xref: /openbmc/u-boot/drivers/crypto/fsl/jobdesc.c (revision 6e87ae1c)
1 /*
2  * SEC Descriptor Construction Library
3  * Basic job descriptor construction
4  *
5  * Copyright 2014 Freescale Semiconductor, Inc.
6  *
7  * SPDX-License-Identifier:	GPL-2.0+
8  *
9  */
10 
11 #include <common.h>
12 #include <fsl_sec.h>
13 #include "desc_constr.h"
14 #include "jobdesc.h"
15 #include "rsa_caam.h"
16 
17 #if defined(CONFIG_MX6) || defined(CONFIG_MX7)
18 /*!
19  * Secure memory run command
20  *
21  * @param   sec_mem_cmd  Secure memory command register
22  * @return  cmd_status  Secure memory command status register
23  */
24 uint32_t secmem_set_cmd(uint32_t sec_mem_cmd)
25 {
26 	uint32_t temp_reg;
27 
28 	ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR;
29 	uint32_t sm_vid = SM_VERSION(sec_in32(&sec->smvid));
30 	uint32_t jr_id = 0;
31 
32 	sec_out32(CAAM_SMCJR(sm_vid, jr_id), sec_mem_cmd);
33 
34 	do {
35 		temp_reg = sec_in32(CAAM_SMCSJR(sm_vid, jr_id));
36 	} while (temp_reg & CMD_COMPLETE);
37 
38 	return temp_reg;
39 }
40 
41 /*!
42  * CAAM page allocation:
43  * Allocates a partition from secure memory, with the id
44  * equal to partition_num. This will de-allocate the page
45  * if it is already allocated. The partition will have
46  * full access permissions. The permissions are set before,
47  * running a job descriptor. A memory page of secure RAM
48  * is allocated for the partition.
49  *
50  * @param   page  Number of the page to allocate.
51  * @param   partition  Number of the partition to allocate.
52  * @return  0 on success, ERROR_IN_PAGE_ALLOC otherwise
53  */
54 int caam_page_alloc(uint8_t page_num, uint8_t partition_num)
55 {
56 	uint32_t temp_reg;
57 
58 	ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR;
59 	uint32_t sm_vid = SM_VERSION(sec_in32(&sec->smvid));
60 	uint32_t jr_id = 0;
61 
62 	/*
63 	 * De-Allocate partition_num if already allocated to ARM core
64 	 */
65 	if (sec_in32(CAAM_SMPO_0) & PARTITION_OWNER(partition_num)) {
66 		temp_reg = secmem_set_cmd(PARTITION(partition_num) |
67 						CMD_PART_DEALLOC);
68 		if (temp_reg & SMCSJR_AERR) {
69 			printf("Error: De-allocation status 0x%X\n", temp_reg);
70 			return ERROR_IN_PAGE_ALLOC;
71 		}
72 	}
73 
74 	/* set the access rights to allow full access */
75 	sec_out32(CAAM_SMAG1JR(sm_vid, jr_id, partition_num), 0xF);
76 	sec_out32(CAAM_SMAG2JR(sm_vid, jr_id, partition_num), 0xF);
77 	sec_out32(CAAM_SMAPJR(sm_vid, jr_id, partition_num), 0xFF);
78 
79 	/* Now need to allocate partition_num of secure RAM. */
80 	/* De-Allocate page_num by starting with a page inquiry command */
81 	temp_reg = secmem_set_cmd(PAGE(page_num) | CMD_INQUIRY);
82 
83 	/* if the page is owned, de-allocate it */
84 	if ((temp_reg & SMCSJR_PO) == PAGE_OWNED) {
85 		temp_reg = secmem_set_cmd(PAGE(page_num) | CMD_PAGE_DEALLOC);
86 		if (temp_reg & SMCSJR_AERR) {
87 			printf("Error: Allocation status 0x%X\n", temp_reg);
88 			return ERROR_IN_PAGE_ALLOC;
89 		}
90 	}
91 
92 	/* Allocate page_num to partition_num */
93 	temp_reg = secmem_set_cmd(PAGE(page_num) | PARTITION(partition_num)
94 						| CMD_PAGE_ALLOC);
95 	if (temp_reg & SMCSJR_AERR) {
96 		printf("Error: Allocation status 0x%X\n", temp_reg);
97 		return ERROR_IN_PAGE_ALLOC;
98 	}
99 	/* page inquiry command to ensure that the page was allocated */
100 	temp_reg = secmem_set_cmd(PAGE(page_num) | CMD_INQUIRY);
101 
102 	/* if the page is not owned => problem */
103 	if ((temp_reg & SMCSJR_PO) != PAGE_OWNED) {
