xref: /openbmc/u-boot/drivers/core/device.c (revision 400b4acf)
1 /*
2  * Device manager
3  *
4  * Copyright (c) 2013 Google, Inc
5  *
6  * (C) Copyright 2012
7  * Pavel Herrmann <morpheus.ibis@gmail.com>
8  *
9  * SPDX-License-Identifier:	GPL-2.0+
10  */
11 
12 #include <common.h>
13 #include <asm/io.h>
14 #include <fdtdec.h>
15 #include <fdt_support.h>
16 #include <malloc.h>
17 #include <dm/device.h>
18 #include <dm/device-internal.h>
19 #include <dm/lists.h>
20 #include <dm/pinctrl.h>
21 #include <dm/platdata.h>
22 #include <dm/uclass.h>
23 #include <dm/uclass-internal.h>
24 #include <dm/util.h>
25 #include <linux/err.h>
26 #include <linux/list.h>
27 
28 DECLARE_GLOBAL_DATA_PTR;
29 
30 static int device_bind_common(struct udevice *parent, const struct driver *drv,
31 			      const char *name, void *platdata,
32 			      ulong driver_data, int of_offset,
33 			      uint of_platdata_size, struct udevice **devp)
34 {
35 	struct udevice *dev;
36 	struct uclass *uc;
37 	int size, ret = 0;
38 
39 	if (devp)
40 		*devp = NULL;
41 	if (!name)
42 		return -EINVAL;
43 
44 	ret = uclass_get(drv->id, &uc);
45 	if (ret) {
46 		debug("Missing uclass for driver %s\n", drv->name);
47 		return ret;
48 	}
49 
50 	dev = calloc(1, sizeof(struct udevice));
51 	if (!dev)
52 		return -ENOMEM;
53 
54 	INIT_LIST_HEAD(&dev->sibling_node);
55 	INIT_LIST_HEAD(&dev->child_head);
56 	INIT_LIST_HEAD(&dev->uclass_node);
57 #ifdef CONFIG_DEVRES
58 	INIT_LIST_HEAD(&dev->devres_head);
59 #endif
60 	dev->platdata = platdata;
61 	dev->driver_data = driver_data;
62 	dev->name = name;
63 	dev->of_offset = of_offset;
64 	dev->parent = parent;
65 	dev->driver = drv;
66 	dev->uclass = uc;
67 
68 	dev->seq = -1;
69 	dev->req_seq = -1;
70 	if (CONFIG_IS_ENABLED(OF_CONTROL) && CONFIG_IS_ENABLED(DM_SEQ_ALIAS)) {
71 		/*
72 		 * Some devices, such as a SPI bus, I2C bus and serial ports
73 		 * are numbered using aliases.
74 		 *
75 		 * This is just a 'requested' sequence, and will be
76 		 * resolved (and ->seq updated) when the device is probed.
