1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * (C) Copyright 2017 Rockchip Electronics Co., Ltd
4 */
5
6 #include <common.h>
7 #include <bitfield.h>
8 #include <clk-uclass.h>
9 #include <dm.h>
10 #include <errno.h>
11 #include <syscon.h>
12 #include <asm/arch/clock.h>
13 #include <asm/arch/cru_rk3328.h>
14 #include <asm/arch/hardware.h>
15 #include <asm/arch/grf_rk3328.h>
16 #include <asm/io.h>
17 #include <dm/lists.h>
18 #include <dt-bindings/clock/rk3328-cru.h>
19
20 struct pll_div {
21 u32 refdiv;
22 u32 fbdiv;
23 u32 postdiv1;
24 u32 postdiv2;
25 u32 frac;
26 };
27
28 #define RATE_TO_DIV(input_rate, output_rate) \
29 ((input_rate) / (output_rate) - 1);
30 #define DIV_TO_RATE(input_rate, div) ((input_rate) / ((div) + 1))
31
32 #define PLL_DIVISORS(hz, _refdiv, _postdiv1, _postdiv2) {\
33 .refdiv = _refdiv,\
34 .fbdiv = (u32)((u64)hz * _refdiv * _postdiv1 * _postdiv2 / OSC_HZ),\
35 .postdiv1 = _postdiv1, .postdiv2 = _postdiv2};
36
37 static const struct pll_div gpll_init_cfg = PLL_DIVISORS(GPLL_HZ, 1, 4, 1);
38 static const struct pll_div cpll_init_cfg = PLL_DIVISORS(CPLL_HZ, 2, 2, 1);
39
40 static const struct pll_div apll_816_cfg = PLL_DIVISORS(816 * MHz, 1, 2, 1);
41 static const struct pll_div apll_600_cfg = PLL_DIVISORS(600 * MHz, 1, 3, 1);
42
43 static const struct pll_div *apll_cfgs[] = {
44 [APLL_816_MHZ] = &apll_816_cfg,
45 [APLL_600_MHZ] = &apll_600_cfg,
46 };
47
48 enum {
49 /* PLL_CON0 */
50 PLL_POSTDIV1_SHIFT = 12,
51 PLL_POSTDIV1_MASK = 0x7 << PLL_POSTDIV1_SHIFT,
52 PLL_FBDIV_SHIFT = 0,
53 PLL_FBDIV_MASK = 0xfff,
54
55 /* PLL_CON1 */
56 PLL_DSMPD_SHIFT = 12,
57 PLL_DSMPD_MASK = 1 << PLL_DSMPD_SHIFT,
58 PLL_INTEGER_MODE = 1,
59 PLL_LOCK_STATUS_SHIFT = 10,
60 PLL_LOCK_STATUS_MASK = 1 << PLL_LOCK_STATUS_SHIFT,
61 PLL_POSTDIV2_SHIFT = 6,
62 PLL_POSTDIV2_MASK = 0x7 << PLL_POSTDIV2_SHIFT,
63 PLL_REFDIV_SHIFT = 0,
64 PLL_REFDIV_MASK = 0x3f,
65
66 /* PLL_CON2 */
67 PLL_FRACDIV_SHIFT = 0,
68 PLL_FRACDIV_MASK = 0xffffff,
69
70 /* MODE_CON */
71 APLL_MODE_SHIFT = 0,
72 NPLL_MODE_SHIFT = 1,
73 DPLL_MODE_SHIFT = 4,
74 CPLL_MODE_SHIFT = 8,
75 GPLL_MODE_SHIFT = 12,
76 PLL_MODE_SLOW = 0,
77 PLL_MODE_NORM,
78
79 /* CLKSEL_CON0 */
80 CLK_CORE_PLL_SEL_APLL = 0,
81 CLK_CORE_PLL_SEL_GPLL,
82 CLK_CORE_PLL_SEL_DPLL,
83 CLK_CORE_PLL_SEL_NPLL,
84 CLK_CORE_PLL_SEL_SHIFT = 6,
85 CLK_CORE_PLL_SEL_MASK = 3 << CLK_CORE_PLL_SEL_SHIFT,
86 CLK_CORE_DIV_SHIFT = 0,
87 CLK_CORE_DIV_MASK = 0x1f,
88
89 /* CLKSEL_CON1 */
90 ACLKM_CORE_DIV_SHIFT = 4,
91 ACLKM_CORE_DIV_MASK = 0x7 << ACLKM_CORE_DIV_SHIFT,
92 PCLK_DBG_DIV_SHIFT = 0,
93 PCLK_DBG_DIV_MASK = 0xF << PCLK_DBG_DIV_SHIFT,
