1 /* 2 * SEC Descriptor Construction Library 3 * Basic job descriptor construction 4 * 5 * Copyright 2014 Freescale Semiconductor, Inc. 6 * 7 * SPDX-License-Identifier: GPL-2.0+ 8 * 9 */ 10 11 #include <common.h> 12 #include <fsl_sec.h> 13 #include "desc_constr.h" 14 #include "jobdesc.h" 15 #include "rsa_caam.h" 16 17 #if defined(CONFIG_MX6) || defined(CONFIG_MX7) 18 /*! 19 * Secure memory run command 20 * 21 * @param sec_mem_cmd Secure memory command register 22 * @return cmd_status Secure memory command status register 23 */ 24 uint32_t secmem_set_cmd(uint32_t sec_mem_cmd) 25 { 26 uint32_t temp_reg; 27 28 ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR; 29 uint32_t sm_vid = SM_VERSION(sec_in32(&sec->smvid)); 30 uint32_t jr_id = 0; 31 32 sec_out32(CAAM_SMCJR(sm_vid, jr_id), sec_mem_cmd); 33 34 do { 35 temp_reg = sec_in32(CAAM_SMCSJR(sm_vid, jr_id)); 36 } while (temp_reg & CMD_COMPLETE); 37 38 return temp_reg; 39 } 40 41 /*! 42 * CAAM page allocation: 43 * Allocates a partition from secure memory, with the id 44 * equal to partition_num. This will de-allocate the page 45 * if it is already allocated. The partition will have 46 * full access permissions. The permissions are set before, 47 * running a job descriptor. A memory page of secure RAM 48 * is allocated for the partition. 49 * 50 * @param page Number of the page to allocate. 51 * @param partition Number of the partition to allocate. 52 * @return 0 on success, ERROR_IN_PAGE_ALLOC otherwise 53 */ 54 int caam_page_alloc(uint8_t page_num, uint8_t partition_num) 55 { 56 uint32_t temp_reg; 57 58 ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR; 59 uint32_t sm_vid = SM_VERSION(sec_in32(&sec->smvid)); 60 uint32_t jr_id = 0; 61 62 /* 63 * De-Allocate partition_num if already allocated to ARM core 64 */ 65 if (sec_in32(CAAM_SMPO_0) & PARTITION_OWNER(partition_num)) { 66 temp_reg = secmem_set_cmd(PARTITION(partition_num) | 67 CMD_PART_DEALLOC); 68 if (temp_reg & SMCSJR_AERR) { 69 printf("Error: De-allocation status 0x%X\n", temp_reg); 70 return ERROR_IN_PAGE_ALLOC; 71 } 72 } 73 74 /* set the access rights to allow full access */ 75 sec_out32(CAAM_SMAG1JR(sm_vid, jr_id, partition_num), 0xF); 76 sec_out32(CAAM_SMAG2JR(sm_vid, jr_id, partition_num), 0xF); 77 sec_out32(CAAM_SMAPJR(sm_vid, jr_id, partition_num), 0xFF); 78 79 /* Now need to allocate partition_num of secure RAM. */ 80 /* De-Allocate page_num by starting with a page inquiry command */ 81 temp_reg = secmem_set_cmd(PAGE(page_num) | CMD_INQUIRY); 82 83 /* if the page is owned, de-allocate it */ 84 if ((temp_reg & SMCSJR_PO) == PAGE_OWNED) { 85 temp_reg = secmem_set_cmd(PAGE(page_num) | CMD_PAGE_DEALLOC); 86 if (temp_reg & SMCSJR_AERR) { 87 printf("Error: Allocation status 0x%X\n", temp_reg); 88 return ERROR_IN_PAGE_ALLOC; 89 } 90 } 91 92 /* Allocate page_num to partition_num */ 93 temp_reg = secmem_set_cmd(PAGE(page_num) | PARTITION(partition_num) 94 | CMD_PAGE_ALLOC); 95 if (temp_reg & SMCSJR_AERR) { 96 printf("Error: Allocation status 0x%X\n", temp_reg); 97 return ERROR_IN_PAGE_ALLOC; 98 } 99 /* page inquiry command to ensure that the page was allocated */ 100 temp_reg = secmem_set_cmd(PAGE(page_num) | CMD_INQUIRY); 101 102 /* if the page is not owned => problem */ 103 if ((temp_reg & SMCSJR_PO) != PAGE_OWNED) { 104 printf("Allocation of page %d in partition %d failed 