77 		 */
78 		if (uc->uc_drv->flags & DM_UC_FLAG_SEQ_ALIAS) {
79 			if (uc->uc_drv->name && of_offset != -1) {
80 				fdtdec_get_alias_seq(gd->fdt_blob,
81 						uc->uc_drv->name, of_offset,
82 						&dev->req_seq);
83 			}
84 		}
85 	}
86 
87 	if (drv->platdata_auto_alloc_size) {
88 		bool alloc = !platdata;
89 
90 		if (CONFIG_IS_ENABLED(OF_PLATDATA)) {
91 			if (of_platdata_size) {
92 				dev->flags |= DM_FLAG_OF_PLATDATA;
93 				if (of_platdata_size <
94 						drv->platdata_auto_alloc_size)
95 					alloc = true;
96 			}
97 		}
98 		if (alloc) {
99 			dev->flags |= DM_FLAG_ALLOC_PDATA;
100 			dev->platdata = calloc(1,
101 					       drv->platdata_auto_alloc_size);
102 			if (!dev->platdata) {
103 				ret = -ENOMEM;
104 				goto fail_alloc1;
105 			}
106 			if (CONFIG_IS_ENABLED(OF_PLATDATA) && platdata) {
107 				memcpy(dev->platdata, platdata,
108 				       of_platdata_size);
109 			}
110 		}
111 	}
112 
113 	size = uc->uc_drv->per_device_platdata_auto_alloc_size;
114 	if (size) {
115 		dev->flags |= DM_FLAG_ALLOC_UCLASS_PDATA;
116 		dev->uclass_platdata = calloc(1, size);
117 		if (!dev->uclass_platdata) {
118 			ret = -ENOMEM;
119 			goto fail_alloc2;
120 		}
121 	}
122 
123 	if (parent) {
124 		size = parent->driver->per_child_platdata_auto_alloc_size;
125 		if (!size) {
126 			size = parent->uclass->uc_drv->
127 					per_child_platdata_auto_alloc_size;
128 		}
129 		if (size) {
130 			dev->flags |= DM_FLAG_ALLOC_PARENT_PDATA;
131 			dev->parent_platdata = calloc(1, size);
132 			if (!dev->parent_platdata) {
133 				ret = -ENOMEM;
134 				goto fail_alloc3;
135 			}
136 		}
137 	}
138 
139 	/* put dev into parent's successor list */
140 	if (parent)
141 		list_add_tail(&dev->sibling_node, &parent->child_head);
142 
143 	ret = uclass_bind_device(dev);
144 	if (ret)
145 		goto fail_uclass_bind;
146 
147 	/* if we fail to bind we remove device from successors and free it */
148 	if (drv->bind) {
149 		ret = drv->bind(dev);
150 		if (ret)
151 			goto fail_bind;
152 	}
153 	if (parent && parent->driver->child_post_bind) {
154 		ret = parent->driver->child_post_bind(dev);
155 		if (ret)
156 			goto fail_child_post_bind;
157 	}
158 	if (uc->uc_drv->post_bind) {
159 		ret = uc->uc_drv->post_bind(dev);
160 		if (ret)
161 			goto fail_uclass_post_bind;
162 	}
163 
164 	if (parent)
165 		dm_dbg("Bound device %s to %s\n", dev->name, parent->name);
166 	if (devp)
167 		*devp = dev;
168 
169 	dev->flags |= DM_FLAG_BOUND;
170 
171 	return 0;
172 
173 fail_uclass_post_bind:
174 	/* There is no child unbind() method, so no clean-up required */
175 fail_child_post_bind:
176 	if (CONFIG_IS_ENABLED(DM_DEVICE_REMOVE)) {
177 		if (drv->unbind && drv->unbind(dev)) {
178 			dm_warn("unbind() method failed on dev '%s' on error path\n",
179 				dev->name);
180 		}
181 	}
182 
183 fail_bind:
184 	if (CONFIG_IS_ENABLED(DM_DEVICE_REMOVE)) {
185 		if (uclass_unbind_device(dev)) {
186 			dm_warn("Failed to unbind dev '%s' on error path\n",
187 				dev->name);
188 		}
189 	}
190 fail_uclass_bind:
191 	if (CONFIG_IS_ENABLED(DM_DEVICE_REMOVE)) {
192 		list_del(&dev->sibling_node);
193 		if (dev->flags & DM_FLAG_ALLOC_PARENT_PDATA) {
194 			free(dev->parent_platdata);
195 			dev->parent_platdata = NULL;
196 		}
197 	}
198 fail_alloc3:
199 	if (dev->flags & DM_FLAG_ALLOC_UCLASS_PDATA) {
200 		free(dev->uclass_platdata);
201 		dev->uclass_platdata = NULL;
202 	}
203 fail_alloc2:
204 	if (dev->flags & DM_FLAG_ALLOC_PDATA) {
205 		free(dev->platdata);
206 		dev->platdata = NULL;
207 	}
208 fail_alloc1:
209 	devres_release_all(dev);
210 
211 	free(dev);
212 
213 	return ret;
214 }
215 
216 int device_bind_with_driver_data(struct udevice *parent,
217 				 const struct driver *drv, const char *name,
218 				 ulong driver_data, int of_offset,
219 				 struct udevice **devp)
220 {