94
95 /* CLKSEL_CON27 */
96 GMAC2IO_PLL_SEL_SHIFT = 7,
97 GMAC2IO_PLL_SEL_MASK = 1 << GMAC2IO_PLL_SEL_SHIFT,
98 GMAC2IO_PLL_SEL_CPLL = 0,
99 GMAC2IO_PLL_SEL_GPLL = 1,
100 GMAC2IO_CLK_DIV_MASK = 0x1f,
101 GMAC2IO_CLK_DIV_SHIFT = 0,
102
103 /* CLKSEL_CON28 */
104 ACLK_PERIHP_PLL_SEL_CPLL = 0,
105 ACLK_PERIHP_PLL_SEL_GPLL,
106 ACLK_PERIHP_PLL_SEL_HDMIPHY,
107 ACLK_PERIHP_PLL_SEL_SHIFT = 6,
108 ACLK_PERIHP_PLL_SEL_MASK = 3 << ACLK_PERIHP_PLL_SEL_SHIFT,
109 ACLK_PERIHP_DIV_CON_SHIFT = 0,
110 ACLK_PERIHP_DIV_CON_MASK = 0x1f,
111
112 /* CLKSEL_CON29 */
113 PCLK_PERIHP_DIV_CON_SHIFT = 4,
114 PCLK_PERIHP_DIV_CON_MASK = 0x7 << PCLK_PERIHP_DIV_CON_SHIFT,
115 HCLK_PERIHP_DIV_CON_SHIFT = 0,
116 HCLK_PERIHP_DIV_CON_MASK = 3 << HCLK_PERIHP_DIV_CON_SHIFT,
117
118 /* CLKSEL_CON22 */
119 CLK_TSADC_DIV_CON_SHIFT = 0,
120 CLK_TSADC_DIV_CON_MASK = 0x3ff,
121
122 /* CLKSEL_CON23 */
123 CLK_SARADC_DIV_CON_SHIFT = 0,
124 CLK_SARADC_DIV_CON_MASK = GENMASK(9, 0),
125 CLK_SARADC_DIV_CON_WIDTH = 10,
126
127 /* CLKSEL_CON24 */
128 CLK_PWM_PLL_SEL_CPLL = 0,
129 CLK_PWM_PLL_SEL_GPLL,
130 CLK_PWM_PLL_SEL_SHIFT = 15,
131 CLK_PWM_PLL_SEL_MASK = 1 << CLK_PWM_PLL_SEL_SHIFT,
132 CLK_PWM_DIV_CON_SHIFT = 8,
133 CLK_PWM_DIV_CON_MASK = 0x7f << CLK_PWM_DIV_CON_SHIFT,
134
135 CLK_SPI_PLL_SEL_CPLL = 0,
136 CLK_SPI_PLL_SEL_GPLL,
137 CLK_SPI_PLL_SEL_SHIFT = 7,
138 CLK_SPI_PLL_SEL_MASK = 1 << CLK_SPI_PLL_SEL_SHIFT,
139 CLK_SPI_DIV_CON_SHIFT = 0,
140 CLK_SPI_DIV_CON_MASK = 0x7f << CLK_SPI_DIV_CON_SHIFT,
141
142 /* CLKSEL_CON30 */
143 CLK_SDMMC_PLL_SEL_CPLL = 0,
144 CLK_SDMMC_PLL_SEL_GPLL,
145 CLK_SDMMC_PLL_SEL_24M,
146 CLK_SDMMC_PLL_SEL_USBPHY,
147 CLK_SDMMC_PLL_SHIFT = 8,
148 CLK_SDMMC_PLL_MASK = 0x3 << CLK_SDMMC_PLL_SHIFT,
149 CLK_SDMMC_DIV_CON_SHIFT = 0,
150 CLK_SDMMC_DIV_CON_MASK = 0xff << CLK_SDMMC_DIV_CON_SHIFT,
151
152 /* CLKSEL_CON32 */
153 CLK_EMMC_PLL_SEL_CPLL = 0,
154 CLK_EMMC_PLL_SEL_GPLL,
155 CLK_EMMC_PLL_SEL_24M,
156 CLK_EMMC_PLL_SEL_USBPHY,
157 CLK_EMMC_PLL_SHIFT = 8,
158 CLK_EMMC_PLL_MASK = 0x3 << CLK_EMMC_PLL_SHIFT,
159 CLK_EMMC_DIV_CON_SHIFT = 0,
160 CLK_EMMC_DIV_CON_MASK = 0xff << CLK_EMMC_DIV_CON_SHIFT,
161
162 /* CLKSEL_CON34 */
163 CLK_I2C_PLL_SEL_CPLL = 0,
164 CLK_I2C_PLL_SEL_GPLL,
165 CLK_I2C_DIV_CON_MASK = 0x7f,
166 CLK_I2C_PLL_SEL_MASK = 1,
167 CLK_I2C1_PLL_SEL_SHIFT = 15,
168 CLK_I2C1_DIV_CON_SHIFT = 8,
169 CLK_I2C0_PLL_SEL_SHIFT = 7,
170 CLK_I2C0_DIV_CON_SHIFT = 0,
171
172 /* CLKSEL_CON35 */
173 CLK_I2C3_PLL_SEL_SHIFT = 15,
174 CLK_I2C3_DIV_CON_SHIFT = 8,
175 CLK_I2C2_PLL_SEL_SHIFT = 7,
176 CLK_I2C2_DIV_CON_SHIFT = 0,
177 };
178
