1 /* 2 * Device manager 3 * 4 * Copyright (c) 2013 Google, Inc 5 * 6 * (C) Copyright 2012 7 * Pavel Herrmann <morpheus.ibis@gmail.com> 8 * 9 * SPDX-License-Identifier: GPL-2.0+ 10 */ 11 12 #include <common.h> 13 #include <asm/io.h> 14 #include <fdtdec.h> 15 #include <fdt_support.h> 16 #include <malloc.h> 17 #include <dm/device.h> 18 #include <dm/device-internal.h> 19 #include <dm/lists.h> 20 #include <dm/pinctrl.h> 21 #include <dm/platdata.h> 22 #include <dm/uclass.h> 23 #include <dm/uclass-internal.h> 24 #include <dm/util.h> 25 #include <linux/err.h> 26 #include <linux/list.h> 27 28 DECLARE_GLOBAL_DATA_PTR; 29 30 static int device_bind_common(struct udevice *parent, const struct driver *drv, 31 const char *name, void *platdata, 32 ulong driver_data, int of_offset, 33 uint of_platdata_size, struct udevice **devp) 34 { 35 struct udevice *dev; 36 struct uclass *uc; 37 int size, ret = 0; 38 39 if (devp) 40 *devp = NULL; 41 if (!name) 42 return -EINVAL; 43 44 ret = uclass_get(drv->id, &uc); 45 if (ret) { 46 debug("Missing uclass for driver %s\n", drv->name); 47 return ret; 48 } 49 50 dev = calloc(1, sizeof(struct udevice)); 51 if (!dev) 52 return -ENOMEM; 53 54 INIT_LIST_HEAD(&dev->sibling_node); 55 INIT_LIST_HEAD(&dev->child_head); 56 INIT_LIST_HEAD(&dev->uclass_node); 57 #ifdef CONFIG_DEVRES 58 INIT_LIST_HEAD(&dev->devres_head); 59 #endif 60 dev->platdata = platdata; 61 dev->driver_data = driver_data; 62 dev->name = name; 63 dev->of_offset = of_offset; 64 dev->parent = parent; 65 dev->driver = drv; 66 dev->uclass = uc; 67 68 dev->seq = -1; 69 dev->req_seq = -1; 70 if (CONFIG_IS_ENABLED(OF_CONTROL) && CONFIG_IS_ENABLED(DM_SEQ_ALIAS)) { 71 /* 72 * Some devices, such as a SPI bus, I2C bus and serial ports 73 * are numbered using aliases. 74 * 75 * This is just a 'requested' sequence, and will be 76 * resolved (and ->seq updated) when the device is probed. 77 */ 78 if (uc->uc_drv->flags & DM_UC_FLAG_SEQ_ALIAS) { 79 if (uc->uc_drv->name && of_offset != -1) { 80 fdtdec_get_alias_seq(gd->fdt_blob, 81 uc->uc_drv->name, of_offset, 82 &dev->req_seq); 83 } 84 } 85 } 86 87 if (drv->platdata_auto_alloc_size) { 88 bool alloc = !platdata; 89 90 if (CONFIG_IS_ENABLED(OF_PLATDATA)) { 91 if (of_platdata_size) { 92 dev->flags |= DM_FLAG_OF_PLATDATA; 93 if (of_platdata_size < 94 drv->platdata_auto_alloc_size) 95 alloc = true; 96 } 97 } 98 if (alloc) { 99 dev->flags |= DM_FLAG_ALLOC_PDATA; 100 dev->platdata = calloc(1, 101 drv->platdata_auto_alloc_size); 102 if (!dev->platdata) { 103 ret = -ENOMEM; 104 goto fail_alloc1; 105 } 106 if (CONFIG_IS_ENABLED(OF_PLATDATA) && platdata) { 107 memcpy(dev->platdata, platdata, 108 of_platdata_size); 109 } 110 } 111 } 112 113 size = uc->uc_drv->per_device_platdata_auto_alloc_size; 114 if (size) { 115 dev->flags |= DM_FLAG_ALLOC_UCLASS_PDATA; 116 dev->uclass_platdata = calloc(1, size); 117 if (!dev->uclass_platdata) { 118 ret = -ENOMEM; 119 goto fail_alloc2; 120 } 121 } 122 123 if (parent) { 124 size = parent->driver->per_child_platdata_auto_alloc_size; 125 if (!size) { 126 size = parent->uclass->uc_drv-> 127 per_child_platdata_auto_alloc_size; 128 } 129 if (size) { 130 dev->flags |= DM_FLAG_ALLOC_PARENT_PDATA; 131 dev->parent_platdata = calloc(1, size); 132 if (!dev->parent_platdata) { 133 ret = -ENOMEM; 134 goto fail_alloc3; 135 } 136 } 137 } 138 139 /* put dev into parent's successor list */ 140 if (parent) 141 list_add_tail(&dev->sibling_node, &parent->child_head); 142 143 ret = uclass_bind_device(dev); 144 if (ret) 145 goto fail_uclass_bind; 146 147 /* if we fail to bind we remove device from successors and free it */ 148 if (drv->bind) { 149 ret = drv->bind(dev); 150 if (ret) 151 goto fail_bind; 152 } 153 if (parent && parent->driver->child_post_bind) { 154 ret = parent->driver->child_post_bind(dev); 155 if (ret) 156 goto fail_child_post_bind; 157 } 158 if (uc->uc_drv->post_bind) { 159 ret = uc->uc_drv->post_bind(dev); 160 if (ret) 161 goto fail_uclass_post_bind; 162 } 163 164 if (parent) 165 dm_dbg("Bound device %s to %s\n", dev->name, parent->name); 166 if (devp) 167 *devp = dev; 168 169 dev->flags |= DM_FLAG_BOUND; 170 171 return 0; 172 173 fail_uclass_post_bind: 174 /* There is no child unbind() method, so no clean-up required */ 175 fail_child_post_bind: 176 if (CONFIG_IS_ENABLED(DM_DEVICE_REMOVE)) { 177 if (drv->unbind && drv->unbind(dev)) { 178 dm_warn("unbind() method failed on dev '%s' on error path\n", 179 dev->name); 180 } 181 } 182 183 fail_bind: 184 if (CONFIG_IS_ENABLED(DM_DEVICE_REMOVE)) { 185 if (uclass_unbind_device(dev)) { 186 dm_warn("Failed to unbind dev '%s' on error path\n", 187 dev->name); 188 } 189 } 190 fail_uclass_bind: 191 if (CONFIG_IS_ENABLED(DM_DEVICE_REMOVE)) { 192 list_del(&dev->sibling_node); 193 if (dev->flags & DM_FLAG_ALLOC_PARENT_PDATA) { 194 free(dev->parent_platdata); 195 dev->parent_platdata = NULL; 196 } 197 } 198 fail_alloc3: 199 if (dev->flags & DM_FLAG_ALLOC_UCLASS_PDATA) { 200 free(dev->uclass_platdata); 201 dev->uclass_platdata = NULL; 202 } 203 fail_alloc2: 204 if (dev->flags & DM_FLAG_ALLOC_PDATA) { 205 free(dev->platdata); 206 dev->platdata = NULL; 207 } 208 fail_alloc1: 209 devres_release_all(dev); 210 211 free(dev); 212 213 return ret; 214 } 215 216 int device_bind_with_driver_data(struct udevice *parent, 217 const struct driver *drv, const char *name, 218 ulong driver_data, int of_offset, 219 struct udevice **devp) 220 { 221 return device_bind_common(parent, drv, name, NULL, driver_data, 222 of_offset, 0, devp); 223 } 224 225 int device_bind(struct udevice *parent, const struct driver *drv, 226 const char *name, void *platdata, int of_offset, 227 struct udevice **devp) 228 { 229 return device_bind_common(parent, drv, name, platdata, 0, of_offset, 0, 230 devp); 231 } 232 233 int device_bind_by_name(struct udevice *parent, bool pre_reloc_only, 234 const struct driver_info *info, struct udevice **devp) 235 { 236 struct driver *drv; 237 uint platdata_size = 0; 238 239 drv = lists_driver_lookup_name(info->name); 240 if (!drv) 241 return -ENOENT; 242 if (pre_reloc_only && !(drv->flags & DM_FLAG_PRE_RELOC)) 243 return -EPERM; 244 245 #if CONFIG_IS_ENABLED(OF_PLATDATA) 246 platdata_size = info->platdata_size; 247 #endif 248 return device_bind_common(parent, drv, info->name, 249 (void *)info->platdata, 0, -1, platdata_size, devp); 250 } 251 252 static void *alloc_priv(int size, uint flags) 253 { 254 void *priv; 255 256 if (flags & DM_FLAG_ALLOC_PRIV_DMA) { 257 priv = memalign(ARCH_DMA_MINALIGN, size); 258 if (priv) { 259 memset(priv, '\0', size); 260 261 /* 262 * Ensure that the zero bytes are flushed to memory. 