221 	return device_bind_common(parent, drv, name, NULL, driver_data,
222 				  of_offset, 0, devp);
223 }
224 
225 int device_bind(struct udevice *parent, const struct driver *drv,
226 		const char *name, void *platdata, int of_offset,
227 		struct udevice **devp)
228 {
229 	return device_bind_common(parent, drv, name, platdata, 0, of_offset, 0,
230 				  devp);
231 }
232 
233 int device_bind_by_name(struct udevice *parent, bool pre_reloc_only,
234 			const struct driver_info *info, struct udevice **devp)
235 {
236 	struct driver *drv;
237 	uint platdata_size = 0;
238 
239 	drv = lists_driver_lookup_name(info->name);
240 	if (!drv)
241 		return -ENOENT;
242 	if (pre_reloc_only && !(drv->flags & DM_FLAG_PRE_RELOC))
243 		return -EPERM;
244 
245 #if CONFIG_IS_ENABLED(OF_PLATDATA)
246 	platdata_size = info->platdata_size;
247 #endif
248 	return device_bind_common(parent, drv, info->name,
249 			(void *)info->platdata, 0, -1, platdata_size, devp);
250 }
251 
252 static void *alloc_priv(int size, uint flags)
253 {
254 	void *priv;
255 
256 	if (flags & DM_FLAG_ALLOC_PRIV_DMA) {
257 		priv = memalign(ARCH_DMA_MINALIGN, size);
258 		if (priv) {
259 			memset(priv, '\0', size);
260 
261 			/*
262 			 * Ensure that the zero bytes are flushed to memory.
263 			 * This prevents problems if the driver uses this as
264 			 * both an input and an output buffer:
265 			 *
266 			 * 1. Zeroes written to buffer (here) and sit in the
267 			 *	cache
268 			 * 2. Driver issues a read command to DMA
269 			 * 3. CPU runs out of cache space and evicts some cache
270 			 *	data in the buffer, writing zeroes to RAM from
271 			 *	the memset() above
272 			 * 4. DMA completes
273 			 * 5. Buffer now has some DMA data and some zeroes
274 			 * 6. Data being read is now incorrect
275 			 *
276 			 * To prevent this, ensure that the cache is clean
277 			 * within this range at the start. The driver can then
278 			 * use normal flush-after-write, invalidate-before-read
279 			 * procedures.
280 			 *
281 			 * TODO(sjg@chromium.org): Drop this microblaze
282 			 * exception.
283 			 */
284 #ifndef CONFIG_MICROBLAZE
285 			flush_dcache_range((ulong)priv, (ulong)priv + size);
286 #endif
287 		}
288 	} else {
289 		priv = calloc(1, size);
290 	}
291 
292 	return priv;
293 }
294 
295 int device_probe(struct udevice *dev)
296 {
297 	const struct driver *drv;
298 	int size = 0;
299 	int ret;
300 	int seq;
301 
302 	if (!dev)
303 		return -EINVAL;
304 
305 	if (dev->flags & DM_FLAG_ACTIVATED)
306 		return 0;
307 
308 	drv = dev->driver;
309 	assert(drv);
310 
311 	/* Allocate private data if requested and not reentered */
312 	if (drv->priv_auto_alloc_size && !dev->priv) {
313 		dev->priv = alloc_priv(drv->priv_auto_alloc_size, drv->flags);
314 		if (!dev->priv) {
315 			ret = -ENOMEM;
316 			goto fail;
317 		}
318 	}
319 	/* Allocate private data if requested and not reentered */
320 	size = dev->uclass->uc_drv->per_device_auto_alloc_size;
321 	if (size && !dev->uclass_priv) {
322 		dev->uclass_priv = calloc(1, size);
323 		if (!dev->uclass_priv) {
324 			ret = -ENOMEM;
325 			goto fail;
326 		}
327 	}
328 
329 	/* Ensure all parents are probed */
330 	if (dev->parent) {
331 		size = dev->parent->driver->per_child_auto_alloc_size;
332 		if (!size) {
333 			size = dev->parent->uclass->uc_drv->
334 					per_child_auto_alloc_size;
335 		}
336 		if (size && !dev->parent_priv) {
337 			dev->parent_priv = alloc_priv(size, drv->flags);
338 			if (!dev->parent_priv) {
339 				ret = -ENOMEM;
340 				goto fail;
341 			}
342 		}
343 
344 		ret = device_probe(dev->parent);
345 		if (ret)
346 			goto fail;
347 
348 		/*
349 		 * The device might have already been probed during
350 		 * the call to device_probe() on its parent device
351 		 * (e.g. PCI bridge devices). Test the flags again
352 		 * so that we don't mess up the device.
