1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * SEC Descriptor Construction Library
4 * Basic job descriptor construction
5 *
6 * Copyright 2014 Freescale Semiconductor, Inc.
7 *
8 */
9
10 #include <common.h>
11 #include <fsl_sec.h>
12 #include "desc_constr.h"
13 #include "jobdesc.h"
14 #include "rsa_caam.h"
15
16 #if defined(CONFIG_MX6) || defined(CONFIG_MX7)
17 /*!
18 * Secure memory run command
19 *
20 * @param sec_mem_cmd Secure memory command register
21 * @return cmd_status Secure memory command status register
22 */
secmem_set_cmd(uint32_t sec_mem_cmd)23 uint32_t secmem_set_cmd(uint32_t sec_mem_cmd)
24 {
25 uint32_t temp_reg;
26
27 ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR;
28 uint32_t sm_vid = SM_VERSION(sec_in32(&sec->smvid));
29 uint32_t jr_id = 0;
30
31 sec_out32(CAAM_SMCJR(sm_vid, jr_id), sec_mem_cmd);
32
33 do {
34 temp_reg = sec_in32(CAAM_SMCSJR(sm_vid, jr_id));
35 } while (temp_reg & CMD_COMPLETE);
36
37 return temp_reg;
38 }
39
40 /*!
41 * CAAM page allocation:
42 * Allocates a partition from secure memory, with the id
43 * equal to partition_num. This will de-allocate the page
44 * if it is already allocated. The partition will have
45 * full access permissions. The permissions are set before,
46 * running a job descriptor. A memory page of secure RAM
47 * is allocated for the partition.
48 *
49 * @param page Number of the page to allocate.
50 * @param partition Number of the partition to allocate.
51 * @return 0 on success, ERROR_IN_PAGE_ALLOC otherwise
52 */
caam_page_alloc(uint8_t page_num,uint8_t partition_num)53 int caam_page_alloc(uint8_t page_num, uint8_t partition_num)
54 {
55 uint32_t temp_reg;
56
57 ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR;
58 uint32_t sm_vid = SM_VERSION(sec_in32(&sec->smvid));
59 uint32_t jr_id = 0;
60
61 /*
62 * De-Allocate partition_num if already allocated to ARM core
63 */
64 if (sec_in32(CAAM_SMPO_0) & PARTITION_OWNER(partition_num)) {
65 temp_reg = secmem_set_cmd(PARTITION(partition_num) |
66 CMD_PART_DEALLOC);
67 if (temp_reg & SMCSJR_AERR) {
68 printf("Error: De-allocation status 0x%X\n", temp_reg);
69 return ERROR_IN_PAGE_ALLOC;
70 }
71 }
72
73 /* set the access rights to allow full access */
74 sec_out32(CAAM_SMAG1JR(sm_vid, jr_id, partition_num), 0xF);
75 sec_out32(CAAM_SMAG2JR(sm_vid, jr_id, partition_num), 0xF);
76 sec_out32(CAAM_SMAPJR(sm_vid, jr_id, partition_num), 0xFF);
77
78 /* Now need to allocate partition_num of secure RAM. */
79 /* De-Allocate page_num by starting with a page inquiry command */
80 temp_reg = secmem_set_cmd(PAGE(page_num) | CMD_INQUIRY);
81
82 /* if the page is owned, de-allocate it */
83 if ((temp_reg & SMCSJR_PO) == PAGE_OWNED) {
84 temp_reg = secmem_set_cmd(PAGE(page_num) | CMD_PAGE_DEALLOC);
