1 /*
2  * (C) Copyright 2015 Google, Inc
3  *
4  * SPDX-License-Identifier:	GPL-2.0
5  */
6 
7 #include <common.h>
8 #include <clk-uclass.h>
9 #include <dm.h>
10 #include <errno.h>
11 #include <syscon.h>
12 #include <asm/io.h>
13 #include <asm/arch/clock.h>
14 #include <asm/arch/cru_rk3399.h>
15 #include <asm/arch/hardware.h>
16 #include <dm/lists.h>
17 #include <dt-bindings/clock/rk3399-cru.h>
18 
19 DECLARE_GLOBAL_DATA_PTR;
20 
21 struct rk3399_clk_priv {
22 	struct rk3399_cru *cru;
23 	ulong rate;
24 };
25 
26 struct pll_div {
27 	u32 refdiv;
28 	u32 fbdiv;
29 	u32 postdiv1;
30 	u32 postdiv2;
31 	u32 frac;
32 };
33 
34 #define RATE_TO_DIV(input_rate, output_rate) \
35 	((input_rate) / (output_rate) - 1);
36 #define DIV_TO_RATE(input_rate, div)    ((input_rate) / ((div) + 1))
37 
38 #define PLL_DIVISORS(hz, _refdiv, _postdiv1, _postdiv2) {\
39 	.refdiv = _refdiv,\
40 	.fbdiv = (u32)((u64)hz * _refdiv * _postdiv1 * _postdiv2 / OSC_HZ),\
41 	.postdiv1 = _postdiv1, .postdiv2 = _postdiv2};
42 
43 static const struct pll_div gpll_init_cfg = PLL_DIVISORS(GPLL_HZ, 2, 2, 1);
44 static const struct pll_div cpll_init_cfg = PLL_DIVISORS(CPLL_HZ, 1, 2, 2);
45 static const struct pll_div ppll_init_cfg = PLL_DIVISORS(PPLL_HZ, 2, 2, 1);
46 
47 static const struct pll_div apll_l_1600_cfg = PLL_DIVISORS(1600*MHz, 3, 1, 1);
48 static const struct pll_div apll_l_600_cfg = PLL_DIVISORS(600*MHz, 1, 2, 1);
49 
50 static const struct pll_div *apll_l_cfgs[] = {
51 	[APLL_L_1600_MHZ] = &apll_l_1600_cfg,
52 	[APLL_L_600_MHZ] = &apll_l_600_cfg,
53 };
54 
55 enum {
56 	/* PLL_CON0 */
57 	PLL_FBDIV_MASK			= 0xfff,
58 	PLL_FBDIV_SHIFT			= 0,
59 
60 	/* PLL_CON1 */
61 	PLL_POSTDIV2_SHIFT		= 12,
62 	PLL_POSTDIV2_MASK		= 0x7 << PLL_POSTDIV2_SHIFT,
63 	PLL_POSTDIV1_SHIFT		= 8,
64 	PLL_POSTDIV1_MASK		= 0x7 << PLL_POSTDIV1_SHIFT,
65 	PLL_REFDIV_MASK			= 0x3f,
66 	PLL_REFDIV_SHIFT		= 0,
67 
68 	/* PLL_CON2 */
69 	PLL_LOCK_STATUS_SHIFT		= 31,
70 	PLL_LOCK_STATUS_MASK		= 1 << PLL_LOCK_STATUS_SHIFT,
71 	PLL_FRACDIV_MASK		= 0xffffff,
72 	PLL_FRACDIV_SHIFT		= 0,
73 
74 	/* PLL_CON3 */
75 	PLL_MODE_SHIFT			= 8,
76 	PLL_MODE_MASK			= 3 << PLL_MODE_SHIFT,
77 	PLL_MODE_SLOW			= 0,
78 	PLL_MODE_NORM,
79 	PLL_MODE_DEEP,
80 	PLL_DSMPD_SHIFT			= 3,
81 	PLL_DSMPD_MASK			= 1 << PLL_DSMPD_SHIFT,
82 	PLL_INTEGER_MODE		= 1,
83 
84 	/* PMUCRU_CLKSEL_CON0 */
85 	PMU_PCLK_DIV_CON_MASK		= 0x1f,
86 	PMU_PCLK_DIV_CON_SHIFT		= 0,
87 
88 	/* PMUCRU_CLKSEL_CON1 */
89 	SPI3_PLL_SEL_SHIFT		= 7,
90 	SPI3_PLL_SEL_MASK		= 1 << SPI3_PLL_SEL_SHIFT,
91 	SPI3_PLL_SEL_24M		= 0,
92 	SPI3_PLL_SEL_PPLL		= 1,
93 	SPI3_DIV_CON_SHIFT		= 0x0,
94 	SPI3_DIV_CON_MASK		= 0x7f,
95 
96 	/* PMUCRU_CLKSEL_CON2 */
97 	I2C_DIV_CON_MASK		= 0x7f,
98 	I2C8_DIV_CON_SHIFT		= 8,
99 	I2C0_DIV_CON_SHIFT		= 0,
100 
101 	/* PMUCRU_CLKSEL_CON3 */
102 	I2C4_DIV_CON_SHIFT		= 0,
103 
104 	/* CLKSEL_CON0 */
105 	ACLKM_CORE_L_DIV_CON_SHIFT	= 8,
106 	ACLKM_CORE_L_DIV_CON_MASK	= 0x1f << ACLKM_CORE_L_DIV_CON_SHIFT,
107 	CLK_CORE_L_PLL_SEL_SHIFT	= 6,
108 	CLK_CORE_L_PLL_SEL_MASK		= 3 << CLK_CORE_L_PLL_SEL_SHIFT,
109 	CLK_CORE_L_PLL_SEL_ALPLL	= 0x0,
110 	CLK_CORE_L_PLL_SEL_ABPLL	= 0x1,
111 	CLK_CORE_L_PLL_SEL_DPLL		= 0x10,
112 	CLK_CORE_L_PLL_SEL_GPLL		= 0x11,
113 	CLK_CORE_L_DIV_MASK		= 0x1f,
114 	CLK_CORE_L_DIV_SHIFT		= 0,