179 #define VCO_MAX_KHZ (3200 * (MHz / KHz))
180 #define VCO_MIN_KHZ (800 * (MHz / KHz))
181 #define OUTPUT_MAX_KHZ (3200 * (MHz / KHz))
182 #define OUTPUT_MIN_KHZ (16 * (MHz / KHz))
183
184 /*
185 * the div restructions of pll in integer mode, these are defined in
186 * * CRU_*PLL_CON0 or PMUCRU_*PLL_CON0
187 */
188 #define PLL_DIV_MIN 16
189 #define PLL_DIV_MAX 3200
190
191 /*
192 * How to calculate the PLL(from TRM V0.3 Part 1 Page 63):
193 * Formulas also embedded within the Fractional PLL Verilog model:
194 * If DSMPD = 1 (DSM is disabled, "integer mode")
195 * FOUTVCO = FREF / REFDIV * FBDIV
196 * FOUTPOSTDIV = FOUTVCO / POSTDIV1 / POSTDIV2
197 * Where:
198 * FOUTVCO = Fractional PLL non-divided output frequency
199 * FOUTPOSTDIV = Fractional PLL divided output frequency
200 * (output of second post divider)
201 * FREF = Fractional PLL input reference frequency, (the OSC_HZ 24MHz input)
202 * REFDIV = Fractional PLL input reference clock divider
203 * FBDIV = Integer value programmed into feedback divide
204 *
205 */
rkclk_set_pll(struct rk3328_cru * cru,enum rk_clk_id clk_id,const struct pll_div * div)206 static void rkclk_set_pll(struct rk3328_cru *cru, enum rk_clk_id clk_id,
207 const struct pll_div *div)
208 {
209 u32 *pll_con;
210 u32 mode_shift, mode_mask;
211
212 pll_con = NULL;
213 mode_shift = 0;
214 switch (clk_id) {
215 case CLK_ARM:
216 pll_con = cru->apll_con;
217 mode_shift = APLL_MODE_SHIFT;
218 break;
219 case CLK_DDR:
220 pll_con = cru->dpll_con;
221 mode_shift = DPLL_MODE_SHIFT;
222 break;
223 case CLK_CODEC:
224 pll_con = cru->cpll_con;
225 mode_shift = CPLL_MODE_SHIFT;
226 break;
227 case CLK_GENERAL:
228 pll_con = cru->gpll_con;
229 mode_shift = GPLL_MODE_SHIFT;
230 break;
231 case CLK_NEW:
232 pll_con = cru->npll_con;
233 mode_shift = NPLL_MODE_SHIFT;
234 break;
235 default:
236 break;
237 }
238 mode_mask = 1 << mode_shift;
239
240 /* All 8 PLLs have same VCO and output frequency range restrictions. */
241 u32 vco_khz = OSC_HZ / 1000 * div->fbdiv / div->refdiv;
242 u32 output_khz = vco_khz / div->postdiv1 / div->postdiv2;
243
244 debug("PLL at %p: fbdiv=%d, refdiv=%d, postdiv1=%d, \
245 postdiv2=%d, vco=%u khz, output=%u khz\n",
246 pll_con, div->fbdiv, div->refdiv, div->postdiv1,
247 div->postdiv2, vco_khz, output_khz);
248 assert(vco_khz >= VCO_MIN_KHZ && vco_khz <= VCO_MAX_KHZ &&
249 output_khz >= OUTPUT_MIN_KHZ && output_khz <= OUTPUT_MAX_KHZ &&
250 div->fbdiv >= PLL_DIV_MIN && div->fbdiv <= PLL_DIV_MAX);
251
252 /*
253 * When power on or changing PLL setting,
254 * we must force PLL into slow mode to ensure output stable clock.