263 * This prevents problems if the driver uses this as 264 * both an input and an output buffer: 265 * 266 * 1. Zeroes written to buffer (here) and sit in the 267 * cache 268 * 2. Driver issues a read command to DMA 269 * 3. CPU runs out of cache space and evicts some cache 270 * data in the buffer, writing zeroes to RAM from 271 * the memset() above 272 * 4. DMA completes 273 * 5. Buffer now has some DMA data and some zeroes 274 * 6. Data being read is now incorrect 275 * 276 * To prevent this, ensure that the cache is clean 277 * within this range at the start. The driver can then 278 * use normal flush-after-write, invalidate-before-read 279 * procedures. 280 * 281 * TODO(sjg@chromium.org): Drop this microblaze 282 * exception. 283 */ 284 #ifndef CONFIG_MICROBLAZE 285 flush_dcache_range((ulong)priv, (ulong)priv + size); 286 #endif 287 } 288 } else { 289 priv = calloc(1, size); 290 } 291 292 return priv; 293 } 294 295 int device_probe(struct udevice *dev) 296 { 297 const struct driver *drv; 298 int size = 0; 299 int ret; 300 int seq; 301 302 if (!dev) 303 return -EINVAL; 304 305 if (dev->flags & DM_FLAG_ACTIVATED) 306 return 0; 307 308 drv = dev->driver; 309 assert(drv); 310 311 /* Allocate private data if requested and not reentered */ 312 if (drv->priv_auto_alloc_size && !dev->priv) { 313 dev->priv = alloc_priv(drv->priv_auto_alloc_size, drv->flags); 314 if (!dev->priv) { 315 ret = -ENOMEM; 316 goto fail; 317 } 318 } 319 /* Allocate private data if requested and not reentered */ 320 size = dev->uclass->uc_drv->per_device_auto_alloc_size; 321 if (size && !dev->uclass_priv) { 322 dev->uclass_priv = calloc(1, size); 323 if (!dev->uclass_priv) { 324 ret = -ENOMEM; 325 goto fail; 326 } 327 } 328 329 /* Ensure all parents are probed */ 330 if (dev->parent) { 331 size = dev->parent->driver->per_child_auto_alloc_size; 332 if (!size) { 333 size = dev->parent->uclass->uc_drv-> 334 per_child_auto_alloc_size; 335 } 336 if (size && !dev->parent_priv) { 337 dev->parent_priv = alloc_priv(size, drv->flags); 338 if (!dev->parent_priv) { 339 ret = -ENOMEM; 340 goto fail; 341 } 342 } 343 344 ret = device_probe(dev->parent); 345 if (ret) 346 goto fail; 347 348 /* 349 * The device might have already been probed during 350 * the call to device_probe() on its parent device 351 * (e.g. PCI bridge devices). Test the flags again 352 * so that we don't mess up the device. 353 */ 354 if (dev->flags & DM_FLAG_ACTIVATED) 355 return 0; 356 } 357 358 seq = uclass_resolve_seq(dev); 359 if (seq < 0) { 360 ret = seq; 361 goto fail; 362 } 363 dev->seq = seq; 364 365 dev->flags |= DM_FLAG_ACTIVATED; 366 367 /* 368 * Process pinctrl for everything except the root device, and 369 * continue regardless of the result of pinctrl. Don't process pinctrl 370 * settings for pinctrl devices since the device may not yet be 371 * probed. 372 */ 373 if (dev->parent && device_get_uclass_id(dev) != UCLASS_PINCTRL) 374 pinctrl_select_state(dev, "default"); 375 376 ret = uclass_pre_probe_device(dev); 377 if (ret) 378 goto fail; 379 380 if (dev->parent && dev->parent->driver->child_pre_probe) { 381 ret = dev->parent->driver->child_pre_probe(dev); 382 if (ret) 383 goto fail; 384 } 385 386 if (drv->ofdata_to_platdata && dev_of_offset(dev) >= 0) { 387 ret = drv->ofdata_to_platdata(dev); 388 if (ret) 389 goto fail; 390 } 391 392 if (drv->probe) { 393 ret = drv->probe(dev); 394 if (ret) { 395 dev->flags &= ~DM_FLAG_ACTIVATED; 396 goto fail; 397 } 398 } 399 400 ret = uclass_post_probe_device(dev); 401 if (ret) 402 goto fail_uclass; 