1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * (C) Copyright 2015 Google, Inc
4  * (C) 2017 Theobroma Systems Design und Consulting GmbH
5  */
6 
7 #include <common.h>
8 #include <clk-uclass.h>
9 #include <dm.h>
10 #include <dt-structs.h>
11 #include <errno.h>
12 #include <mapmem.h>
13 #include <syscon.h>
14 #include <bitfield.h>
15 #include <asm/io.h>
16 #include <asm/arch/clock.h>
17 #include <asm/arch/cru_rk3399.h>
18 #include <asm/arch/hardware.h>
19 #include <dm/lists.h>
20 #include <dt-bindings/clock/rk3399-cru.h>
21 
22 #if CONFIG_IS_ENABLED(OF_PLATDATA)
23 struct rk3399_clk_plat {
24 	struct dtd_rockchip_rk3399_cru dtd;
25 };
26 
27 struct rk3399_pmuclk_plat {
28 	struct dtd_rockchip_rk3399_pmucru dtd;
29 };
30 #endif
31 
32 struct pll_div {
33 	u32 refdiv;
34 	u32 fbdiv;
35 	u32 postdiv1;
36 	u32 postdiv2;
37 	u32 frac;
38 };
39 
40 #define RATE_TO_DIV(input_rate, output_rate) \
41 	((input_rate) / (output_rate) - 1);
42 #define DIV_TO_RATE(input_rate, div)    ((input_rate) / ((div) + 1))
43 
44 #define PLL_DIVISORS(hz, _refdiv, _postdiv1, _postdiv2) {\
45 	.refdiv = _refdiv,\
46 	.fbdiv = (u32)((u64)hz * _refdiv * _postdiv1 * _postdiv2 / OSC_HZ),\
47 	.postdiv1 = _postdiv1, .postdiv2 = _postdiv2};
48 
49 #if defined(CONFIG_SPL_BUILD)
50 static const struct pll_div gpll_init_cfg = PLL_DIVISORS(GPLL_HZ, 2, 2, 1);
51 static const struct pll_div cpll_init_cfg = PLL_DIVISORS(CPLL_HZ, 1, 2, 2);
52 #else
53 static const struct pll_div ppll_init_cfg = PLL_DIVISORS(PPLL_HZ, 2, 2, 1);
54 #endif
55 
56 static const struct pll_div apll_l_1600_cfg = PLL_DIVISORS(1600*MHz, 3, 1, 1);
57 static const struct pll_div apll_l_600_cfg = PLL_DIVISORS(600*MHz, 1, 2, 1);
58 
59 static const struct pll_div *apll_l_cfgs[] = {
60 	[APLL_L_1600_MHZ] = &apll_l_1600_cfg,
61 	[APLL_L_600_MHZ] = &apll_l_600_cfg,
62 };
63 
64 static const struct pll_div apll_b_600_cfg = PLL_DIVISORS(600*MHz, 1, 2, 1);
65 static const struct pll_div *apll_b_cfgs[] = {
66 	[APLL_B_600_MHZ] = &apll_b_600_cfg,
67 };
68 
69 enum {
70 	/* PLL_CON0 */
71 	PLL_FBDIV_MASK			= 0xfff,
72 	PLL_FBDIV_SHIFT			= 0,
73 
74 	/* PLL_CON1 */
75 	PLL_POSTDIV2_SHIFT		= 12,
76 	PLL_POSTDIV2_MASK		= 0x7 << PLL_POSTDIV2_SHIFT,
77 	PLL_POSTDIV1_SHIFT		= 8,
78 	PLL_POSTDIV1_MASK		= 0x7 << PLL_POSTDIV1_SHIFT,
79 	PLL_REFDIV_MASK			= 0x3f,
80 	PLL_REFDIV_SHIFT		= 0,
81 
82 	/* PLL_CON2 */
83 	PLL_LOCK_STATUS_SHIFT		= 31,
84 	PLL_LOCK_STATUS_MASK		= 1 << PLL_LOCK_STATUS_SHIFT,
85 	PLL_FRACDIV_MASK		= 0xffffff,
86 	PLL_FRACDIV_SHIFT		= 0,
87 
88 	/* PLL_CON3 */
89 	PLL_MODE_SHIFT			= 8,
90 	PLL_MODE_MASK			= 3 << PLL_MODE_SHIFT,
91 	PLL_MODE_SLOW			= 0,
92 	PLL_MODE_NORM,
93 	PLL_MODE_DEEP,
94 	PLL_DSMPD_SHIFT			= 3,
95 	PLL_DSMPD_MASK			= 1 << PLL_DSMPD_SHIFT,
96 	PLL_INTEGER_MODE		= 1,
97 
98 	/* PMUCRU_CLKSEL_CON0 */
99 	PMU_PCLK_DIV_CON_MASK		= 0x1f,
100 	PMU_PCLK_DIV_CON_SHIFT		= 0,
101 
102 	/* PMUCRU_CLKSEL_CON1 */
103 	SPI3_PLL_SEL_SHIFT		= 7,
104 	SPI3_PLL_SEL_MASK		= 1 << SPI3_PLL_SEL_SHIFT,
105 	SPI3_PLL_SEL_24M		= 0,
106 	SPI3_PLL_SEL_PPLL		= 1,
107 	SPI3_DIV_CON_SHIFT		= 0x0,
108 	SPI3_DIV_CON_MASK		= 0x7f,
109 
110 	/* PMUCRU_CLKSEL_CON2 */
111 	I2C_DIV_CON_MASK		= 0x7f,
112 	CLK_I2C8_DIV_CON_SHIFT		= 8,
113 	CLK_I2C0_DIV_CON_SHIFT		= 0,
114 
115 	/* PMUCRU_CLKSEL_CON3 */
116 	CLK_I2C4_DIV_CON_SHIFT		= 0,
117 
118 	/* CLKSEL_CON0 */
119 	ACLKM_CORE_L_DIV_CON_SHIFT	= 8,
120 	ACLKM_CORE_L_DIV_CON_MASK	= 0x1f << ACLKM_CORE_L_DIV_CON_SHIFT,
121 	CLK_CORE_L_PLL_SEL_SHIFT	= 6,
122 	CLK_CORE_L_PLL_SEL_MASK		= 3 << CLK_CORE_L_PLL_SEL_SHIFT,
123 	CLK_CORE_L_PLL_SEL_ALPLL	= 0x0,
124 	CLK_CORE_L_PLL_SEL_ABPLL	= 0x1,
125 	CLK_CORE_L_PLL_SEL_DPLL		= 0x10,
126 	CLK_CORE_L_PLL_SEL_GPLL		= 0x11,
127 	CLK_CORE_L_DIV_MASK		= 0x1f,
128 	CLK_CORE_L_DIV_SHIFT		= 0,
129 
130 	/* CLKSEL_CON1 */
131 	PCLK_DBG_L_DIV_SHIFT		= 0x8,
132 	PCLK_DBG_L_DIV_MASK		= 0x1f << PCLK_DBG_L_DIV_SHIFT,
133 	ATCLK_CORE_L_DIV_SHIFT		= 0,
134 	ATCLK_CORE_L_DIV_MASK		= 0x1f << ATCLK_CORE_L_DIV_SHIFT,
135 
136 	/* CLKSEL_CON2 */
137 	ACLKM_CORE_B_DIV_CON_SHIFT	= 8,
138 	ACLKM_CORE_B_DIV_CON_MASK	= 0x1f << ACLKM_CORE_B_DIV_CON_SHIFT,
139 	CLK_CORE_B_PLL_SEL_SHIFT	= 6,
140 	CLK_CORE_B_PLL_SEL_MASK		= 3 << CLK_CORE_B_PLL_SEL_SHIFT,
141 	CLK_CORE_B_PLL_SEL_ALPLL	= 0x0,
142 	CLK_CORE_B_PLL_SEL_ABPLL	= 0x1,
143 	CLK_CORE_B_PLL_SEL_DPLL		= 0x10,
144 	CLK_CORE_B_PLL_SEL_GPLL		= 0x11,
145 	CLK_CORE_B_DIV_MASK		= 0x1f,
146 	CLK_CORE_B_DIV_SHIFT		= 0,
147 
148 	/* CLKSEL_CON3 */
149 	PCLK_DBG_B_DIV_SHIFT		= 0x8,
150 	PCLK_DBG_B_DIV_MASK		= 0x1f << PCLK_DBG_B_DIV_SHIFT,
151 	ATCLK_CORE_B_DIV_SHIFT		= 0,
152 	ATCLK_CORE_B_DIV_MASK		= 0x1f << ATCLK_CORE_B_DIV_SHIFT,
153 
154 	/* CLKSEL_CON14 */
155 	PCLK_PERIHP_DIV_CON_SHIFT	= 12,
156 	PCLK_PERIHP_DIV_CON_MASK	= 0x7 << PCLK_PERIHP_DIV_CON_SHIFT,
157 	HCLK_PERIHP_DIV_CON_SHIFT	= 8,
158 	HCLK_PERIHP_DIV_CON_MASK	= 3 << HCLK_PERIHP_DIV_CON_SHIFT,
159 	ACLK_PERIHP_PLL_SEL_SHIFT	= 7,
160 	ACLK_PERIHP_PLL_SEL_MASK	= 1 << ACLK_PERIHP_PLL_SEL_SHIFT,
161 	ACLK_PERIHP_PLL_SEL_CPLL	= 0,
162 	ACLK_PERIHP_PLL_SEL_GPLL	= 1,