104 		printf("Allocation of page %d in partition %d failed 0x%X\n",
105 		       temp_reg, page_num, partition_num);
106 
107 		return ERROR_IN_PAGE_ALLOC;
108 	}
109 
110 	return 0;
111 }
112 
113 int inline_cnstr_jobdesc_blob_dek(uint32_t *desc, const uint8_t *plain_txt,
114 				       uint8_t *dek_blob, uint32_t in_sz)
115 {
116 	ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR;
117 	uint32_t sm_vid = SM_VERSION(sec_in32(&sec->smvid));
118 	uint32_t jr_id = 0;
119 
120 	uint32_t ret = 0;
121 	u32 aad_w1, aad_w2;
122 	/* output blob will have 32 bytes key blob in beginning and
123 	 * 16 byte HMAC identifier at end of data blob */
124 	uint32_t out_sz = in_sz + KEY_BLOB_SIZE + MAC_SIZE;
125 	/* Setting HDR for blob */
126 	uint8_t wrapped_key_hdr[8] = {HDR_TAG, 0x00, WRP_HDR_SIZE + out_sz,
127 			     HDR_PAR, HAB_MOD, HAB_ALG, in_sz, HAB_FLG};
128 
129 	/* initialize the blob array */
130 	memset(dek_blob, 0, out_sz + 8);
131 	/* Copy the header into the DEK blob buffer */
132 	memcpy(dek_blob, wrapped_key_hdr, sizeof(wrapped_key_hdr));
133 
134 	/* allocating secure memory */
135 	ret = caam_page_alloc(PAGE_1, PARTITION_1);
136 	if (ret)
137 		return ret;
138 
139 	/* Write DEK to secure memory */
140 	memcpy((uint32_t *)SEC_MEM_PAGE1, (uint32_t *)plain_txt, in_sz);
141 
142 	unsigned long start = (unsigned long)SEC_MEM_PAGE1 &
143 				~(ARCH_DMA_MINALIGN - 1);
144 	unsigned long end = ALIGN(start + 0x1000, ARCH_DMA_MINALIGN);
145 	flush_dcache_range(start, end);
146 
147 	/* Now configure the access rights of the partition */
148 	sec_out32(CAAM_SMAG1JR(sm_vid, jr_id, PARTITION_1), KS_G1);
149 	sec_out32(CAAM_SMAG2JR(sm_vid, jr_id, PARTITION_1), 0);
150 	sec_out32(CAAM_SMAPJR(sm_vid, jr_id, PARTITION_1), PERM);
151 
152 	/* construct aad for AES */
153 	aad_w1 = (in_sz << OP_ALG_ALGSEL_SHIFT) | KEY_AES_SRC | LD_CCM_MODE;
154 	aad_w2 = 0x0;
155 
156 	init_job_desc(desc, 0);
157 
158 	append_cmd(desc, CMD_LOAD | CLASS_2 | KEY_IMM | KEY_ENC |
159 				(0x0c << LDST_OFFSET_SHIFT) | 0x08);
160 
161 	append_u32(desc, aad_w1);
162 
163 	append_u32(desc, aad_w2);
164 
165 	append_cmd_ptr(desc, (dma_addr_t)SEC_MEM_PAGE1, in_sz, CMD_SEQ_IN_PTR);
166 
167 	append_cmd_ptr(desc, (dma_addr_t)dek_blob + 8, out_sz, CMD_SEQ_OUT_PTR);
168 
169 	append_operation(desc, OP_TYPE_ENCAP_PROTOCOL | OP_PCLID_BLOB |
170 						OP_PCLID_SECMEM);
171 
172 	return ret;
173 }
174 #endif
175 
176 void inline_cnstr_jobdesc_hash(uint32_t *desc,
177 			  const uint8_t *msg, uint32_t msgsz, uint8_t *digest,
178 			  u32 alg_type, uint32_t alg_size, int sg_tbl)
179 {
180 	/* SHA 256 , output is of length 32 words */
181 	uint32_t storelen = alg_size;
182 	u32 options;
183 	dma_addr_t dma_addr_in, dma_addr_out;
184 
185 	dma_addr_in = virt_to_phys((void *)msg);
186 	dma_addr_out = virt_to_phys((void *)digest);
187 
188 	init_job_desc(desc, 0);
189 	append_operation(desc, OP_TYPE_CLASS2_ALG |
190 			 OP_ALG_AAI_HASH | OP_ALG_AS_INITFINAL |
191 			 OP_ALG_ENCRYPT | OP_ALG_ICV_OFF | alg_type);
192 
193 	options = LDST_CLASS_2_CCB | FIFOLD_TYPE_MSG | FIFOLD_TYPE_LAST2;
194 	if (sg_tbl)
195 		options |= FIFOLDST_SGF;
196 	if (msgsz > 0xffff) {
197 		options |= FIFOLDST_EXT;
198 		append_fifo_load(desc, dma_addr_in, 0, options);
199 		append_cmd(desc, msgsz);
200 	} else {
201 		append_fifo_load(desc, dma_addr_in, msgsz, options);
202 	}
203 
204 	append_store(desc, dma_addr_out, storelen,
205 		     LDST_CLASS_2_CCB | LDST_SRCDST_BYTE_CONTEXT);
206 }
207 #ifndef CONFIG_SPL_BUILD
208 void inline_cnstr_jobdesc_blob_encap(uint32_t *desc, uint8_t *key_idnfr,