115 
116 	/* CLKSEL_CON1 */
117 	PCLK_DBG_L_DIV_SHIFT		= 0x8,
118 	PCLK_DBG_L_DIV_MASK		= 0x1f << PCLK_DBG_L_DIV_SHIFT,
119 	ATCLK_CORE_L_DIV_SHIFT		= 0,
120 	ATCLK_CORE_L_DIV_MASK		= 0x1f << ATCLK_CORE_L_DIV_SHIFT,
121 
122 	/* CLKSEL_CON14 */
123 	PCLK_PERIHP_DIV_CON_SHIFT	= 12,
124 	PCLK_PERIHP_DIV_CON_MASK	= 0x7 << PCLK_PERIHP_DIV_CON_SHIFT,
125 	HCLK_PERIHP_DIV_CON_SHIFT	= 8,
126 	HCLK_PERIHP_DIV_CON_MASK	= 3 << HCLK_PERIHP_DIV_CON_SHIFT,
127 	ACLK_PERIHP_PLL_SEL_SHIFT	= 7,
128 	ACLK_PERIHP_PLL_SEL_MASK	= 1 << ACLK_PERIHP_PLL_SEL_SHIFT,
129 	ACLK_PERIHP_PLL_SEL_CPLL	= 0,
130 	ACLK_PERIHP_PLL_SEL_GPLL	= 1,
131 	ACLK_PERIHP_DIV_CON_SHIFT	= 0,
132 	ACLK_PERIHP_DIV_CON_MASK	= 0x1f,
133 
134 	/* CLKSEL_CON21 */
135 	ACLK_EMMC_PLL_SEL_SHIFT         = 7,
136 	ACLK_EMMC_PLL_SEL_MASK          = 0x1 << ACLK_EMMC_PLL_SEL_SHIFT,
137 	ACLK_EMMC_PLL_SEL_GPLL          = 0x1,
138 	ACLK_EMMC_DIV_CON_SHIFT         = 0,
139 	ACLK_EMMC_DIV_CON_MASK          = 0x1f,
140 
141 	/* CLKSEL_CON22 */
142 	CLK_EMMC_PLL_SHIFT              = 8,
143 	CLK_EMMC_PLL_MASK               = 0x7 << CLK_EMMC_PLL_SHIFT,
144 	CLK_EMMC_PLL_SEL_GPLL           = 0x1,
145 	CLK_EMMC_PLL_SEL_24M            = 0x5,
146 	CLK_EMMC_DIV_CON_SHIFT          = 0,
147 	CLK_EMMC_DIV_CON_MASK           = 0x7f << CLK_EMMC_DIV_CON_SHIFT,
148 
149 	/* CLKSEL_CON23 */
150 	PCLK_PERILP0_DIV_CON_SHIFT	= 12,
151 	PCLK_PERILP0_DIV_CON_MASK	= 0x7 << PCLK_PERILP0_DIV_CON_SHIFT,
152 	HCLK_PERILP0_DIV_CON_SHIFT	= 8,
153 	HCLK_PERILP0_DIV_CON_MASK	= 3 << HCLK_PERILP0_DIV_CON_SHIFT,
154 	ACLK_PERILP0_PLL_SEL_SHIFT	= 7,
155 	ACLK_PERILP0_PLL_SEL_MASK	= 1 << ACLK_PERILP0_PLL_SEL_SHIFT,
156 	ACLK_PERILP0_PLL_SEL_CPLL	= 0,
157 	ACLK_PERILP0_PLL_SEL_GPLL	= 1,
158 	ACLK_PERILP0_DIV_CON_SHIFT	= 0,
159 	ACLK_PERILP0_DIV_CON_MASK	= 0x1f,
160 
161 	/* CLKSEL_CON25 */
162 	PCLK_PERILP1_DIV_CON_SHIFT	= 8,
163 	PCLK_PERILP1_DIV_CON_MASK	= 0x7 << PCLK_PERILP1_DIV_CON_SHIFT,
164 	HCLK_PERILP1_PLL_SEL_SHIFT	= 7,
165 	HCLK_PERILP1_PLL_SEL_MASK	= 1 << HCLK_PERILP1_PLL_SEL_SHIFT,
166 	HCLK_PERILP1_PLL_SEL_CPLL	= 0,
167 	HCLK_PERILP1_PLL_SEL_GPLL	= 1,
168 	HCLK_PERILP1_DIV_CON_SHIFT	= 0,
169 	HCLK_PERILP1_DIV_CON_MASK	= 0x1f,
170 
171 	/* CLKSEL_CON26 */
172 	CLK_SARADC_DIV_CON_SHIFT	= 8,
173 	CLK_SARADC_DIV_CON_MASK		= 0xff << CLK_SARADC_DIV_CON_SHIFT,
174 
175 	/* CLKSEL_CON27 */
176 	CLK_TSADC_SEL_X24M		= 0x0,
177 	CLK_TSADC_SEL_SHIFT		= 15,
178 	CLK_TSADC_SEL_MASK		= 1 << CLK_TSADC_SEL_SHIFT,
179 	CLK_TSADC_DIV_CON_SHIFT		= 0,
180 	CLK_TSADC_DIV_CON_MASK		= 0x3ff,
181 
182 	/* CLKSEL_CON47 & CLKSEL_CON48 */
183 	ACLK_VOP_PLL_SEL_SHIFT		= 6,
184 	ACLK_VOP_PLL_SEL_MASK		= 0x3 << ACLK_VOP_PLL_SEL_SHIFT,
185 	ACLK_VOP_PLL_SEL_CPLL		= 0x1,
186 	ACLK_VOP_DIV_CON_SHIFT		= 0,
187 	ACLK_VOP_DIV_CON_MASK		= 0x1f << ACLK_VOP_DIV_CON_SHIFT,
188 
189 	/* CLKSEL_CON49 & CLKSEL_CON50 */
190 	DCLK_VOP_DCLK_SEL_SHIFT         = 11,
191 	DCLK_VOP_DCLK_SEL_MASK          = 1 << DCLK_VOP_DCLK_SEL_SHIFT,
192 	DCLK_VOP_DCLK_SEL_DIVOUT        = 0,
193 	DCLK_VOP_PLL_SEL_SHIFT          = 8,
194 	DCLK_VOP_PLL_SEL_MASK           = 3 << DCLK_VOP_PLL_SEL_SHIFT,
195 	DCLK_VOP_PLL_SEL_VPLL           = 0,
196 	DCLK_VOP_DIV_CON_MASK           = 0xff,
197 	DCLK_VOP_DIV_CON_SHIFT          = 0,
198 