353 		 */
354 		if (dev->flags & DM_FLAG_ACTIVATED)
355 			return 0;
356 	}
357 
358 	seq = uclass_resolve_seq(dev);
359 	if (seq < 0) {
360 		ret = seq;
361 		goto fail;
362 	}
363 	dev->seq = seq;
364 
365 	dev->flags |= DM_FLAG_ACTIVATED;
366 
367 	/*
368 	 * Process pinctrl for everything except the root device, and
369 	 * continue regardless of the result of pinctrl. Don't process pinctrl
370 	 * settings for pinctrl devices since the device may not yet be
371 	 * probed.
372 	 */
373 	if (dev->parent && device_get_uclass_id(dev) != UCLASS_PINCTRL)
374 		pinctrl_select_state(dev, "default");
375 
376 	ret = uclass_pre_probe_device(dev);
377 	if (ret)
378 		goto fail;
379 
380 	if (dev->parent && dev->parent->driver->child_pre_probe) {
381 		ret = dev->parent->driver->child_pre_probe(dev);
382 		if (ret)
383 			goto fail;
384 	}
385 
386 	if (drv->ofdata_to_platdata && dev_of_offset(dev) >= 0) {
387 		ret = drv->ofdata_to_platdata(dev);
388 		if (ret)
389 			goto fail;
390 	}
391 
392 	if (drv->probe) {
393 		ret = drv->probe(dev);
394 		if (ret) {
395 			dev->flags &= ~DM_FLAG_ACTIVATED;
396 			goto fail;
397 		}
398 	}
399 
400 	ret = uclass_post_probe_device(dev);
401 	if (ret)
402 		goto fail_uclass;
403 
404 	if (dev->parent && device_get_uclass_id(dev) == UCLASS_PINCTRL)
405 		pinctrl_select_state(dev, "default");
406 
407 	return 0;
408 fail_uclass:
409 	if (device_remove(dev, DM_REMOVE_NORMAL)) {
410 		dm_warn("%s: Device '%s' failed to remove on error path\n",
411 			__func__, dev->name);
412 	}
413 fail:
414 	dev->flags &= ~DM_FLAG_ACTIVATED;
415 
416 	dev->seq = -1;
417 	device_free(dev);
418 
419 	return ret;
420 }
421 
422 void *dev_get_platdata(struct udevice *dev)
423 {
424 	if (!dev) {
425 		dm_warn("%s: null device\n", __func__);
426 		return NULL;
427 	}
428 
429 	return dev->platdata;
430 }
431 
432 void *dev_get_parent_platdata(struct udevice *dev)
433 {
434 	if (!dev) {
435 		dm_warn("%s: null device\n", __func__);
436 		return NULL;
437 	}
438 
439 	return dev->parent_platdata;
440 }
441 
442 void *dev_get_uclass_platdata(struct udevice *dev)
443 {
444 	if (!dev) {
445 		dm_warn("%s: null device\n", __func__);
446 		return NULL;
447 	}
448 
449 	return dev->uclass_platdata;
450 }
451 
452 void *dev_get_priv(struct udevice *dev)
453 {
454 	if (!dev) {
455 		dm_warn("%s: null device\n", __func__);
456 		return NULL;
457 	}
458 
459 	return dev->priv;
460 }
461 
462 void *dev_get_uclass_priv(struct udevice *dev)
463 {
464 	if (!dev) {
465 		dm_warn("%s: null device\n", __func__);
466 		return NULL;
467 	}
468 
469 	return dev->uclass_priv;
470 }
471 
472 void *dev_get_parent_priv(struct udevice *dev)
473 {
474 	if (!dev) {
475 		dm_warn("%s: null device\n", __func__);
476 		return NULL;
477 	}
478 
479 	return dev->parent_priv;
480 }
481 
482 static int device_get_device_tail(struct udevice *dev, int ret,
483 				  struct udevice **devp)
484 {
485 	if (ret)
486 		return ret;
487 