255 */
256 rk_clrsetreg(&cru->mode_con, mode_mask, PLL_MODE_SLOW << mode_shift);
257
258 /* use integer mode */
259 rk_clrsetreg(&pll_con[1], PLL_DSMPD_MASK,
260 PLL_INTEGER_MODE << PLL_DSMPD_SHIFT);
261
262 rk_clrsetreg(&pll_con[0],
263 PLL_FBDIV_MASK | PLL_POSTDIV1_MASK,
264 (div->fbdiv << PLL_FBDIV_SHIFT) |
265 (div->postdiv1 << PLL_POSTDIV1_SHIFT));
266 rk_clrsetreg(&pll_con[1],
267 PLL_POSTDIV2_MASK | PLL_REFDIV_MASK,
268 (div->postdiv2 << PLL_POSTDIV2_SHIFT) |
269 (div->refdiv << PLL_REFDIV_SHIFT));
270
271 /* waiting for pll lock */
272 while (!(readl(&pll_con[1]) & (1 << PLL_LOCK_STATUS_SHIFT)))
273 udelay(1);
274
275 /* pll enter normal mode */
276 rk_clrsetreg(&cru->mode_con, mode_mask, PLL_MODE_NORM << mode_shift);
277 }
278
rkclk_init(struct rk3328_cru * cru)279 static void rkclk_init(struct rk3328_cru *cru)
280 {
281 u32 aclk_div;
282 u32 hclk_div;
283 u32 pclk_div;
284
285 /* configure gpll cpll */
286 rkclk_set_pll(cru, CLK_GENERAL, &gpll_init_cfg);
287 rkclk_set_pll(cru, CLK_CODEC, &cpll_init_cfg);
288
289 /* configure perihp aclk, hclk, pclk */
290 aclk_div = GPLL_HZ / PERIHP_ACLK_HZ - 1;
291 hclk_div = PERIHP_ACLK_HZ / PERIHP_HCLK_HZ - 1;
292 pclk_div = PERIHP_ACLK_HZ / PERIHP_PCLK_HZ - 1;
293
294 rk_clrsetreg(&cru->clksel_con[28],
295 ACLK_PERIHP_PLL_SEL_MASK | ACLK_PERIHP_DIV_CON_MASK,
296 ACLK_PERIHP_PLL_SEL_GPLL << ACLK_PERIHP_PLL_SEL_SHIFT |
297 aclk_div << ACLK_PERIHP_DIV_CON_SHIFT);
298 rk_clrsetreg(&cru->clksel_con[29],
299 PCLK_PERIHP_DIV_CON_MASK | HCLK_PERIHP_DIV_CON_MASK,
300 pclk_div << PCLK_PERIHP_DIV_CON_SHIFT |
301 hclk_div << HCLK_PERIHP_DIV_CON_SHIFT);
302 }
303
rk3328_configure_cpu(struct rk3328_cru * cru,enum apll_frequencies apll_freq)304 void rk3328_configure_cpu(struct rk3328_cru *cru,
305 enum apll_frequencies apll_freq)
306 {
307 u32 clk_core_div;
308 u32 aclkm_div;
309 u32 pclk_dbg_div;
310
311 rkclk_set_pll(cru, CLK_ARM, apll_cfgs[apll_freq]);
312
313 clk_core_div = APLL_HZ / CLK_CORE_HZ - 1;
314 aclkm_div = APLL_HZ / ACLKM_CORE_HZ / (clk_core_div + 1) - 1;
315 pclk_dbg_div = APLL_HZ / PCLK_DBG_HZ / (clk_core_div + 1) - 1;
316
317 rk_clrsetreg(&cru->clksel_con[0],
318 CLK_CORE_PLL_SEL_MASK | CLK_CORE_DIV_MASK,
319 CLK_CORE_PLL_SEL_APLL << CLK_CORE_PLL_SEL_SHIFT |
320 clk_core_div << CLK_CORE_DIV_SHIFT);
321
322 rk_clrsetreg(&cru->clksel_con[1],
323 PCLK_DBG_DIV_MASK | ACLKM_CORE_DIV_MASK,
324 pclk_dbg_div << PCLK_DBG_DIV_SHIFT |
325 aclkm_div << ACLKM_CORE_DIV_SHIFT);
326 }
327
328
rk3328_i2c_get_clk(struct rk3328_cru * cru,ulong clk_id)329 static ulong rk3328_i2c_get_clk(struct rk3328_cru *cru, ulong clk_id)
330 {
331 u32 div, con;
332
333 switch (clk_id) {
334 case SCLK_I2C0:
335 con = readl(&cru->clksel_con[34]);
336 div = con >> CLK_I2C0_DIV_CON_SHIFT & CLK_I2C_DIV_CON_MASK;
337 break;
338 case SCLK_I2C1:
339 con = readl(&cru->clksel_con[34]);
340 div = con >> CLK_I2C1_DIV_CON_SHIFT & CLK_I2C_DIV_CON_MASK;
341 break;
342 case SCLK_I2C2:
343 con = readl(&cru->clksel_con[35]);
344 div = con >> CLK_I2C2_DIV_CON_SHIFT & CLK_I2C_DIV_CON_MASK;
345 break;
346 case SCLK_I2C3:
347 con = readl(&cru->clksel_con[35]);
348 div = con >> CLK_I2C3_DIV_CON_SHIFT & CLK_I2C_DIV_CON_MASK;
349 break;
350 default:
351 printf("do not support this i2c bus\n");
352 return -EINVAL;
353 }
354
355 return DIV_TO_RATE(GPLL_HZ, div);