199 	/* CLKSEL_CON58 */
200 	CLK_SPI_PLL_SEL_MASK		= 1,
201 	CLK_SPI_PLL_SEL_CPLL		= 0,
202 	CLK_SPI_PLL_SEL_GPLL		= 1,
203 	CLK_SPI_PLL_DIV_CON_MASK	= 0x7f,
204 	CLK_SPI5_PLL_DIV_CON_SHIFT	= 8,
205 	CLK_SPI5_PLL_SEL_SHIFT		= 15,
206 
207 	/* CLKSEL_CON59 */
208 	CLK_SPI1_PLL_SEL_SHIFT		= 15,
209 	CLK_SPI1_PLL_DIV_CON_SHIFT	= 8,
210 	CLK_SPI0_PLL_SEL_SHIFT		= 7,
211 	CLK_SPI0_PLL_DIV_CON_SHIFT	= 0,
212 
213 	/* CLKSEL_CON60 */
214 	CLK_SPI4_PLL_SEL_SHIFT		= 15,
215 	CLK_SPI4_PLL_DIV_CON_SHIFT	= 8,
216 	CLK_SPI2_PLL_SEL_SHIFT		= 7,
217 	CLK_SPI2_PLL_DIV_CON_SHIFT	= 0,
218 
219 	/* CLKSEL_CON61 */
220 	CLK_I2C_PLL_SEL_MASK		= 1,
221 	CLK_I2C_PLL_SEL_CPLL		= 0,
222 	CLK_I2C_PLL_SEL_GPLL		= 1,
223 	CLK_I2C5_PLL_SEL_SHIFT		= 15,
224 	CLK_I2C5_DIV_CON_SHIFT		= 8,
225 	CLK_I2C1_PLL_SEL_SHIFT		= 7,
226 	CLK_I2C1_DIV_CON_SHIFT		= 0,
227 
228 	/* CLKSEL_CON62 */
229 	CLK_I2C6_PLL_SEL_SHIFT		= 15,
230 	CLK_I2C6_DIV_CON_SHIFT		= 8,
231 	CLK_I2C2_PLL_SEL_SHIFT		= 7,
232 	CLK_I2C2_DIV_CON_SHIFT		= 0,
233 
234 	/* CLKSEL_CON63 */
235 	CLK_I2C7_PLL_SEL_SHIFT		= 15,
236 	CLK_I2C7_DIV_CON_SHIFT		= 8,
237 	CLK_I2C3_PLL_SEL_SHIFT		= 7,
238 	CLK_I2C3_DIV_CON_SHIFT		= 0,
239 
240 	/* CRU_SOFTRST_CON4 */
241 	RESETN_DDR0_REQ_SHIFT		= 8,
242 	RESETN_DDR0_REQ_MASK		= 1 << RESETN_DDR0_REQ_SHIFT,
243 	RESETN_DDRPHY0_REQ_SHIFT	= 9,
244 	RESETN_DDRPHY0_REQ_MASK		= 1 << RESETN_DDRPHY0_REQ_SHIFT,
245 	RESETN_DDR1_REQ_SHIFT		= 12,
246 	RESETN_DDR1_REQ_MASK		= 1 << RESETN_DDR1_REQ_SHIFT,
247 	RESETN_DDRPHY1_REQ_SHIFT	= 13,
248 	RESETN_DDRPHY1_REQ_MASK		= 1 << RESETN_DDRPHY1_REQ_SHIFT,
249 };
250 
251 #define VCO_MAX_KHZ	(3200 * (MHz / KHz))
252 #define VCO_MIN_KHZ	(800 * (MHz / KHz))
253 #define OUTPUT_MAX_KHZ	(3200 * (MHz / KHz))
254 #define OUTPUT_MIN_KHZ	(16 * (MHz / KHz))
255 
256 /*
257  *  the div restructions of pll in integer mode, these are defined in
258  *  * CRU_*PLL_CON0 or PMUCRU_*PLL_CON0
259  */
260 #define PLL_DIV_MIN	16
261 #define PLL_DIV_MAX	3200
262 
263 /*
264  * How to calculate the PLL(from TRM V0.3 Part 1 Page 63):
265  * Formulas also embedded within the Fractional PLL Verilog model:
266  * If DSMPD = 1 (DSM is disabled, "integer mode")
267  * FOUTVCO = FREF / REFDIV * FBDIV
268  * FOUTPOSTDIV = FOUTVCO / POSTDIV1 / POSTDIV2
269  * Where:
270  * FOUTVCO = Fractional PLL non-divided output frequency
271  * FOUTPOSTDIV = Fractional PLL divided output frequency
272  *               (output of second post divider)
273  * FREF = Fractional PLL input reference frequency, (the OSC_HZ 24MHz input)
274  * REFDIV = Fractional PLL input reference clock divider
275  * FBDIV = Integer value programmed into feedback divide
276  *
277  */
278 static void rkclk_set_pll(u32 *pll_con, const struct pll_div *div)
279 {
280 	/* All 8 PLLs have same VCO and output frequency range restrictions. */
281 	u32 vco_khz = OSC_HZ / 1000 * div->fbdiv / div->refdiv;
282 	u32 output_khz = vco_khz / div->postdiv1 / div->postdiv2;
283 
284 	debug("PLL at %p: fbdiv=%d, refdiv=%d, postdiv1=%d, "
285 			   "postdiv2=%d, vco=%u khz, output=%u khz\n",
286 			   pll_con, div->fbdiv, div->refdiv, div->postdiv1,
287 			   div->postdiv2, vco_khz, output_khz);
288 	assert(vco_khz >= VCO_MIN_KHZ && vco_khz <= VCO_MAX_KHZ &&
289 	       output_khz >= OUTPUT_MIN_KHZ && output_khz <= OUTPUT_MAX_KHZ &&