163 	ACLK_PERIHP_DIV_CON_SHIFT	= 0,
164 	ACLK_PERIHP_DIV_CON_MASK	= 0x1f,
165 
166 	/* CLKSEL_CON21 */
167 	ACLK_EMMC_PLL_SEL_SHIFT         = 7,
168 	ACLK_EMMC_PLL_SEL_MASK          = 0x1 << ACLK_EMMC_PLL_SEL_SHIFT,
169 	ACLK_EMMC_PLL_SEL_GPLL          = 0x1,
170 	ACLK_EMMC_DIV_CON_SHIFT         = 0,
171 	ACLK_EMMC_DIV_CON_MASK          = 0x1f,
172 
173 	/* CLKSEL_CON22 */
174 	CLK_EMMC_PLL_SHIFT              = 8,
175 	CLK_EMMC_PLL_MASK               = 0x7 << CLK_EMMC_PLL_SHIFT,
176 	CLK_EMMC_PLL_SEL_GPLL           = 0x1,
177 	CLK_EMMC_PLL_SEL_24M            = 0x5,
178 	CLK_EMMC_DIV_CON_SHIFT          = 0,
179 	CLK_EMMC_DIV_CON_MASK           = 0x7f << CLK_EMMC_DIV_CON_SHIFT,
180 
181 	/* CLKSEL_CON23 */
182 	PCLK_PERILP0_DIV_CON_SHIFT	= 12,
183 	PCLK_PERILP0_DIV_CON_MASK	= 0x7 << PCLK_PERILP0_DIV_CON_SHIFT,
184 	HCLK_PERILP0_DIV_CON_SHIFT	= 8,
185 	HCLK_PERILP0_DIV_CON_MASK	= 3 << HCLK_PERILP0_DIV_CON_SHIFT,
186 	ACLK_PERILP0_PLL_SEL_SHIFT	= 7,
187 	ACLK_PERILP0_PLL_SEL_MASK	= 1 << ACLK_PERILP0_PLL_SEL_SHIFT,
188 	ACLK_PERILP0_PLL_SEL_CPLL	= 0,
189 	ACLK_PERILP0_PLL_SEL_GPLL	= 1,
190 	ACLK_PERILP0_DIV_CON_SHIFT	= 0,
191 	ACLK_PERILP0_DIV_CON_MASK	= 0x1f,
192 
193 	/* CLKSEL_CON25 */
194 	PCLK_PERILP1_DIV_CON_SHIFT	= 8,
195 	PCLK_PERILP1_DIV_CON_MASK	= 0x7 << PCLK_PERILP1_DIV_CON_SHIFT,
196 	HCLK_PERILP1_PLL_SEL_SHIFT	= 7,
197 	HCLK_PERILP1_PLL_SEL_MASK	= 1 << HCLK_PERILP1_PLL_SEL_SHIFT,
198 	HCLK_PERILP1_PLL_SEL_CPLL	= 0,
199 	HCLK_PERILP1_PLL_SEL_GPLL	= 1,
200 	HCLK_PERILP1_DIV_CON_SHIFT	= 0,
201 	HCLK_PERILP1_DIV_CON_MASK	= 0x1f,
202 
203 	/* CLKSEL_CON26 */
204 	CLK_SARADC_DIV_CON_SHIFT	= 8,
205 	CLK_SARADC_DIV_CON_MASK		= GENMASK(15, 8),
206 	CLK_SARADC_DIV_CON_WIDTH	= 8,
207 
208 	/* CLKSEL_CON27 */
209 	CLK_TSADC_SEL_X24M		= 0x0,
210 	CLK_TSADC_SEL_SHIFT		= 15,
211 	CLK_TSADC_SEL_MASK		= 1 << CLK_TSADC_SEL_SHIFT,
212 	CLK_TSADC_DIV_CON_SHIFT		= 0,
213 	CLK_TSADC_DIV_CON_MASK		= 0x3ff,
214 
215 	/* CLKSEL_CON47 & CLKSEL_CON48 */
216 	ACLK_VOP_PLL_SEL_SHIFT		= 6,
217 	ACLK_VOP_PLL_SEL_MASK		= 0x3 << ACLK_VOP_PLL_SEL_SHIFT,
218 	ACLK_VOP_PLL_SEL_CPLL		= 0x1,
219 	ACLK_VOP_DIV_CON_SHIFT		= 0,
220 	ACLK_VOP_DIV_CON_MASK		= 0x1f << ACLK_VOP_DIV_CON_SHIFT,
221 
222 	/* CLKSEL_CON49 & CLKSEL_CON50 */
223 	DCLK_VOP_DCLK_SEL_SHIFT         = 11,
224 	DCLK_VOP_DCLK_SEL_MASK          = 1 << DCLK_VOP_DCLK_SEL_SHIFT,
225 	DCLK_VOP_DCLK_SEL_DIVOUT        = 0,
226 	DCLK_VOP_PLL_SEL_SHIFT          = 8,
227 	DCLK_VOP_PLL_SEL_MASK           = 3 << DCLK_VOP_PLL_SEL_SHIFT,
228 	DCLK_VOP_PLL_SEL_VPLL           = 0,
229 	DCLK_VOP_DIV_CON_MASK           = 0xff,
230 	DCLK_VOP_DIV_CON_SHIFT          = 0,
231 
232 	/* CLKSEL_CON58 */
233 	CLK_SPI_PLL_SEL_WIDTH = 1,
234 	CLK_SPI_PLL_SEL_MASK = ((1 < CLK_SPI_PLL_SEL_WIDTH) - 1),
235 	CLK_SPI_PLL_SEL_CPLL = 0,
236 	CLK_SPI_PLL_SEL_GPLL = 1,
237 	CLK_SPI_PLL_DIV_CON_WIDTH = 7,
238 	CLK_SPI_PLL_DIV_CON_MASK = ((1 << CLK_SPI_PLL_DIV_CON_WIDTH) - 1),
239 
240 	CLK_SPI5_PLL_DIV_CON_SHIFT      = 8,
241 	CLK_SPI5_PLL_SEL_SHIFT	        = 15,
242 
243 	/* CLKSEL_CON59 */
244 	CLK_SPI1_PLL_SEL_SHIFT		= 15,
245 	CLK_SPI1_PLL_DIV_CON_SHIFT	= 8,
246 	CLK_SPI0_PLL_SEL_SHIFT		= 7,
247 	CLK_SPI0_PLL_DIV_CON_SHIFT	= 0,
248 
249 	/* CLKSEL_CON60 */
250 	CLK_SPI4_PLL_SEL_SHIFT		= 15,
251 	CLK_SPI4_PLL_DIV_CON_SHIFT	= 8,
252 	CLK_SPI2_PLL_SEL_SHIFT		= 7,
253 	CLK_SPI2_PLL_DIV_CON_SHIFT	= 0,
254 
255 	/* CLKSEL_CON61 */
256 	CLK_I2C_PLL_SEL_MASK		= 1,
257 	CLK_I2C_PLL_SEL_CPLL		= 0,
258 	CLK_I2C_PLL_SEL_GPLL		= 1,
259 	CLK_I2C5_PLL_SEL_SHIFT		= 15,
260 	CLK_I2C5_DIV_CON_SHIFT		= 8,
261 	CLK_I2C1_PLL_SEL_SHIFT		= 7,
262 	CLK_I2C1_DIV_CON_SHIFT		= 0,
263 
264 	/* CLKSEL_CON62 */
265 	CLK_I2C6_PLL_SEL_SHIFT		= 15,
266 	CLK_I2C6_DIV_CON_SHIFT		= 8,
267 	CLK_I2C2_PLL_SEL_SHIFT		= 7,
268 	CLK_I2C2_DIV_CON_SHIFT		= 0,
269 
270 	/* CLKSEL_CON63 */
271 	CLK_I2C7_PLL_SEL_SHIFT		= 15,
272 	CLK_I2C7_DIV_CON_SHIFT		= 8,
273 	CLK_I2C3_PLL_SEL_SHIFT		= 7,
274 	CLK_I2C3_DIV_CON_SHIFT		= 0,
275 
276 	/* CRU_SOFTRST_CON4 */
277 	RESETN_DDR0_REQ_SHIFT		= 8,
278 	RESETN_DDR0_REQ_MASK		= 1 << RESETN_DDR0_REQ_SHIFT,
279 	RESETN_DDRPHY0_REQ_SHIFT	= 9,
280 	RESETN_DDRPHY0_REQ_MASK		= 1 << RESETN_DDRPHY0_REQ_SHIFT,
281 	RESETN_DDR1_REQ_SHIFT		= 12,
282 	RESETN_DDR1_REQ_MASK		= 1 << RESETN_DDR1_REQ_SHIFT,
283 	RESETN_DDRPHY1_REQ_SHIFT	= 13,
284 	RESETN_DDRPHY1_REQ_MASK		= 1 << RESETN_DDRPHY1_REQ_SHIFT,
285 };
286 
287 #define VCO_MAX_KHZ	(3200 * (MHz / KHz))
288 #define VCO_MIN_KHZ	(800 * (MHz / KHz))
289 #define OUTPUT_MAX_KHZ	(3200 * (MHz / KHz))
290 #define OUTPUT_MIN_KHZ	(16 * (MHz / KHz))
291 
292 /*
293  *  the div restructions of pll in integer mode, these are defined in
294  *  * CRU_*PLL_CON0 or PMUCRU_*PLL_CON0
295  */
296 #define PLL_DIV_MIN	16
297 #define PLL_DIV_MAX	3200
298 
299 /*
300  * How to calculate the PLL(from TRM V0.3 Part 1 Page 63):
301  * Formulas also embedded within the Fractional PLL Verilog model:
302  * If DSMPD = 1 (DSM is disabled, "integer mode")
303  * FOUTVCO = FREF / REFDIV * FBDIV
304  * FOUTPOSTDIV = FOUTVCO / POSTDIV1 / POSTDIV2
