xref: /openbmc/u-boot/drivers/clk/clk_stm32mp1.c (revision fabbeb33)
1 // SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
2 /*
3  * Copyright (C) 2018, STMicroelectronics - All Rights Reserved
4  */
5 
6 #include <common.h>
7 #include <clk-uclass.h>
8 #include <div64.h>
9 #include <dm.h>
10 #include <regmap.h>
11 #include <spl.h>
12 #include <syscon.h>
13 #include <linux/io.h>
14 #include <linux/iopoll.h>
15 #include <dt-bindings/clock/stm32mp1-clks.h>
16 #include <dt-bindings/clock/stm32mp1-clksrc.h>
17 
18 #if !defined(CONFIG_SPL) || defined(CONFIG_SPL_BUILD)
19 /* activate clock tree initialization in the driver */
20 #define STM32MP1_CLOCK_TREE_INIT
21 #endif
22 
23 #define MAX_HSI_HZ		64000000
24 
25 /* TIMEOUT */
26 #define TIMEOUT_200MS		200000
27 #define TIMEOUT_1S		1000000
28 
29 /* STGEN registers */
30 #define STGENC_CNTCR		0x00
31 #define STGENC_CNTSR		0x04
32 #define STGENC_CNTCVL		0x08
33 #define STGENC_CNTCVU		0x0C
34 #define STGENC_CNTFID0		0x20
35 
36 #define STGENC_CNTCR_EN		BIT(0)
37 
38 /* RCC registers */
39 #define RCC_OCENSETR		0x0C
40 #define RCC_OCENCLRR		0x10
41 #define RCC_HSICFGR		0x18
42 #define RCC_MPCKSELR		0x20
43 #define RCC_ASSCKSELR		0x24
44 #define RCC_RCK12SELR		0x28
45 #define RCC_MPCKDIVR		0x2C
46 #define RCC_AXIDIVR		0x30
47 #define RCC_APB4DIVR		0x3C
48 #define RCC_APB5DIVR		0x40
49 #define RCC_RTCDIVR		0x44
50 #define RCC_MSSCKSELR		0x48
51 #define RCC_PLL1CR		0x80
52 #define RCC_PLL1CFGR1		0x84
53 #define RCC_PLL1CFGR2		0x88
54 #define RCC_PLL1FRACR		0x8C
55 #define RCC_PLL1CSGR		0x90
56 #define RCC_PLL2CR		0x94
57 #define RCC_PLL2CFGR1		0x98
58 #define RCC_PLL2CFGR2		0x9C
59 #define RCC_PLL2FRACR		0xA0
60 #define RCC_PLL2CSGR		0xA4
61 #define RCC_I2C46CKSELR		0xC0
62 #define RCC_CPERCKSELR		0xD0
63 #define RCC_STGENCKSELR		0xD4
64 #define RCC_DDRITFCR		0xD8
65 #define RCC_BDCR		0x140
66 #define RCC_RDLSICR		0x144
67 #define RCC_MP_APB4ENSETR	0x200
68 #define RCC_MP_APB5ENSETR	0x208
69 #define RCC_MP_AHB5ENSETR	0x210
70 #define RCC_MP_AHB6ENSETR	0x218
71 #define RCC_OCRDYR		0x808
72 #define RCC_DBGCFGR		0x80C
73 #define RCC_RCK3SELR		0x820
74 #define RCC_RCK4SELR		0x824
75 #define RCC_MCUDIVR		0x830
76 #define RCC_APB1DIVR		0x834
77 #define RCC_APB2DIVR		0x838
78 #define RCC_APB3DIVR		0x83C
79 #define RCC_PLL3CR		0x880
80 #define RCC_PLL3CFGR1		0x884
81 #define RCC_PLL3CFGR2		0x888
82 #define RCC_PLL3FRACR		0x88C
83 #define RCC_PLL3CSGR		0x890
84 #define RCC_PLL4CR		0x894
85 #define RCC_PLL4CFGR1		0x898
86 #define RCC_PLL4CFGR2		0x89C
87 #define RCC_PLL4FRACR		0x8A0
88 #define RCC_PLL4CSGR		0x8A4
89 #define RCC_I2C12CKSELR		0x8C0
90 #define RCC_I2C35CKSELR		0x8C4
91 #define RCC_UART6CKSELR		0x8E4
92 #define RCC_UART24CKSELR	0x8E8
93 #define RCC_UART35CKSELR	0x8EC
94 #define RCC_UART78CKSELR	0x8F0
95 #define RCC_SDMMC12CKSELR	0x8F4
96 #define RCC_SDMMC3CKSELR	0x8F8
97 #define RCC_ETHCKSELR		0x8FC
98 #define RCC_QSPICKSELR		0x900
99 #define RCC_FMCCKSELR		0x904
100 #define RCC_USBCKSELR		0x91C
101 #define RCC_DSICKSELR		0x924
102 #define RCC_ADCCKSELR		0x928
103 #define RCC_MP_APB1ENSETR	0xA00
104 #define RCC_MP_APB2ENSETR	0XA08
105 #define RCC_MP_APB3ENSETR	0xA10
106 #define RCC_MP_AHB2ENSETR	0xA18
107 #define RCC_MP_AHB3ENSETR	0xA20
108 #define RCC_MP_AHB4ENSETR	0xA28
109 
110 /* used for most of SELR register */
111 #define RCC_SELR_SRC_MASK	GENMASK(2, 0)
112 #define RCC_SELR_SRCRDY		BIT(31)
113 
114 /* Values of RCC_MPCKSELR register */
115 #define RCC_MPCKSELR_HSI	0
116 #define RCC_MPCKSELR_HSE	1
117 #define RCC_MPCKSELR_PLL	2
118 #define RCC_MPCKSELR_PLL_MPUDIV	3
119 
120 /* Values of RCC_ASSCKSELR register */
121 #define RCC_ASSCKSELR_HSI	0
122 #define RCC_ASSCKSELR_HSE	1
123 #define RCC_ASSCKSELR_PLL	2
124 
125 /* Values of RCC_MSSCKSELR register */
126 #define RCC_MSSCKSELR_HSI	0
127 #define RCC_MSSCKSELR_HSE	1
128 #define RCC_MSSCKSELR_CSI	2
129 #define RCC_MSSCKSELR_PLL	3
130 
131 /* Values of RCC_CPERCKSELR register */
132 #define RCC_CPERCKSELR_HSI	0
133 #define RCC_CPERCKSELR_CSI	1
134 #define RCC_CPERCKSELR_HSE	2
135 
136 /* used for most of DIVR register : max div for RTC */
137 #define RCC_DIVR_DIV_MASK	GENMASK(5, 0)
138 #define RCC_DIVR_DIVRDY		BIT(31)
139 
140 /* Masks for specific DIVR registers */
141 #define RCC_APBXDIV_MASK	GENMASK(2, 0)
142 #define RCC_MPUDIV_MASK		GENMASK(2, 0)
143 #define RCC_AXIDIV_MASK		GENMASK(2, 0)
144 #define RCC_MCUDIV_MASK		GENMASK(3, 0)
145 
146 /*  offset between RCC_MP_xxxENSETR and RCC_MP_xxxENCLRR registers */
147 #define RCC_MP_ENCLRR_OFFSET	4
148 
149 /* Fields of RCC_BDCR register */
150 #define RCC_BDCR_LSEON		BIT(0)
151 #define RCC_BDCR_LSEBYP		BIT(1)
152 #define RCC_BDCR_LSERDY		BIT(2)
153 #define RCC_BDCR_DIGBYP		BIT(3)
154 #define RCC_BDCR_LSEDRV_MASK	GENMASK(5, 4)
155 #define RCC_BDCR_LSEDRV_SHIFT	4
156 #define RCC_BDCR_LSECSSON	BIT(8)
157 #define RCC_BDCR_RTCCKEN	BIT(20)
158 #define RCC_BDCR_RTCSRC_MASK	GENMASK(17, 16)
159 #define RCC_BDCR_RTCSRC_SHIFT	16
160 
161 /* Fields of RCC_RDLSICR register */
162 #define RCC_RDLSICR_LSION	BIT(0)
163 #define RCC_RDLSICR_LSIRDY	BIT(1)
164 
165 /* used for ALL PLLNCR registers */
166 #define RCC_PLLNCR_PLLON	BIT(0)
167 #define RCC_PLLNCR_PLLRDY	BIT(1)
168 #define RCC_PLLNCR_SSCG_CTRL	BIT(2)
169 #define RCC_PLLNCR_DIVPEN	BIT(4)
170 #define RCC_PLLNCR_DIVQEN	BIT(5)
171 #define RCC_PLLNCR_DIVREN	BIT(6)
172 #define RCC_PLLNCR_DIVEN_SHIFT	4
173 
174 /* used for ALL PLLNCFGR1 registers */
175 #define RCC_PLLNCFGR1_DIVM_SHIFT	16
176 #define RCC_PLLNCFGR1_DIVM_MASK		GENMASK(21, 16)
177 #define RCC_PLLNCFGR1_DIVN_SHIFT	0
178 #define RCC_PLLNCFGR1_DIVN_MASK		GENMASK(8, 0)
179 /* only for PLL3 and PLL4 */
180 #define RCC_PLLNCFGR1_IFRGE_SHIFT	24
181 #define RCC_PLLNCFGR1_IFRGE_MASK	GENMASK(25, 24)
182 
183 /* used for ALL PLLNCFGR2 registers , using stm32mp1_div_id */
184 #define RCC_PLLNCFGR2_SHIFT(div_id)	((div_id) * 8)
185 #define RCC_PLLNCFGR2_DIVX_MASK		GENMASK(6, 0)
186 #define RCC_PLLNCFGR2_DIVP_SHIFT	RCC_PLLNCFGR2_SHIFT(_DIV_P)
187 #define RCC_PLLNCFGR2_DIVP_MASK		GENMASK(6, 0)
188 #define RCC_PLLNCFGR2_DIVQ_SHIFT	RCC_PLLNCFGR2_SHIFT(_DIV_Q)
189 #define RCC_PLLNCFGR2_DIVQ_MASK		GENMASK(14, 8)
190 #define RCC_PLLNCFGR2_DIVR_SHIFT	RCC_PLLNCFGR2_SHIFT(_DIV_R)
191 #define RCC_PLLNCFGR2_DIVR_MASK		GENMASK(22, 16)
192 
193 /* used for ALL PLLNFRACR registers */
194 #define RCC_PLLNFRACR_FRACV_SHIFT	3
195 #define RCC_PLLNFRACR_FRACV_MASK	GENMASK(15, 3)
196 #define RCC_PLLNFRACR_FRACLE		BIT(16)
197 
198 /* used for ALL PLLNCSGR registers */
199 #define RCC_PLLNCSGR_INC_STEP_SHIFT	16
200 #define RCC_PLLNCSGR_INC_STEP_MASK	GENMASK(30, 16)
201 #define RCC_PLLNCSGR_MOD_PER_SHIFT	0
202 #define RCC_PLLNCSGR_MOD_PER_MASK	GENMASK(12, 0)
203 #define RCC_PLLNCSGR_SSCG_MODE_SHIFT	15
204 #define RCC_PLLNCSGR_SSCG_MODE_MASK	BIT(15)
205 
206 /* used for RCC_OCENSETR and RCC_OCENCLRR registers */
207 #define RCC_OCENR_HSION			BIT(0)
208 #define RCC_OCENR_CSION			BIT(4)
209 #define RCC_OCENR_DIGBYP		BIT(7)
210 #define RCC_OCENR_HSEON			BIT(8)
211 #define RCC_OCENR_HSEBYP		BIT(10)
212 #define RCC_OCENR_HSECSSON		BIT(11)
213 
214 /* Fields of RCC_OCRDYR register */
215 #define RCC_OCRDYR_HSIRDY		BIT(0)
216 #define RCC_OCRDYR_HSIDIVRDY		BIT(2)
217 #define RCC_OCRDYR_CSIRDY		BIT(4)
218 #define RCC_OCRDYR_HSERDY		BIT(8)
219 
220 /* Fields of DDRITFCR register */
221 #define RCC_DDRITFCR_DDRCKMOD_MASK	GENMASK(22, 20)
222 #define RCC_DDRITFCR_DDRCKMOD_SHIFT	20
223 #define RCC_DDRITFCR_DDRCKMOD_SSR	0
224 
225 /* Fields of RCC_HSICFGR register */
226 #define RCC_HSICFGR_HSIDIV_MASK		GENMASK(1, 0)