403 404 if (dev->parent && device_get_uclass_id(dev) == UCLASS_PINCTRL) 405 pinctrl_select_state(dev, "default"); 406 407 return 0; 408 fail_uclass: 409 if (device_remove(dev, DM_REMOVE_NORMAL)) { 410 dm_warn("%s: Device '%s' failed to remove on error path\n", 411 __func__, dev->name); 412 } 413 fail: 414 dev->flags &= ~DM_FLAG_ACTIVATED; 415 416 dev->seq = -1; 417 device_free(dev); 418 419 return ret; 420 } 421 422 void *dev_get_platdata(struct udevice *dev) 423 { 424 if (!dev) { 425 dm_warn("%s: null device\n", __func__); 426 return NULL; 427 } 428 429 return dev->platdata; 430 } 431 432 void *dev_get_parent_platdata(struct udevice *dev) 433 { 434 if (!dev) { 435 dm_warn("%s: null device\n", __func__); 436 return NULL; 437 } 438 439 return dev->parent_platdata; 440 } 441 442 void *dev_get_uclass_platdata(struct udevice *dev) 443 { 444 if (!dev) { 445 dm_warn("%s: null device\n", __func__); 446 return NULL; 447 } 448 449 return dev->uclass_platdata; 450 } 451 452 void *dev_get_priv(struct udevice *dev) 453 { 454 if (!dev) { 455 dm_warn("%s: null device\n", __func__); 456 return NULL; 457 } 458 459 return dev->priv; 460 } 461 462 void *dev_get_uclass_priv(struct udevice *dev) 463 { 464 if (!dev) { 465 dm_warn("%s: null device\n", __func__); 466 return NULL; 467 } 468 469 return dev->uclass_priv; 470 } 471 472 void *dev_get_parent_priv(struct udevice *dev) 473 { 474 if (!dev) { 475 dm_warn("%s: null device\n", __func__); 476 return NULL; 477 } 478 479 return dev->parent_priv; 480 } 481 482 static int device_get_device_tail(struct udevice *dev, int ret, 483 struct udevice **devp) 484 { 485 if (ret) 486 return ret; 487 488 ret = device_probe(dev); 489 if (ret) 490 return ret; 491 492 *devp = dev; 493 494 return 0; 495 } 496 497 int device_get_child(struct udevice *parent, int index, struct udevice **devp) 498 { 499 struct udevice *dev; 500 501 list_for_each_entry(dev, &parent->child_head, sibling_node) { 502 if (!index--) 503 return device_get_device_tail(dev, 0, devp); 504 } 505 506 return -ENODEV; 507 } 508 509 int device_find_child_by_seq(struct udevice *parent, int seq_or_req_seq, 510 bool find_req_seq, struct udevice **devp) 511 { 512 struct udevice *dev; 513 514 *devp = NULL; 515 if (seq_or_req_seq == -1) 516 return -ENODEV; 517 518 list_for_each_entry(dev, &parent->child_head, sibling_node) { 519 if ((find_req_seq ? dev->req_seq : dev->seq) == 520 seq_or_req_seq) { 521 *devp = dev; 522 return 0; 523 } 524 } 525 526 return -ENODEV; 527 } 528 529 int device_get_child_by_seq(struct udevice *parent, int seq, 530 struct udevice **devp) 531 { 532 struct udevice *dev; 533 int ret; 534 535 *devp = NULL; 536 ret = device_find_child_by_seq(parent, seq, false, &dev); 537 if (ret == -ENODEV) { 538 /* 539 * We didn't find it in probed devices. See if there is one 540 * that will request this seq if probed. 541 */ 542 ret = device_find_child_by_seq(parent, seq, true, &dev); 543 } 544 return device_get_device_tail(dev, ret, devp); 545 } 546 547 int device_find_child_by_of_offset(struct udevice *parent, int of_offset, 548 struct udevice **devp) 549 { 550 struct udevice *dev; 551 552 *devp = NULL; 553 554 list_for_each_entry(dev, &parent->child_head, sibling_node) { 555 if (dev_of_offset(dev) == of_offset) { 556 *devp = dev; 557 return 0; 558 } 559 } 560 561 return -ENODEV; 562 } 563 564 int device_get_child_by_of_offset(struct