_id = 0; 118 119 uint32_t ret = 0; 120 u32 aad_w1, aad_w2; 121 /* output blob will have 32 bytes key blob in beginning and 122 * 16 byte HMAC identifier at end of data blob */ 123 uint32_t out_sz = in_sz + KEY_BLOB_SIZE + MAC_SIZE; 124 /* Setting HDR for blob */ 125 uint8_t wrapped_key_hdr[8] = {HDR_TAG, 0x00, WRP_HDR_SIZE + out_sz, 126 HDR_PAR, HAB_MOD, HAB_ALG, in_sz, HAB_FLG}; 127 128 /* initialize the blob array */ 129 memset(dek_blob, 0, out_sz + 8); 130 /* Copy the header into the DEK blob buffer */ 131 memcpy(dek_blob, wrapped_key_hdr, sizeof(wrapped_key_hdr)); 132 133 /* allocating secure memory */ 134 ret = caam_page_alloc(PAGE_1, PARTITION_1); 135 if (ret) 136 return ret; 137 138 /* Write DEK to secure memory */ 139 memcpy((uint32_t *)SEC_MEM_PAGE1, (uint32_t *)plain_txt, in_sz); 140 141 unsigned long start = (unsigned long)SEC_MEM_PAGE1 & 142 ~(ARCH_DMA_MINALIGN - 1); 143 unsigned long end = ALIGN(start + 0x1000, ARCH_DMA_MINALIGN); 144 flush_dcache_range(start, end); 145 146 /* Now configure the access rights of the partition */ 147 sec_out32(CAAM_SMAG1JR(sm_vid, jr_id, PARTITION_1), KS_G1); 148 sec_out32(CAAM_SMAG2JR(sm_vid, jr_id, PARTITION_1), 0); 149 sec_out32(CAAM_SMAPJR(sm_vid, jr_id, PARTITION_1), PERM); 150 151 /* construct aad for AES */ 152 aad_w1 = (in_sz << OP_ALG_ALGSEL_SHIFT) | KEY_AES_SRC | LD_CCM_MODE; 153 aad_w2 = 0x0; 154 155 init_job_desc(desc, 0); 156 157 append_cmd(desc, CMD_LOAD | CLASS_2 | KEY_IMM | KEY_ENC | 158 (0x0c << LDST_OFFSET_SHIFT) | 0x08); 159 160 append_u32(desc, aad_w1); 161 162 append_u32(desc, aad_w2); 163 164 append_cmd_ptr(desc, (dma_addr_t)SEC_MEM_PAGE1, in_sz, CMD_SEQ_IN_PTR); 165 166 append_cmd_ptr(desc, (dma_addr_t)dek_blob + 8, out_sz, CMD_SEQ_OUT_PTR); 167 168 append_operation(desc, OP_TYPE_ENCAP_PROTOCOL | OP_PCLID_BLOB | 169 OP_PCLID_SECMEM); 170 171 return ret; 172 } 173 #endif 174 175 void inline_cnstr_jobdesc_hash(uint32_t *desc, 176 const uint8_t *msg, uint32_t msgsz, uint8_t *digest, 177 u32 alg_type, uint32_t alg_size, int sg_tbl) 178 { 179 /* SHA 256 , output is of length 32 words */ 180 uint32_t storelen = alg_size; 181 u32 options; 182 dma_addr_t dma_addr_in, dma_addr_out; 183 184 dma_addr_in = virt_to_phys((void *)msg); 185 dma_addr_out = virt_to_phys((void *)digest); 186 187 init_job_desc(desc, 0); 188 append_operation(desc, OP_TYPE_CLASS2_ALG | 189 OP_ALG_AAI_HASH | OP_ALG_AS_INITFINAL | 190 OP_ALG_ENCRYPT | OP_ALG_ICV_OFF | alg_type); 191 192 options = LDST_CLASS_2_CCB | FIFOLD_TYPE_MSG | FIFOLD_TYPE_LAST2; 193 if (sg_tbl) 194 options |= FIFOLDST_SGF; 195 if (msgsz > 0xffff) { 196 options |= FIFOLDST_EXT; 197 append_fifo_load(desc, dma_addr_in, 0, options); 198 append_cmd(desc, msgsz); 199 } else { 200 append_fifo_load(desc, dma_addr_in, msgsz, options); 201 } 202 203 append_store(desc, dma_addr_out, storelen, 204 LDST_CLASS_2_CCB | LDST_SRCDST_BYTE_CONTEXT); 205 } 206 #ifndef CONFIG_SPL_BUILD 207 void inline_cnstr_jobdesc_blob_encap(uint32_t *desc, uint8_t *key_idnfr, 208 uint8_t *plain_txt, uint8_t *enc_blob, 209 uint32_t in_sz) 210 { 211 dma_addr_t dma_addr_key_idnfr, dma_addr_in, dma_addr_out; 212 uint32_t key_sz = KEY_IDNFR_SZ_BYTES; 213 /* output blob will have 32 bytes key blob in beginning