227 
228 /* used for MCO related operations */
229 #define RCC_MCOCFG_MCOON		BIT(12)
230 #define RCC_MCOCFG_MCODIV_MASK		GENMASK(7, 4)
231 #define RCC_MCOCFG_MCODIV_SHIFT		4
232 #define RCC_MCOCFG_MCOSRC_MASK		GENMASK(2, 0)
233 
234 enum stm32mp1_parent_id {
235 /*
236  * _HSI, _HSE, _CSI, _LSI, _LSE should not be moved
237  * they are used as index in osc[] as entry point
238  */
239 	_HSI,
240 	_HSE,
241 	_CSI,
242 	_LSI,
243 	_LSE,
244 	_I2S_CKIN,
245 	NB_OSC,
246 
247 /* other parent source */
248 	_HSI_KER = NB_OSC,
249 	_HSE_KER,
250 	_HSE_KER_DIV2,
251 	_CSI_KER,
252 	_PLL1_P,
253 	_PLL1_Q,
254 	_PLL1_R,
255 	_PLL2_P,
256 	_PLL2_Q,
257 	_PLL2_R,
258 	_PLL3_P,
259 	_PLL3_Q,
260 	_PLL3_R,
261 	_PLL4_P,
262 	_PLL4_Q,
263 	_PLL4_R,
264 	_ACLK,
265 	_PCLK1,
266 	_PCLK2,
267 	_PCLK3,
268 	_PCLK4,
269 	_PCLK5,
270 	_HCLK6,
271 	_HCLK2,
272 	_CK_PER,
273 	_CK_MPU,
274 	_CK_MCU,
275 	_DSI_PHY,
276 	_USB_PHY_48,
277 	_PARENT_NB,
278 	_UNKNOWN_ID = 0xff,
279 };
280 
281 enum stm32mp1_parent_sel {
282 	_I2C12_SEL,
283 	_I2C35_SEL,
284 	_I2C46_SEL,
285 	_UART6_SEL,
286 	_UART24_SEL,
287 	_UART35_SEL,
288 	_UART78_SEL,
289 	_SDMMC12_SEL,
290 	_SDMMC3_SEL,
291 	_ETH_SEL,
292 	_QSPI_SEL,
293 	_FMC_SEL,
294 	_USBPHY_SEL,
295 	_USBO_SEL,
296 	_STGEN_SEL,
297 	_DSI_SEL,
298 	_ADC12_SEL,
299 	_PARENT_SEL_NB,
300 	_UNKNOWN_SEL = 0xff,
301 };
302 
303 enum stm32mp1_pll_id {
304 	_PLL1,
305 	_PLL2,
306 	_PLL3,
307 	_PLL4,
308 	_PLL_NB
309 };
310 
311 enum stm32mp1_div_id {
312 	_DIV_P,
313 	_DIV_Q,
314 	_DIV_R,
315 	_DIV_NB,
316 };
317 
318 enum stm32mp1_clksrc_id {
319 	CLKSRC_MPU,
320 	CLKSRC_AXI,
321 	CLKSRC_MCU,
322 	CLKSRC_PLL12,
323 	CLKSRC_PLL3,
324 	CLKSRC_PLL4,
325 	CLKSRC_RTC,
326 	CLKSRC_MCO1,
327 	CLKSRC_MCO2,
328 	CLKSRC_NB
329 };
330 
331 enum stm32mp1_clkdiv_id {
332 	CLKDIV_MPU,
333 	CLKDIV_AXI,
334 	CLKDIV_MCU,
335 	CLKDIV_APB1,
336 	CLKDIV_APB2,
337 	CLKDIV_APB3,
338 	CLKDIV_APB4,
339 	CLKDIV_APB5,
340 	CLKDIV_RTC,
341 	CLKDIV_MCO1,
342 	CLKDIV_MCO2,
343 	CLKDIV_NB
344 };
345 
346 enum stm32mp1_pllcfg {
347 	PLLCFG_M,
348 	PLLCFG_N,
349 	PLLCFG_P,
350 	PLLCFG_Q,
351 	PLLCFG_R,
352 	PLLCFG_O,
353 	PLLCFG_NB
354 };
355 
356 enum stm32mp1_pllcsg {
357 	PLLCSG_MOD_PER,
358 	PLLCSG_INC_STEP,
359 	PLLCSG_SSCG_MODE,
360 	PLLCSG_NB
361 };
362 
363 enum stm32mp1_plltype {
364 	PLL_800,
365 	PLL_1600,
366 	PLL_TYPE_NB
367 };
368 
369 struct stm32mp1_pll {
370 	u8 refclk_min;
371 	u8 refclk_max;
372 	u8 divn_max;
373 };
374 
375 struct stm32mp1_clk_gate {
376 	u16 offset;
377 	u8 bit;
378 	u8 index;
379 	u8 set_clr;
380 	u8 sel;
381 	u8 fixed;
382 };
383 
384 struct stm32mp1_clk_sel {
385 	u16 offset;
386 	u8 src;
387 	u8 msk;
388 	u8 nb_parent;
389 	const u8 *parent;
390 };
391 
392 #define REFCLK_SIZE 4
393 struct stm32mp1_clk_pll {
394 	enum stm32mp1_plltype plltype;
395 	u16 rckxselr;
396 	u16 pllxcfgr1;
397 	u16 pllxcfgr2;
398 	u16 pllxfracr;
399 	u16 pllxcr;
400 	u16 pllxcsgr;
401 	u8 refclk[REFCLK_SIZE];
402 };
403 
404 struct stm32mp1_clk_data {
405 	const struct stm32mp1_clk_gate *gate;
406 	const struct stm32mp1_clk_sel *sel;
407 	const struct stm32mp1_clk_pll *pll;
408 	const int nb_gate;
409 };
410 
411 struct stm32mp1_clk_priv {
412 	fdt_addr_t base;
413 	const struct stm32mp1_clk_data *data;
414 	ulong osc[NB_OSC];
415 	struct udevice *osc_dev[NB_OSC];
416 };
417 
418 #define STM32MP1_CLK(off, b, idx, s)		\
419 	{					\
420 		.offset = (off),		\
421 		.bit = (b),			\
422 		.index = (idx),			\
423 		.set_clr = 0,			\
424 		.sel = (s),			\
425 		.fixed = _UNKNOWN_ID,		\
426 	}
427 
428 #define STM32MP1_CLK_F(off, b, idx, f)		\
429 	{					\
430 		.offset = (off),		\
431 		.bit = (b),			\
432 		.index = (idx),			\
433 		.set_clr = 0,			\
434 		.sel = _UNKNOWN_SEL,		\
435 		.fixed = (f),			\
436 	}
437 
438 #define STM32MP1_CLK_SET_CLR(off, b, idx, s)	\
439 	{					\
440 		.offset = (off),		\
441 		.bit = (b),			\
442 		.index = (idx),			\
443 		.set_clr = 1,			\
444 		.sel = (s),			\
445 		.fixed = _UNKNOWN_ID,		\
446 	}
447 
448 #define STM32MP1_CLK_SET_CLR_F(off, b, idx, f)	\
449 	{					\
450 		.offset = (off),		\
451 		.bit = (b),			\
452 		.index = (idx),			\
453 		.set_clr = 1,			\
454 		.sel = _UNKNOWN_SEL,		\
455 		.fixed = (f),			\
456 	}
457 
458 #define STM32MP1_CLK_PARENT(idx, off, s, m, p)   \
459 	[(idx)] = {				\
460 		.offset = (off),		\
461 		.src = (s),			\
462 		.msk = (m),			\
463 		.parent = (p),			\
464 		.nb_parent = ARRAY_SIZE((p))	\
465 	}
466 
467 #define STM32MP1_CLK_PLL(idx, type, off1, off2, off3, off4, off5, off6,\
468 			p1, p2, p3, p4) \
469 	[(idx)] = {				\
470 		.plltype = (type),			\
471 		.rckxselr = (off1),		\
472 		.pllxcfgr1 = (off2),		\
473 		.pllxcfgr2 = (off3),		\
474 		.pllxfracr = (off4),		\
475 		.pllxcr = (off5),		\
476 		.pllxcsgr = (off6),		\
477 		.refclk[0] = (p1),		\
478 		.refclk[1] = (p2),		\
479 		.refclk[2] = (p3),		\
480 		.refclk[3] = (p4),		\
481 	}
482 
483 static const u8 stm32mp1_clks[][2] = {
484 	{CK_PER, _CK_PER},
485 	{CK_MPU, _CK_MPU},
486 	{CK_AXI, _ACLK},
487 	{CK_MCU, _CK_MCU},
488 	{CK_HSE, _HSE},
489 	{CK_CSI, _CSI},
490 	{CK_LSI, _LSI},
491 	{CK_LSE, _LSE},
492 	{CK_HSI, _HSI},
493 	{CK_HSE_DIV2, _HSE_KER_DIV2},
494 };
495 
496 static const struct stm32mp1_clk_gate stm32mp1_clk_gate[] = {
497 	STM32MP1_CLK(RCC_DDRITFCR, 0, DDRC1, _UNKNOWN_SEL),
498 	STM32MP1_CLK(RCC_DDRITFCR, 1, DDRC1LP, _UNKNOWN_SEL),
499 	STM32MP1_CLK(RCC_DDRITFCR, 2, DDRC2, _UNKNOWN_SEL),
500 	STM32MP1_CLK(RCC_DDRITFCR, 3, DDRC2LP, _UNKNOWN_SEL),
501 	STM32MP1_CLK_F(RCC_DDRITFCR, 4, DDRPHYC, _PLL2_R),
502 	STM32MP1_CLK(RCC_DDRITFCR, 5, DDRPHYCLP, _UNKNOWN_SEL),
503 	STM32MP1_CLK(RCC_DDRITFCR, 6, DDRCAPB, _UNKNOWN_SEL),
504 	STM32MP1_CLK(RCC_DDRITFCR, 7, DDRCAPBLP, _UNKNOWN_SEL),
505 	STM32MP1_CLK(RCC_DDRITFCR, 8, AXIDCG, _UNKNOWN_SEL),
506 	STM32MP1_CLK(RCC_DDRITFCR, 9, DDRPHYCAPB, _UNKNOWN_SEL),
507 	STM32MP1_CLK(RCC_DDRITFCR, 10, DDRPHYCAPBLP, _UNKNOWN_SEL),
508 
509 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 14, USART2_K, _UART24_SEL),
510 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 15, USART3_K, _UART35_SEL),
511 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 16, UART4_K, _UART24_SEL),
512 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 17, UART5_K, _UART35_SEL),
513 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 18, UART7_K, _UART78_SEL),
514 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 19, UART8_K, _UART78_SEL),
515 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 21, I2C1_K, _I2C12_SEL),
516 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 22, I2C2_K, _I2C12_SEL),
517 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 23, I2C3_K, _I2C35_SEL),
518 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 24, I2C5_K, _I2C35_SEL),
519 
520 	STM32MP1_CLK_SET_CLR(RCC_MP_APB2ENSETR, 13, USART6_K, _UART6_SEL),
521 
522 	STM32MP1_CLK_SET_CLR_F(RCC_MP_APB3ENSETR, 13, VREF, _PCLK3),
523 
524 	STM32MP1_CLK_SET_CLR_F(RCC_MP_APB4ENSETR, 0, LTDC_PX, _PLL4_Q),
525 	STM32MP1_CLK_SET_CLR_F(RCC_MP_APB4ENSETR, 4, DSI_PX, _PLL4_Q),
526 	STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 4, DSI_K, _DSI_SEL),
527 	STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 8, DDRPERFM, _UNKNOWN_SEL),
528 	STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 15, IWDG2, _UNKNOWN_SEL),
529 	STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 16, USBPHY_K, _USBPHY_SEL),
530 
531 	STM32MP1_CLK_SET_CLR(RCC_MP_APB5ENSETR, 2, I2C4_K, _I2C46_SEL),
532 	STM32MP1_CLK_SET_CLR(RCC_MP_APB5ENSETR, 20, STGEN_K, _STGEN_SEL),