305  * Where:
306  * FOUTVCO = Fractional PLL non-divided output frequency
307  * FOUTPOSTDIV = Fractional PLL divided output frequency
308  *               (output of second post divider)
309  * FREF = Fractional PLL input reference frequency, (the OSC_HZ 24MHz input)
310  * REFDIV = Fractional PLL input reference clock divider
311  * FBDIV = Integer value programmed into feedback divide
312  *
313  */
314 static void rkclk_set_pll(u32 *pll_con, const struct pll_div *div)
315 {
316 	/* All 8 PLLs have same VCO and output frequency range restrictions. */
317 	u32 vco_khz = OSC_HZ / 1000 * div->fbdiv / div->refdiv;
318 	u32 output_khz = vco_khz / div->postdiv1 / div->postdiv2;
319 
320 	debug("PLL at %p: fbdiv=%d, refdiv=%d, postdiv1=%d, "
321 			   "postdiv2=%d, vco=%u khz, output=%u khz\n",
322 			   pll_con, div->fbdiv, div->refdiv, div->postdiv1,
323 			   div->postdiv2, vco_khz, output_khz);
324 	assert(vco_khz >= VCO_MIN_KHZ && vco_khz <= VCO_MAX_KHZ &&
325 	       output_khz >= OUTPUT_MIN_KHZ && output_khz <= OUTPUT_MAX_KHZ &&
326 	       div->fbdiv >= PLL_DIV_MIN && div->fbdiv <= PLL_DIV_MAX);
327 
328 	/*
329 	 * When power on or changing PLL setting,
330 	 * we must force PLL into slow mode to ensure output stable clock.
331 	 */
332 	rk_clrsetreg(&pll_con[3], PLL_MODE_MASK,
333 		     PLL_MODE_SLOW << PLL_MODE_SHIFT);
334 
335 	/* use integer mode */
336 	rk_clrsetreg(&pll_con[3], PLL_DSMPD_MASK,
337 		     PLL_INTEGER_MODE << PLL_DSMPD_SHIFT);
338 
339 	rk_clrsetreg(&pll_con[0], PLL_FBDIV_MASK,
340 		     div->fbdiv << PLL_FBDIV_SHIFT);
341 	rk_clrsetreg(&pll_con[1],
342 		     PLL_POSTDIV2_MASK | PLL_POSTDIV1_MASK |
343 		     PLL_REFDIV_MASK | PLL_REFDIV_SHIFT,
344 		     (div->postdiv2 << PLL_POSTDIV2_SHIFT) |
345 		     (div->postdiv1 << PLL_POSTDIV1_SHIFT) |
346 		     (div->refdiv << PLL_REFDIV_SHIFT));
347 
348 	/* waiting for pll lock */
349 	while (!(readl(&pll_con[2]) & (1 << PLL_LOCK_STATUS_SHIFT)))
350 		udelay(1);
351 
352 	/* pll enter normal mode */
353 	rk_clrsetreg(&pll_con[3], PLL_MODE_MASK,
354 		     PLL_MODE_NORM << PLL_MODE_SHIFT);
355 }
356 
357 static int pll_para_config(u32 freq_hz, struct pll_div *div)
358 {
359 	u32 ref_khz = OSC_HZ / KHz, refdiv, fbdiv = 0;
360 	u32 postdiv1, postdiv2 = 1;
361 	u32 fref_khz;
362 	u32 diff_khz, best_diff_khz;
363 	const u32 max_refdiv = 63, max_fbdiv = 3200, min_fbdiv = 16;
364 	const u32 max_postdiv1 = 7, max_postdiv2 = 7;
365 	u32 vco_khz;
366 	u32 freq_khz = freq_hz / KHz;
367 
368 	if (!freq_hz) {
369 		printf("%s: the frequency can't be 0 Hz\n", __func__);
370 		return -1;
371 	}
372 
373 	postdiv1 = DIV_ROUND_UP(VCO_MIN_KHZ, freq_khz);
374 	if (postdiv1 > max_postdiv1) {
375 		postdiv2 = DIV_ROUND_UP(postdiv1, max_postdiv1);
376 		postdiv1 = DIV_ROUND_UP(postdiv1, postdiv2);
377 	}
378 
379 	vco_khz = freq_khz * postdiv1 * postdiv2;
380 
381 	if (vco_khz < VCO_MIN_KHZ || vco_khz > VCO_MAX_KHZ ||
382 	    postdiv2 > max_postdiv2) {
383 		printf("%s: Cannot find out a supported VCO"
384 		       " for Frequency (%uHz).\n", __func__, freq_hz);
385 		return -1;
386 	}
387 
388 	div->postdiv1 = postdiv1;
389 	div->postdiv2 = postdiv2;
390 
391 	best_diff_khz = vco_khz;
392 	for (refdiv = 1; refdiv < max_refdiv && best_diff_khz; refdiv++) {
393 		fref_khz = ref_khz / refdiv;
394 
395 		fbdiv = vco_khz / fref_khz;
396 		if ((fbdiv >= max_fbdiv) || (fbdiv <= min_fbdiv))
397 			continue;
398 		diff_khz = vco_khz - fbdiv * fref_khz;
399 		if (fbdiv + 1 < max_fbdiv && diff_khz > fref_khz / 2) {
400 			fbdiv++;
401 			diff_khz = fref_khz - diff_khz;
402 		}
403 
404 		if (diff_khz >= best_diff_khz)
405 			continue;
406 
407 		best_diff_khz = diff_khz;
408 		div->refdiv = refdiv;
409 		div->fbdiv = fbdiv;
410 	}
411 
412 	if (best_diff_khz > 4 * (MHz/KHz)) {
413 		printf("%s: Failed to match output frequency %u, "
414 		       "difference is %u Hz,exceed 4MHZ\n", __func__, freq_hz,
415 		       best_diff_khz * KHz);
416 		return -1;
417 	}
418 	return 0;
419 }
420 
421 void rk3399_configure_cpu_l(struct rk3399_cru *cru,
422 			    enum apll_l_frequencies apll_l_freq)
423 {
424 	u32 aclkm_div;
425 	u32 pclk_dbg_div;
426 	u32 atclk_div;
427 
428 	/* Setup cluster L */
429 	rkclk_set_pll(&cru->apll_l_con[0], apll_l_cfgs[apll_l_freq]);
430 
431 	aclkm_div = LPLL_HZ / ACLKM_CORE_L_HZ - 1;
432 	assert((aclkm_div + 1) * ACLKM_CORE_L_HZ == LPLL_HZ &&
433 	       aclkm_div < 0x1f);
434 
435 	pclk_dbg_div = LPLL_HZ / PCLK_DBG_L_HZ - 1;
436 	assert((pclk_dbg_div + 1) * PCLK_DBG_L_HZ == LPLL_HZ &&
437 	       pclk_dbg_div < 0x1f);
438 
439 	atclk_div = LPLL_HZ / ATCLK_CORE_L_HZ - 1;
440 	assert((atclk_div + 1) * ATCLK_CORE_L_HZ == LPLL_HZ &&
441 	       atclk_div < 0x1f);
442 
443 	rk_clrsetreg(&cru->clksel_con[0],
444 		     ACLKM_CORE_L_DIV_CON_MASK | CLK_CORE_L_PLL_SEL_MASK |
445 		     CLK_CORE_L_DIV_MASK,
446 		     aclkm_div << ACLKM_CORE_L_DIV_CON_SHIFT |
447 		     CLK_CORE_L_PLL_SEL_ALPLL << CLK_CORE_L_PLL_SEL_SHIFT |
448 		     0 << CLK_CORE_L_DIV_SHIFT);