udevice *parent, int node, 565 struct udevice **devp) 566 { 567 struct udevice *dev; 568 int ret; 569 570 *devp = NULL; 571 ret = device_find_child_by_of_offset(parent, node, &dev); 572 return device_get_device_tail(dev, ret, devp); 573 } 574 575 static struct udevice *_device_find_global_by_of_offset(struct udevice *parent, 576 int of_offset) 577 { 578 struct udevice *dev, *found; 579 580 if (dev_of_offset(parent) == of_offset) 581 return parent; 582 583 list_for_each_entry(dev, &parent->child_head, sibling_node) { 584 found = _device_find_global_by_of_offset(dev, of_offset); 585 if (found) 586 return found; 587 } 588 589 return NULL; 590 } 591 592 int device_get_global_by_of_offset(int of_offset, struct udevice **devp) 593 { 594 struct udevice *dev; 595 596 dev = _device_find_global_by_of_offset(gd->dm_root, of_offset); 597 return device_get_device_tail(dev, dev ? 0 : -ENOENT, devp); 598 } 599 600 int device_find_first_child(struct udevice *parent, struct udevice **devp) 601 { 602 if (list_empty(&parent->child_head)) { 603 *devp = NULL; 604 } else { 605 *devp = list_first_entry(&parent->child_head, struct udevice, 606 sibling_node); 607 } 608 609 return 0; 610 } 611 612 int device_find_next_child(struct udevice **devp) 613 { 614 struct udevice *dev = *devp; 615 struct udevice *parent = dev->parent; 616 617 if (list_is_last(&dev->sibling_node, &parent->child_head)) { 618 *devp = NULL; 619 } else { 620 *devp = list_entry(dev->sibling_node.next, struct udevice, 621 sibling_node); 622 } 623 624 return 0; 625 } 626 627 struct udevice *dev_get_parent(struct udevice *child) 628 { 629 return child->parent; 630 } 631 632 ulong dev_get_driver_data(struct udevice *dev) 633 { 634 return dev->driver_data; 635 } 636 637 const void *dev_get_driver_ops(struct udevice *dev) 638 { 639 if (!dev || !dev->driver->ops) 640 return NULL; 641 642 return dev->driver->ops; 643 } 644 645 enum uclass_id device_get_uclass_id(struct udevice *dev) 646 { 647 return dev->uclass->uc_drv->id; 648 } 649 650 const char *dev_get_uclass_name(struct udevice *dev) 651 { 652 if (!dev) 653 return NULL; 654 655 return dev->uclass->uc_drv->name; 656 } 657 658 fdt_addr_t dev_get_addr_index(struct udevice *dev, int index) 659 { 660 #if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA) 661 fdt_addr_t addr; 662 663 if (CONFIG_IS_ENABLED(OF_TRANSLATE)) { 664 const fdt32_t *reg; 665 int len = 0; 666 int na, ns; 667 668 na = fdt_address_cells(gd->fdt_blob, 669 dev_of_offset(dev->parent)); 670 if (na < 1) { 671 debug("bad #address-cells\n"); 672 return FDT_ADDR_T_NONE; 673 } 674 675 ns = fdt_size_cells(gd->fdt_blob, dev_of_offset(dev->parent)); 676 if (ns < 0) { 677 debug("bad #size-cells\n"); 678 return FDT_ADDR_T_NONE; 679 } 680 681 reg = fdt_getprop(gd->fdt_blob, dev_of_offset(dev), "reg", 682 &len); 683 if (!reg || (len <= (index * sizeof(fdt32_t) * (na + ns)))) { 684 debug("Req index out of range\n"); 685 return FDT_ADDR_T_NONE; 686 } 687 688 reg += index * (na + ns); 689 690 /* 691 * Use the full-fledged translate function for complex 692 * bus setups. 693 */ 694 addr = fdt_translate_address((void *)gd->fdt_blob, 695 dev_of_offset(dev), reg); 696 } else { 697 /* 698 * Use the "simple" translate function for less complex 699 * bus setups. 