533 
534 	STM32MP1_CLK_SET_CLR_F(RCC_MP_AHB2ENSETR, 5, ADC12, _HCLK2),
535 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB2ENSETR, 5, ADC12_K, _ADC12_SEL),
536 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB2ENSETR, 8, USBO_K, _USBO_SEL),
537 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB2ENSETR, 16, SDMMC3_K, _SDMMC3_SEL),
538 
539 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB3ENSETR, 11, HSEM, _UNKNOWN_SEL),
540 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB3ENSETR, 12, IPCC, _UNKNOWN_SEL),
541 
542 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 0, GPIOA, _UNKNOWN_SEL),
543 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 1, GPIOB, _UNKNOWN_SEL),
544 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 2, GPIOC, _UNKNOWN_SEL),
545 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 3, GPIOD, _UNKNOWN_SEL),
546 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 4, GPIOE, _UNKNOWN_SEL),
547 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 5, GPIOF, _UNKNOWN_SEL),
548 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 6, GPIOG, _UNKNOWN_SEL),
549 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 7, GPIOH, _UNKNOWN_SEL),
550 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 8, GPIOI, _UNKNOWN_SEL),
551 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 9, GPIOJ, _UNKNOWN_SEL),
552 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 10, GPIOK, _UNKNOWN_SEL),
553 
554 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB5ENSETR, 0, GPIOZ, _UNKNOWN_SEL),
555 
556 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 7, ETHCK, _ETH_SEL),
557 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 8, ETHTX, _UNKNOWN_SEL),
558 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 9, ETHRX, _UNKNOWN_SEL),
559 	STM32MP1_CLK_SET_CLR_F(RCC_MP_AHB6ENSETR, 10, ETHMAC, _ACLK),
560 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 12, FMC_K, _FMC_SEL),
561 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 14, QSPI_K, _QSPI_SEL),
562 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 16, SDMMC1_K, _SDMMC12_SEL),
563 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 17, SDMMC2_K, _SDMMC12_SEL),
564 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 24, USBH, _UNKNOWN_SEL),
565 
566 	STM32MP1_CLK(RCC_DBGCFGR, 8, CK_DBG, _UNKNOWN_SEL),
567 };
568 
569 static const u8 i2c12_parents[] = {_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER};
570 static const u8 i2c35_parents[] = {_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER};
571 static const u8 i2c46_parents[] = {_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER};
572 static const u8 uart6_parents[] = {_PCLK2, _PLL4_Q, _HSI_KER, _CSI_KER,
573 					_HSE_KER};
574 static const u8 uart24_parents[] = {_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER,
575 					 _HSE_KER};
576 static const u8 uart35_parents[] = {_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER,
577 					 _HSE_KER};
578 static const u8 uart78_parents[] = {_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER,
579 					 _HSE_KER};
580 static const u8 sdmmc12_parents[] = {_HCLK6, _PLL3_R, _PLL4_P, _HSI_KER};
581 static const u8 sdmmc3_parents[] = {_HCLK2, _PLL3_R, _PLL4_P, _HSI_KER};
582 static const u8 eth_parents[] = {_PLL4_P, _PLL3_Q};
583 static const u8 qspi_parents[] = {_ACLK, _PLL3_R, _PLL4_P, _CK_PER};
584 static const u8 fmc_parents[] = {_ACLK, _PLL3_R, _PLL4_P, _CK_PER};
585 static const u8 usbphy_parents[] = {_HSE_KER, _PLL4_R, _HSE_KER_DIV2};
586 static const u8 usbo_parents[] = {_PLL4_R, _USB_PHY_48};
587 static const u8 stgen_parents[] = {_HSI_KER, _HSE_KER};
588 static const u8 dsi_parents[] = {_DSI_PHY, _PLL4_P};
589 static const u8 adc_parents[] = {_PLL4_R, _CK_PER, _PLL3_Q};
590 
591 static const struct stm32mp1_clk_sel stm32mp1_clk_sel[_PARENT_SEL_NB] = {
592 	STM32MP1_CLK_PARENT(_I2C12_SEL, RCC_I2C12CKSELR, 0, 0x7, i2c12_parents),
593 	STM32MP1_CLK_PARENT(_I2C35_SEL, RCC_I2C35CKSELR, 0, 0x7, i2c35_parents),
594 	STM32MP1_CLK_PARENT(_I2C46_SEL, RCC_I2C46CKSELR, 0, 0x7, i2c46_parents),
595 	STM32MP1_CLK_PARENT(_UART6_SEL, RCC_UART6CKSELR, 0, 0x7, uart6_parents),
596 	STM32MP1_CLK_PARENT(_UART24_SEL, RCC_UART24CKSELR, 0, 0x7,
597 			    uart24_parents),
598 	STM32MP1_CLK_PARENT(_UART35_SEL, RCC_UART35CKSELR, 0, 0x7,
599 			    uart35_parents),
600 	STM32MP1_CLK_PARENT(_UART78_SEL, RCC_UART78CKSELR, 0, 0x7,
601 			    uart78_parents),
602 	STM32MP1_CLK_PARENT(_SDMMC12_SEL, RCC_SDMMC12CKSELR, 0, 0x7,
603 			    sdmmc12_parents),
604 	STM32MP1_CLK_PARENT(_SDMMC3_SEL, RCC_SDMMC3CKSELR, 0, 0x7,
605 			    sdmmc3_parents),
606 	STM32MP1_CLK_PARENT(_ETH_SEL, RCC_ETHCKSELR, 0, 0x3, eth_parents),
607 	STM32MP1_CLK_PARENT(_QSPI_SEL, RCC_QSPICKSELR, 0, 0xf, qspi_parents),
608 	STM32MP1_CLK_PARENT(_FMC_SEL, RCC_FMCCKSELR, 0, 0xf, fmc_parents),
609 	STM32MP1_CLK_PARENT(_USBPHY_SEL, RCC_USBCKSELR, 0, 0x3, usbphy_parents),
610 	STM32MP1_CLK_PARENT(_USBO_SEL, RCC_USBCKSELR, 4, 0x1, usbo_parents),
611 	STM32MP1_CLK_PARENT(_STGEN_SEL, RCC_STGENCKSELR, 0, 0x3, stgen_parents),
612 	STM32MP1_CLK_PARENT(_DSI_SEL, RCC_DSICKSELR, 0, 0x1, dsi_parents),
613 	STM32MP1_CLK_PARENT(_ADC12_SEL, RCC_ADCCKSELR, 0, 0x1, adc_parents),
614 };
615 
616 #ifdef STM32MP1_CLOCK_TREE_INIT
617 /* define characteristic of PLL according type */
618 #define DIVN_MIN	24
619 static const struct stm32mp1_pll stm32mp1_pll[PLL_TYPE_NB] = {
620 	[PLL_800] = {
621 		.refclk_min = 4,
622 		.refclk_max = 16,
623 		.divn_max = 99,
624 		},
625 	[PLL_1600] = {
626 		.refclk_min = 8,
627 		.refclk_max = 16,
628 		.divn_max = 199,
629 		},
630 };
631 #endif /* STM32MP1_CLOCK_TREE_INIT */
632 
633 static const struct stm32mp1_clk_pll stm32mp1_clk_pll[_PLL_NB] = {
634 	STM32MP1_CLK_PLL(_PLL1, PLL_1600,
635 			 RCC_RCK12SELR, RCC_PLL1CFGR1, RCC_PLL1CFGR2,
636 			 RCC_PLL1FRACR, RCC_PLL1CR, RCC_PLL1CSGR,
637 			 _HSI, _HSE, _UNKNOWN_ID, _UNKNOWN_ID),
638 	STM32MP1_CLK_PLL(_PLL2, PLL_1600,
639 			 RCC_RCK12SELR, RCC_PLL2CFGR1, RCC_PLL2CFGR2,
640 			 RCC_PLL2FRACR, RCC_PLL2CR, RCC_PLL2CSGR,
641 			 _HSI, _HSE, _UNKNOWN_ID, _UNKNOWN_ID),
642 	STM32MP1_CLK_PLL(_PLL3, PLL_800,
643 			 RCC_RCK3SELR, RCC_PLL3CFGR1, RCC_PLL3CFGR2,
644 			 RCC_PLL3FRACR, RCC_PLL3CR, RCC_PLL3CSGR,
645 			 _HSI, _HSE, _CSI, _UNKNOWN_ID),
646 	STM32MP1_CLK_PLL(_PLL4, PLL_800,
647 			 RCC_RCK4SELR, RCC_PLL4CFGR1, RCC_PLL4CFGR2,
648 			 RCC_PLL4FRACR, RCC_PLL4CR, RCC_PLL4CSGR,
649 			 _HSI, _HSE, _CSI, _I2S_CKIN),
650 };
651 
652 /* Prescaler table lookups for clock computation */
653 /* div = /1 /2 /4 /8 / 16 /64 /128 /512 */
654 static const u8 stm32mp1_mcu_div[16] = {
655 	0, 1, 2, 3, 4, 6, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9
656 };
657 
658 /* div = /1 /2 /4 /8 /16 : same divider for pmu and apbx*/
659 #define stm32mp1_mpu_div stm32mp1_mpu_apbx_div
660 #define stm32mp1_apbx_div stm32mp1_mpu_apbx_div
661 static const u8 stm32mp1_mpu_apbx_div[8] = {
662 	0, 1, 2, 3, 4, 4, 4, 4
663 };
664 
665 /* div = /1 /2 /3 /4 */
666 static const u8 stm32mp1_axi_div[8] = {
667 	1, 2, 3, 4, 4, 4, 4, 4
668 };
669 
670 static const __maybe_unused
671 char * const stm32mp1_clk_parent_name[_PARENT_NB] = {
672 	[_HSI] = "HSI",
673 	[_HSE] = "HSE",
674 	[_CSI] = "CSI",
675 	[_LSI] = "LSI",
676 	[_LSE] = "LSE",
677 	[_I2S_CKIN] = "I2S_CKIN",
678 	[_HSI_KER] = "HSI_KER",
679 	[_HSE_KER] = "HSE_KER",
680 	[_HSE_KER_DIV2] = "HSE_KER_DIV2",
681 	[_CSI_KER] = "CSI_KER",
682 	[_PLL1_P] = "PLL1_P",
683 	[_PLL1_Q] = "PLL1_Q",