488 	ret = device_probe(dev);
489 	if (ret)
490 		return ret;
491 
492 	*devp = dev;
493 
494 	return 0;
495 }
496 
497 int device_get_child(struct udevice *parent, int index, struct udevice **devp)
498 {
499 	struct udevice *dev;
500 
501 	list_for_each_entry(dev, &parent->child_head, sibling_node) {
502 		if (!index--)
503 			return device_get_device_tail(dev, 0, devp);
504 	}
505 
506 	return -ENODEV;
507 }
508 
509 int device_find_child_by_seq(struct udevice *parent, int seq_or_req_seq,
510 			     bool find_req_seq, struct udevice **devp)
511 {
512 	struct udevice *dev;
513 
514 	*devp = NULL;
515 	if (seq_or_req_seq == -1)
516 		return -ENODEV;
517 
518 	list_for_each_entry(dev, &parent->child_head, sibling_node) {
519 		if ((find_req_seq ? dev->req_seq : dev->seq) ==
520 				seq_or_req_seq) {
521 			*devp = dev;
522 			return 0;
523 		}
524 	}
525 
526 	return -ENODEV;
527 }
528 
529 int device_get_child_by_seq(struct udevice *parent, int seq,
530 			    struct udevice **devp)
531 {
532 	struct udevice *dev;
533 	int ret;
534 
535 	*devp = NULL;
536 	ret = device_find_child_by_seq(parent, seq, false, &dev);
537 	if (ret == -ENODEV) {
538 		/*
539 		 * We didn't find it in probed devices. See if there is one
540 		 * that will request this seq if probed.
541 		 */
542 		ret = device_find_child_by_seq(parent, seq, true, &dev);
543 	}
544 	return device_get_device_tail(dev, ret, devp);
545 }
546 
547 int device_find_child_by_of_offset(struct udevice *parent, int of_offset,
548 				   struct udevice **devp)
549 {
550 	struct udevice *dev;
551 
552 	*devp = NULL;
553 
554 	list_for_each_entry(dev, &parent->child_head, sibling_node) {
555 		if (dev_of_offset(dev) == of_offset) {
556 			*devp = dev;
557 			return 0;
558 		}
559 	}
560 
561 	return -ENODEV;
562 }
563 
564 int device_get_child_by_of_offset(struct udevice *parent, int node,
565 				  struct udevice **devp)
566 {
567 	struct udevice *dev;
568 	int ret;
569 
570 	*devp = NULL;
571 	ret = device_find_child_by_of_offset(parent, node, &dev);
572 	return device_get_device_tail(dev, ret, devp);
573 }
574 
575 static struct udevice *_device_find_global_by_of_offset(struct udevice *parent,
576 							int of_offset)
577 {
578 	struct udevice *dev, *found;
579 
580 	if (dev_of_offset(parent) == of_offset)
581 		return parent;
582 
583 	list_for_each_entry(dev, &parent->child_head, sibling_node) {
584 		found = _device_find_global_by_of_offset(dev, of_offset);
585 		if (found)
586 			return found;
587 	}
588 
589 	return NULL;
590 }
591 
592 int device_get_global_by_of_offset(int of_offset, struct udevice **devp)
593 {
594 	struct udevice *dev;
595 
596 	dev = _device_find_global_by_of_offset(gd->dm_root, of_offset);
597 	return device_get_device_tail(dev, dev ? 0 : -ENOENT, devp);
598 }
599 
600 int device_find_first_child(struct udevice *parent, struct udevice **devp)
601 {
602 	if (list_empty(&parent->child_head)) {
603 		*devp = NULL;
604 	} else {