356 }
357
rk3328_i2c_set_clk(struct rk3328_cru * cru,ulong clk_id,uint hz)358 static ulong rk3328_i2c_set_clk(struct rk3328_cru *cru, ulong clk_id, uint hz)
359 {
360 int src_clk_div;
361
362 src_clk_div = GPLL_HZ / hz;
363 assert(src_clk_div - 1 < 127);
364
365 switch (clk_id) {
366 case SCLK_I2C0:
367 rk_clrsetreg(&cru->clksel_con[34],
368 CLK_I2C_DIV_CON_MASK << CLK_I2C0_DIV_CON_SHIFT |
369 CLK_I2C_PLL_SEL_MASK << CLK_I2C0_PLL_SEL_SHIFT,
370 (src_clk_div - 1) << CLK_I2C0_DIV_CON_SHIFT |
371 CLK_I2C_PLL_SEL_GPLL << CLK_I2C0_PLL_SEL_SHIFT);
372 break;
373 case SCLK_I2C1:
374 rk_clrsetreg(&cru->clksel_con[34],
375 CLK_I2C_DIV_CON_MASK << CLK_I2C1_DIV_CON_SHIFT |
376 CLK_I2C_PLL_SEL_MASK << CLK_I2C1_PLL_SEL_SHIFT,
377 (src_clk_div - 1) << CLK_I2C1_DIV_CON_SHIFT |
378 CLK_I2C_PLL_SEL_GPLL << CLK_I2C1_PLL_SEL_SHIFT);
379 break;
380 case SCLK_I2C2:
381 rk_clrsetreg(&cru->clksel_con[35],
382 CLK_I2C_DIV_CON_MASK << CLK_I2C2_DIV_CON_SHIFT |
383 CLK_I2C_PLL_SEL_MASK << CLK_I2C2_PLL_SEL_SHIFT,
384 (src_clk_div - 1) << CLK_I2C2_DIV_CON_SHIFT |
385 CLK_I2C_PLL_SEL_GPLL << CLK_I2C2_PLL_SEL_SHIFT);
386 break;
387 case SCLK_I2C3:
388 rk_clrsetreg(&cru->clksel_con[35],
389 CLK_I2C_DIV_CON_MASK << CLK_I2C3_DIV_CON_SHIFT |
390 CLK_I2C_PLL_SEL_MASK << CLK_I2C3_PLL_SEL_SHIFT,
391 (src_clk_div - 1) << CLK_I2C3_DIV_CON_SHIFT |
392 CLK_I2C_PLL_SEL_GPLL << CLK_I2C3_PLL_SEL_SHIFT);
393 break;
394 default:
395 printf("do not support this i2c bus\n");
396 return -EINVAL;
397 }
398
399 return DIV_TO_RATE(GPLL_HZ, src_clk_div);
400 }
401
rk3328_gmac2io_set_clk(struct rk3328_cru * cru,ulong rate)402 static ulong rk3328_gmac2io_set_clk(struct rk3328_cru *cru, ulong rate)
403 {
404 struct rk3328_grf_regs *grf;
405 ulong ret;
406
407 grf = syscon_get_first_range(ROCKCHIP_SYSCON_GRF);
408
409 /*
410 * The RGMII CLK can be derived either from an external "clkin"
411 * or can be generated from internally by a divider from SCLK_MAC.
412 */
413 if (readl(&grf->mac_con[1]) & BIT(10) &&
414 readl(&grf->soc_con[4]) & BIT(14)) {
415 /* An external clock will always generate the right rate... */
416 ret = rate;
417 } else {
418 u32 con = readl(&cru->clksel_con[27]);
419 ulong pll_rate;
420 u8 div;
421
422 if ((con >> GMAC2IO_PLL_SEL_SHIFT) & GMAC2IO_PLL_SEL_GPLL)
423 pll_rate = GPLL_HZ;
424 else
425 pll_rate = CPLL_HZ;
426
427 div = DIV_ROUND_UP(pll_rate, rate) - 1;
428 if (div <= 0x1f)
429 rk_clrsetreg(&cru->clksel_con[27], GMAC2IO_CLK_DIV_MASK,
430 div << GMAC2IO_CLK_DIV_SHIFT);
431 else
432 debug("Unsupported div for gmac:%d\n", div);
433
434 return DIV_TO_RATE(pll_rate, div);
435 }
436
437 return ret;
438 }
439
rk3328_mmc_get_clk(struct rk3328_cru * cru,uint clk_id)440 static ulong rk3328_mmc_get_clk(struct rk3328_cru *cru, uint clk_id)
441 {
442 u32 div, con, con_id;
443
444 switch (clk_id) {
445 case HCLK_SDMMC:
446 case SCLK_SDMMC:
447 con_id = 30;
448 break;
449 case HCLK_EMMC:
450 case SCLK_EMMC:
451 con_id = 32;
452 break;
453 default:
454 return -EINVAL;
455 }
456 con = readl(&cru->clksel_con[con_id]);
457 div = (con & CLK_EMMC_DIV_CON_MASK) >> CLK_EMMC_DIV_CON_SHIFT;
458
459 if ((con & CLK_EMMC_PLL_MASK) >> CLK_EMMC_PLL_SHIFT
460 == CLK_EMMC_PLL_SEL_24M)
461 return DIV_TO_RATE(OSC_HZ, div) / 2;
462 else
463 return DIV_TO_RATE(GPLL_HZ, div) / 2;