684 	[_PLL1_R] = "PLL1_R",
685 	[_PLL2_P] = "PLL2_P",
686 	[_PLL2_Q] = "PLL2_Q",
687 	[_PLL2_R] = "PLL2_R",
688 	[_PLL3_P] = "PLL3_P",
689 	[_PLL3_Q] = "PLL3_Q",
690 	[_PLL3_R] = "PLL3_R",
691 	[_PLL4_P] = "PLL4_P",
692 	[_PLL4_Q] = "PLL4_Q",
693 	[_PLL4_R] = "PLL4_R",
694 	[_ACLK] = "ACLK",
695 	[_PCLK1] = "PCLK1",
696 	[_PCLK2] = "PCLK2",
697 	[_PCLK3] = "PCLK3",
698 	[_PCLK4] = "PCLK4",
699 	[_PCLK5] = "PCLK5",
700 	[_HCLK6] = "KCLK6",
701 	[_HCLK2] = "HCLK2",
702 	[_CK_PER] = "CK_PER",
703 	[_CK_MPU] = "CK_MPU",
704 	[_CK_MCU] = "CK_MCU",
705 	[_USB_PHY_48] = "USB_PHY_48",
706 	[_DSI_PHY] = "DSI_PHY_PLL",
707 };
708 
709 static const __maybe_unused
710 char * const stm32mp1_clk_parent_sel_name[_PARENT_SEL_NB] = {
711 	[_I2C12_SEL] = "I2C12",
712 	[_I2C35_SEL] = "I2C35",
713 	[_I2C46_SEL] = "I2C46",
714 	[_UART6_SEL] = "UART6",
715 	[_UART24_SEL] = "UART24",
716 	[_UART35_SEL] = "UART35",
717 	[_UART78_SEL] = "UART78",
718 	[_SDMMC12_SEL] = "SDMMC12",
719 	[_SDMMC3_SEL] = "SDMMC3",
720 	[_ETH_SEL] = "ETH",
721 	[_QSPI_SEL] = "QSPI",
722 	[_FMC_SEL] = "FMC",
723 	[_USBPHY_SEL] = "USBPHY",
724 	[_USBO_SEL] = "USBO",
725 	[_STGEN_SEL] = "STGEN",
726 	[_DSI_SEL] = "DSI",
727 	[_ADC12_SEL] = "ADC12",
728 };
729 
730 static const struct stm32mp1_clk_data stm32mp1_data = {
731 	.gate = stm32mp1_clk_gate,
732 	.sel = stm32mp1_clk_sel,
733 	.pll = stm32mp1_clk_pll,
734 	.nb_gate = ARRAY_SIZE(stm32mp1_clk_gate),
735 };
736 
737 static ulong stm32mp1_clk_get_fixed(struct stm32mp1_clk_priv *priv, int idx)
738 {
739 	if (idx >= NB_OSC) {
740 		debug("%s: clk id %d not found\n", __func__, idx);
741 		return 0;
742 	}
743 
744 	debug("%s: clk id %d = %x : %ld kHz\n", __func__, idx,
745 	      (u32)priv->osc[idx], priv->osc[idx] / 1000);
746 
747 	return priv->osc[idx];
748 }
749 
750 static int stm32mp1_clk_get_id(struct stm32mp1_clk_priv *priv, unsigned long id)
751 {
752 	const struct stm32mp1_clk_gate *gate = priv->data->gate;
753 	int i, nb_clks = priv->data->nb_gate;
754 
755 	for (i = 0; i < nb_clks; i++) {
756 		if (gate[i].index == id)
757 			break;
758 	}
759 
760 	if (i == nb_clks) {
761 		printf("%s: clk id %d not found\n", __func__, (u32)id);
762 		return -EINVAL;
763 	}
764 
765 	return i;
766 }
767 
768 static int stm32mp1_clk_get_sel(struct stm32mp1_clk_priv *priv,
769 				int i)
770 {
771 	const struct stm32mp1_clk_gate *gate = priv->data->gate;
772 
773 	if (gate[i].sel > _PARENT_SEL_NB) {
774 		printf("%s: parents for clk id %d not found\n",
775 		       __func__, i);
776 		return -EINVAL;
777 	}
778 
779 	return gate[i].sel;
780 }
781 
782 static int stm32mp1_clk_get_fixed_parent(struct stm32mp1_clk_priv *priv,
783 					 int i)
784 {
785 	const struct stm32mp1_clk_gate *gate = priv->data->gate;
786 
787 	if (gate[i].fixed == _UNKNOWN_ID)
788 		return -ENOENT;
789 
790 	return gate[i].fixed;
791 }
792 
793 static int stm32mp1_clk_get_parent(struct stm32mp1_clk_priv *priv,
794 				   unsigned long id)
795 {
796 	const struct stm32mp1_clk_sel *sel = priv->data->sel;
797 	int i;
798 	int s, p;
799 
800 	for (i = 0; i < ARRAY_SIZE(stm32mp1_clks); i++)
801 		if (stm32mp1_clks[i][0] == id)
802 			return stm32mp1_clks[i][1];
803 
804 	i = stm32mp1_clk_get_id(priv, id);
805 	if (i < 0)
806 		return i;
807 
808 	p = stm32mp1_clk_get_fixed_parent(priv, i);
809 	if (p >= 0 && p < _PARENT_NB)
810 		return p;
811 
812 	s = stm32mp1_clk_get_sel(priv, i);
813 	if (s < 0)
814 		return s;
815 
816 	p = (readl(priv->base + sel[s].offset) >> sel[s].src) & sel[s].msk;
817 
818 	if (p < sel[s].nb_parent) {
819 #ifdef DEBUG
820 		debug("%s: %s clock is the parent %s of clk id %d\n", __func__,
821 		      stm32mp1_clk_parent_name[sel[s].parent[p]],
822 		      stm32mp1_clk_parent_sel_name[s],
823 		      (u32)id);
824 #endif
825 		return sel[s].parent[p];
826 	}
827 
828 	pr_err("%s: no parents defined for clk id %d\n",
829 	       __func__, (u32)id);
830 
831 	return -EINVAL;
832 }
833 
834 static ulong  pll_get_fref_ck(struct stm32mp1_clk_priv *priv,
835 			      int pll_id)
836 {
837 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
838 	u32 selr;
839 	int src;
840 	ulong refclk;
841 
842 	/* Get current refclk */
843 	selr = readl(priv->base + pll[pll_id].rckxselr);
844 	src = selr & RCC_SELR_SRC_MASK;
845 
846 	refclk = stm32mp1_clk_get_fixed(priv, pll[pll_id].refclk[src]);
847 	debug("PLL%d : selr=%x refclk = %d kHz\n",
848 	      pll_id, selr, (u32)(refclk / 1000));
849 
850 	return refclk;
851 }
852 
853 /*
854  * pll_get_fvco() : return the VCO or (VCO / 2) frequency for the requested PLL
855  * - PLL1 & PLL2 => return VCO / 2 with Fpll_y_ck = FVCO / 2 * (DIVy + 1)
856  * - PLL3 & PLL4 => return VCO     with Fpll_y_ck = FVCO / (DIVy + 1)
857  * => in all the case Fpll_y_ck = pll_get_fvco() / (DIVy + 1)
858  */
859 static ulong pll_get_fvco(struct stm32mp1_clk_priv *priv,
860 			  int pll_id)
861 {
862 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
863 	int divm, divn;
864 	ulong refclk, fvco;
865 	u32 cfgr1, fracr;
866 
867 	cfgr1 = readl(priv->base + pll[pll_id].pllxcfgr1);
868 	fracr = readl(priv->base + pll[pll_id].pllxfracr);
869 
870 	divm = (cfgr1 & (RCC_PLLNCFGR1_DIVM_MASK)) >> RCC_PLLNCFGR1_DIVM_SHIFT;
871 	divn = cfgr1 & RCC_PLLNCFGR1_DIVN_MASK;
872 
873 	debug("PLL%d : cfgr1=%x fracr=%x DIVN=%d DIVM=%d\n",
874 	      pll_id, cfgr1, fracr, divn, divm);
875 
876 	refclk = pll_get_fref_ck(priv, pll_id);
877 
878 	/* with FRACV :
879 	 *   Fvco = Fck_ref * ((DIVN + 1) + FRACV / 2^13) / (DIVM + 1)
880 	 * without FRACV
881 	 *   Fvco = Fck_ref * ((DIVN + 1) / (DIVM + 1)
882 	 */
883 	if (fracr & RCC_PLLNFRACR_FRACLE) {
884 		u32 fracv = (fracr & RCC_PLLNFRACR_FRACV_MASK)
885 			    >> RCC_PLLNFRACR_FRACV_SHIFT;
886 		fvco = (ulong)lldiv((unsigned long long)refclk *
887 				     (((divn + 1) << 13) + fracv),
888 				     ((unsigned long long)(divm + 1)) << 13);
889 	} else {
890 		fvco = (ulong)(refclk * (divn + 1) / (divm + 1));
891 	}
892 	debug("PLL%d : %s = %ld\n", pll_id, __func__, fvco);
893 
894 	return fvco;
895 }
896 
897 static ulong stm32mp1_read_pll_freq(struct stm32mp1_clk_priv *priv,
898 				    int pll_id, int div_id)
899 {
900 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
901 	int divy;
902 	ulong dfout;
903 	u32 cfgr2;
904 
905 	debug("%s(%d, %d)\n", __func__, pll_id, div_id);
906 	if (div_id >= _DIV_NB)
907 		return 0;
908 
909 	cfgr2 = readl(priv->base + pll[pll_id].pllxcfgr2);
910 	divy = (cfgr2 >> RCC_PLLNCFGR2_SHIFT(div_id)) & RCC_PLLNCFGR2_DIVX_MASK;
911 
912 	debug("PLL%d : cfgr2=%x DIVY=%d\n", pll_id, cfgr2, divy);
913 
914 	dfout = pll_get_fvco(priv, pll_id) / (divy + 1);
915 	debug("        => dfout = %d kHz\n", (u32)(dfout / 1000));
916 
917 	return dfout;
918 }
919 
920 static ulong stm32mp1_clk_get(struct stm32mp1_clk_priv *priv, int p)
921 {
922 	u32 reg;
923 	ulong clock = 0;
924 
925 	switch (p) {
926 	case _CK_MPU:
927 	/* MPU sub system */
928 		reg = readl(priv->base + RCC_MPCKSELR);
929 		switch (reg & RCC_SELR_SRC_MASK) {
930 		case RCC_MPCKSELR_HSI:
931 			clock = stm32mp1_clk_get_fixed(priv, _HSI);
932 			break;
933 		case RCC_MPCKSELR_HSE:
934 			clock = stm32mp1_clk_get_fixed(priv, _HSE);
935 			break;
936 		case RCC_MPCKSELR_PLL:
937 		case RCC_MPCKSELR_PLL_MPUDIV:
938 			clock = stm32mp1_read_pll_freq(priv, _PLL1, _DIV_P);
939 			if (p == RCC_MPCKSELR_PLL_MPUDIV) {
940 				reg = readl(priv->base + RCC_MPCKDIVR);
941 				clock /= stm32mp1_mpu_div[reg &
942 							  RCC_MPUDIV_MASK];
943 			}
944 			break;
945 		}
946 		break;
947 	/* AXI sub system */