605 		*devp = list_first_entry(&parent->child_head, struct udevice,
606 					 sibling_node);
607 	}
608 
609 	return 0;
610 }
611 
612 int device_find_next_child(struct udevice **devp)
613 {
614 	struct udevice *dev = *devp;
615 	struct udevice *parent = dev->parent;
616 
617 	if (list_is_last(&dev->sibling_node, &parent->child_head)) {
618 		*devp = NULL;
619 	} else {
620 		*devp = list_entry(dev->sibling_node.next, struct udevice,
621 				   sibling_node);
622 	}
623 
624 	return 0;
625 }
626 
627 struct udevice *dev_get_parent(struct udevice *child)
628 {
629 	return child->parent;
630 }
631 
632 ulong dev_get_driver_data(struct udevice *dev)
633 {
634 	return dev->driver_data;
635 }
636 
637 const void *dev_get_driver_ops(struct udevice *dev)
638 {
639 	if (!dev || !dev->driver->ops)
640 		return NULL;
641 
642 	return dev->driver->ops;
643 }
644 
645 enum uclass_id device_get_uclass_id(struct udevice *dev)
646 {
647 	return dev->uclass->uc_drv->id;
648 }
649 
650 const char *dev_get_uclass_name(struct udevice *dev)
651 {
652 	if (!dev)
653 		return NULL;
654 
655 	return dev->uclass->uc_drv->name;
656 }
657 
658 fdt_addr_t dev_get_addr_index(struct udevice *dev, int index)
659 {
660 #if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)
661 	fdt_addr_t addr;
662 
663 	if (CONFIG_IS_ENABLED(OF_TRANSLATE)) {
664 		const fdt32_t *reg;
665 		int len = 0;
666 		int na, ns;
667 
668 		na = fdt_address_cells(gd->fdt_blob,
669 				       dev_of_offset(dev->parent));
670 		if (na < 1) {
671 			debug("bad #address-cells\n");
672 			return FDT_ADDR_T_NONE;
673 		}
674 
675 		ns = fdt_size_cells(gd->fdt_blob, dev_of_offset(dev->parent));
676 		if (ns < 0) {
677 			debug("bad #size-cells\n");
678 			return FDT_ADDR_T_NONE;
679 		}
680 
681 		reg = fdt_getprop(gd->fdt_blob, dev_of_offset(dev), "reg",
682 				  &len);
683 		if (!reg || (len <= (index * sizeof(fdt32_t) * (na + ns)))) {
684 			debug("Req index out of range\n");
685 			return FDT_ADDR_T_NONE;
686 		}
687 
688 		reg += index * (na + ns);
689 
690 		/*
691 		 * Use the full-fledged translate function for complex
692 		 * bus setups.
693 		 */
694 		addr = fdt_translate_address((void *)gd->fdt_blob,
695 					     dev_of_offset(dev), reg);
696 	} else {
697 		/*
698 		 * Use the "simple" translate function for less complex
699 		 * bus setups.
700 		 */
701 		addr = fdtdec_get_addr_size_auto_parent(gd->fdt_blob,
702 				dev_of_offset(dev->parent), dev_of_offset(dev),
703 				"reg", index, NULL, false);
704 		if (CONFIG_IS_ENABLED(SIMPLE_BUS) && addr != FDT_ADDR_T_NONE) {
705 			if (device_get_uclass_id(dev->parent) ==
706 			    UCLASS_SIMPLE_BUS)
707 				addr = simple_bus_translate(dev->parent, addr);
708 		}
709 	}
710 
711 	/*
712 	 * Some platforms need a special address translation. Those
713 	 * platforms (e.g. mvebu in SPL) can configure a translation
714 	 * offset in the DM by calling dm_set_translation_offset() that
715 	 * will get added to all addresses returned by dev_get_addr().