85 if (temp_reg & SMCSJR_AERR) {
86 printf("Error: Allocation status 0x%X\n", temp_reg);
87 return ERROR_IN_PAGE_ALLOC;
88 }
89 }
90
91 /* Allocate page_num to partition_num */
92 temp_reg = secmem_set_cmd(PAGE(page_num) | PARTITION(partition_num)
93 | CMD_PAGE_ALLOC);
94 if (temp_reg & SMCSJR_AERR) {
95 printf("Error: Allocation status 0x%X\n", temp_reg);
96 return ERROR_IN_PAGE_ALLOC;
97 }
98 /* page inquiry command to ensure that the page was allocated */
99 temp_reg = secmem_set_cmd(PAGE(page_num) | CMD_INQUIRY);
100
101 /* if the page is not owned => problem */
102 if ((temp_reg & SMCSJR_PO) != PAGE_OWNED) {
103 printf("Allocation of page %d in partition %d failed 0x%X\n",
104 temp_reg, page_num, partition_num);
105
106 return ERROR_IN_PAGE_ALLOC;
107 }
108
109 return 0;
110 }
111
inline_cnstr_jobdesc_blob_dek(uint32_t * desc,const uint8_t * plain_txt,uint8_t * dek_blob,uint32_t in_sz)112 int inline_cnstr_jobdesc_blob_dek(uint32_t *desc, const uint8_t *plain_txt,
113 uint8_t *dek_blob, uint32_t in_sz)
114 {
115 ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR;
116 uint32_t sm_vid = SM_VERSION(sec_in32(&sec->smvid));
117 uint32_t jr_id = 0;
118
119 uint32_t ret = 0;
120 u32 aad_w1, aad_w2;
121 /* output blob will have 32 bytes key blob in beginning and
122 * 16 byte HMAC identifier at end of data blob */
123 uint32_t out_sz = in_sz + KEY_BLOB_SIZE + MAC_SIZE;
124 /* Setting HDR for blob */
125 uint8_t wrapped_key_hdr[8] = {HDR_TAG, 0x00, WRP_HDR_SIZE + out_sz,
126 HDR_PAR, HAB_MOD, HAB_ALG, in_sz, HAB_FLG};
127
128 /* initialize the blob array */
129 memset(dek_blob, 0, out_sz + 8);
130 /* Copy the header into the DEK blob buffer */
131 memcpy(dek_blob, wrapped_key_hdr, sizeof(wrapped_key_hdr));
132
133 /* allocating secure memory */
134 ret = caam_page_alloc(PAGE_1, PARTITION_1);
135 if (ret)
136 return ret;
137
138 /* Write DEK to secure memory */
139 memcpy((uint32_t *)SEC_MEM_PAGE1, (uint32_t *)plain_txt, in_sz);
140
141 unsigned long start = (unsigned long)SEC_MEM_PAGE1 &
142 ~(ARCH_DMA_MINALIGN - 1);
143 unsigned long end = ALIGN(start + 0x1000, ARCH_DMA_MINALIGN);
144 flush_dcache_range(start, end);
145
146 /* Now configure the access rights of the partition */
147 sec_out32(CAAM_SMAG1JR(sm_vid, jr_id, PARTITION_1), KS_G1);
148 sec_out32(CAAM_SMAG2JR(sm_vid, jr_id, PARTITION_1), 0);
149 sec_out32(CAAM_SMAPJR(sm_vid, jr_id, PARTITION_1), PERM);
150
151 /* construct aad for AES */
152 aad_w1 = (in_sz << OP_ALG_ALGSEL_SHIFT) | KEY_AES_SRC | LD_CCM_MODE;
153 aad_w2 = 0x0;
154
155 init_job_desc(desc, 0);
156
157 append_cmd(desc, CMD_LOAD | CLASS_2 | KEY_IMM | KEY_ENC |
158 (0x0c << LDST_OFFSET_SHIFT) | 0x08);
159
160 append_u32(desc, aad_w1);