948 	case _ACLK:
949 	case _HCLK2:
950 	case _HCLK6:
951 	case _PCLK4:
952 	case _PCLK5:
953 		reg = readl(priv->base + RCC_ASSCKSELR);
954 		switch (reg & RCC_SELR_SRC_MASK) {
955 		case RCC_ASSCKSELR_HSI:
956 			clock = stm32mp1_clk_get_fixed(priv, _HSI);
957 			break;
958 		case RCC_ASSCKSELR_HSE:
959 			clock = stm32mp1_clk_get_fixed(priv, _HSE);
960 			break;
961 		case RCC_ASSCKSELR_PLL:
962 			clock = stm32mp1_read_pll_freq(priv, _PLL2, _DIV_P);
963 			break;
964 		}
965 
966 		/* System clock divider */
967 		reg = readl(priv->base + RCC_AXIDIVR);
968 		clock /= stm32mp1_axi_div[reg & RCC_AXIDIV_MASK];
969 
970 		switch (p) {
971 		case _PCLK4:
972 			reg = readl(priv->base + RCC_APB4DIVR);
973 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
974 			break;
975 		case _PCLK5:
976 			reg = readl(priv->base + RCC_APB5DIVR);
977 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
978 			break;
979 		default:
980 			break;
981 		}
982 		break;
983 	/* MCU sub system */
984 	case _CK_MCU:
985 	case _PCLK1:
986 	case _PCLK2:
987 	case _PCLK3:
988 		reg = readl(priv->base + RCC_MSSCKSELR);
989 		switch (reg & RCC_SELR_SRC_MASK) {
990 		case RCC_MSSCKSELR_HSI:
991 			clock = stm32mp1_clk_get_fixed(priv, _HSI);
992 			break;
993 		case RCC_MSSCKSELR_HSE:
994 			clock = stm32mp1_clk_get_fixed(priv, _HSE);
995 			break;
996 		case RCC_MSSCKSELR_CSI:
997 			clock = stm32mp1_clk_get_fixed(priv, _CSI);
998 			break;
999 		case RCC_MSSCKSELR_PLL:
1000 			clock = stm32mp1_read_pll_freq(priv, _PLL3, _DIV_P);
1001 			break;
1002 		}
1003 
1004 		/* MCU clock divider */
1005 		reg = readl(priv->base + RCC_MCUDIVR);
1006 		clock >>= stm32mp1_mcu_div[reg & RCC_MCUDIV_MASK];
1007 
1008 		switch (p) {
1009 		case _PCLK1:
1010 			reg = readl(priv->base + RCC_APB1DIVR);
1011 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
1012 			break;
1013 		case _PCLK2:
1014 			reg = readl(priv->base + RCC_APB2DIVR);
1015 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
1016 			break;
1017 		case _PCLK3:
1018 			reg = readl(priv->base + RCC_APB3DIVR);
1019 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
1020 			break;
1021 		case _CK_MCU:
1022 		default:
1023 			break;
1024 		}
1025 		break;
1026 	case _CK_PER:
1027 		reg = readl(priv->base + RCC_CPERCKSELR);
1028 		switch (reg & RCC_SELR_SRC_MASK) {
1029 		case RCC_CPERCKSELR_HSI:
1030 			clock = stm32mp1_clk_get_fixed(priv, _HSI);
1031 			break;
1032 		case RCC_CPERCKSELR_HSE:
1033 			clock = stm32mp1_clk_get_fixed(priv, _HSE);
1034 			break;
1035 		case RCC_CPERCKSELR_CSI:
1036 			clock = stm32mp1_clk_get_fixed(priv, _CSI);
1037 			break;
1038 		}
1039 		break;
1040 	case _HSI:
1041 	case _HSI_KER:
1042 		clock = stm32mp1_clk_get_fixed(priv, _HSI);
1043 		break;
1044 	case _CSI:
1045 	case _CSI_KER:
1046 		clock = stm32mp1_clk_get_fixed(priv, _CSI);
1047 		break;
1048 	case _HSE:
1049 	case _HSE_KER:
1050 	case _HSE_KER_DIV2:
1051 		clock = stm32mp1_clk_get_fixed(priv, _HSE);
1052 		if (p == _HSE_KER_DIV2)
1053 			clock >>= 1;
1054 		break;
1055 	case _LSI:
1056 		clock = stm32mp1_clk_get_fixed(priv, _LSI);
1057 		break;
1058 	case _LSE:
1059 		clock = stm32mp1_clk_get_fixed(priv, _LSE);
1060 		break;
1061 	/* PLL */
1062 	case _PLL1_P:
1063 	case _PLL1_Q:
1064 	case _PLL1_R:
1065 		clock = stm32mp1_read_pll_freq(priv, _PLL1, p - _PLL1_P);
1066 		break;
1067 	case _PLL2_P:
1068 	case _PLL2_Q:
1069 	case _PLL2_R:
1070 		clock = stm32mp1_read_pll_freq(priv, _PLL2, p - _PLL2_P);
1071 		break;
1072 	case _PLL3_P:
1073 	case _PLL3_Q:
1074 	case _PLL3_R:
1075 		clock = stm32mp1_read_pll_freq(priv, _PLL3, p - _PLL3_P);
1076 		break;
1077 	case _PLL4_P:
1078 	case _PLL4_Q:
1079 	case _PLL4_R:
1080 		clock = stm32mp1_read_pll_freq(priv, _PLL4, p - _PLL4_P);
1081 		break;
1082 	/* other */
1083 	case _USB_PHY_48:
1084 		clock = 48000000;
1085 		break;
1086 	case _DSI_PHY:
1087 	{
1088 		struct clk clk;
1089 		struct udevice *dev = NULL;
1090 
1091 		if (!uclass_get_device_by_name(UCLASS_CLK, "ck_dsi_phy",
1092 					       &dev)) {
1093 			if (clk_request(dev, &clk)) {
1094 				pr_err("ck_dsi_phy request");
1095 			} else {
1096 				clk.id = 0;
1097 				clock = clk_get_rate(&clk);
1098 			}
1099 		}
1100 		break;
1101 	}
1102 	default:
1103 		break;
1104 	}
1105 
1106 	debug("%s(%d) clock = %lx : %ld kHz\n",
1107 	      __func__, p, clock, clock / 1000);
1108 
1109 	return clock;
1110 }
1111 
1112 static int stm32mp1_clk_enable(struct clk *clk)
1113 {
1114 	struct stm32mp1_clk_priv *priv = dev_get_priv(clk->dev);
1115 	const struct stm32mp1_clk_gate *gate = priv->data->gate;
1116 	int i = stm32mp1_clk_get_id(priv, clk->id);
1117 
1118 	if (i < 0)
1119 		return i;
1120 
1121 	if (gate[i].set_clr)
1122 		writel(BIT(gate[i].bit), priv->base + gate[i].offset);
1123 	else
1124 		setbits_le32(priv->base + gate[i].offset, BIT(gate[i].bit));
1125 
1126 	debug("%s: id clock %d has been enabled\n", __func__, (u32)clk->id);
1127 
1128 	return 0;
1129 }
1130 
1131 static int stm32mp1_clk_disable(struct clk *clk)
1132 {
1133 	struct stm32mp1_clk_priv *priv = dev_get_priv(clk->dev);
1134 	const struct stm32mp1_clk_gate *gate = priv->data->gate;
1135 	int i = stm32mp1_clk_get_id(priv, clk->id);
1136 
1137 	if (i < 0)
1138 		return i;
1139 
1140 	if (gate[i].set_clr)
1141 		writel(BIT(gate[i].bit),
1142 		       priv->base + gate[i].offset
1143 		       + RCC_MP_ENCLRR_OFFSET);
1144 	else
1145 		clrbits_le32(priv->base + gate[i].offset, BIT(gate[i].bit));
1146 
1147 	debug("%s: id clock %d has been disabled\n", __func__, (u32)clk->id);
1148 
1149 	return 0;
1150 }
1151 
1152 static ulong stm32mp1_clk_get_rate(struct clk *clk)
1153 {
1154 	struct stm32mp1_clk_priv *priv = dev_get_priv(clk->dev);
1155 	int p = stm32mp1_clk_get_parent(priv, clk->id);
1156 	ulong rate;
1157 
1158 	if (p < 0)
1159 		return 0;
1160 
1161 	rate = stm32mp1_clk_get(priv, p);
1162 
1163 #ifdef DEBUG
1164 	debug("%s: computed rate for id clock %d is %d (parent is %s)\n",
1165 	      __func__, (u32)clk->id, (u32)rate, stm32mp1_clk_parent_name[p]);
1166 #endif
1167 	return rate;
1168 }
1169 
1170 #ifdef STM32MP1_CLOCK_TREE_INIT
1171 static void stm32mp1_ls_osc_set(int enable, fdt_addr_t rcc, u32 offset,
1172 				u32 mask_on)
1173 {
1174 	u32 address = rcc + offset;
1175 
1176 	if (enable)
1177 		setbits_le32(address, mask_on);
1178 	else
1179 		clrbits_le32(address, mask_on);
1180 }
1181 
1182 static void stm32mp1_hs_ocs_set(int enable, fdt_addr_t rcc, u32 mask_on)
1183 {
1184 	writel(mask_on, rcc + (enable ? RCC_OCENSETR : RCC_OCENCLRR));
1185 }
1186 
1187 static int stm32mp1_osc_wait(int enable, fdt_addr_t rcc, u32 offset,
1188 			     u32 mask_rdy)
1189 {
1190 	u32 mask_test = 0;
1191 	u32 address = rcc + offset;
1192 	u32 val;
1193 	int ret;
1194 
1195 	if (enable)
1196 		mask_test = mask_rdy;
1197 
1198 	ret = readl_poll_timeout(address, val,
1199 				 (val & mask_rdy) == mask_test,
1200 				 TIMEOUT_1S);
1201 
1202 	if (ret)
1203 		pr_err("OSC %x @ %x timeout for enable=%d : 0x%x\n",
1204 		       mask_rdy, address, enable, readl(address));
1205 
1206 	return ret;
1207 }
1208 
1209 static void stm32mp1_lse_enable(fdt_addr_t rcc, int bypass, int digbyp,
1210 				int lsedrv)
1211 {
1212 	u32 value;
1213 
1214 	if (digbyp)
1215 		setbits_le32(rcc + RCC_BDCR, RCC_BDCR_DIGBYP);
1216 
1217 	if (bypass || digbyp)
1218 		setbits_le32(rcc + RCC_BDCR, RCC_BDCR_LSEBYP);
1219 
1220 	/*
1221 	 * warning: not recommended to switch directly from "high drive"
1222 	 * to "medium low drive", and vice-versa.