209 				     uint8_t *plain_txt, uint8_t *enc_blob,
210 				     uint32_t in_sz)
211 {
212 	dma_addr_t dma_addr_key_idnfr, dma_addr_in, dma_addr_out;
213 	uint32_t key_sz = KEY_IDNFR_SZ_BYTES;
214 	/* output blob will have 32 bytes key blob in beginning and
215 	 * 16 byte HMAC identifier at end of data blob */
216 	uint32_t out_sz = in_sz + KEY_BLOB_SIZE + MAC_SIZE;
217 
218 	dma_addr_key_idnfr = virt_to_phys((void *)key_idnfr);
219 	dma_addr_in	= virt_to_phys((void *)plain_txt);
220 	dma_addr_out	= virt_to_phys((void *)enc_blob);
221 
222 	init_job_desc(desc, 0);
223 
224 	append_key(desc, dma_addr_key_idnfr, key_sz, CLASS_2);
225 
226 	append_seq_in_ptr(desc, dma_addr_in, in_sz, 0);
227 
228 	append_seq_out_ptr(desc, dma_addr_out, out_sz, 0);
229 
230 	append_operation(desc, OP_TYPE_ENCAP_PROTOCOL | OP_PCLID_BLOB);
231 }
232 
233 void inline_cnstr_jobdesc_blob_decap(uint32_t *desc, uint8_t *key_idnfr,
234 				     uint8_t *enc_blob, uint8_t *plain_txt,
235 				     uint32_t out_sz)
236 {
237 	dma_addr_t dma_addr_key_idnfr, dma_addr_in, dma_addr_out;
238 	uint32_t key_sz = KEY_IDNFR_SZ_BYTES;
239 	uint32_t in_sz = out_sz + KEY_BLOB_SIZE + MAC_SIZE;
240 
241 	dma_addr_key_idnfr = virt_to_phys((void *)key_idnfr);
242 	dma_addr_in	= virt_to_phys((void *)enc_blob);
243 	dma_addr_out	= virt_to_phys((void *)plain_txt);
244 
245 	init_job_desc(desc, 0);
246 
247 	append_key(desc, dma_addr_key_idnfr, key_sz, CLASS_2);
248 
249 	append_seq_in_ptr(desc, dma_addr_in, in_sz, 0);
250 
251 	append_seq_out_ptr(desc, dma_addr_out, out_sz, 0);
252 
253 	append_operation(desc, OP_TYPE_DECAP_PROTOCOL | OP_PCLID_BLOB);
254 }
255 #endif
256 /*
257  * Descriptor to instantiate RNG State Handle 0 in normal mode and
258  * load the JDKEK, TDKEK and TDSK registers
259  */
260 void inline_cnstr_jobdesc_rng_instantiation(uint32_t *desc)
261 {
262 	u32 *jump_cmd;
263 
264 	init_job_desc(desc, 0);
265 
266 	/* INIT RNG in non-test mode */
267 	append_operation(desc, OP_TYPE_CLASS1_ALG | OP_ALG_ALGSEL_RNG |
268 			 OP_ALG_AS_INIT);
269 
270 	/* wait for done */
271 	jump_cmd = append_jump(desc, JUMP_CLASS_CLASS1);
272 	set_jump_tgt_here(desc, jump_cmd);
273 
274 	/*
275 	 * load 1 to clear written reg:
276 	 * resets the done interrrupt and returns the RNG to idle.
277 	 */
278 	append_load_imm_u32(desc, 1, LDST_SRCDST_WORD_CLRW);
279 
280 	/* generate secure keys (non-test) */
281 	append_operation(desc, OP_TYPE_CLASS1_ALG | OP_ALG_ALGSEL_RNG |
282 			 OP_ALG_RNG4_SK);
283 }
284 
285 /* Change key size to bytes form bits in calling function*/
286 void inline_cnstr_jobdesc_pkha_rsaexp(uint32_t *desc,
287 				      struct pk_in_params *pkin, uint8_t *out,
288 				      uint32_t out_siz)
289 {
290 	dma_addr_t dma_addr_e, dma_addr_a, dma_addr_n, dma_addr_out;
291 
292 	dma_addr_e = virt_to_phys((void *)pkin->e);
293 	dma_addr_a = virt_to_phys((void *)pkin->a);
294 	dma_addr_n = virt_to_phys((void *)pkin->n);
295 	dma_addr_out = virt_to_phys((void *)out);
296 
297 	init_job_desc(desc, 0);
298 	append_key(desc, dma_addr_e, pkin->e_siz, KEY_DEST_PKHA_E | CLASS_1);
299 
300 	append_fifo_load(desc, dma_addr_a,
301 			 pkin->a_siz, LDST_CLASS_1_CCB | FIFOLD_TYPE_PK_A);
302 
303 	append_fifo_load(desc, dma_addr_n,
304 			 pkin->n_siz, LDST_CLASS_1_CCB | FIFOLD_TYPE_PK_N);
305 
306 	append_operation(desc, OP_TYPE_PK | OP_ALG_PK | OP_ALG_PKMODE_MOD_EXPO);
307 
308 	append_fifo_store(desc, dma_addr_out, out_siz,
309 			  LDST_CLASS_1_CCB | FIFOST_TYPE_PKHA_B);
310 }
311