449 
450 	rk_clrsetreg(&cru->clksel_con[1],
451 		     PCLK_DBG_L_DIV_MASK | ATCLK_CORE_L_DIV_MASK,
452 		     pclk_dbg_div << PCLK_DBG_L_DIV_SHIFT |
453 		     atclk_div << ATCLK_CORE_L_DIV_SHIFT);
454 }
455 
456 void rk3399_configure_cpu_b(struct rk3399_cru *cru,
457 			    enum apll_b_frequencies apll_b_freq)
458 {
459 	u32 aclkm_div;
460 	u32 pclk_dbg_div;
461 	u32 atclk_div;
462 
463 	/* Setup cluster B */
464 	rkclk_set_pll(&cru->apll_b_con[0], apll_b_cfgs[apll_b_freq]);
465 
466 	aclkm_div = BPLL_HZ / ACLKM_CORE_B_HZ - 1;
467 	assert((aclkm_div + 1) * ACLKM_CORE_B_HZ == BPLL_HZ &&
468 	       aclkm_div < 0x1f);
469 
470 	pclk_dbg_div = BPLL_HZ / PCLK_DBG_B_HZ - 1;
471 	assert((pclk_dbg_div + 1) * PCLK_DBG_B_HZ == BPLL_HZ &&
472 	       pclk_dbg_div < 0x1f);
473 
474 	atclk_div = BPLL_HZ / ATCLK_CORE_B_HZ - 1;
475 	assert((atclk_div + 1) * ATCLK_CORE_B_HZ == BPLL_HZ &&
476 	       atclk_div < 0x1f);
477 
478 	rk_clrsetreg(&cru->clksel_con[2],
479 		     ACLKM_CORE_B_DIV_CON_MASK | CLK_CORE_B_PLL_SEL_MASK |
480 		     CLK_CORE_B_DIV_MASK,
481 		     aclkm_div << ACLKM_CORE_B_DIV_CON_SHIFT |
482 		     CLK_CORE_B_PLL_SEL_ABPLL << CLK_CORE_B_PLL_SEL_SHIFT |
483 		     0 << CLK_CORE_B_DIV_SHIFT);
484 
485 	rk_clrsetreg(&cru->clksel_con[3],
486 		     PCLK_DBG_B_DIV_MASK | ATCLK_CORE_B_DIV_MASK,
487 		     pclk_dbg_div << PCLK_DBG_B_DIV_SHIFT |
488 		     atclk_div << ATCLK_CORE_B_DIV_SHIFT);
489 }
490 
491 #define I2C_CLK_REG_MASK(bus) \
492 			(I2C_DIV_CON_MASK << \
493 			CLK_I2C ##bus## _DIV_CON_SHIFT | \
494 			CLK_I2C_PLL_SEL_MASK << \
495 			CLK_I2C ##bus## _PLL_SEL_SHIFT)
496 
497 #define I2C_CLK_REG_VALUE(bus, clk_div) \
498 			      ((clk_div - 1) << \
499 					CLK_I2C ##bus## _DIV_CON_SHIFT | \
500 			      CLK_I2C_PLL_SEL_GPLL << \
501 					CLK_I2C ##bus## _PLL_SEL_SHIFT)
502 
503 #define I2C_CLK_DIV_VALUE(con, bus) \
504 			(con >> CLK_I2C ##bus## _DIV_CON_SHIFT) & \
505 				I2C_DIV_CON_MASK;
506 
507 #define I2C_PMUCLK_REG_MASK(bus) \
508 			(I2C_DIV_CON_MASK << \
509 			 CLK_I2C ##bus## _DIV_CON_SHIFT)
510 
511 #define I2C_PMUCLK_REG_VALUE(bus, clk_div) \
512 				((clk_div - 1) << \
513 				CLK_I2C ##bus## _DIV_CON_SHIFT)
514 
515 static ulong rk3399_i2c_get_clk(struct rk3399_cru *cru, ulong clk_id)
516 {
517 	u32 div, con;
518 
519 	switch (clk_id) {
520 	case SCLK_I2C1:
521 		con = readl(&cru->clksel_con[61]);
522 		div = I2C_CLK_DIV_VALUE(con, 1);
523 		break;
524 	case SCLK_I2C2:
525 		con = readl(&cru->clksel_con[62]);
526 		div = I2C_CLK_DIV_VALUE(con, 2);
527 		break;
528 	case SCLK_I2C3:
529 		con = readl(&cru->clksel_con[63]);
530 		div = I2C_CLK_DIV_VALUE(con, 3);
531 		break;
532 	case SCLK_I2C5:
533 		con = readl(&cru->clksel_con[61]);
534 		div = I2C_CLK_DIV_VALUE(con, 5);
535 		break;
536 	case SCLK_I2C6:
537 		con = readl(&cru->clksel_con[62]);
538 		div = I2C_CLK_DIV_VALUE(con, 6);
539 		break;
540 	case SCLK_I2C7:
541 		con = readl(&cru->clksel_con[63]);
542 		div = I2C_CLK_DIV_VALUE(con, 7);
543 		break;
544 	default:
545 		printf("do not support this i2c bus\n");
546 		return -EINVAL;
547 	}
548 
549 	return DIV_TO_RATE(GPLL_HZ, div);
550 }
551 
552 static ulong rk3399_i2c_set_clk(struct rk3399_cru *cru, ulong clk_id, uint hz)
553 {
554 	int src_clk_div;
555 
556 	/* i2c0,4,8 src clock from ppll, i2c1,2,3,5,6,7 src clock from gpll*/
557 	src_clk_div = GPLL_HZ / hz;
558 	assert(src_clk_div - 1 < 127);
559 
560 	switch (clk_id) {
561 	case SCLK_I2C1:
562 		rk_clrsetreg(&cru->clksel_con[61], I2C_CLK_REG_MASK(1),
563 			     I2C_CLK_REG_VALUE(1, src_clk_div));
564 		break;
565 	case SCLK_I2C2:
566 		rk_clrsetreg(&cru->clksel_con[62], I2C_CLK_REG_MASK(2),
567 			     I2C_CLK_REG_VALUE(2, src_clk_div));
568 		break;
569 	case SCLK_I2C3:
570 		rk_clrsetreg(&cru->clksel_con[63], I2C_CLK_REG_MASK(3),
571 			     I2C_CLK_REG_VALUE(3, src_clk_div));
572 		break;
573 	case SCLK_I2C5:
574 		rk_clrsetreg(&cru->clksel_con[61], I2C_CLK_REG_MASK(5),
575 			     I2C_CLK_REG_VALUE(5, src_clk_div));
576 		break;
577 	case SCLK_I2C6:
578 		rk_clrsetreg(&cru->clksel_con[62], I2C_CLK_REG_MASK(6),
579 			     I2C_CLK_REG_VALUE(6, src_clk_div));
580 		break;
581 	case SCLK_I2C7:
582 		rk_clrsetreg(&cru->clksel_con[63], I2C_CLK_REG_MASK(7),
583 			     I2C_CLK_REG_VALUE(7, src_clk_div));
584 		break;
585 	default:
586 		printf("do not support this i2c bus\n");
587 		return -EINVAL;
588 	}
589 
590 	return rk3399_i2c_get_clk(cru, clk_id);
591 }
592 
593 /*
594  * RK3399 SPI clocks have a common divider-width (7 bits) and a single bit
595  * to select either CPLL or GPLL as the clock-parent. The location within
596  * the enclosing CLKSEL_CON (i.e. div_shift and sel_shift) are variable.
597  */
598 
599 struct spi_clkreg {
600 	uint8_t reg;  /* CLKSEL_CON[reg] register in CRU */
601 	uint8_t div_shift;
602 	uint8_t sel_shift;
603 };
604 
605 /*
606  * The entries are numbered relative to their offset from SCLK_SPI0.
607  *
608  * Note that SCLK_SPI3 (which is configured via PMUCRU and requires different
609  * logic is not supported).