1223 	 */
1224 	value = (readl(rcc + RCC_BDCR) & RCC_BDCR_LSEDRV_MASK)
1225 		>> RCC_BDCR_LSEDRV_SHIFT;
1226 
1227 	while (value != lsedrv) {
1228 		if (value > lsedrv)
1229 			value--;
1230 		else
1231 			value++;
1232 
1233 		clrsetbits_le32(rcc + RCC_BDCR,
1234 				RCC_BDCR_LSEDRV_MASK,
1235 				value << RCC_BDCR_LSEDRV_SHIFT);
1236 	}
1237 
1238 	stm32mp1_ls_osc_set(1, rcc, RCC_BDCR, RCC_BDCR_LSEON);
1239 }
1240 
1241 static void stm32mp1_lse_wait(fdt_addr_t rcc)
1242 {
1243 	stm32mp1_osc_wait(1, rcc, RCC_BDCR, RCC_BDCR_LSERDY);
1244 }
1245 
1246 static void stm32mp1_lsi_set(fdt_addr_t rcc, int enable)
1247 {
1248 	stm32mp1_ls_osc_set(enable, rcc, RCC_RDLSICR, RCC_RDLSICR_LSION);
1249 	stm32mp1_osc_wait(enable, rcc, RCC_RDLSICR, RCC_RDLSICR_LSIRDY);
1250 }
1251 
1252 static void stm32mp1_hse_enable(fdt_addr_t rcc, int bypass, int digbyp, int css)
1253 {
1254 	if (digbyp)
1255 		writel(RCC_OCENR_DIGBYP, rcc + RCC_OCENSETR);
1256 	if (bypass || digbyp)
1257 		writel(RCC_OCENR_HSEBYP, rcc + RCC_OCENSETR);
1258 
1259 	stm32mp1_hs_ocs_set(1, rcc, RCC_OCENR_HSEON);
1260 	stm32mp1_osc_wait(1, rcc, RCC_OCRDYR, RCC_OCRDYR_HSERDY);
1261 
1262 	if (css)
1263 		writel(RCC_OCENR_HSECSSON, rcc + RCC_OCENSETR);
1264 }
1265 
1266 static void stm32mp1_csi_set(fdt_addr_t rcc, int enable)
1267 {
1268 	stm32mp1_hs_ocs_set(enable, rcc, RCC_OCENR_CSION);
1269 	stm32mp1_osc_wait(enable, rcc, RCC_OCRDYR, RCC_OCRDYR_CSIRDY);
1270 }
1271 
1272 static void stm32mp1_hsi_set(fdt_addr_t rcc, int enable)
1273 {
1274 	stm32mp1_hs_ocs_set(enable, rcc, RCC_OCENR_HSION);
1275 	stm32mp1_osc_wait(enable, rcc, RCC_OCRDYR, RCC_OCRDYR_HSIRDY);
1276 }
1277 
1278 static int stm32mp1_set_hsidiv(fdt_addr_t rcc, u8 hsidiv)
1279 {
1280 	u32 address = rcc + RCC_OCRDYR;
1281 	u32 val;
1282 	int ret;
1283 
1284 	clrsetbits_le32(rcc + RCC_HSICFGR,
1285 			RCC_HSICFGR_HSIDIV_MASK,
1286 			RCC_HSICFGR_HSIDIV_MASK & hsidiv);
1287 
1288 	ret = readl_poll_timeout(address, val,
1289 				 val & RCC_OCRDYR_HSIDIVRDY,
1290 				 TIMEOUT_200MS);
1291 	if (ret)
1292 		pr_err("HSIDIV failed @ 0x%x: 0x%x\n",
1293 		       address, readl(address));
1294 
1295 	return ret;
1296 }
1297 
1298 static int stm32mp1_hsidiv(fdt_addr_t rcc, ulong hsifreq)
1299 {
1300 	u8 hsidiv;
1301 	u32 hsidivfreq = MAX_HSI_HZ;
1302 
1303 	for (hsidiv = 0; hsidiv < 4; hsidiv++,
1304 	     hsidivfreq = hsidivfreq / 2)
1305 		if (hsidivfreq == hsifreq)
1306 			break;
1307 
1308 	if (hsidiv == 4) {
1309 		pr_err("clk-hsi frequency invalid");
1310 		return -1;
1311 	}
1312 
1313 	if (hsidiv > 0)
1314 		return stm32mp1_set_hsidiv(rcc, hsidiv);
1315 
1316 	return 0;
1317 }
1318 
1319 static void pll_start(struct stm32mp1_clk_priv *priv, int pll_id)
1320 {
1321 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
1322 
1323 	clrsetbits_le32(priv->base + pll[pll_id].pllxcr,
1324 			RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN |
1325 			RCC_PLLNCR_DIVREN,
1326 			RCC_PLLNCR_PLLON);
1327 }
1328 
1329 static int pll_output(struct stm32mp1_clk_priv *priv, int pll_id, int output)
1330 {
1331 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
1332 	u32 pllxcr = priv->base + pll[pll_id].pllxcr;
1333 	u32 val;
1334 	int ret;
1335 
1336 	ret = readl_poll_timeout(pllxcr, val, val & RCC_PLLNCR_PLLRDY,
1337 				 TIMEOUT_200MS);
1338 
1339 	if (ret) {
1340 		pr_err("PLL%d start failed @ 0x%x: 0x%x\n",
1341 		       pll_id, pllxcr, readl(pllxcr));
1342 		return ret;
1343 	}
1344 
1345 	/* start the requested output */
1346 	setbits_le32(pllxcr, output << RCC_PLLNCR_DIVEN_SHIFT);
1347 
1348 	return 0;
1349 }
1350 
1351 static int pll_stop(struct stm32mp1_clk_priv *priv, int pll_id)
1352 {
1353 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
1354 	u32 pllxcr = priv->base + pll[pll_id].pllxcr;
1355 	u32 val;
1356 
1357 	/* stop all output */
1358 	clrbits_le32(pllxcr,
1359 		     RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN | RCC_PLLNCR_DIVREN);
1360 
1361 	/* stop PLL */
1362 	clrbits_le32(pllxcr, RCC_PLLNCR_PLLON);
1363 
1364 	/* wait PLL stopped */
1365 	return readl_poll_timeout(pllxcr, val, (val & RCC_PLLNCR_PLLRDY) == 0,
1366 				  TIMEOUT_200MS);
1367 }
1368 
1369 static void pll_config_output(struct stm32mp1_clk_priv *priv,
1370 			      int pll_id, u32 *pllcfg)
1371 {
1372 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
1373 	fdt_addr_t rcc = priv->base;
1374 	u32 value;
1375 
1376 	value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT)
1377 		& RCC_PLLNCFGR2_DIVP_MASK;
1378 	value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT)
1379 		 & RCC_PLLNCFGR2_DIVQ_MASK;
1380 	value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT)
1381 		 & RCC_PLLNCFGR2_DIVR_MASK;
1382 	writel(value, rcc + pll[pll_id].pllxcfgr2);
1383 }
1384 
1385 static int pll_config(struct stm32mp1_clk_priv *priv, int pll_id,
1386 		      u32 *pllcfg, u32 fracv)
1387 {
1388 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
1389 	fdt_addr_t rcc = priv->base;
1390 	enum stm32mp1_plltype type = pll[pll_id].plltype;
1391 	int src;
1392 	ulong refclk;
1393 	u8 ifrge = 0;
1394 	u32 value;
1395 
1396 	src = readl(priv->base + pll[pll_id].rckxselr) & RCC_SELR_SRC_MASK;
1397 
1398 	refclk = stm32mp1_clk_get_fixed(priv, pll[pll_id].refclk[src]) /
1399 		 (pllcfg[PLLCFG_M] + 1);
1400 
1401 	if (refclk < (stm32mp1_pll[type].refclk_min * 1000000) ||
1402 	    refclk > (stm32mp1_pll[type].refclk_max * 1000000)) {
1403 		debug("invalid refclk = %x\n", (u32)refclk);
1404 		return -EINVAL;
1405 	}
1406 	if (type == PLL_800 && refclk >= 8000000)
1407 		ifrge = 1;
1408 
1409 	value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT)
1410 		 & RCC_PLLNCFGR1_DIVN_MASK;
1411 	value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT)
1412 		 & RCC_PLLNCFGR1_DIVM_MASK;
1413 	value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT)
1414 		 & RCC_PLLNCFGR1_IFRGE_MASK;
1415 	writel(value, rcc + pll[pll_id].pllxcfgr1);
1416 
1417 	/* fractional configuration: load sigma-delta modulator (SDM) */
1418 
1419 	/* Write into FRACV the new fractional value , and FRACLE to 0 */
1420 	writel(fracv << RCC_PLLNFRACR_FRACV_SHIFT,
1421 	       rcc + pll[pll_id].pllxfracr);
1422 
1423 	/* Write FRACLE to 1 : FRACV value is loaded into the SDM */
1424 	setbits_le32(rcc + pll[pll_id].pllxfracr,
1425 		     RCC_PLLNFRACR_FRACLE);
1426 
1427 	pll_config_output(priv, pll_id, pllcfg);
1428 
1429 	return 0;
1430 }
1431 
1432 static void pll_csg(struct stm32mp1_clk_priv *priv, int pll_id, u32 *csg)
1433 {
1434 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
1435 	u32 pllxcsg;
1436 
1437 	pllxcsg = ((csg[PLLCSG_MOD_PER] << RCC_PLLNCSGR_MOD_PER_SHIFT) &
1438 		    RCC_PLLNCSGR_MOD_PER_MASK) |
1439 		  ((csg[PLLCSG_INC_STEP] << RCC_PLLNCSGR_INC_STEP_SHIFT) &
1440 		    RCC_PLLNCSGR_INC_STEP_MASK) |
1441 		  ((csg[PLLCSG_SSCG_MODE] << RCC_PLLNCSGR_SSCG_MODE_SHIFT) &
1442 		    RCC_PLLNCSGR_SSCG_MODE_MASK);
1443 
1444 	writel(pllxcsg, priv->base + pll[pll_id].pllxcsgr);
1445 
1446 	setbits_le32(priv->base + pll[pll_id].pllxcr, RCC_PLLNCR_SSCG_CTRL);
1447 }
1448 
1449 static int set_clksrc(struct stm32mp1_clk_priv *priv, unsigned int clksrc)
1450 {
1451 	u32 address = priv->base + (clksrc >> 4);
1452 	u32 val;
1453 	int ret;
1454 
1455 	clrsetbits_le32(address, RCC_SELR_SRC_MASK, clksrc & RCC_SELR_SRC_MASK);
1456 	ret = readl_poll_timeout(address, val, val & RCC_SELR_SRCRDY,
1457 				 TIMEOUT_200MS);
1458 	if (ret)
1459 		pr_err("CLKSRC %x start failed @ 0x%x: 0x%x\n",
1460 		       clksrc, address, readl(address));
1461 
1462 	return ret;
1463 }
1464 
1465 static void stgen_config(struct stm32mp1_clk_priv *priv)
1466 {
1467 	int p;
1468 	u32 stgenc, cntfid0;
1469 	ulong rate;
1470 
1471 	stgenc = (u32)syscon_get_first_range(STM32MP_SYSCON_STGEN);
1472 
1473 	cntfid0 = readl(stgenc + STGENC_CNTFID0);
1474 	p = stm32mp1_clk_get_parent(priv, STGEN_K);
1475 	rate = stm32mp1_clk_get(priv, p);