290 	       div->fbdiv >= PLL_DIV_MIN && div->fbdiv <= PLL_DIV_MAX);
291 
292 	/*
293 	 * When power on or changing PLL setting,
294 	 * we must force PLL into slow mode to ensure output stable clock.
295 	 */
296 	rk_clrsetreg(&pll_con[3], PLL_MODE_MASK,
297 		     PLL_MODE_SLOW << PLL_MODE_SHIFT);
298 
299 	/* use integer mode */
300 	rk_clrsetreg(&pll_con[3], PLL_DSMPD_MASK,
301 		     PLL_INTEGER_MODE << PLL_DSMPD_SHIFT);
302 
303 	rk_clrsetreg(&pll_con[0], PLL_FBDIV_MASK,
304 		     div->fbdiv << PLL_FBDIV_SHIFT);
305 	rk_clrsetreg(&pll_con[1],
306 		     PLL_POSTDIV2_MASK | PLL_POSTDIV1_MASK |
307 		     PLL_REFDIV_MASK | PLL_REFDIV_SHIFT,
308 		     (div->postdiv2 << PLL_POSTDIV2_SHIFT) |
309 		     (div->postdiv1 << PLL_POSTDIV1_SHIFT) |
310 		     (div->refdiv << PLL_REFDIV_SHIFT));
311 
312 	/* waiting for pll lock */
313 	while (!(readl(&pll_con[2]) & (1 << PLL_LOCK_STATUS_SHIFT)))
314 		udelay(1);
315 
316 	/* pll enter normal mode */
317 	rk_clrsetreg(&pll_con[3], PLL_MODE_MASK,
318 		     PLL_MODE_NORM << PLL_MODE_SHIFT);
319 }
320 
321 static int pll_para_config(u32 freq_hz, struct pll_div *div)
322 {
323 	u32 ref_khz = OSC_HZ / KHz, refdiv, fbdiv = 0;
324 	u32 postdiv1, postdiv2 = 1;
325 	u32 fref_khz;
326 	u32 diff_khz, best_diff_khz;
327 	const u32 max_refdiv = 63, max_fbdiv = 3200, min_fbdiv = 16;
328 	const u32 max_postdiv1 = 7, max_postdiv2 = 7;
329 	u32 vco_khz;
330 	u32 freq_khz = freq_hz / KHz;
331 
332 	if (!freq_hz) {
333 		printf("%s: the frequency can't be 0 Hz\n", __func__);
334 		return -1;
335 	}
336 
337 	postdiv1 = DIV_ROUND_UP(VCO_MIN_KHZ, freq_khz);
338 	if (postdiv1 > max_postdiv1) {
339 		postdiv2 = DIV_ROUND_UP(postdiv1, max_postdiv1);
340 		postdiv1 = DIV_ROUND_UP(postdiv1, postdiv2);
341 	}
342 
343 	vco_khz = freq_khz * postdiv1 * postdiv2;
344 
345 	if (vco_khz < VCO_MIN_KHZ || vco_khz > VCO_MAX_KHZ ||
346 	    postdiv2 > max_postdiv2) {
347 		printf("%s: Cannot find out a supported VCO"
348 		       " for Frequency (%uHz).\n", __func__, freq_hz);
349 		return -1;
350 	}
351 
352 	div->postdiv1 = postdiv1;
353 	div->postdiv2 = postdiv2;
354 
355 	best_diff_khz = vco_khz;
356 	for (refdiv = 1; refdiv < max_refdiv && best_diff_khz; refdiv++) {
357 		fref_khz = ref_khz / refdiv;
358 
359 		fbdiv = vco_khz / fref_khz;
360 		if ((fbdiv >= max_fbdiv) || (fbdiv <= min_fbdiv))
361 			continue;
362 		diff_khz = vco_khz - fbdiv * fref_khz;
363 		if (fbdiv + 1 < max_fbdiv && diff_khz > fref_khz / 2) {
364 			fbdiv++;
365 			diff_khz = fref_khz - diff_khz;
366 		}
367 
368 		if (diff_khz >= best_diff_khz)
369 			continue;
370 
371 		best_diff_khz = diff_khz;
372 		div->refdiv = refdiv;
373 		div->fbdiv = fbdiv;
374 	}
375 
376 	if (best_diff_khz > 4 * (MHz/KHz)) {
377 		printf("%s: Failed to match output frequency %u, "
378 		       "difference is %u Hz,exceed 4MHZ\n", __func__, freq_hz,
379 		       best_diff_khz * KHz);
380 		return -1;
381 	}
382 	return 0;
383 }
384 
385 static void rkclk_init(struct rk3399_cru *cru)
386 {
387 	u32 aclk_div;
388 	u32 hclk_div;
389 	u32 pclk_div;
390 
391 	/*
392 	 * some cru registers changed by bootrom, we'd better reset them to
393 	 * reset/default values described in TRM to avoid confusion in kernel.