464 }
465
rk3328_mmc_set_clk(struct rk3328_cru * cru,ulong clk_id,ulong set_rate)466 static ulong rk3328_mmc_set_clk(struct rk3328_cru *cru,
467 ulong clk_id, ulong set_rate)
468 {
469 int src_clk_div;
470 u32 con_id;
471
472 switch (clk_id) {
473 case HCLK_SDMMC:
474 case SCLK_SDMMC:
475 con_id = 30;
476 break;
477 case HCLK_EMMC:
478 case SCLK_EMMC:
479 con_id = 32;
480 break;
481 default:
482 return -EINVAL;
483 }
484 /* Select clk_sdmmc/emmc source from GPLL by default */
485 /* mmc clock defaulg div 2 internal, need provide double in cru */
486 src_clk_div = DIV_ROUND_UP(GPLL_HZ / 2, set_rate);
487
488 if (src_clk_div > 127) {
489 /* use 24MHz source for 400KHz clock */
490 src_clk_div = DIV_ROUND_UP(OSC_HZ / 2, set_rate);
491 rk_clrsetreg(&cru->clksel_con[con_id],
492 CLK_EMMC_PLL_MASK | CLK_EMMC_DIV_CON_MASK,
493 CLK_EMMC_PLL_SEL_24M << CLK_EMMC_PLL_SHIFT |
494 (src_clk_div - 1) << CLK_EMMC_DIV_CON_SHIFT);
495 } else {
496 rk_clrsetreg(&cru->clksel_con[con_id],
497 CLK_EMMC_PLL_MASK | CLK_EMMC_DIV_CON_MASK,
498 CLK_EMMC_PLL_SEL_GPLL << CLK_EMMC_PLL_SHIFT |
499 (src_clk_div - 1) << CLK_EMMC_DIV_CON_SHIFT);
500 }
501
502 return rk3328_mmc_get_clk(cru, clk_id);
503 }
504
rk3328_pwm_get_clk(struct rk3328_cru * cru)505 static ulong rk3328_pwm_get_clk(struct rk3328_cru *cru)
506 {
507 u32 div, con;
508
509 con = readl(&cru->clksel_con[24]);
510 div = (con & CLK_PWM_DIV_CON_MASK) >> CLK_PWM_DIV_CON_SHIFT;
511
512 return DIV_TO_RATE(GPLL_HZ, div);
513 }
514
rk3328_pwm_set_clk(struct rk3328_cru * cru,uint hz)515 static ulong rk3328_pwm_set_clk(struct rk3328_cru *cru, uint hz)
516 {
517 u32 div = GPLL_HZ / hz;
518
519 rk_clrsetreg(&cru->clksel_con[24],
520 CLK_PWM_PLL_SEL_MASK | CLK_PWM_DIV_CON_MASK,
521 CLK_PWM_PLL_SEL_GPLL << CLK_PWM_PLL_SEL_SHIFT |
522 (div - 1) << CLK_PWM_DIV_CON_SHIFT);
523
524 return DIV_TO_RATE(GPLL_HZ, div);
525 }
526
rk3328_saradc_get_clk(struct rk3328_cru * cru)527 static ulong rk3328_saradc_get_clk(struct rk3328_cru *cru)
528 {
529 u32 div, val;
530
531 val = readl(&cru->clksel_con[23]);
532 div = bitfield_extract(val, CLK_SARADC_DIV_CON_SHIFT,
533 CLK_SARADC_DIV_CON_WIDTH);
534
535 return DIV_TO_RATE(OSC_HZ, div);
536 }
537
rk3328_saradc_set_clk(struct rk3328_cru * cru,uint hz)538 static ulong rk3328_saradc_set_clk(struct rk3328_cru *cru, uint hz)
539 {
540 int src_clk_div;
541
542 src_clk_div = DIV_ROUND_UP(OSC_HZ, hz) - 1;
543 assert(src_clk_div < 128);
544
545 rk_clrsetreg(&cru->clksel_con[23],
546 CLK_SARADC_DIV_CON_MASK,
547 src_clk_div << CLK_SARADC_DIV_CON_SHIFT);
548
549 return rk3328_saradc_get_clk(cru);
550 }
551
rk3328_clk_get_rate(struct clk * clk)552 static ulong rk3328_clk_get_rate(struct clk *clk)
553 {
554 struct rk3328_clk_priv *priv = dev_get_priv(clk->dev);
555 ulong rate = 0;
556
557 switch (clk->id) {
558 case 0 ... 29:
559 return 0;
560 case HCLK_SDMMC:
561 case HCLK_EMMC:
562 case SCLK_SDMMC:
563 case SCLK_EMMC:
564 rate = rk3328_mmc_get_clk(priv->cru, clk->id);
565 break;
566 case SCLK_I2C0:
567 case SCLK_I2C1:
568 case SCLK_I2C2:
569 case SCLK_I2C3:
570 rate = rk3328_i2c_get_clk(priv->cru, clk->id);
571 break;
572 case SCLK_PWM:
573 rate = rk3328_pwm_get_clk(priv->cru);
574 break;
575 case SCLK_SARADC:
576 rate = rk3328_saradc_get_clk(priv->cru);
577 break;
578 default:
579 return -ENOENT;