1476 
1477 	if (cntfid0 != rate) {
1478 		u64 counter;
1479 
1480 		pr_debug("System Generic Counter (STGEN) update\n");
1481 		clrbits_le32(stgenc + STGENC_CNTCR, STGENC_CNTCR_EN);
1482 		counter = (u64)readl(stgenc + STGENC_CNTCVL);
1483 		counter |= ((u64)(readl(stgenc + STGENC_CNTCVU))) << 32;
1484 		counter = lldiv(counter * (u64)rate, cntfid0);
1485 		writel((u32)counter, stgenc + STGENC_CNTCVL);
1486 		writel((u32)(counter >> 32), stgenc + STGENC_CNTCVU);
1487 		writel(rate, stgenc + STGENC_CNTFID0);
1488 		setbits_le32(stgenc + STGENC_CNTCR, STGENC_CNTCR_EN);
1489 
1490 		__asm__ volatile("mcr p15, 0, %0, c14, c0, 0" : : "r" (rate));
1491 
1492 		/* need to update gd->arch.timer_rate_hz with new frequency */
1493 		timer_init();
1494 		pr_debug("gd->arch.timer_rate_hz = %x\n",
1495 			 (u32)gd->arch.timer_rate_hz);
1496 		pr_debug("Tick = %x\n", (u32)(get_ticks()));
1497 	}
1498 }
1499 
1500 static int set_clkdiv(unsigned int clkdiv, u32 address)
1501 {
1502 	u32 val;
1503 	int ret;
1504 
1505 	clrsetbits_le32(address, RCC_DIVR_DIV_MASK, clkdiv & RCC_DIVR_DIV_MASK);
1506 	ret = readl_poll_timeout(address, val, val & RCC_DIVR_DIVRDY,
1507 				 TIMEOUT_200MS);
1508 	if (ret)
1509 		pr_err("CLKDIV %x start failed @ 0x%x: 0x%x\n",
1510 		       clkdiv, address, readl(address));
1511 
1512 	return ret;
1513 }
1514 
1515 static void stm32mp1_mco_csg(struct stm32mp1_clk_priv *priv,
1516 			     u32 clksrc, u32 clkdiv)
1517 {
1518 	u32 address = priv->base + (clksrc >> 4);
1519 
1520 	/*
1521 	 * binding clksrc : bit15-4 offset
1522 	 *                  bit3:   disable
1523 	 *                  bit2-0: MCOSEL[2:0]
1524 	 */
1525 	if (clksrc & 0x8) {
1526 		clrbits_le32(address, RCC_MCOCFG_MCOON);
1527 	} else {
1528 		clrsetbits_le32(address,
1529 				RCC_MCOCFG_MCOSRC_MASK,
1530 				clksrc & RCC_MCOCFG_MCOSRC_MASK);
1531 		clrsetbits_le32(address,
1532 				RCC_MCOCFG_MCODIV_MASK,
1533 				clkdiv << RCC_MCOCFG_MCODIV_SHIFT);
1534 		setbits_le32(address, RCC_MCOCFG_MCOON);
1535 	}
1536 }
1537 
1538 static void set_rtcsrc(struct stm32mp1_clk_priv *priv,
1539 		       unsigned int clksrc,
1540 		       int lse_css)
1541 {
1542 	u32 address = priv->base + RCC_BDCR;
1543 
1544 	if (readl(address) & RCC_BDCR_RTCCKEN)
1545 		goto skip_rtc;
1546 
1547 	if (clksrc == CLK_RTC_DISABLED)
1548 		goto skip_rtc;
1549 
1550 	clrsetbits_le32(address,
1551 			RCC_BDCR_RTCSRC_MASK,
1552 			clksrc << RCC_BDCR_RTCSRC_SHIFT);
1553 
1554 	setbits_le32(address, RCC_BDCR_RTCCKEN);
1555 
1556 skip_rtc:
1557 	if (lse_css)
1558 		setbits_le32(address, RCC_BDCR_LSECSSON);
1559 }
1560 
1561 static void pkcs_config(struct stm32mp1_clk_priv *priv, u32 pkcs)
1562 {
1563 	u32 address = priv->base + ((pkcs >> 4) & 0xFFF);
1564 	u32 value = pkcs & 0xF;
1565 	u32 mask = 0xF;
1566 
1567 	if (pkcs & BIT(31)) {
1568 		mask <<= 4;
1569 		value <<= 4;
1570 	}
1571 	clrsetbits_le32(address, mask, value);
1572 }
1573 
1574 static int stm32mp1_clktree(struct udevice *dev)
1575 {
1576 	struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
1577 	fdt_addr_t rcc = priv->base;
1578 	unsigned int clksrc[CLKSRC_NB];
1579 	unsigned int clkdiv[CLKDIV_NB];
1580 	unsigned int pllcfg[_PLL_NB][PLLCFG_NB];
1581 	ofnode plloff[_PLL_NB];
1582 	int ret;
1583 	int i, len;
1584 	int lse_css = 0;
1585 	const u32 *pkcs_cell;
1586 
1587 	/* check mandatory field */
1588 	ret = dev_read_u32_array(dev, "st,clksrc", clksrc, CLKSRC_NB);
1589 	if (ret < 0) {
1590 		debug("field st,clksrc invalid: error %d\n", ret);
1591 		return -FDT_ERR_NOTFOUND;
1592 	}
1593 
1594 	ret = dev_read_u32_array(dev, "st,clkdiv", clkdiv, CLKDIV_NB);
1595 	if (ret < 0) {
1596 		debug("field st,clkdiv invalid: error %d\n", ret);
1597 		return -FDT_ERR_NOTFOUND;
1598 	}
1599 
1600 	/* check mandatory field in each pll */
1601 	for (i = 0; i < _PLL_NB; i++) {
1602 		char name[12];
1603 
1604 		sprintf(name, "st,pll@%d", i);
1605 		plloff[i] = dev_read_subnode(dev, name);
1606 		if (!ofnode_valid(plloff[i]))
1607 			continue;
1608 		ret = ofnode_read_u32_array(plloff[i], "cfg",
1609 					    pllcfg[i], PLLCFG_NB);
1610 		if (ret < 0) {
1611 			debug("field cfg invalid: error %d\n", ret);
1612 			return -FDT_ERR_NOTFOUND;
1613 		}
1614 	}
1615 
1616 	debug("configuration MCO\n");
1617 	stm32mp1_mco_csg(priv, clksrc[CLKSRC_MCO1], clkdiv[CLKDIV_MCO1]);
1618 	stm32mp1_mco_csg(priv, clksrc[CLKSRC_MCO2], clkdiv[CLKDIV_MCO2]);
1619 
1620 	debug("switch ON osillator\n");
1621 	/*
1622 	 * switch ON oscillator found in device-tree,
1623 	 * HSI already ON after bootrom
1624 	 */
1625 	if (priv->osc[_LSI])
1626 		stm32mp1_lsi_set(rcc, 1);
1627 
1628 	if (priv->osc[_LSE]) {
1629 		int bypass, digbyp, lsedrv;
1630 		struct udevice *dev = priv->osc_dev[_LSE];
1631 
1632 		bypass = dev_read_bool(dev, "st,bypass");
1633 		digbyp = dev_read_bool(dev, "st,digbypass");
1634 		lse_css = dev_read_bool(dev, "st,css");
1635 		lsedrv = dev_read_u32_default(dev, "st,drive",
1636 					      LSEDRV_MEDIUM_HIGH);
1637 
1638 		stm32mp1_lse_enable(rcc, bypass, digbyp, lsedrv);
1639 	}
1640 
1641 	if (priv->osc[_HSE]) {
1642 		int bypass, digbyp, css;
1643 		struct udevice *dev = priv->osc_dev[_HSE];
1644 
1645 		bypass = dev_read_bool(dev, "st,bypass");
1646 		digbyp = dev_read_bool(dev, "st,digbypass");
1647 		css = dev_read_bool(dev, "st,css");
1648 
1649 		stm32mp1_hse_enable(rcc, bypass, digbyp, css);
1650 	}
1651 	/* CSI is mandatory for automatic I/O compensation (SYSCFG_CMPCR)
1652 	 * => switch on CSI even if node is not present in device tree
1653 	 */
1654 	stm32mp1_csi_set(rcc, 1);
1655 
1656 	/* come back to HSI */
1657 	debug("come back to HSI\n");
1658 	set_clksrc(priv, CLK_MPU_HSI);
1659 	set_clksrc(priv, CLK_AXI_HSI);
1660 	set_clksrc(priv, CLK_MCU_HSI);
1661 
1662 	debug("pll stop\n");
1663 	for (i = 0; i < _PLL_NB; i++)
1664 		pll_stop(priv, i);
1665 
1666 	/* configure HSIDIV */
1667 	debug("configure HSIDIV\n");
1668 	if (priv->osc[_HSI]) {
1669 		stm32mp1_hsidiv(rcc, priv->osc[_HSI]);
1670 		stgen_config(priv);
1671 	}
1672 
1673 	/* select DIV */
1674 	debug("select DIV\n");
1675 	/* no ready bit when MPUSRC != CLK_MPU_PLL1P_DIV, MPUDIV is disabled */
1676 	writel(clkdiv[CLKDIV_MPU] & RCC_DIVR_DIV_MASK, rcc + RCC_MPCKDIVR);
1677 	set_clkdiv(clkdiv[CLKDIV_AXI], rcc + RCC_AXIDIVR);
1678 	set_clkdiv(clkdiv[CLKDIV_APB4], rcc + RCC_APB4DIVR);
1679 	set_clkdiv(clkdiv[CLKDIV_APB5], rcc + RCC_APB5DIVR);
1680 	set_clkdiv(clkdiv[CLKDIV_MCU], rcc + RCC_MCUDIVR);
1681 	set_clkdiv(clkdiv[CLKDIV_APB1], rcc + RCC_APB1DIVR);
1682 	set_clkdiv(clkdiv[CLKDIV_APB2], rcc + RCC_APB2DIVR);
1683 	set_clkdiv(clkdiv[CLKDIV_APB3], rcc + RCC_APB3DIVR);
1684 
1685 	/* no ready bit for RTC */
1686 	writel(clkdiv[CLKDIV_RTC] & RCC_DIVR_DIV_MASK, rcc + RCC_RTCDIVR);
1687 
1688 	/* configure PLLs source */
1689 	debug("configure PLLs source\n");
1690 	set_clksrc(priv, clksrc[CLKSRC_PLL12]);
1691 	set_clksrc(priv, clksrc[CLKSRC_PLL3]);
1692 	set_clksrc(priv, clksrc[CLKSRC_PLL4]);
1693 
1694 	/* configure and start PLLs */
1695 	debug("configure PLLs\n");
1696 	for (i = 0; i < _PLL_NB; i++) {
1697 		u32 fracv;
1698 		u32 csg[PLLCSG_NB];
1699 
1700 		debug("configure PLL %d @ %d\n", i,
1701 		      ofnode_to_offset(plloff[i]));
1702 		if (!ofnode_valid(plloff[i]))
1703 			continue;
1704 
1705 		fracv = ofnode_read_u32_default(plloff[i], "frac", 0);
1706 		pll_config(priv, i, pllcfg[i], fracv);
1707 		ret = ofnode_read_u32_array(plloff[i], "csg", csg, PLLCSG_NB);
1708 		if (!ret) {
1709 			pll_csg(priv, i, csg);
1710 		} else if (ret != -FDT_ERR_NOTFOUND) {
1711 			debug("invalid csg node for pll@%d res=%d\n", i, ret);
1712 			return ret;
1713 		}
1714 		pll_start(priv, i);
1715 	}
1716 
1717 	/* wait and start PLLs ouptut when ready */
1718 	for (i = 0; i < _PLL_NB; i++) {
1719 		if (!ofnode_valid(plloff[i]))
1720 			continue;
1721 		debug("output PLL %d\n", i);
1722 		pll_output(priv, i, pllcfg[i][PLLCFG_O]);