394 	 * Please consider these three lines as a fix of bootrom bug.
395 	 */
396 	rk_clrsetreg(&cru->clksel_con[12], 0xffff, 0x4101);
397 	rk_clrsetreg(&cru->clksel_con[19], 0xffff, 0x033f);
398 	rk_clrsetreg(&cru->clksel_con[56], 0x0003, 0x0003);
399 
400 	/* configure gpll cpll */
401 	rkclk_set_pll(&cru->gpll_con[0], &gpll_init_cfg);
402 	rkclk_set_pll(&cru->cpll_con[0], &cpll_init_cfg);
403 
404 	/* configure perihp aclk, hclk, pclk */
405 	aclk_div = GPLL_HZ / PERIHP_ACLK_HZ - 1;
406 	assert((aclk_div + 1) * PERIHP_ACLK_HZ == GPLL_HZ && aclk_div < 0x1f);
407 
408 	hclk_div = PERIHP_ACLK_HZ / PERIHP_HCLK_HZ - 1;
409 	assert((hclk_div + 1) * PERIHP_HCLK_HZ ==
410 	       PERIHP_ACLK_HZ && (hclk_div < 0x4));
411 
412 	pclk_div = PERIHP_ACLK_HZ / PERIHP_PCLK_HZ - 1;
413 	assert((pclk_div + 1) * PERIHP_PCLK_HZ ==
414 	       PERIHP_ACLK_HZ && (pclk_div < 0x7));
415 
416 	rk_clrsetreg(&cru->clksel_con[14],
417 		     PCLK_PERIHP_DIV_CON_MASK | HCLK_PERIHP_DIV_CON_MASK |
418 		     ACLK_PERIHP_PLL_SEL_MASK | ACLK_PERIHP_DIV_CON_MASK,
419 		     pclk_div << PCLK_PERIHP_DIV_CON_SHIFT |
420 		     hclk_div << HCLK_PERIHP_DIV_CON_SHIFT |
421 		     ACLK_PERIHP_PLL_SEL_GPLL << ACLK_PERIHP_PLL_SEL_SHIFT |
422 		     aclk_div << ACLK_PERIHP_DIV_CON_SHIFT);
423 
424 	/* configure perilp0 aclk, hclk, pclk */
425 	aclk_div = GPLL_HZ / PERILP0_ACLK_HZ - 1;
426 	assert((aclk_div + 1) * PERILP0_ACLK_HZ == GPLL_HZ && aclk_div < 0x1f);
427 
428 	hclk_div = PERILP0_ACLK_HZ / PERILP0_HCLK_HZ - 1;
429 	assert((hclk_div + 1) * PERILP0_HCLK_HZ ==
430 	       PERILP0_ACLK_HZ && (hclk_div < 0x4));
431 
432 	pclk_div = PERILP0_ACLK_HZ / PERILP0_PCLK_HZ - 1;
433 	assert((pclk_div + 1) * PERILP0_PCLK_HZ ==
434 	       PERILP0_ACLK_HZ && (pclk_div < 0x7));
435 
436 	rk_clrsetreg(&cru->clksel_con[23],
437 		     PCLK_PERILP0_DIV_CON_MASK | HCLK_PERILP0_DIV_CON_MASK |
438 		     ACLK_PERILP0_PLL_SEL_MASK | ACLK_PERILP0_DIV_CON_MASK,
439 		     pclk_div << PCLK_PERILP0_DIV_CON_SHIFT |
440 		     hclk_div << HCLK_PERILP0_DIV_CON_SHIFT |
441 		     ACLK_PERILP0_PLL_SEL_GPLL << ACLK_PERILP0_PLL_SEL_SHIFT |
442 		     aclk_div << ACLK_PERILP0_DIV_CON_SHIFT);
443 
444 	/* perilp1 hclk select gpll as source */
445 	hclk_div = GPLL_HZ / PERILP1_HCLK_HZ - 1;
446 	assert((hclk_div + 1) * PERILP1_HCLK_HZ ==
447 	       GPLL_HZ && (hclk_div < 0x1f));
448 
449 	pclk_div = PERILP1_HCLK_HZ / PERILP1_HCLK_HZ - 1;
450 	assert((pclk_div + 1) * PERILP1_HCLK_HZ ==
451 	       PERILP1_HCLK_HZ && (hclk_div < 0x7));
452 
453 	rk_clrsetreg(&cru->clksel_con[25],
454 		     PCLK_PERILP1_DIV_CON_MASK | HCLK_PERILP1_DIV_CON_MASK |
455 		     HCLK_PERILP1_PLL_SEL_MASK,
456 		     pclk_div << PCLK_PERILP1_DIV_CON_SHIFT |
457 		     hclk_div << HCLK_PERILP1_DIV_CON_SHIFT |
458 		     HCLK_PERILP1_PLL_SEL_GPLL << HCLK_PERILP1_PLL_SEL_SHIFT);
459 }
460 
461 void rk3399_configure_cpu(struct rk3399_cru *cru,
462 			  enum apll_l_frequencies apll_l_freq)
463 {
464 	u32 aclkm_div;
465 	u32 pclk_dbg_div;
466 	u32 atclk_div;
467 
468 	rkclk_set_pll(&cru->apll_l_con[0], apll_l_cfgs[apll_l_freq]);
469 
470 	aclkm_div = APLL_HZ / ACLKM_CORE_HZ - 1;
471 	assert((aclkm_div + 1) * ACLKM_CORE_HZ == APLL_HZ &&
472 	       aclkm_div < 0x1f);
473 
474 	pclk_dbg_div = APLL_HZ / PCLK_DBG_HZ - 1;
475 	assert((pclk_dbg_div + 1) * PCLK_DBG_HZ == APLL_HZ &&
476 	       pclk_dbg_div < 0x1f);
477 