580 }
581
582 return rate;
583 }
584
rk3328_clk_set_rate(struct clk * clk,ulong rate)585 static ulong rk3328_clk_set_rate(struct clk *clk, ulong rate)
586 {
587 struct rk3328_clk_priv *priv = dev_get_priv(clk->dev);
588 ulong ret = 0;
589
590 switch (clk->id) {
591 case 0 ... 29:
592 return 0;
593 case HCLK_SDMMC:
594 case HCLK_EMMC:
595 case SCLK_SDMMC:
596 case SCLK_EMMC:
597 ret = rk3328_mmc_set_clk(priv->cru, clk->id, rate);
598 break;
599 case SCLK_I2C0:
600 case SCLK_I2C1:
601 case SCLK_I2C2:
602 case SCLK_I2C3:
603 ret = rk3328_i2c_set_clk(priv->cru, clk->id, rate);
604 break;
605 case SCLK_MAC2IO:
606 ret = rk3328_gmac2io_set_clk(priv->cru, rate);
607 break;
608 case SCLK_PWM:
609 ret = rk3328_pwm_set_clk(priv->cru, rate);
610 break;
611 case SCLK_SARADC:
612 ret = rk3328_saradc_set_clk(priv->cru, rate);
613 break;
614 case DCLK_LCDC:
615 case SCLK_PDM:
616 case SCLK_RTC32K:
617 case SCLK_UART0:
618 case SCLK_UART1:
619 case SCLK_UART2:
620 case SCLK_SDIO:
621 case SCLK_TSP:
622 case SCLK_WIFI:
623 case ACLK_BUS_PRE:
624 case HCLK_BUS_PRE:
625 case PCLK_BUS_PRE:
626 case ACLK_PERI_PRE:
627 case HCLK_PERI:
628 case PCLK_PERI:
629 case ACLK_VIO_PRE:
630 case HCLK_VIO_PRE:
631 case ACLK_RGA_PRE:
632 case SCLK_RGA:
633 case ACLK_VOP_PRE:
634 case ACLK_RKVDEC_PRE:
635 case ACLK_RKVENC:
636 case ACLK_VPU_PRE:
637 case SCLK_VDEC_CABAC:
638 case SCLK_VDEC_CORE:
639 case SCLK_VENC_CORE:
640 case SCLK_VENC_DSP:
641 case SCLK_EFUSE:
642 case PCLK_DDR:
643 case ACLK_GMAC:
644 case PCLK_GMAC:
645 case SCLK_USB3OTG_SUSPEND:
646 return 0;
647 default:
648 return -ENOENT;
649 }
650
651 return ret;
652 }
653
rk3328_gmac2io_set_parent(struct clk * clk,struct clk * parent)654 static int rk3328_gmac2io_set_parent(struct clk *clk, struct clk *parent)
655 {
656 struct rk3328_grf_regs *grf;
657 const char *clock_output_name;
658 int ret;
659
660 grf = syscon_get_first_range(ROCKCHIP_SYSCON_GRF);
661
662 /*
663 * If the requested parent is in the same clock-controller and the id
664 * is SCLK_MAC2IO_SRC ("clk_mac2io_src"), switch to the internal clock.
665 */
666 if ((parent->dev == clk->dev) && (parent->id == SCLK_MAC2IO_SRC)) {
667 debug("%s: switching RGMII to SCLK_MAC2IO_SRC\n", __func__);
668 rk_clrreg(&grf->mac_con[1], BIT(10));
669 return 0;
670 }
671
672 /*
673 * Otherwise, we need to check the clock-output-names of the
674 * requested parent to see if the requested id is "gmac_clkin".
675 */
676 ret = dev_read_string_index(parent->dev, "clock-output-names",
677 parent->id, &clock_output_name);
678 if (ret < 0)
679 return -ENODATA;
680
681 /* If this is "gmac_clkin", switch to the external clock input */
682 if (!strcmp(clock_output_name, "gmac_clkin")) {
683 debug("%s: switching RGMII to CLKIN\n", __func__);
684 rk_setreg(&grf->mac_con[1], BIT(10));
685 return 0;
686 }
687
688 return -EINVAL;
689 }
690
rk3328_gmac2io_ext_set_parent(struct clk * clk,struct clk * parent)691 static int rk3328_gmac2io_ext_set_parent(struct clk *clk, struct clk *parent)
692 {
693 struct rk3328_grf_regs *grf;
694 const char *clock_output_name;
695 int ret;
696
697 grf = syscon_get_first_range(ROCKCHIP_SYSCON_GRF);
698
699 /*
700 * If the requested parent is in the same clock-controller and the id
701 * is SCLK_MAC2IO ("clk_mac2io"), switch to the internal clock.