0x%X\n", 105 temp_reg, page_num, partition_num); 106 107 return ERROR_IN_PAGE_ALLOC; 108 } 109 110 return 0; 111 } 112 113 int inline_cnstr_jobdesc_blob_dek(uint32_t *desc, const uint8_t *plain_txt, 114 uint8_t *dek_blob, uint32_t in_sz) 115 { 116 ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR; 117 uint32_t sm_vid = SM_VERSION(sec_in32(&sec->smvid)); 118 uint32_t jr_id = 0; 119 120 uint32_t ret = 0; 121 u32 aad_w1, aad_w2; 122 /* output blob will have 32 bytes key blob in beginning and 123 * 16 byte HMAC identifier at end of data blob */ 124 uint32_t out_sz = in_sz + KEY_BLOB_SIZE + MAC_SIZE; 125 /* Setting HDR for blob */ 126 uint8_t wrapped_key_hdr[8] = {HDR_TAG, 0x00, WRP_HDR_SIZE + out_sz, 127 HDR_PAR, HAB_MOD, HAB_ALG, in_sz, HAB_FLG}; 128 129 /* initialize the blob array */ 130 memset(dek_blob, 0, out_sz + 8); 131 /* Copy the header into the DEK blob buffer */ 132 memcpy(dek_blob, wrapped_key_hdr, sizeof(wrapped_key_hdr)); 133 134 /* allocating secure memory */ 135 ret = caam_page_alloc(PAGE_1, PARTITION_1); 136 if (ret) 137 return ret; 138 139 /* Write DEK to secure memory */ 140 memcpy((uint32_t *)SEC_MEM_PAGE1, (uint32_t *)plain_txt, in_sz); 141 142 unsigned long start = (unsigned long)SEC_MEM_PAGE1 & 143 ~(ARCH_DMA_MINALIGN - 1); 144 unsigned long end = ALIGN(start + 0x1000, ARCH_DMA_MINALIGN); 145 flush_dcache_range(start, end); 146 147 /* Now configure the access rights of the partition */ 148 sec_out32(CAAM_SMAG1JR(sm_vid, jr_id, PARTITION_1), KS_G1); 149 sec_out32(CAAM_SMAG2JR(sm_vid, jr_id, PARTITION_1), 0); 150 sec_out32(CAAM_SMAPJR(sm_vid, jr_id, PARTITION_1), PERM); 151 152 /* construct aad for AES */ 153 aad_w1 = (in_sz << OP_ALG_ALGSEL_SHIFT) | KEY_AES_SRC | LD_CCM_MODE; 154 aad_w2 = 0x0; 155 156 init_job_desc(desc, 0); 157 158 append_cmd(desc, CMD_LOAD | CLASS_2 | KEY_IMM | KEY_ENC | 159 (0x0c << LDST_OFFSET_SHIFT) | 0x08); 160 161 append_u32(desc, aad_w1); 162 163 append_u32(desc, aad_w2); 164 165 append_cmd_ptr(desc, (dma_addr_t)SEC_MEM_PAGE1, in_sz, CMD_SEQ_IN_PTR); 166 167 append_cmd_ptr(desc, (dma_addr_t)dek_blob + 8, out_sz, CMD_SEQ_OUT_PTR); 168 169 append_operation(desc, OP_TYPE_ENCAP_PROTOCOL | OP_PCLID_BLOB | 170 OP_PCLID_SECMEM); 171 172 return ret; 173 } 174 #endif 175 176 void inline_cnstr_jobdesc_hash(uint32_t *desc, 177 const uint8_t *msg, uint32_t msgsz, uint8_t *digest, 178 u32 alg_type, uint32_t alg_size, int sg_tbl) 179 { 180 /* SHA 256 , output is of length 32 words */ 181 uint32_t storelen = alg_size; 182 u32 options; 183 dma_addr_t dma_addr_in, dma_addr_out; 184 185 dma_addr_in = virt_to_phys((void *)msg); 186 dma_addr_out = virt_to_phys((void *)digest); 187 188 init_job_desc(desc, 0); 189 append_operation(desc, OP_TYPE_CLASS2_ALG | 190 OP_ALG_AAI_HASH | OP_ALG_AS_INITFINAL | 191 OP_ALG_ENCRYPT | OP_ALG_ICV_OFF | alg_type); 192 193 options = LDST_CLASS_2_CCB | FIFOLD_TYPE_MSG | FIFOLD_TYPE_LAST2; 194 if (sg_tbl) 195 options |= FIFOLDST_SGF; 196 if (msgsz > 0xffff) { 197 options |= FIFOLDST_EXT; 198 append_fifo_load(desc, dma_addr_in, 0, options); 199 append_cmd(desc, msgsz); 200 } else { 201 append_fifo_load(desc, dma_addr_in, msgsz, options); 202 } 203 204 append_store(desc, dma_addr_out, storelen, 205 LDST_CLASS_2_CCB | LDST_SRCDST_BYTE_CONTEXT); 206 } 207 #ifndef CONFIG_SPL_BUILD 208 void inline_cnstr_jobdesc_blob_encap(uint32_t *desc, uint8_t *key_idnfr, 209 uint8_t *plain_txt, uint8_t *enc_blob, 210 uint32_t in_sz) 211 { 212 dma_addr_t dma_addr_key_idnfr, dma_addr_in, dma_addr_out; 213 uint32_t key_sz = KEY_IDNFR_SZ_BYTES; 214 /* output blob will have 32 bytes key blob in beginning and 215 * 16 byte HMAC identifier at end of data blob */ 216 uint32_t out_sz = in_sz + KEY_BLOB_SIZE + MAC_SIZE; 217 218 dma_addr_key_idnfr = virt_to_phys((void *)key_idnfr); 219 dma_addr_in = virt_to_phys((void *)plain_txt); 220 dma_addr_out = virt_to_phys((void *)enc_blob); 221 222 init_job_desc(desc, 0); 223 224 append_key(desc, dma_addr_key_idnfr, key_sz, CLASS_2); 225 226 append_seq_in_ptr(desc, dma_addr_in, in_sz, 0); 227 228 append_seq_out_ptr(desc, dma_addr_out, out_sz, 0); 229 230 append_operation(desc, OP_TYPE_ENCAP_PROTOCOL | OP_PCLID_BLOB); 231 } 232 233 void inline_cnstr_jobdesc_blob_decap(uint32_t *desc, uint8_t *key_idnfr, 234 uint8_t *enc_blob, uint8_t *plain_txt, 235 uint32_t out_sz) 236 { 237 dma_addr_t dma_addr_key_idnfr, dma_addr_in, dma_addr_out; 238 uint32_t key_sz = KEY_IDNFR_SZ_BYTES; 239 uint32_t in_sz = out_sz + KEY_BLOB_SIZE + MAC_SIZE; 240 241 dma_addr_key_idnfr = virt_to_phys((void *)key_idnfr); 242 dma_addr_in = virt_to_phys((void *)enc_blob); 243 dma_addr_out = virt_to_phys((void *)plain_txt); 244 245 init_job_desc(desc, 0); 246 247 append_key(desc, dma_addr_key_idnfr, key_sz, CLASS_2); 248 249 append_seq_in_ptr(desc, dma_addr_in, in_sz, 0); 250 251 append_seq_out_ptr(desc, dma_addr_out, out_sz, 0); 252 253 append_operation(desc, OP_TYPE_DECAP_PROTOCOL | OP_PCLID_BLOB); 254 } 255 #endif 256 /* 257 * Descriptor to instantiate RNG State Handle 0 in normal mode and 258 * load the JDKEK, TDKEK and TDSK registers 259 */ 260 void inline_cnstr_jobdesc_rng_instantiation(uint32_t *desc) 261 { 262 u32 *jump_cmd; 263 264 init_job_desc(desc, 0); 265 266 /* INIT RNG in non-test mode */ 267 append_operation(desc, OP_TYPE_CLASS1_ALG | OP_ALG_ALGSEL_RNG | 268 OP_ALG_AS_INIT); 269 270 /* wait for done */ 271 jump_cmd = append_jump(desc, JUMP_CLASS_CLASS1); 272 set_jump_tgt_here(desc, jump_cmd); 273 274 /* 275 * load 1 to clear written reg: 276 * resets the done interrrupt and returns the RNG to idle. 277 */ 278 append_load_imm_u32(desc, 1, LDST_SRCDST_WORD_CLRW); 279 280 /* generate secure keys (non-test) */ 281 append_operation(desc, OP_TYPE_CLASS1_ALG | OP_ALG_ALGSEL_RNG | 282 OP_ALG_RNG4_SK); 283 } 284 285 /* Change key size to bytes form bits in calling function*/ 286 void inline_cnstr_jobdesc_pkha_rsaexp(uint32_t *desc, 287 struct pk_in_params *pkin, uint8_t *out, 288 uint32_t out_siz) 289 { 290 dma_addr_t dma_addr_e, dma_addr_a, dma_addr_n, dma_addr_out; 291 292 dma_addr_e = virt_to_phys((void *)pkin->e); 293 dma_addr_a = virt_to_phys((void *)pkin->a); 294 dma_addr_n = virt_to_phys((void *)pkin->n); 295 dma_addr_out = virt_to_phys((void *)out); 296 297 init_job_desc(desc, 0); 298 append_key(desc, dma_addr_e, pkin->e_siz, KEY_DEST_PKHA_E | CLASS_1); 299 300 append_fifo_load(desc, dma_addr_a, 301 pkin->a_siz, LDST_CLASS_1_CCB | FIFOLD_TYPE_PK_A); 302 303 append_fifo_load(desc, dma_addr_n, 304 pkin->n_siz, LDST_CLASS_1_CCB | FIFOLD_TYPE_PK_N); 305 306 append_operation(desc, OP_TYPE_PK | OP_ALG_PK | OP_ALG_PKMODE_MOD_EXPO); 307 308 append_fifo_store(desc, dma_addr_out, out_siz, 309 LDST_CLASS_1_CCB | FIFOST_TYPE_PKHA_B); 310 } 311