478 	atclk_div = APLL_HZ / ATCLK_CORE_HZ - 1;
479 	assert((atclk_div + 1) * ATCLK_CORE_HZ == APLL_HZ &&
480 	       atclk_div < 0x1f);
481 
482 	rk_clrsetreg(&cru->clksel_con[0],
483 		     ACLKM_CORE_L_DIV_CON_MASK | CLK_CORE_L_PLL_SEL_MASK |
484 		     CLK_CORE_L_DIV_MASK,
485 		     aclkm_div << ACLKM_CORE_L_DIV_CON_SHIFT |
486 		     CLK_CORE_L_PLL_SEL_ALPLL << CLK_CORE_L_PLL_SEL_SHIFT |
487 		     0 << CLK_CORE_L_DIV_SHIFT);
488 
489 	rk_clrsetreg(&cru->clksel_con[1],
490 		     PCLK_DBG_L_DIV_MASK | ATCLK_CORE_L_DIV_MASK,
491 		     pclk_dbg_div << PCLK_DBG_L_DIV_SHIFT |
492 		     atclk_div << ATCLK_CORE_L_DIV_SHIFT);
493 }
494 #define I2C_CLK_REG_MASK(bus) \
495 			(I2C_DIV_CON_MASK << \
496 			CLK_I2C ##bus## _DIV_CON_SHIFT | \
497 			CLK_I2C_PLL_SEL_MASK << \
498 			CLK_I2C ##bus## _PLL_SEL_SHIFT)
499 
500 #define I2C_CLK_REG_VALUE(bus, clk_div) \
501 			      ((clk_div - 1) << \
502 					CLK_I2C ##bus## _DIV_CON_SHIFT | \
503 			      CLK_I2C_PLL_SEL_GPLL << \
504 					CLK_I2C ##bus## _PLL_SEL_SHIFT)
505 
506 #define I2C_CLK_DIV_VALUE(con, bus) \
507 			(con >> CLK_I2C ##bus## _DIV_CON_SHIFT) & \
508 				I2C_DIV_CON_MASK;
509 
510 static ulong rk3399_i2c_get_clk(struct rk3399_cru *cru, ulong clk_id)
511 {
512 	u32 div, con;
513 
514 	switch (clk_id) {
515 	case SCLK_I2C1:
516 		con = readl(&cru->clksel_con[61]);
517 		div = I2C_CLK_DIV_VALUE(con, 1);
518 		break;
519 	case SCLK_I2C2:
520 		con = readl(&cru->clksel_con[62]);
521 		div = I2C_CLK_DIV_VALUE(con, 2);
522 		break;
523 	case SCLK_I2C3:
524 		con = readl(&cru->clksel_con[63]);
525 		div = I2C_CLK_DIV_VALUE(con, 3);
526 		break;
527 	case SCLK_I2C5:
528 		con = readl(&cru->clksel_con[61]);
529 		div = I2C_CLK_DIV_VALUE(con, 5);
530 		break;
531 	case SCLK_I2C6:
532 		con = readl(&cru->clksel_con[62]);
533 		div = I2C_CLK_DIV_VALUE(con, 6);
534 		break;
535 	case SCLK_I2C7:
536 		con = readl(&cru->clksel_con[63]);
537 		div = I2C_CLK_DIV_VALUE(con, 7);
538 		break;
539 	default:
540 		printf("do not support this i2c bus\n");
541 		return -EINVAL;
542 	}
543 
544 	return DIV_TO_RATE(GPLL_HZ, div);
545 }
546 
547 static ulong rk3399_i2c_set_clk(struct rk3399_cru *cru, ulong clk_id, uint hz)
548 {
549 	int src_clk_div;
550 
551 	/* i2c0,4,8 src clock from ppll, i2c1,2,3,5,6,7 src clock from gpll*/
552 	src_clk_div = GPLL_HZ / hz;
553 	assert(src_clk_div - 1 < 127);
554 
555 	switch (clk_id) {
556 	case SCLK_I2C1:
557 		rk_clrsetreg(&cru->clksel_con[61], I2C_CLK_REG_MASK(1),
558 			     I2C_CLK_REG_VALUE(1, src_clk_div));
559 		break;
560 	case SCLK_I2C2:
561 		rk_clrsetreg(&cru->clksel_con[62], I2C_CLK_REG_MASK(2),
562 			     I2C_CLK_REG_VALUE(2, src_clk_div));
563 		break;
564 	case SCLK_I2C3:
565 		rk_clrsetreg(&cru->clksel_con[63], I2C_CLK_REG_MASK(3),
566 			     I2C_CLK_REG_VALUE(3, src_clk_div));
567 		break;
568 	case SCLK_I2C5:
569 		rk_clrsetreg(&cru->clksel_con[61], I2C_CLK_REG_MASK(5),
570 			     I2C_CLK_REG_VALUE(5, src_clk_div));
571 		break;
572 	case SCLK_I2C6:
573 		rk_clrsetreg(&cru->clksel_con[62], I2C_CLK_REG_MASK(6),
574 			     I2C_CLK_REG_VALUE(6, src_clk_div));
575 		break;
576 	case SCLK_I2C7:
577 		rk_clrsetreg(&cru->clksel_con[63], I2C_CLK_REG_MASK(7),
578 			     I2C_CLK_REG_VALUE(7, src_clk_div));
579 		break;
580 	default:
581 		printf("do not support this i2c bus\n");
582 		return -EINVAL;
583 	}
584 
585 	return DIV_TO_RATE(GPLL_HZ, src_clk_div);