1723 	}
1724 
1725 	/* wait LSE ready before to use it */
1726 	if (priv->osc[_LSE])
1727 		stm32mp1_lse_wait(rcc);
1728 
1729 	/* configure with expected clock source */
1730 	debug("CLKSRC\n");
1731 	set_clksrc(priv, clksrc[CLKSRC_MPU]);
1732 	set_clksrc(priv, clksrc[CLKSRC_AXI]);
1733 	set_clksrc(priv, clksrc[CLKSRC_MCU]);
1734 	set_rtcsrc(priv, clksrc[CLKSRC_RTC], lse_css);
1735 
1736 	/* configure PKCK */
1737 	debug("PKCK\n");
1738 	pkcs_cell = dev_read_prop(dev, "st,pkcs", &len);
1739 	if (pkcs_cell) {
1740 		bool ckper_disabled = false;
1741 
1742 		for (i = 0; i < len / sizeof(u32); i++) {
1743 			u32 pkcs = (u32)fdt32_to_cpu(pkcs_cell[i]);
1744 
1745 			if (pkcs == CLK_CKPER_DISABLED) {
1746 				ckper_disabled = true;
1747 				continue;
1748 			}
1749 			pkcs_config(priv, pkcs);
1750 		}
1751 		/* CKPER is source for some peripheral clock
1752 		 * (FMC-NAND / QPSI-NOR) and switching source is allowed
1753 		 * only if previous clock is still ON
1754 		 * => deactivated CKPER only after switching clock
1755 		 */
1756 		if (ckper_disabled)
1757 			pkcs_config(priv, CLK_CKPER_DISABLED);
1758 	}
1759 
1760 	/* STGEN clock source can change with CLK_STGEN_XXX */
1761 	stgen_config(priv);
1762 
1763 	debug("oscillator off\n");
1764 	/* switch OFF HSI if not found in device-tree */
1765 	if (!priv->osc[_HSI])
1766 		stm32mp1_hsi_set(rcc, 0);
1767 
1768 	/* Software Self-Refresh mode (SSR) during DDR initilialization */
1769 	clrsetbits_le32(priv->base + RCC_DDRITFCR,
1770 			RCC_DDRITFCR_DDRCKMOD_MASK,
1771 			RCC_DDRITFCR_DDRCKMOD_SSR <<
1772 			RCC_DDRITFCR_DDRCKMOD_SHIFT);
1773 
1774 	return 0;
1775 }
1776 #endif /* STM32MP1_CLOCK_TREE_INIT */
1777 
1778 static int pll_set_output_rate(struct udevice *dev,
1779 			       int pll_id,
1780 			       int div_id,
1781 			       unsigned long clk_rate)
1782 {
1783 	struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
1784 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
1785 	u32 pllxcr = priv->base + pll[pll_id].pllxcr;
1786 	int div;
1787 	ulong fvco;
1788 
1789 	if (div_id > _DIV_NB)
1790 		return -EINVAL;
1791 
1792 	fvco = pll_get_fvco(priv, pll_id);
1793 
1794 	if (fvco <= clk_rate)
1795 		div = 1;
1796 	else
1797 		div = DIV_ROUND_UP(fvco, clk_rate);
1798 
1799 	if (div > 128)
1800 		div = 128;
1801 
1802 	debug("fvco = %ld, clk_rate = %ld, div=%d\n", fvco, clk_rate, div);
1803 	/* stop the requested output */
1804 	clrbits_le32(pllxcr, 0x1 << div_id << RCC_PLLNCR_DIVEN_SHIFT);
1805 	/* change divider */
1806 	clrsetbits_le32(priv->base + pll[pll_id].pllxcfgr2,
1807 			RCC_PLLNCFGR2_DIVX_MASK << RCC_PLLNCFGR2_SHIFT(div_id),
1808 			(div - 1) << RCC_PLLNCFGR2_SHIFT(div_id));
1809 	/* start the requested output */
1810 	setbits_le32(pllxcr, 0x1 << div_id << RCC_PLLNCR_DIVEN_SHIFT);
1811 
1812 	return 0;
1813 }
1814 
1815 static ulong stm32mp1_clk_set_rate(struct clk *clk, unsigned long clk_rate)
1816 {
1817 	struct stm32mp1_clk_priv *priv = dev_get_priv(clk->dev);
1818 	int p;
1819 
1820 	switch (clk->id) {
1821 	case LTDC_PX:
1822 	case DSI_PX:
1823 		break;
1824 	default:
1825 		pr_err("not supported");
1826 		return -EINVAL;
1827 	}
1828 
1829 	p = stm32mp1_clk_get_parent(priv, clk->id);
1830 	if (p < 0)
1831 		return -EINVAL;
1832 
1833 	switch (p) {
1834 	case _PLL4_Q:
1835 		/* for LTDC_PX and DSI_PX case */
1836 		return pll_set_output_rate(clk->dev, _PLL4, _DIV_Q, clk_rate);
1837 	}
1838 
1839 	return -EINVAL;
1840 }
1841 
1842 static void stm32mp1_osc_clk_init(const char *name,
1843 				  struct stm32mp1_clk_priv *priv,
1844 				  int index)
1845 {
1846 	struct clk clk;
1847 	struct udevice *dev = NULL;
1848 
1849 	priv->osc[index] = 0;
1850 	clk.id = 0;
1851 	if (!uclass_get_device_by_name(UCLASS_CLK, name, &dev)) {
1852 		if (clk_request(dev, &clk))
1853 			pr_err("%s request", name);
1854 		else
1855 			priv->osc[index] = clk_get_rate(&clk);
1856 	}
1857 	priv->osc_dev[index] = dev;
1858 }
1859 
1860 static void stm32mp1_osc_init(struct udevice *dev)
1861 {
1862 	struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
1863 	int i;
1864 	const char *name[NB_OSC] = {
1865 		[_LSI] = "clk-lsi",
1866 		[_LSE] = "clk-lse",
1867 		[_HSI] = "clk-hsi",
1868 		[_HSE] = "clk-hse",
1869 		[_CSI] = "clk-csi",
1870 		[_I2S_CKIN] = "i2s_ckin",
1871 	};
1872 
1873 	for (i = 0; i < NB_OSC; i++) {
1874 		stm32mp1_osc_clk_init(name[i], priv, i);
1875 		debug("%d: %s => %x\n", i, name[i], (u32)priv->osc[i]);
1876 	}
1877 }
1878 
1879 static void  __maybe_unused stm32mp1_clk_dump(struct stm32mp1_clk_priv *priv)
1880 {
1881 	char buf[32];
1882 	int i, s, p;
1883 
1884 	printf("Clocks:\n");
1885 	for (i = 0; i < _PARENT_NB; i++) {
1886 		printf("- %s : %s MHz\n",
1887 		       stm32mp1_clk_parent_name[i],
1888 		       strmhz(buf, stm32mp1_clk_get(priv, i)));
1889 	}
1890 	printf("Source Clocks:\n");
1891 	for (i = 0; i < _PARENT_SEL_NB; i++) {
1892 		p = (readl(priv->base + priv->data->sel[i].offset) >>
1893 		     priv->data->sel[i].src) & priv->data->sel[i].msk;
1894 		if (p < priv->data->sel[i].nb_parent) {
1895 			s = priv->data->sel[i].parent[p];
1896 			printf("- %s(%d) => parent %s(%d)\n",
1897 			       stm32mp1_clk_parent_sel_name[i], i,
1898 			       stm32mp1_clk_parent_name[s], s);
1899 		} else {
1900 			printf("- %s(%d) => parent index %d is invalid\n",
1901 			       stm32mp1_clk_parent_sel_name[i], i, p);
1902 		}
1903 	}
1904 }
1905 
1906 #ifdef CONFIG_CMD_CLK
1907 int soc_clk_dump(void)
1908 {
1909 	struct udevice *dev;
1910 	struct stm32mp1_clk_priv *priv;
1911 	int ret;
1912 
1913 	ret = uclass_get_device_by_driver(UCLASS_CLK,
1914 					  DM_GET_DRIVER(stm32mp1_clock),
1915 					  &dev);
1916 	if (ret)
1917 		return ret;
1918 
1919 	priv = dev_get_priv(dev);
1920 
1921 	stm32mp1_clk_dump(priv);
1922 
1923 	return 0;
1924 }
1925 #endif
1926 
1927 static int stm32mp1_clk_probe(struct udevice *dev)
1928 {
1929 	int result = 0;
1930 	struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
1931 
1932 	priv->base = dev_read_addr(dev->parent);
1933 	if (priv->base == FDT_ADDR_T_NONE)
1934 		return -EINVAL;
1935 
1936 	priv->data = (void *)&stm32mp1_data;
1937 
1938 	if (!priv->data->gate || !priv->data->sel ||
1939 	    !priv->data->pll)
1940 		return -EINVAL;
1941 
1942 	stm32mp1_osc_init(dev);
1943 
1944 #ifdef STM32MP1_CLOCK_TREE_INIT
1945 	/* clock tree init is done only one time, before relocation */
1946 	if (!(gd->flags & GD_FLG_RELOC))
1947 		result = stm32mp1_clktree(dev);
1948 #endif
1949 
1950 #ifndef CONFIG_SPL_BUILD
1951 #if defined(DEBUG)
1952 	/* display debug information for probe after relocation */
1953 	if (gd->flags & GD_FLG_RELOC)
1954 		stm32mp1_clk_dump(priv);
1955 #endif
1956 
1957 #if defined(CONFIG_DISPLAY_CPUINFO)
1958 	if (gd->flags & GD_FLG_RELOC) {
1959 		char buf[32];
1960 
1961 		printf("Clocks:\n");
1962 		printf("- MPU : %s MHz\n",
1963 		       strmhz(buf, stm32mp1_clk_get(priv, _CK_MPU)));
1964 		printf("- MCU : %s MHz\n",
1965 		       strmhz(buf, stm32mp1_clk_get(priv, _CK_MCU)));
1966 		printf("- AXI : %s MHz\n",
1967 		       strmhz(buf, stm32mp1_clk_get(priv, _ACLK)));
1968 		printf("- PER : %s MHz\n",
1969 		       strmhz(buf, stm32mp1_clk_get(priv, _CK_PER)));
1970 		/* DDRPHYC father */
1971 		printf("- DDR : %s MHz\n",
1972 		       strmhz(buf, stm32mp1_clk_get(priv, _PLL2_R)));
1973 	}
1974 #endif /* CONFIG_DISPLAY_CPUINFO */
1975 #endif
1976 
1977 	return result;
1978 }
1979 
1980 static const struct clk_ops stm32mp1_clk_ops = {
1981 	.enable = stm32mp1_clk_enable,
1982 	.disable = stm32mp1_clk_disable,
1983 	.get_rate = stm32mp1_clk_get_rate,
1984 	.set_rate = stm32mp1_clk_set_rate,
1985 };
1986 
1987 U_BOOT_DRIVER(stm32mp1_clock) = {
1988 	.name = "stm32mp1_clk",
1989 	.id = UCLASS_CLK,
1990 	.ops = &stm32mp1_clk_ops,
1991 	.priv_auto_alloc_size = sizeof(struct stm32mp1_clk_priv),
1992 	.probe = stm32mp1_clk_probe,
1993 };
1994