and 214 * 16 byte HMAC identifier at end of data blob */ 215 uint32_t out_sz = in_sz + KEY_BLOB_SIZE + MAC_SIZE; 216 217 dma_addr_key_idnfr = virt_to_phys((void *)key_idnfr); 218 dma_addr_in = virt_to_phys((void *)plain_txt); 219 dma_addr_out = virt_to_phys((void *)enc_blob); 220 221 init_job_desc(desc, 0); 222 223 append_key(desc, dma_addr_key_idnfr, key_sz, CLASS_2); 224 225 append_seq_in_ptr(desc, dma_addr_in, in_sz, 0); 226 227 append_seq_out_ptr(desc, dma_addr_out, out_sz, 0); 228 229 append_operation(desc, OP_TYPE_ENCAP_PROTOCOL | OP_PCLID_BLOB); 230 } 231 232 void inline_cnstr_jobdesc_blob_decap(uint32_t *desc, uint8_t *key_idnfr, 233 uint8_t *enc_blob, uint8_t *plain_txt, 234 uint32_t out_sz) 235 { 236 dma_addr_t dma_addr_key_idnfr, dma_addr_in, dma_addr_out; 237 uint32_t key_sz = KEY_IDNFR_SZ_BYTES; 238 uint32_t in_sz = out_sz + KEY_BLOB_SIZE + MAC_SIZE; 239 240 dma_addr_key_idnfr = virt_to_phys((void *)key_idnfr); 241 dma_addr_in = virt_to_phys((void *)enc_blob); 242 dma_addr_out = virt_to_phys((void *)plain_txt); 243 244 init_job_desc(desc, 0); 245 246 append_key(desc, dma_addr_key_idnfr, key_sz, CLASS_2); 247 248 append_seq_in_ptr(desc, dma_addr_in, in_sz, 0); 249 250 append_seq_out_ptr(desc, dma_addr_out, out_sz, 0); 251 252 append_operation(desc, OP_TYPE_DECAP_PROTOCOL | OP_PCLID_BLOB); 253 } 254 #endif 255 /* 256 * Descriptor to instantiate RNG State Handle 0 in normal mode and 257 * load the JDKEK, TDKEK and TDSK registers 258 */ 259 void inline_cnstr_jobdesc_rng_instantiation(uint32_t *desc, int handle) 260 { 261 u32 *jump_cmd; 262 263 init_job_desc(desc, 0); 264 265 /* INIT RNG in non-test mode */ 266 append_operation(desc, OP_TYPE_CLASS1_ALG | OP_ALG_ALGSEL_RNG | 267 (handle << OP_ALG_AAI_SHIFT) | OP_ALG_AS_INIT); 268 269 /* For SH0, Secure Keys must be generated as well */ 270 if (handle == 0) { 271 /* wait for done */ 272 jump_cmd = append_jump(desc, JUMP_CLASS_CLASS1); 273 set_jump_tgt_here(desc, jump_cmd); 274 275 /* 276 * load 1 to clear written reg: 277 * resets the done interrupt and returns the RNG to idle. 278 */ 279 append_load_imm_u32(desc, 1, LDST_SRCDST_WORD_CLRW); 280 281 /* generate secure keys (non-test) */ 282 append_operation(desc, OP_TYPE_CLASS1_ALG | OP_ALG_ALGSEL_RNG | 283 OP_ALG_RNG4_SK); 284 } 285 } 286 287 /* Change key size to bytes form bits in calling function*/ 288 void inline_cnstr_jobdesc_pkha_rsaexp(uint32_t *desc, 289 struct pk_in_params *pkin, uint8_t *out, 290 uint32_t out_siz) 291 { 292 dma_addr_t dma_addr_e, dma_addr_a, dma_addr_n, dma_addr_out; 293 294 dma_addr_e = virt_to_phys((void *)pkin->e); 295 dma_addr_a = virt_to_phys((void *)pkin->a); 296 dma_addr_n = virt_to_phys((void *)pkin->n); 297 dma_addr_out = virt_to_phys((void *)out); 298 299 init_job_desc(desc, 0); 300 append_key(desc, dma_addr_e, pkin->e_siz, KEY_DEST_PKHA_E | CLASS_1); 301 302 append_fifo_load(desc, dma_addr_a, 303 pkin->a_siz, LDST_CLASS_1_CCB | FIFOLD_TYPE_PK_A); 304 305 append_fifo_load(desc, dma_addr_n, 306 pkin->n_siz, LDST_CLASS_1_CCB | FIFOLD_TYPE_PK_N); 307 308 append_operation(desc, OP_TYPE_PK | OP_ALG_PK | OP_ALG_PKMODE_MOD_EXPO); 309 310 append_fifo_store(desc, dma_addr_out, out_siz, 311 LDST_CLASS_1_CCB | FIFOST_TYPE_PKHA_B); 312 } 313