586 }
587 
588 static ulong rk3399_vop_set_clk(struct rk3399_cru *cru, ulong clk_id, u32 hz)
589 {
590 	struct pll_div vpll_config = {0};
591 	int aclk_vop = 198*MHz;
592 	void *aclkreg_addr, *dclkreg_addr;
593 	u32 div;
594 
595 	switch (clk_id) {
596 	case DCLK_VOP0:
597 		aclkreg_addr = &cru->clksel_con[47];
598 		dclkreg_addr = &cru->clksel_con[49];
599 		break;
600 	case DCLK_VOP1:
601 		aclkreg_addr = &cru->clksel_con[48];
602 		dclkreg_addr = &cru->clksel_con[50];
603 		break;
604 	default:
605 		return -EINVAL;
606 	}
607 	/* vop aclk source clk: cpll */
608 	div = CPLL_HZ / aclk_vop;
609 	assert(div - 1 < 32);
610 
611 	rk_clrsetreg(aclkreg_addr,
612 		     ACLK_VOP_PLL_SEL_MASK | ACLK_VOP_DIV_CON_MASK,
613 		     ACLK_VOP_PLL_SEL_CPLL << ACLK_VOP_PLL_SEL_SHIFT |
614 		     (div - 1) << ACLK_VOP_DIV_CON_SHIFT);
615 
616 	/* vop dclk source from vpll, and equals to vpll(means div == 1) */
617 	if (pll_para_config(hz, &vpll_config))
618 		return -1;
619 
620 	rkclk_set_pll(&cru->vpll_con[0], &vpll_config);
621 
622 	rk_clrsetreg(dclkreg_addr,
623 		     DCLK_VOP_DCLK_SEL_MASK | DCLK_VOP_PLL_SEL_MASK|
624 		     DCLK_VOP_DIV_CON_MASK,
625 		     DCLK_VOP_DCLK_SEL_DIVOUT << DCLK_VOP_DCLK_SEL_SHIFT |
626 		     DCLK_VOP_PLL_SEL_VPLL << DCLK_VOP_PLL_SEL_SHIFT |
627 		     (1 - 1) << DCLK_VOP_DIV_CON_SHIFT);
628 
629 	return hz;
630 }
631 
632 static ulong rk3399_mmc_get_clk(struct rk3399_cru *cru, uint clk_id)
633 {
634 	u32 div, con;
635 
636 	switch (clk_id) {
637 	case SCLK_SDMMC:
638 		con = readl(&cru->clksel_con[16]);
639 		break;
640 	case SCLK_EMMC:
641 		con = readl(&cru->clksel_con[21]);
642 		break;
643 	default:
644 		return -EINVAL;
645 	}
646 	div = (con & CLK_EMMC_DIV_CON_MASK) >> CLK_EMMC_DIV_CON_SHIFT;
647 
648 	if ((con & CLK_EMMC_PLL_MASK) >> CLK_EMMC_PLL_SHIFT
649 			== CLK_EMMC_PLL_SEL_24M)
650 		return DIV_TO_RATE(24*1024*1024, div);
651 	else
652 		return DIV_TO_RATE(GPLL_HZ, div);
653 }
654 
655 static ulong rk3399_mmc_set_clk(struct rk3399_cru *cru,
656 				ulong clk_id, ulong set_rate)
657 {
658 	int src_clk_div;
659 	int aclk_emmc = 198*MHz;
660 
661 	switch (clk_id) {
662 	case SCLK_SDMMC:
663 		/* Select clk_sdmmc source from GPLL by default */
664 		src_clk_div = GPLL_HZ / set_rate;
665 
666 		if (src_clk_div > 127) {
667 			/* use 24MHz source for 400KHz clock */
668 			src_clk_div = 24*1024*1024 / set_rate;
669 			rk_clrsetreg(&cru->clksel_con[16],
670 				     CLK_EMMC_PLL_MASK | CLK_EMMC_DIV_CON_MASK,
671 				     CLK_EMMC_PLL_SEL_24M << CLK_EMMC_PLL_SHIFT |
672 				     (src_clk_div - 1) << CLK_EMMC_DIV_CON_SHIFT);
673 		} else {
674 			rk_clrsetreg(&cru->clksel_con[16],
675 				     CLK_EMMC_PLL_MASK | CLK_EMMC_DIV_CON_MASK,
676 				     CLK_EMMC_PLL_SEL_GPLL << CLK_EMMC_PLL_SHIFT |
677 				     (src_clk_div - 1) << CLK_EMMC_DIV_CON_SHIFT);
678 		}
679 		break;
680 	case SCLK_EMMC:
681 		/* Select aclk_emmc source from GPLL */
682 		src_clk_div = GPLL_HZ / aclk_emmc;
683 		assert(src_clk_div - 1 < 31);
684 
685 		rk_clrsetreg(&cru->clksel_con[21],
686 			     ACLK_EMMC_PLL_SEL_MASK | ACLK_EMMC_DIV_CON_MASK,
687 			     ACLK_EMMC_PLL_SEL_GPLL << ACLK_EMMC_PLL_SEL_SHIFT |
688 			     (src_clk_div - 1) << ACLK_EMMC_DIV_CON_SHIFT);
689 
690 		/* Select clk_emmc source from GPLL too */
691 		src_clk_div = GPLL_HZ / set_rate;
692 		assert(src_clk_div - 1 < 127);
693 