716 	 */
717 	addr += dm_get_translation_offset();
718 
719 	return addr;
720 #else
721 	return FDT_ADDR_T_NONE;
722 #endif
723 }
724 
725 fdt_addr_t dev_get_addr_size_index(struct udevice *dev, int index,
726 				   fdt_size_t *size)
727 {
728 #if CONFIG_IS_ENABLED(OF_CONTROL)
729 	/*
730 	 * Only get the size in this first call. We'll get the addr in the
731 	 * next call to the exisiting dev_get_xxx function which handles
732 	 * all config options.
733 	 */
734 	fdtdec_get_addr_size_auto_noparent(gd->fdt_blob, dev_of_offset(dev),
735 					   "reg", index, size, false);
736 
737 	/*
738 	 * Get the base address via the existing function which handles
739 	 * all Kconfig cases
740 	 */
741 	return dev_get_addr_index(dev, index);
742 #else
743 	return FDT_ADDR_T_NONE;
744 #endif
745 }
746 
747 fdt_addr_t dev_get_addr_name(struct udevice *dev, const char *name)
748 {
749 #if CONFIG_IS_ENABLED(OF_CONTROL)
750 	int index;
751 
752 	index = fdt_stringlist_search(gd->fdt_blob, dev_of_offset(dev),
753 				      "reg-names", name);
754 	if (index < 0)
755 		return index;
756 
757 	return dev_get_addr_index(dev, index);
758 #else
759 	return FDT_ADDR_T_NONE;
760 #endif
761 }
762 
763 fdt_addr_t dev_get_addr(struct udevice *dev)
764 {
765 	return dev_get_addr_index(dev, 0);
766 }
767 
768 void *dev_get_addr_ptr(struct udevice *dev)
769 {
770 	return (void *)(uintptr_t)dev_get_addr_index(dev, 0);
771 }
772 
773 void *dev_map_physmem(struct udevice *dev, unsigned long size)
774 {
775 	fdt_addr_t addr = dev_get_addr(dev);
776 
777 	if (addr == FDT_ADDR_T_NONE)
778 		return NULL;
779 
780 	return map_physmem(addr, size, MAP_NOCACHE);
781 }
782 
783 bool device_has_children(struct udevice *dev)
784 {
785 	return !list_empty(&dev->child_head);
786 }
787 
788 bool device_has_active_children(struct udevice *dev)
789 {
790 	struct udevice *child;
791 
792 	for (device_find_first_child(dev, &child);
793 	     child;
794 	     device_find_next_child(&child)) {
795 		if (device_active(child))
796 			return true;
797 	}
798 
799 	return false;
800 }
801 
802 bool device_is_last_sibling(struct udevice *dev)
803 {
804 	struct udevice *parent = dev->parent;
805 
806 	if (!parent)
807 		return false;
808 	return list_is_last(&dev->sibling_node, &parent->child_head);
809 }
810 
811 void device_set_name_alloced(struct udevice *dev)
812 {
813 	dev->flags |= DM_FLAG_NAME_ALLOCED;
814 }
815 
816 int device_set_name(struct udevice *dev, const char *name)
817 {
818 	name = strdup(name);
819 	if (!name)
820 		return -ENOMEM;
821 	dev->name = name;
822 	device_set_name_alloced(dev);
823 
824 	return 0;
825 }
826 
827 bool of_device_is_compatible(struct udevice *dev, const char *compat)
828 {
829 	const void *fdt = gd->fdt_blob;
830 
831 	return !fdt_node_check_compatible(fdt, dev_of_offset(dev), compat);
832 }
833 
834 bool of_machine_is_compatible(const char *compat)
835 {
836 	const void *fdt = gd->fdt_blob;
837 
838 	return !fdt_node_check_compatible(fdt, 0, compat);
839 }
840