610  */
611 static const struct spi_clkreg spi_clkregs[] = {
612 	[0] = { .reg = 59,
613 		.div_shift = CLK_SPI0_PLL_DIV_CON_SHIFT,
614 		.sel_shift = CLK_SPI0_PLL_SEL_SHIFT, },
615 	[1] = { .reg = 59,
616 		.div_shift = CLK_SPI1_PLL_DIV_CON_SHIFT,
617 		.sel_shift = CLK_SPI1_PLL_SEL_SHIFT, },
618 	[2] = { .reg = 60,
619 		.div_shift = CLK_SPI2_PLL_DIV_CON_SHIFT,
620 		.sel_shift = CLK_SPI2_PLL_SEL_SHIFT, },
621 	[3] = { .reg = 60,
622 		.div_shift = CLK_SPI4_PLL_DIV_CON_SHIFT,
623 		.sel_shift = CLK_SPI4_PLL_SEL_SHIFT, },
624 	[4] = { .reg = 58,
625 		.div_shift = CLK_SPI5_PLL_DIV_CON_SHIFT,
626 		.sel_shift = CLK_SPI5_PLL_SEL_SHIFT, },
627 };
628 
629 static ulong rk3399_spi_get_clk(struct rk3399_cru *cru, ulong clk_id)
630 {
631 	const struct spi_clkreg *spiclk = NULL;
632 	u32 div, val;
633 
634 	switch (clk_id) {
635 	case SCLK_SPI0 ... SCLK_SPI5:
636 		spiclk = &spi_clkregs[clk_id - SCLK_SPI0];
637 		break;
638 
639 	default:
640 		pr_err("%s: SPI clk-id %ld not supported\n", __func__, clk_id);
641 		return -EINVAL;
642 	}
643 
644 	val = readl(&cru->clksel_con[spiclk->reg]);
645 	div = bitfield_extract(val, spiclk->div_shift,
646 			       CLK_SPI_PLL_DIV_CON_WIDTH);
647 
648 	return DIV_TO_RATE(GPLL_HZ, div);
649 }
650 
651 static ulong rk3399_spi_set_clk(struct rk3399_cru *cru, ulong clk_id, uint hz)
652 {
653 	const struct spi_clkreg *spiclk = NULL;
654 	int src_clk_div;
655 
656 	src_clk_div = DIV_ROUND_UP(GPLL_HZ, hz) - 1;
657 	assert(src_clk_div < 128);
658 
659 	switch (clk_id) {
660 	case SCLK_SPI1 ... SCLK_SPI5:
661 		spiclk = &spi_clkregs[clk_id - SCLK_SPI0];
662 		break;
663 
664 	default:
665 		pr_err("%s: SPI clk-id %ld not supported\n", __func__, clk_id);
666 		return -EINVAL;
667 	}
668 
669 	rk_clrsetreg(&cru->clksel_con[spiclk->reg],
670 		     ((CLK_SPI_PLL_DIV_CON_MASK << spiclk->div_shift) |
671 		       (CLK_SPI_PLL_SEL_GPLL << spiclk->sel_shift)),
672 		     ((src_clk_div << spiclk->div_shift) |
673 		      (CLK_SPI_PLL_SEL_GPLL << spiclk->sel_shift)));
674 
675 	return rk3399_spi_get_clk(cru, clk_id);
676 }
677 
678 static ulong rk3399_vop_set_clk(struct rk3399_cru *cru, ulong clk_id, u32 hz)
679 {
680 	struct pll_div vpll_config = {0};
681 	int aclk_vop = 198*MHz;
682 	void *aclkreg_addr, *dclkreg_addr;
683 	u32 div;
684 
685 	switch (clk_id) {
686 	case DCLK_VOP0:
687 		aclkreg_addr = &cru->clksel_con[47];
688 		dclkreg_addr = &cru->clksel_con[49];
689 		break;
690 	case DCLK_VOP1:
691 		aclkreg_addr = &cru->clksel_con[48];
692 		dclkreg_addr = &cru->clksel_con[50];
693 		break;
694 	default:
695 		return -EINVAL;
696 	}
697 	/* vop aclk source clk: cpll */
698 	div = CPLL_HZ / aclk_vop;
699 	assert(div - 1 < 32);
700 
701 	rk_clrsetreg(aclkreg_addr,
702 		     ACLK_VOP_PLL_SEL_MASK | ACLK_VOP_DIV_CON_MASK,
703 		     ACLK_VOP_PLL_SEL_CPLL << ACLK_VOP_PLL_SEL_SHIFT |
704 		     (div - 1) << ACLK_VOP_DIV_CON_SHIFT);
705 
706 	/* vop dclk source from vpll, and equals to vpll(means div == 1) */
707 	if (pll_para_config(hz, &vpll_config))
708 		return -1;
709 
710 	rkclk_set_pll(&cru->vpll_con[0], &vpll_config);
711 
712 	rk_clrsetreg(dclkreg_addr,
713 		     DCLK_VOP_DCLK_SEL_MASK | DCLK_VOP_PLL_SEL_MASK|
714 		     DCLK_VOP_DIV_CON_MASK,
715 		     DCLK_VOP_DCLK_SEL_DIVOUT << DCLK_VOP_DCLK_SEL_SHIFT |
716 		     DCLK_VOP_PLL_SEL_VPLL << DCLK_VOP_PLL_SEL_SHIFT |
717 		     (1 - 1) << DCLK_VOP_DIV_CON_SHIFT);
718 
719 	return hz;
720 }
721 
722 static ulong rk3399_mmc_get_clk(struct rk3399_cru *cru, uint clk_id)
723 {
724 	u32 div, con;
725 
726 	switch (clk_id) {
727 	case HCLK_SDMMC:
728 	case SCLK_SDMMC:
729 		con = readl(&cru->clksel_con[16]);
730 		/* dwmmc controller have internal div 2 */
731 		div = 2;
732 		break;
733 	case SCLK_EMMC:
734 		con = readl(&cru->clksel_con[21]);
735 		div = 1;
736 		break;
737 	default:
738 		return -EINVAL;
739 	}
740 
741 	div *= (con & CLK_EMMC_DIV_CON_MASK) >> CLK_EMMC_DIV_CON_SHIFT;
742 	if ((con & CLK_EMMC_PLL_MASK) >> CLK_EMMC_PLL_SHIFT
743 			== CLK_EMMC_PLL_SEL_24M)
744 		return DIV_TO_RATE(OSC_HZ, div);
745 	else
746 		return DIV_TO_RATE(GPLL_HZ, div);
747 }
748 
749 static ulong rk3399_mmc_set_clk(struct rk3399_cru *cru,
750 				ulong clk_id, ulong set_rate)
751 {
752 	int src_clk_div;
753 	int aclk_emmc = 198*MHz;
754 
755 	switch (clk_id) {
756 	case HCLK_SDMMC:
757 	case SCLK_SDMMC:
758 		/* Select clk_sdmmc source from GPLL by default */
759 		/* mmc clock defaulg div 2 internal, provide double in cru */
760 		src_clk_div = DIV_ROUND_UP(GPLL_HZ / 2, set_rate);
761 
762 		if (src_clk_div > 128) {
763 			/* use 24MHz source for 400KHz clock */
764 			src_clk_div = DIV_ROUND_UP(OSC_HZ / 2, set_rate);
765 			assert(src_clk_div - 1 < 128);
766 			rk_clrsetreg(&cru->clksel_con[16],
767 				     CLK_EMMC_PLL_MASK | CLK_EMMC_DIV_CON_MASK,
768 				     CLK_EMMC_PLL_SEL_24M << CLK_EMMC_PLL_SHIFT |
769 				     (src_clk_div - 1) << CLK_EMMC_DIV_CON_SHIFT);
770 		} else {
771 			rk_clrsetreg(&cru->clksel_con[16],
772 				     CLK_EMMC_PLL_MASK | CLK_EMMC_DIV_CON_MASK,
773 				     CLK_EMMC_PLL_SEL_GPLL << CLK_EMMC_PLL_SHIFT |
774 				     (src_clk_div - 1) << CLK_EMMC_DIV_CON_SHIFT);
775 		}
776 		break;
777 	case SCLK_EMMC:
778 		/* Select aclk_emmc source from GPLL */
779 		src_clk_div = DIV_ROUND_UP(GPLL_HZ , aclk_emmc);
780 		assert(src_clk_div - 1 < 32);
781 
782 		rk_clrsetreg(&cru->clksel_con[21],
783 			     ACLK_EMMC_PLL_SEL_MASK | ACLK_EMMC_DIV_CON_MASK,
784 			     ACLK_EMMC_PLL_SEL_GPLL << ACLK_EMMC_PLL_SEL_SHIFT |
785 			     (src_clk_div - 1) << ACLK_EMMC_DIV_CON_SHIFT);
786 
787 		/* Select clk_emmc source from GPLL too */
788 		src_clk_div = DIV_ROUND_UP(GPLL_HZ, set_rate);
789 		assert(src_clk_div - 1 < 128);
790 
791 		rk_clrsetreg(&cru->clksel_con[22],
792 			     CLK_EMMC_PLL_MASK | CLK_EMMC_DIV_CON_MASK,
793 			     CLK_EMMC_PLL_SEL_GPLL << CLK_EMMC_PLL_SHIFT |
794 			     (src_clk_div - 1) << CLK_EMMC_DIV_CON_SHIFT);
795 		break;
796 	default:
797 		return -EINVAL;
798 	}
799 	return rk3399_mmc_get_clk(cru, clk_id);
800 }
801 
802 static ulong rk3399_gmac_set_clk(struct rk3399_cru *cru, ulong rate)
803 {
804 	ulong ret;
805 
806 	/*
807 	 * The RGMII CLK can be derived either from an external "clkin"
808 	 * or can be generated from internally by a divider from SCLK_MAC.
809 	 */
810 	if (readl(&cru->clksel_con[19]) & BIT(4)) {
811 		/* An external clock will always generate the right rate... */
812 		ret = rate;
813 	} else {
814 		/*
815 		 * No platform uses an internal clock to date.
816 		 * Implement this once it becomes necessary and print an error
817 		 * if someone tries to use it (while it remains unimplemented).