702 */
703 if ((parent->dev == clk->dev) && (parent->id == SCLK_MAC2IO)) {
704 debug("%s: switching RGMII to SCLK_MAC2IO\n", __func__);
705 rk_clrreg(&grf->soc_con[4], BIT(14));
706 return 0;
707 }
708
709 /*
710 * Otherwise, we need to check the clock-output-names of the
711 * requested parent to see if the requested id is "gmac_clkin".
712 */
713 ret = dev_read_string_index(parent->dev, "clock-output-names",
714 parent->id, &clock_output_name);
715 if (ret < 0)
716 return -ENODATA;
717
718 /* If this is "gmac_clkin", switch to the external clock input */
719 if (!strcmp(clock_output_name, "gmac_clkin")) {
720 debug("%s: switching RGMII to CLKIN\n", __func__);
721 rk_setreg(&grf->soc_con[4], BIT(14));
722 return 0;
723 }
724
725 return -EINVAL;
726 }
727
rk3328_clk_set_parent(struct clk * clk,struct clk * parent)728 static int rk3328_clk_set_parent(struct clk *clk, struct clk *parent)
729 {
730 switch (clk->id) {
731 case SCLK_MAC2IO:
732 return rk3328_gmac2io_set_parent(clk, parent);
733 case SCLK_MAC2IO_EXT:
734 return rk3328_gmac2io_ext_set_parent(clk, parent);
735 case DCLK_LCDC:
736 case SCLK_PDM:
737 case SCLK_RTC32K:
738 case SCLK_UART0:
739 case SCLK_UART1:
740 case SCLK_UART2:
741 return 0;
742 }
743
744 debug("%s: unsupported clk %ld\n", __func__, clk->id);
745 return -ENOENT;
746 }
747
748 static struct clk_ops rk3328_clk_ops = {
749 .get_rate = rk3328_clk_get_rate,
750 .set_rate = rk3328_clk_set_rate,
751 .set_parent = rk3328_clk_set_parent,
752 };
753
rk3328_clk_probe(struct udevice * dev)754 static int rk3328_clk_probe(struct udevice *dev)
755 {
756 struct rk3328_clk_priv *priv = dev_get_priv(dev);
757
758 rkclk_init(priv->cru);
759
760 return 0;
761 }
762
rk3328_clk_ofdata_to_platdata(struct udevice * dev)763 static int rk3328_clk_ofdata_to_platdata(struct udevice *dev)
764 {
765 struct rk3328_clk_priv *priv = dev_get_priv(dev);
766
767 priv->cru = dev_read_addr_ptr(dev);
768
769 return 0;
770 }
771
rk3328_clk_bind(struct udevice * dev)772 static int rk3328_clk_bind(struct udevice *dev)
773 {
774 int ret;
775 struct udevice *sys_child;
776 struct sysreset_reg *priv;
777
778 /* The reset driver does not have a device node, so bind it here */
779 ret = device_bind_driver(dev, "rockchip_sysreset", "sysreset",
780 &sys_child);
781 if (ret) {
782 debug("Warning: No sysreset driver: ret=%d\n", ret);
783 } else {
784 priv = malloc(sizeof(struct sysreset_reg));
785 priv->glb_srst_fst_value = offsetof(struct rk3328_cru,
786 glb_srst_fst_value);
787 priv->glb_srst_snd_value = offsetof(struct rk3328_cru,
788 glb_srst_snd_value);
789 sys_child->priv = priv;
790 }
791
792 #if CONFIG_IS_ENABLED(CONFIG_RESET_ROCKCHIP)
793 ret = offsetof(struct rk3328_cru, softrst_con[0]);
794 ret = rockchip_reset_bind(dev, ret, 12);
795 if (ret)
796 debug("Warning: software reset driver bind faile\n");
797 #endif
798
799 return ret;
800 }
801
802 static const struct udevice_id rk3328_clk_ids[] = {
803 { .compatible = "rockchip,rk3328-cru" },
804 { }
805 };
806
807 U_BOOT_DRIVER(rockchip_rk3328_cru) = {
808 .name = "rockchip_rk3328_cru",
809 .id = UCLASS_CLK,
810 .of_match = rk3328_clk_ids,
811 .priv_auto_alloc_size = sizeof(struct rk3328_clk_priv),
812 .ofdata_to_platdata = rk3328_clk_ofdata_to_platdata,
813 .ops = &rk3328_clk_ops,
814 .bind = rk3328_clk_bind,
815 .probe = rk3328_clk_probe,
816 };
817