161
162 append_u32(desc, aad_w2);
163
164 append_cmd_ptr(desc, (dma_addr_t)SEC_MEM_PAGE1, in_sz, CMD_SEQ_IN_PTR);
165
166 append_cmd_ptr(desc, (dma_addr_t)dek_blob + 8, out_sz, CMD_SEQ_OUT_PTR);
167
168 append_operation(desc, OP_TYPE_ENCAP_PROTOCOL | OP_PCLID_BLOB |
169 OP_PCLID_SECMEM);
170
171 return ret;
172 }
173 #endif
174
inline_cnstr_jobdesc_hash(uint32_t * desc,const uint8_t * msg,uint32_t msgsz,uint8_t * digest,u32 alg_type,uint32_t alg_size,int sg_tbl)175 void inline_cnstr_jobdesc_hash(uint32_t *desc,
176 const uint8_t *msg, uint32_t msgsz, uint8_t *digest,
177 u32 alg_type, uint32_t alg_size, int sg_tbl)
178 {
179 /* SHA 256 , output is of length 32 words */
180 uint32_t storelen = alg_size;
181 u32 options;
182 dma_addr_t dma_addr_in, dma_addr_out;
183
184 dma_addr_in = virt_to_phys((void *)msg);
185 dma_addr_out = virt_to_phys((void *)digest);
186
187 init_job_desc(desc, 0);
188 append_operation(desc, OP_TYPE_CLASS2_ALG |
189 OP_ALG_AAI_HASH | OP_ALG_AS_INITFINAL |
190 OP_ALG_ENCRYPT | OP_ALG_ICV_OFF | alg_type);
191
192 options = LDST_CLASS_2_CCB | FIFOLD_TYPE_MSG | FIFOLD_TYPE_LAST2;
193 if (sg_tbl)
194 options |= FIFOLDST_SGF;
195 if (msgsz > 0xffff) {
196 options |= FIFOLDST_EXT;
197 append_fifo_load(desc, dma_addr_in, 0, options);
198 append_cmd(desc, msgsz);
199 } else {
200 append_fifo_load(desc, dma_addr_in, msgsz, options);
201 }
202
203 append_store(desc, dma_addr_out, storelen,
204 LDST_CLASS_2_CCB | LDST_SRCDST_BYTE_CONTEXT);
205 }
206 #ifndef CONFIG_SPL_BUILD
inline_cnstr_jobdesc_blob_encap(uint32_t * desc,uint8_t * key_idnfr,uint8_t * plain_txt,uint8_t * enc_blob,uint32_t in_sz)207 void inline_cnstr_jobdesc_blob_encap(uint32_t *desc, uint8_t *key_idnfr,
208 uint8_t *plain_txt, uint8_t *enc_blob,
209 uint32_t in_sz)
210 {
211 dma_addr_t dma_addr_key_idnfr, dma_addr_in, dma_addr_out;
212 uint32_t key_sz = KEY_IDNFR_SZ_BYTES;
213 /* output blob will have 32 bytes key blob in beginning and
214 * 16 byte HMAC identifier at end of data blob */
215 uint32_t out_sz = in_sz + KEY_BLOB_SIZE + MAC_SIZE;
216
217 dma_addr_key_idnfr = virt_to_phys((void *)key_idnfr);
218 dma_addr_in = virt_to_phys((void *)plain_txt);
219 dma_addr_out = virt_to_phys((void *)enc_blob);
220
221 init_job_desc(desc, 0);
222
223 append_key(desc, dma_addr_key_idnfr, key_sz, CLASS_2);
224
225 append_seq_in_ptr(desc, dma_addr_in, in_sz, 0);
226
227 append_seq_out_ptr(desc, dma_addr_out, out_sz, 0);
228
229 append_operation(desc, OP_TYPE_ENCAP_PROTOCOL | OP_PCLID_BLOB);
230 }
231
inline_cnstr_jobdesc_blob_decap(uint32_t * desc,uint8_t * key_idnfr,uint8_t * enc_blob,uint8_t * plain_txt,uint32_t out_sz)232 void inline_cnstr_jobdesc_blob_decap(uint32_t *desc, uint8_t *key_idnfr,
233 uint8_t *enc_blob, uint8_t *plain_txt,