700 */ 701 addr = fdtdec_get_addr_size_auto_parent(gd->fdt_blob, 702 dev_of_offset(dev->parent), dev_of_offset(dev), 703 "reg", index, NULL, false); 704 if (CONFIG_IS_ENABLED(SIMPLE_BUS) && addr != FDT_ADDR_T_NONE) { 705 if (device_get_uclass_id(dev->parent) == 706 UCLASS_SIMPLE_BUS) 707 addr = simple_bus_translate(dev->parent, addr); 708 } 709 } 710 711 /* 712 * Some platforms need a special address translation. Those 713 * platforms (e.g. mvebu in SPL) can configure a translation 714 * offset in the DM by calling dm_set_translation_offset() that 715 * will get added to all addresses returned by dev_get_addr(). 716 */ 717 addr += dm_get_translation_offset(); 718 719 return addr; 720 #else 721 return FDT_ADDR_T_NONE; 722 #endif 723 } 724 725 fdt_addr_t dev_get_addr_size_index(struct udevice *dev, int index, 726 fdt_size_t *size) 727 { 728 #if CONFIG_IS_ENABLED(OF_CONTROL) 729 /* 730 * Only get the size in this first call. We'll get the addr in the 731 * next call to the exisiting dev_get_xxx function which handles 732 * all config options. 733 */ 734 fdtdec_get_addr_size_auto_noparent(gd->fdt_blob, dev_of_offset(dev), 735 "reg", index, size, false); 736 737 /* 738 * Get the base address via the existing function which handles 739 * all Kconfig cases 740 */ 741 return dev_get_addr_index(dev, index); 742 #else 743 return FDT_ADDR_T_NONE; 744 #endif 745 } 746 747 fdt_addr_t dev_get_addr_name(struct udevice *dev, const char *name) 748 { 749 #if CONFIG_IS_ENABLED(OF_CONTROL) 750 int index; 751 752 index = fdt_stringlist_search(gd->fdt_blob, dev_of_offset(dev), 753 "reg-names", name); 754 if (index < 0) 755 return index; 756 757 return dev_get_addr_index(dev, index); 758 #else 759 return FDT_ADDR_T_NONE; 760 #endif 761 } 762 763 fdt_addr_t dev_get_addr(struct udevice *dev) 764 { 765 return dev_get_addr_index(dev, 0); 766 } 767 768 void *dev_get_addr_ptr(struct udevice *dev) 769 { 770 return (void *)(uintptr_t)dev_get_addr_index(dev, 0); 771 } 772 773 void *dev_map_physmem(struct udevice *dev, unsigned long size) 774 { 775 fdt_addr_t addr = dev_get_addr(dev); 776 777 if (addr == FDT_ADDR_T_NONE) 778 return NULL; 779 780 return map_physmem(addr, size, MAP_NOCACHE); 781 } 782 783 bool device_has_children(struct udevice *dev) 784 { 785 return !list_empty(&dev->child_head); 786 } 787 788 bool device_has_active_children(struct udevice *dev) 789 { 790 struct udevice *child; 791 792 for (device_find_first_child(dev, &child); 793 child; 794 device_find_next_child(&child)) { 795 if (device_active(child)) 796 return true; 797 } 798 799 return false; 800 } 801 802 bool device_is_last_sibling(struct udevice *dev) 803 { 804 struct udevice *parent = dev->parent; 805 806 if (!parent) 807 return false; 808 return list_is_last(&dev->sibling_node, &parent->child_head); 809 } 810 811 void device_set_name_alloced(struct udevice *dev) 812 { 813 dev->flags |= DM_FLAG_NAME_ALLOCED; 814 } 815 816 int device_set_name(struct udevice *dev, const char *name) 817 { 818 name = strdup(name); 819 if (!name) 820 return -ENOMEM; 821 dev->name = name; 822 device_set_name_alloced(dev); 823 824 return 0; 825 } 826 827 bool of_device_is_compatible(struct udevice *dev, const char *compat) 828 { 829 const void *fdt = gd->fdt_blob; 830 831 return !fdt_node_check_compatible(fdt, dev_of_offset(dev), compat); 832 } 833 834 bool of_machine_is_compatible(const char *compat) 835 { 836 const void *fdt = gd->fdt_blob; 837 838 return !fdt_node_check_compatible(fdt, 0, compat); 839 } 840