818 		 */
819 		pr_err("%s: internal clock is UNIMPLEMENTED\n", __func__);
820 		ret = 0;
821 	}
822 
823 	return ret;
824 }
825 
826 #define PMUSGRF_DDR_RGN_CON16 0xff330040
827 static ulong rk3399_ddr_set_clk(struct rk3399_cru *cru,
828 				ulong set_rate)
829 {
830 	struct pll_div dpll_cfg;
831 
832 	/*  IC ECO bug, need to set this register */
833 	writel(0xc000c000, PMUSGRF_DDR_RGN_CON16);
834 
835 	/*  clk_ddrc == DPLL = 24MHz / refdiv * fbdiv / postdiv1 / postdiv2 */
836 	switch (set_rate) {
837 	case 200*MHz:
838 		dpll_cfg = (struct pll_div)
839 		{.refdiv = 1, .fbdiv = 50, .postdiv1 = 6, .postdiv2 = 1};
840 		break;
841 	case 300*MHz:
842 		dpll_cfg = (struct pll_div)
843 		{.refdiv = 2, .fbdiv = 100, .postdiv1 = 4, .postdiv2 = 1};
844 		break;
845 	case 666*MHz:
846 		dpll_cfg = (struct pll_div)
847 		{.refdiv = 2, .fbdiv = 111, .postdiv1 = 2, .postdiv2 = 1};
848 		break;
849 	case 800*MHz:
850 		dpll_cfg = (struct pll_div)
851 		{.refdiv = 1, .fbdiv = 100, .postdiv1 = 3, .postdiv2 = 1};
852 		break;
853 	case 933*MHz:
854 		dpll_cfg = (struct pll_div)
855 		{.refdiv = 1, .fbdiv = 116, .postdiv1 = 3, .postdiv2 = 1};
856 		break;
857 	default:
858 		pr_err("Unsupported SDRAM frequency!,%ld\n", set_rate);
859 	}
860 	rkclk_set_pll(&cru->dpll_con[0], &dpll_cfg);
861 
862 	return set_rate;
863 }
864 
865 static ulong rk3399_saradc_get_clk(struct rk3399_cru *cru)
866 {
867 	u32 div, val;
868 
869 	val = readl(&cru->clksel_con[26]);
870 	div = bitfield_extract(val, CLK_SARADC_DIV_CON_SHIFT,
871 			       CLK_SARADC_DIV_CON_WIDTH);
872 
873 	return DIV_TO_RATE(OSC_HZ, div);
874 }
875 
876 static ulong rk3399_saradc_set_clk(struct rk3399_cru *cru, uint hz)
877 {
878 	int src_clk_div;
879 
880 	src_clk_div = DIV_ROUND_UP(OSC_HZ, hz) - 1;
881 	assert(src_clk_div < 128);
882 
883 	rk_clrsetreg(&cru->clksel_con[26],
884 		     CLK_SARADC_DIV_CON_MASK,
885 		     src_clk_div << CLK_SARADC_DIV_CON_SHIFT);
886 
887 	return rk3399_saradc_get_clk(cru);
888 }
889 
890 static ulong rk3399_clk_get_rate(struct clk *clk)
891 {
892 	struct rk3399_clk_priv *priv = dev_get_priv(clk->dev);
893 	ulong rate = 0;
894 
895 	switch (clk->id) {
896 	case 0 ... 63:
897 		return 0;
898 	case HCLK_SDMMC:
899 	case SCLK_SDMMC:
900 	case SCLK_EMMC:
901 		rate = rk3399_mmc_get_clk(priv->cru, clk->id);
902 		break;
903 	case SCLK_I2C1:
904 	case SCLK_I2C2:
905 	case SCLK_I2C3:
906 	case SCLK_I2C5:
907 	case SCLK_I2C6:
908 	case SCLK_I2C7:
909 		rate = rk3399_i2c_get_clk(priv->cru, clk->id);
910 		break;
911 	case SCLK_SPI0...SCLK_SPI5:
912 		rate = rk3399_spi_get_clk(priv->cru, clk->id);
913 		break;
914 	case SCLK_UART0:
915 	case SCLK_UART2:
916 		return 24000000;
917 		break;
918 	case PCLK_HDMI_CTRL:
919 		break;
920 	case DCLK_VOP0:
921 	case DCLK_VOP1:
922 		break;
923 	case PCLK_EFUSE1024NS:
924 		break;
925 	case SCLK_SARADC:
926 		rate = rk3399_saradc_get_clk(priv->cru);
927 		break;
928 	default:
929 		return -ENOENT;
930 	}
931 
932 	return rate;
933 }
934 
935 static ulong rk3399_clk_set_rate(struct clk *clk, ulong rate)
936 {
937 	struct rk3399_clk_priv *priv = dev_get_priv(clk->dev);
938 	ulong ret = 0;
939 
940 	switch (clk->id) {
941 	case 0 ... 63:
942 		return 0;
943 
944 	case ACLK_PERIHP:
945 	case HCLK_PERIHP:
946 	case PCLK_PERIHP:
947 		return 0;
948 
949 	case ACLK_PERILP0:
950 	case HCLK_PERILP0:
951 	case PCLK_PERILP0:
952 		return 0;
953 
954 	case ACLK_CCI:
955 		return 0;
956 
957 	case HCLK_PERILP1:
958 	case PCLK_PERILP1:
959 		return 0;
960 
961 	case HCLK_SDMMC:
962 	case SCLK_SDMMC:
963 	case SCLK_EMMC:
964 		ret = rk3399_mmc_set_clk(priv->cru, clk->id, rate);
965 		break;
966 	case SCLK_MAC:
967 		ret = rk3399_gmac_set_clk(priv->cru, rate);
968 		break;
969 	case SCLK_I2C1:
970 	case SCLK_I2C2:
971 	case SCLK_I2C3:
972 	case SCLK_I2C5:
973 	case SCLK_I2C6:
974 	case SCLK_I2C7:
975 		ret = rk3399_i2c_set_clk(priv->cru, clk->id, rate);
976 		break;
977 	case SCLK_SPI0...SCLK_SPI5:
978 		ret = rk3399_spi_set_clk(priv->cru, clk->id, rate);
979 		break;
980 	case PCLK_HDMI_CTRL:
981 	case PCLK_VIO_GRF:
982 		/* the PCLK gates for video are enabled by default */
983 		break;
984 	case DCLK_VOP0:
985 	case DCLK_VOP1:
986 		ret = rk3399_vop_set_clk(priv->cru, clk->id, rate);
987 		break;
988 	case SCLK_DDRCLK:
989 		ret = rk3399_ddr_set_clk(priv->cru, rate);
990 		break;
991 	case PCLK_EFUSE1024NS:
992 		break;
993 	case SCLK_SARADC:
994 		ret = rk3399_saradc_set_clk(priv->cru, rate);
995 		break;
996 	default:
997 		return -ENOENT;
998 	}
999 
1000 	return ret;
1001 }
1002 
1003 static int __maybe_unused rk3399_gmac_set_parent(struct clk *clk, struct clk *parent)
1004 {
1005 	struct rk3399_clk_priv *priv = dev_get_priv(clk->dev);
1006 	const char *clock_output_name;
1007 	int ret;
1008 
1009 	/*
1010 	 * If the requested parent is in the same clock-controller and
1011 	 * the id is SCLK_MAC ("clk_gmac"), switch to the internal clock.
1012 	 */
1013 	if ((parent->dev == clk->dev) && (parent->id == SCLK_MAC)) {
1014 		debug("%s: switching RGMII to SCLK_MAC\n", __func__);
1015 		rk_clrreg(&priv->cru->clksel_con[19], BIT(4));
1016 		return 0;
1017 	}
1018 
1019 	/*
1020 	 * Otherwise, we need to check the clock-output-names of the
1021 	 * requested parent to see if the requested id is "clkin_gmac".
1022 	 */
1023 	ret = dev_read_string_index(parent->dev, "clock-output-names",
1024 				    parent->id, &clock_output_name);
1025 	if (ret < 0)
1026 		return -ENODATA;
1027 
1028 	/* If this is "clkin_gmac", switch to the external clock input */
1029 	if (!strcmp(clock_output_name, "clkin_gmac")) {
1030 		debug("%s: switching RGMII to CLKIN\n", __func__);
1031 		rk_setreg(&priv->cru->clksel_con[19], BIT(4));
1032 		return 0;
1033 	}
1034 
1035 	return -EINVAL;
1036 }
1037 
1038 static int __maybe_unused rk3399_clk_set_parent(struct clk *clk, struct clk *parent)
1039 {
1040 	switch (clk->id) {
1041 	case SCLK_RMII_SRC:
1042 		return rk3399_gmac_set_parent(clk, parent);
1043 	}
1044 
1045 	debug("%s: unsupported clk %ld\n", __func__, clk->id);
1046 	return -ENOENT;
1047 }
1048 
1049 static int rk3399_clk_enable(struct clk *clk)
1050 {
1051 	switch (clk->id) {
1052 	case HCLK_HOST0:
1053 	case HCLK_HOST0_ARB:
1054 	case HCLK_HOST1:
1055 	case HCLK_HOST1_ARB:
1056 		return 0;
1057 
1058 	case SCLK_MAC:
1059 	case SCLK_MAC_RX:
1060 	case SCLK_MAC_TX:
1061 	case SCLK_MACREF:
1062 	case SCLK_MACREF_OUT:
1063 	case ACLK_GMAC:
1064 	case PCLK_GMAC:
1065 		/* Required to successfully probe the Designware GMAC driver */
1066 		return 0;
1067 	}
1068 
1069 	debug("%s: unsupported clk %ld\n", __func__, clk->id);
1070 	return -ENOENT;
1071 }
1072 
1073 static struct clk_ops rk3399_clk_ops = {
1074 	.get_rate = rk3399_clk_get_rate,
1075 	.set_rate = rk3399_clk_set_rate,
1076 #if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)
1077 	.set_parent = rk3399_clk_set_parent,
1078 #endif
1079 	.enable = rk3399_clk_enable,
1080 };
1081 
1082 #ifdef CONFIG_SPL_BUILD
1083 static void rkclk_init(struct rk3399_cru *cru)
1084 {
1085 	u32 aclk_div;
1086 	u32 hclk_div;
1087 	u32 pclk_div;
1088 
1089 	rk3399_configure_cpu_l(cru, APLL_L_600_MHZ);
1090 	rk3399_configure_cpu_b(cru, APLL_B_600_MHZ);
1091 	/*
1092 	 * some cru registers changed by bootrom, we'd better reset them to
1093 	 * reset/default values described in TRM to avoid confusion in kernel.