694 		rk_clrsetreg(&cru->clksel_con[22],
695 			     CLK_EMMC_PLL_MASK | CLK_EMMC_DIV_CON_MASK,
696 			     CLK_EMMC_PLL_SEL_GPLL << CLK_EMMC_PLL_SHIFT |
697 			     (src_clk_div - 1) << CLK_EMMC_DIV_CON_SHIFT);
698 		break;
699 	default:
700 		return -EINVAL;
701 	}
702 	return rk3399_mmc_get_clk(cru, clk_id);
703 }
704 
705 static ulong rk3399_clk_get_rate(struct clk *clk)
706 {
707 	struct rk3399_clk_priv *priv = dev_get_priv(clk->dev);
708 	ulong rate = 0;
709 
710 	switch (clk->id) {
711 	case 0 ... 63:
712 		return 0;
713 	case SCLK_SDMMC:
714 	case SCLK_EMMC:
715 		rate = rk3399_mmc_get_clk(priv->cru, clk->id);
716 		break;
717 	case SCLK_I2C1:
718 	case SCLK_I2C2:
719 	case SCLK_I2C3:
720 	case SCLK_I2C5:
721 	case SCLK_I2C6:
722 	case SCLK_I2C7:
723 		rate = rk3399_i2c_get_clk(priv->cru, clk->id);
724 		break;
725 	case DCLK_VOP0:
726 	case DCLK_VOP1:
727 		break;
728 	default:
729 		return -ENOENT;
730 	}
731 
732 	return rate;
733 }
734 
735 static ulong rk3399_clk_set_rate(struct clk *clk, ulong rate)
736 {
737 	struct rk3399_clk_priv *priv = dev_get_priv(clk->dev);
738 	ulong ret = 0;
739 
740 	switch (clk->id) {
741 	case 0 ... 63:
742 		return 0;
743 	case SCLK_SDMMC:
744 	case SCLK_EMMC:
745 		ret = rk3399_mmc_set_clk(priv->cru, clk->id, rate);
746 		break;
747 	case SCLK_I2C1:
748 	case SCLK_I2C2:
749 	case SCLK_I2C3:
750 	case SCLK_I2C5:
751 	case SCLK_I2C6:
752 	case SCLK_I2C7:
753 		ret = rk3399_i2c_set_clk(priv->cru, clk->id, rate);
754 		break;
755 	case DCLK_VOP0:
756 	case DCLK_VOP1:
757 		rate = rk3399_vop_set_clk(priv->cru, clk->id, rate);
758 		break;
759 	default:
760 		return -ENOENT;
761 	}
762 
763 	return ret;
764 }
765 
766 static struct clk_ops rk3399_clk_ops = {
767 	.get_rate = rk3399_clk_get_rate,
768 	.set_rate = rk3399_clk_set_rate,
769 };
770 
771 void *rockchip_get_cru(void)
772 {
773 	struct udevice *dev;
774 	fdt_addr_t *addr;
775 	int ret;
776 
777 	ret = uclass_get_device_by_name(UCLASS_CLK, "clk_rk3399", &dev);
778 	if (ret)
779 		return ERR_PTR(ret);
780 
781 	addr = dev_get_addr_ptr(dev);
782 	if ((fdt_addr_t)addr == FDT_ADDR_T_NONE)
783 		return ERR_PTR(-EINVAL);
784 
785 	return addr;
786 }
787 
788 static int rk3399_clk_probe(struct udevice *dev)
789 {
790 	struct rk3399_clk_priv *priv = dev_get_priv(dev);
791 
792 	rkclk_init(priv->cru);
793 
794 	return 0;
795 }
796 
797 static int rk3399_clk_ofdata_to_platdata(struct udevice *dev)
798 {
799 	struct rk3399_clk_priv *priv = dev_get_priv(dev);
800 
801 	priv->cru = (struct rk3399_cru *)dev_get_addr(dev);
802 
803 	return 0;
804 }
805 
806 static int rk3399_clk_bind(struct udevice *dev)
807 {
808 	int ret;
809 
810 	/* The reset driver does not have a device node, so bind it here */
811 	ret = device_bind_driver(gd->dm_root, "rk3399_sysreset", "reset", &dev);
812 	if (ret)
813 		printf("Warning: No RK3399 reset driver: ret=%d\n", ret);
814 
815 	return 0;
816 }
817 
818 static const struct udevice_id rk3399_clk_ids[] = {
819 	{ .compatible = "rockchip,rk3399-cru" },
820 	{ }
821 };
822 
823 U_BOOT_DRIVER(clk_rk3399) = {
824 	.name		= "clk_rk3399",
825 	.id		= UCLASS_CLK,
826 	.of_match	= rk3399_clk_ids,
827 	.priv_auto_alloc_size = sizeof(struct rk3399_clk_priv),
828 	.ofdata_to_platdata = rk3399_clk_ofdata_to_platdata,
829 	.ops		= &rk3399_clk_ops,
830 	.bind		= rk3399_clk_bind,
831 	.probe		= rk3399_clk_probe,
832 };
833