234 uint32_t out_sz)
235 {
236 dma_addr_t dma_addr_key_idnfr, dma_addr_in, dma_addr_out;
237 uint32_t key_sz = KEY_IDNFR_SZ_BYTES;
238 uint32_t in_sz = out_sz + KEY_BLOB_SIZE + MAC_SIZE;
239
240 dma_addr_key_idnfr = virt_to_phys((void *)key_idnfr);
241 dma_addr_in = virt_to_phys((void *)enc_blob);
242 dma_addr_out = virt_to_phys((void *)plain_txt);
243
244 init_job_desc(desc, 0);
245
246 append_key(desc, dma_addr_key_idnfr, key_sz, CLASS_2);
247
248 append_seq_in_ptr(desc, dma_addr_in, in_sz, 0);
249
250 append_seq_out_ptr(desc, dma_addr_out, out_sz, 0);
251
252 append_operation(desc, OP_TYPE_DECAP_PROTOCOL | OP_PCLID_BLOB);
253 }
254 #endif
255 /*
256 * Descriptor to instantiate RNG State Handle 0 in normal mode and
257 * load the JDKEK, TDKEK and TDSK registers
258 */
inline_cnstr_jobdesc_rng_instantiation(uint32_t * desc,int handle)259 void inline_cnstr_jobdesc_rng_instantiation(uint32_t *desc, int handle)
260 {
261 u32 *jump_cmd;
262
263 init_job_desc(desc, 0);
264
265 /* INIT RNG in non-test mode */
266 append_operation(desc, OP_TYPE_CLASS1_ALG | OP_ALG_ALGSEL_RNG |
267 (handle << OP_ALG_AAI_SHIFT) | OP_ALG_AS_INIT);
268
269 /* For SH0, Secure Keys must be generated as well */
270 if (handle == 0) {
271 /* wait for done */
272 jump_cmd = append_jump(desc, JUMP_CLASS_CLASS1);
273 set_jump_tgt_here(desc, jump_cmd);
274
275 /*
276 * load 1 to clear written reg:
277 * resets the done interrupt and returns the RNG to idle.
278 */
279 append_load_imm_u32(desc, 1, LDST_SRCDST_WORD_CLRW);
280
281 /* generate secure keys (non-test) */
282 append_operation(desc, OP_TYPE_CLASS1_ALG | OP_ALG_ALGSEL_RNG |
283 OP_ALG_RNG4_SK);
284 }
285 }
286
287 /* Change key size to bytes form bits in calling function*/
inline_cnstr_jobdesc_pkha_rsaexp(uint32_t * desc,struct pk_in_params * pkin,uint8_t * out,uint32_t out_siz)288 void inline_cnstr_jobdesc_pkha_rsaexp(uint32_t *desc,
289 struct pk_in_params *pkin, uint8_t *out,
290 uint32_t out_siz)
291 {
292 dma_addr_t dma_addr_e, dma_addr_a, dma_addr_n, dma_addr_out;
293
294 dma_addr_e = virt_to_phys((void *)pkin->e);
295 dma_addr_a = virt_to_phys((void *)pkin->a);
296 dma_addr_n = virt_to_phys((void *)pkin->n);
297 dma_addr_out = virt_to_phys((void *)out);
298
299 init_job_desc(desc, 0);
300 append_key(desc, dma_addr_e, pkin->e_siz, KEY_DEST_PKHA_E | CLASS_1);
301
302 append_fifo_load(desc, dma_addr_a,
303 pkin->a_siz, LDST_CLASS_1_CCB | FIFOLD_TYPE_PK_A);
304
305 append_fifo_load(desc, dma_addr_n,
306 pkin->n_siz, LDST_CLASS_1_CCB | FIFOLD_TYPE_PK_N);
307
308 append_operation(desc, OP_TYPE_PK | OP_ALG_PK | OP_ALG_PKMODE_MOD_EXPO);
309
310 append_fifo_store(desc, dma_addr_out, out_siz,
311 LDST_CLASS_1_CCB | FIFOST_TYPE_PKHA_B);
312 }
313