1094 	 * Please consider these three lines as a fix of bootrom bug.
1095 	 */
1096 	rk_clrsetreg(&cru->clksel_con[12], 0xffff, 0x4101);
1097 	rk_clrsetreg(&cru->clksel_con[19], 0xffff, 0x033f);
1098 	rk_clrsetreg(&cru->clksel_con[56], 0x0003, 0x0003);
1099 
1100 	/* configure gpll cpll */
1101 	rkclk_set_pll(&cru->gpll_con[0], &gpll_init_cfg);
1102 	rkclk_set_pll(&cru->cpll_con[0], &cpll_init_cfg);
1103 
1104 	/* configure perihp aclk, hclk, pclk */
1105 	aclk_div = GPLL_HZ / PERIHP_ACLK_HZ - 1;
1106 	assert((aclk_div + 1) * PERIHP_ACLK_HZ == GPLL_HZ && aclk_div < 0x1f);
1107 
1108 	hclk_div = PERIHP_ACLK_HZ / PERIHP_HCLK_HZ - 1;
1109 	assert((hclk_div + 1) * PERIHP_HCLK_HZ ==
1110 	       PERIHP_ACLK_HZ && (hclk_div < 0x4));
1111 
1112 	pclk_div = PERIHP_ACLK_HZ / PERIHP_PCLK_HZ - 1;
1113 	assert((pclk_div + 1) * PERIHP_PCLK_HZ ==
1114 	       PERIHP_ACLK_HZ && (pclk_div < 0x7));
1115 
1116 	rk_clrsetreg(&cru->clksel_con[14],
1117 		     PCLK_PERIHP_DIV_CON_MASK | HCLK_PERIHP_DIV_CON_MASK |
1118 		     ACLK_PERIHP_PLL_SEL_MASK | ACLK_PERIHP_DIV_CON_MASK,
1119 		     pclk_div << PCLK_PERIHP_DIV_CON_SHIFT |
1120 		     hclk_div << HCLK_PERIHP_DIV_CON_SHIFT |
1121 		     ACLK_PERIHP_PLL_SEL_GPLL << ACLK_PERIHP_PLL_SEL_SHIFT |
1122 		     aclk_div << ACLK_PERIHP_DIV_CON_SHIFT);
1123 
1124 	/* configure perilp0 aclk, hclk, pclk */
1125 	aclk_div = GPLL_HZ / PERILP0_ACLK_HZ - 1;
1126 	assert((aclk_div + 1) * PERILP0_ACLK_HZ == GPLL_HZ && aclk_div < 0x1f);
1127 
1128 	hclk_div = PERILP0_ACLK_HZ / PERILP0_HCLK_HZ - 1;
1129 	assert((hclk_div + 1) * PERILP0_HCLK_HZ ==
1130 	       PERILP0_ACLK_HZ && (hclk_div < 0x4));
1131 
1132 	pclk_div = PERILP0_ACLK_HZ / PERILP0_PCLK_HZ - 1;
1133 	assert((pclk_div + 1) * PERILP0_PCLK_HZ ==
1134 	       PERILP0_ACLK_HZ && (pclk_div < 0x7));
1135 
1136 	rk_clrsetreg(&cru->clksel_con[23],
1137 		     PCLK_PERILP0_DIV_CON_MASK | HCLK_PERILP0_DIV_CON_MASK |
1138 		     ACLK_PERILP0_PLL_SEL_MASK | ACLK_PERILP0_DIV_CON_MASK,
1139 		     pclk_div << PCLK_PERILP0_DIV_CON_SHIFT |
1140 		     hclk_div << HCLK_PERILP0_DIV_CON_SHIFT |
1141 		     ACLK_PERILP0_PLL_SEL_GPLL << ACLK_PERILP0_PLL_SEL_SHIFT |
1142 		     aclk_div << ACLK_PERILP0_DIV_CON_SHIFT);
1143 
1144 	/* perilp1 hclk select gpll as source */
1145 	hclk_div = GPLL_HZ / PERILP1_HCLK_HZ - 1;
1146 	assert((hclk_div + 1) * PERILP1_HCLK_HZ ==
1147 	       GPLL_HZ && (hclk_div < 0x1f));
1148 
1149 	pclk_div = PERILP1_HCLK_HZ / PERILP1_HCLK_HZ - 1;
1150 	assert((pclk_div + 1) * PERILP1_HCLK_HZ ==
1151 	       PERILP1_HCLK_HZ && (hclk_div < 0x7));
1152 
1153 	rk_clrsetreg(&cru->clksel_con[25],
1154 		     PCLK_PERILP1_DIV_CON_MASK | HCLK_PERILP1_DIV_CON_MASK |
1155 		     HCLK_PERILP1_PLL_SEL_MASK,
1156 		     pclk_div << PCLK_PERILP1_DIV_CON_SHIFT |
1157 		     hclk_div << HCLK_PERILP1_DIV_CON_SHIFT |
1158 		     HCLK_PERILP1_PLL_SEL_GPLL << HCLK_PERILP1_PLL_SEL_SHIFT);
1159 }
1160 #endif
1161 
1162 static int rk3399_clk_probe(struct udevice *dev)
1163 {
1164 #ifdef CONFIG_SPL_BUILD
1165 	struct rk3399_clk_priv *priv = dev_get_priv(dev);
1166 
1167 #if CONFIG_IS_ENABLED(OF_PLATDATA)
1168 	struct rk3399_clk_plat *plat = dev_get_platdata(dev);
1169 
1170 	priv->cru = map_sysmem(plat->dtd.reg[0], plat->dtd.reg[1]);
1171 #endif
1172 	rkclk_init(priv->cru);
1173 #endif
1174 	return 0;
1175 }
1176 
1177 static int rk3399_clk_ofdata_to_platdata(struct udevice *dev)
1178 {
1179 #if !CONFIG_IS_ENABLED(OF_PLATDATA)
1180 	struct rk3399_clk_priv *priv = dev_get_priv(dev);
1181 
1182 	priv->cru = dev_read_addr_ptr(dev);
1183 #endif
1184 	return 0;
1185 }
1186 
1187 static int rk3399_clk_bind(struct udevice *dev)
1188 {
1189 	int ret;
1190 	struct udevice *sys_child;
1191 	struct sysreset_reg *priv;
1192 
1193 	/* The reset driver does not have a device node, so bind it here */
1194 	ret = device_bind_driver(dev, "rockchip_sysreset", "sysreset",
1195 				 &sys_child);
1196 	if (ret) {
1197 		debug("Warning: No sysreset driver: ret=%d\n", ret);
1198 	} else {
1199 		priv = malloc(sizeof(struct sysreset_reg));
1200 		priv->glb_srst_fst_value = offsetof(struct rk3399_cru,
1201 						    glb_srst_fst_value);
1202 		priv->glb_srst_snd_value = offsetof(struct rk3399_cru,
1203 						    glb_srst_snd_value);
1204 		sys_child->priv = priv;
1205 	}
1206 
1207 #if CONFIG_IS_ENABLED(CONFIG_RESET_ROCKCHIP)
1208 	ret = offsetof(struct rk3399_cru, softrst_con[0]);
1209 	ret = rockchip_reset_bind(dev, ret, 21);
1210 	if (ret)
1211 		debug("Warning: software reset driver bind faile\n");
1212 #endif
1213 
1214 	return 0;
1215 }
1216 
1217 static const struct udevice_id rk3399_clk_ids[] = {
1218 	{ .compatible = "rockchip,rk3399-cru" },
1219 	{ }
1220 };
1221 
1222 U_BOOT_DRIVER(clk_rk3399) = {
1223 	.name		= "rockchip_rk3399_cru",
1224 	.id		= UCLASS_CLK,
1225 	.of_match	= rk3399_clk_ids,
1226 	.priv_auto_alloc_size = sizeof(struct rk3399_clk_priv),
1227 	.ofdata_to_platdata = rk3399_clk_ofdata_to_platdata,
1228 	.ops		= &rk3399_clk_ops,
1229 	.bind		= rk3399_clk_bind,
1230 	.probe		= rk3399_clk_probe,
1231 #if CONFIG_IS_ENABLED(OF_PLATDATA)
1232 	.platdata_auto_alloc_size = sizeof(struct rk3399_clk_plat),
1233 #endif
1234 };
1235 
1236 static ulong rk3399_i2c_get_pmuclk(struct rk3399_pmucru *pmucru, ulong clk_id)
1237 {
1238 	u32 div, con;
1239 
1240 	switch (clk_id) {
1241 	case SCLK_I2C0_PMU:
1242 		con = readl(&pmucru->pmucru_clksel[2]);
1243 		div = I2C_CLK_DIV_VALUE(con, 0);
1244 		break;
1245 	case SCLK_I2C4_PMU:
1246 		con = readl(&pmucru->pmucru_clksel[3]);
1247 		div = I2C_CLK_DIV_VALUE(con, 4);
1248 		break;
1249 	case SCLK_I2C8_PMU:
1250 		con = readl(&pmucru->pmucru_clksel[2]);
1251 		div = I2C_CLK_DIV_VALUE(con, 8);
1252 		break;
1253 	default:
1254 		printf("do not support this i2c bus\n");
1255 		return -EINVAL;
1256 	}
1257 
1258 	return DIV_TO_RATE(PPLL_HZ, div);
1259 }
1260 
1261 static ulong rk3399_i2c_set_pmuclk(struct rk3399_pmucru *pmucru, ulong clk_id,
1262 				   uint hz)
1263 {
1264 	int src_clk_div;
1265 
1266 	src_clk_div = PPLL_HZ / hz;
1267 	assert(src_clk_div - 1 < 127);
1268 
1269 	switch (clk_id) {
1270 	case SCLK_I2C0_PMU:
1271 		rk_clrsetreg(&pmucru->pmucru_clksel[2], I2C_PMUCLK_REG_MASK(0),
1272 			     I2C_PMUCLK_REG_VALUE(0, src_clk_div));
1273 		break;
1274 	case SCLK_I2C4_PMU:
1275 		rk_clrsetreg(&pmucru->pmucru_clksel[3], I2C_PMUCLK_REG_MASK(4),
1276 			     I2C_PMUCLK_REG_VALUE(4, src_clk_div));
1277 		break;
1278 	case SCLK_I2C8_PMU:
1279 		rk_clrsetreg(&pmucru->pmucru_clksel[2], I2C_PMUCLK_REG_MASK(8),
1280 			     I2C_PMUCLK_REG_VALUE(8, src_clk_div));
1281 		break;
1282 	default:
1283 		printf("do not support this i2c bus\n");
1284 		return -EINVAL;
1285 	}
1286 
1287 	return DIV_TO_RATE(PPLL_HZ, src_clk_div);
1288 }
1289 
1290 static ulong rk3399_pwm_get_clk(struct rk3399_pmucru *pmucru)
1291 {
1292 	u32 div, con;
1293 
1294 	/* PWM closk rate is same as pclk_pmu */
1295 	con = readl(&pmucru->pmucru_clksel[0]);
1296 	div = con & PMU_PCLK_DIV_CON_MASK;
1297 
1298 	return DIV_TO_RATE(PPLL_HZ, div);
1299 }
1300 
1301 static ulong rk3399_pmuclk_get_rate(struct clk *clk)
1302 {
1303 	struct rk3399_pmuclk_priv *priv = dev_get_priv(clk->dev);
1304 	ulong rate = 0;
1305 
1306 	switch (clk->id) {
1307 	case PLL_PPLL:
1308 		return PPLL_HZ;
1309 	case PCLK_RKPWM_PMU:
1310 		rate = rk3399_pwm_get_clk(priv->pmucru);
1311 		break;
1312 	case SCLK_I2C0_PMU:
1313 	case SCLK_I2C4_PMU:
1314 	case SCLK_I2C8_PMU:
1315 		rate = rk3399_i2c_get_pmuclk(priv->pmucru, clk->id);
1316 		break;
1317 	default:
1318 		return -ENOENT;
1319 	}
1320 
1321 	return rate;
1322 }
1323 
1324 static ulong rk3399_pmuclk_set_rate(struct clk *clk, ulong rate)
1325 {
1326 	struct rk3399_pmuclk_priv *priv = dev_get_priv(clk->dev);
1327 	ulong ret = 0;
1328 
1329 	switch (clk->id) {
1330 	case PLL_PPLL:
1331 		/*
1332 		 * This has already been set up and we don't want/need
1333 		 * to change it here.  Accept the request though, as the
1334 		 * device-tree has this in an 'assigned-clocks' list.
1335 		 */
1336 		return PPLL_HZ;
1337 	case SCLK_I2C0_PMU:
1338 	case SCLK_I2C4_PMU:
1339 	case SCLK_I2C8_PMU:
1340 		ret = rk3399_i2c_set_pmuclk(priv->pmucru, clk->id, rate);
1341 		break;
1342 	default:
1343 		return -ENOENT;
1344 	}
1345 
1346 	return ret;
1347 }
1348 
1349 static struct clk_ops rk3399_pmuclk_ops = {
1350 	.get_rate = rk3399_pmuclk_get_rate,
1351 	.set_rate = rk3399_pmuclk_set_rate,
1352 };
1353 
1354 #ifndef CONFIG_SPL_BUILD
1355 static void pmuclk_init(struct rk3399_pmucru *pmucru)
1356 {
1357 	u32 pclk_div;
1358 
1359 	/*  configure pmu pll(ppll) */
1360 	rkclk_set_pll(&pmucru->ppll_con[0], &ppll_init_cfg);
1361 
1362 	/*  configure pmu pclk */
1363 	pclk_div = PPLL_HZ / PMU_PCLK_HZ - 1;
1364 	rk_clrsetreg(&pmucru->pmucru_clksel[0],
1365 		     PMU_PCLK_DIV_CON_MASK,
1366 		     pclk_div << PMU_PCLK_DIV_CON_SHIFT);
1367 }
1368 #endif
1369 
1370 static int rk3399_pmuclk_probe(struct udevice *dev)
1371 {
1372 #if CONFIG_IS_ENABLED(OF_PLATDATA) || !defined(CONFIG_SPL_BUILD)
1373 	struct rk3399_pmuclk_priv *priv = dev_get_priv(dev);
1374 #endif
1375 
1376 #if CONFIG_IS_ENABLED(OF_PLATDATA)
1377 	struct rk3399_pmuclk_plat *plat = dev_get_platdata(dev);
1378 
1379 	priv->pmucru = map_sysmem(plat->dtd.reg[0], plat->dtd.reg[1]);
1380 #endif
1381 
1382 #ifndef CONFIG_SPL_BUILD
1383 	pmuclk_init(priv->pmucru);
1384 #endif
1385 	return 0;
1386 }
1387 
1388 static int rk3399_pmuclk_ofdata_to_platdata(struct udevice *dev)
1389 {
1390 #if !CONFIG_IS_ENABLED(OF_PLATDATA)
1391 	struct rk3399_pmuclk_priv *priv = dev_get_priv(dev);
1392 
1393 	priv->pmucru = dev_read_addr_ptr(dev);
1394 #endif
1395 	return 0;
1396 }
1397 
1398 static int rk3399_pmuclk_bind(struct udevice *dev)
1399 {
1400 #if CONFIG_IS_ENABLED(CONFIG_RESET_ROCKCHIP)
1401 	int ret;
1402 
1403 	ret = offsetof(struct rk3399_pmucru, pmucru_softrst_con[0]);
1404 	ret = rockchip_reset_bind(dev, ret, 2);
1405 	if (ret)
1406 		debug("Warning: software reset driver bind faile\n");
1407 #endif
1408 	return 0;
1409 }
1410 
1411 static const struct udevice_id rk3399_pmuclk_ids[] = {
1412 	{ .compatible = "rockchip,rk3399-pmucru" },
1413 	{ }
1414 };
1415 
1416 U_BOOT_DRIVER(rockchip_rk3399_pmuclk) = {
1417 	.name		= "rockchip_rk3399_pmucru",
1418 	.id		= UCLASS_CLK,
1419 	.of_match	= rk3399_pmuclk_ids,
1420 	.priv_auto_alloc_size = sizeof(struct rk3399_pmuclk_priv),
1421 	.ofdata_to_platdata = rk3399_pmuclk_ofdata_to_platdata,
1422 	.ops		= &rk3399_pmuclk_ops,
1423 	.probe		= rk3399_pmuclk_probe,
1424 	.bind		= rk3399_pmuclk_bind,
1425 #if CONFIG_IS_ENABLED(OF_PLATDATA)
1426 	.platdata_auto_alloc_size = sizeof(struct rk3399_pmuclk_plat),
1427 #endif
1428 };
1429