xref: /openbmc/u-boot/drivers/clk/clk_stm32mp1.c (revision e74b74c52876d776dda7a7ee5e2a8d555eaa5c4f)
1 // SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
2 /*
3  * Copyright (C) 2018, STMicroelectronics - All Rights Reserved
4  */
5 
6 #include <common.h>
7 #include <clk-uclass.h>
8 #include <div64.h>
9 #include <dm.h>
10 #include <regmap.h>
11 #include <spl.h>
12 #include <syscon.h>
13 #include <linux/io.h>
14 #include <linux/iopoll.h>
15 #include <dt-bindings/clock/stm32mp1-clks.h>
16 #include <dt-bindings/clock/stm32mp1-clksrc.h>
17 
18 #if !defined(CONFIG_SPL) || defined(CONFIG_SPL_BUILD)
19 /* activate clock tree initialization in the driver */
20 #define STM32MP1_CLOCK_TREE_INIT
21 #endif
22 
23 #define MAX_HSI_HZ		64000000
24 
25 /* TIMEOUT */
26 #define TIMEOUT_200MS		200000
27 #define TIMEOUT_1S		1000000
28 
29 /* STGEN registers */
30 #define STGENC_CNTCR		0x00
31 #define STGENC_CNTSR		0x04
32 #define STGENC_CNTCVL		0x08
33 #define STGENC_CNTCVU		0x0C
34 #define STGENC_CNTFID0		0x20
35 
36 #define STGENC_CNTCR_EN		BIT(0)
37 
38 /* RCC registers */
39 #define RCC_OCENSETR		0x0C
40 #define RCC_OCENCLRR		0x10
41 #define RCC_HSICFGR		0x18
42 #define RCC_MPCKSELR		0x20
43 #define RCC_ASSCKSELR		0x24
44 #define RCC_RCK12SELR		0x28
45 #define RCC_MPCKDIVR		0x2C
46 #define RCC_AXIDIVR		0x30
47 #define RCC_APB4DIVR		0x3C
48 #define RCC_APB5DIVR		0x40
49 #define RCC_RTCDIVR		0x44
50 #define RCC_MSSCKSELR		0x48
51 #define RCC_PLL1CR		0x80
52 #define RCC_PLL1CFGR1		0x84
53 #define RCC_PLL1CFGR2		0x88
54 #define RCC_PLL1FRACR		0x8C
55 #define RCC_PLL1CSGR		0x90
56 #define RCC_PLL2CR		0x94
57 #define RCC_PLL2CFGR1		0x98
58 #define RCC_PLL2CFGR2		0x9C
59 #define RCC_PLL2FRACR		0xA0
60 #define RCC_PLL2CSGR		0xA4
61 #define RCC_I2C46CKSELR		0xC0
62 #define RCC_CPERCKSELR		0xD0
63 #define RCC_STGENCKSELR		0xD4
64 #define RCC_DDRITFCR		0xD8
65 #define RCC_BDCR		0x140
66 #define RCC_RDLSICR		0x144
67 #define RCC_MP_APB4ENSETR	0x200
68 #define RCC_MP_APB5ENSETR	0x208
69 #define RCC_MP_AHB5ENSETR	0x210
70 #define RCC_MP_AHB6ENSETR	0x218
71 #define RCC_OCRDYR		0x808
72 #define RCC_DBGCFGR		0x80C
73 #define RCC_RCK3SELR		0x820
74 #define RCC_RCK4SELR		0x824
75 #define RCC_MCUDIVR		0x830
76 #define RCC_APB1DIVR		0x834
77 #define RCC_APB2DIVR		0x838
78 #define RCC_APB3DIVR		0x83C
79 #define RCC_PLL3CR		0x880
80 #define RCC_PLL3CFGR1		0x884
81 #define RCC_PLL3CFGR2		0x888
82 #define RCC_PLL3FRACR		0x88C
83 #define RCC_PLL3CSGR		0x890
84 #define RCC_PLL4CR		0x894
85 #define RCC_PLL4CFGR1		0x898
86 #define RCC_PLL4CFGR2		0x89C
87 #define RCC_PLL4FRACR		0x8A0
88 #define RCC_PLL4CSGR		0x8A4
89 #define RCC_I2C12CKSELR		0x8C0
90 #define RCC_I2C35CKSELR		0x8C4
91 #define RCC_UART6CKSELR		0x8E4
92 #define RCC_UART24CKSELR	0x8E8
93 #define RCC_UART35CKSELR	0x8EC
94 #define RCC_UART78CKSELR	0x8F0
95 #define RCC_SDMMC12CKSELR	0x8F4
96 #define RCC_SDMMC3CKSELR	0x8F8
97 #define RCC_ETHCKSELR		0x8FC
98 #define RCC_QSPICKSELR		0x900
99 #define RCC_FMCCKSELR		0x904
100 #define RCC_USBCKSELR		0x91C
101 #define RCC_DSICKSELR		0x924
102 #define RCC_ADCCKSELR		0x928
103 #define RCC_MP_APB1ENSETR	0xA00
104 #define RCC_MP_APB2ENSETR	0XA08
105 #define RCC_MP_APB3ENSETR	0xA10
106 #define RCC_MP_AHB2ENSETR	0xA18
107 #define RCC_MP_AHB3ENSETR	0xA20
108 #define RCC_MP_AHB4ENSETR	0xA28
109 
110 /* used for most of SELR register */
111 #define RCC_SELR_SRC_MASK	GENMASK(2, 0)
112 #define RCC_SELR_SRCRDY		BIT(31)
113 
114 /* Values of RCC_MPCKSELR register */
115 #define RCC_MPCKSELR_HSI	0
116 #define RCC_MPCKSELR_HSE	1
117 #define RCC_MPCKSELR_PLL	2
118 #define RCC_MPCKSELR_PLL_MPUDIV	3
119 
120 /* Values of RCC_ASSCKSELR register */
121 #define RCC_ASSCKSELR_HSI	0
122 #define RCC_ASSCKSELR_HSE	1
123 #define RCC_ASSCKSELR_PLL	2
124 
125 /* Values of RCC_MSSCKSELR register */
126 #define RCC_MSSCKSELR_HSI	0
127 #define RCC_MSSCKSELR_HSE	1
128 #define RCC_MSSCKSELR_CSI	2
129 #define RCC_MSSCKSELR_PLL	3
130 
131 /* Values of RCC_CPERCKSELR register */
132 #define RCC_CPERCKSELR_HSI	0
133 #define RCC_CPERCKSELR_CSI	1
134 #define RCC_CPERCKSELR_HSE	2
135 
136 /* used for most of DIVR register : max div for RTC */
137 #define RCC_DIVR_DIV_MASK	GENMASK(5, 0)
138 #define RCC_DIVR_DIVRDY		BIT(31)
139 
140 /* Masks for specific DIVR registers */
141 #define RCC_APBXDIV_MASK	GENMASK(2, 0)
142 #define RCC_MPUDIV_MASK		GENMASK(2, 0)
143 #define RCC_AXIDIV_MASK		GENMASK(2, 0)
144 #define RCC_MCUDIV_MASK		GENMASK(3, 0)
145 
146 /*  offset between RCC_MP_xxxENSETR and RCC_MP_xxxENCLRR registers */
147 #define RCC_MP_ENCLRR_OFFSET	4
148 
149 /* Fields of RCC_BDCR register */
150 #define RCC_BDCR_LSEON		BIT(0)
151 #define RCC_BDCR_LSEBYP		BIT(1)
152 #define RCC_BDCR_LSERDY		BIT(2)
153 #define RCC_BDCR_DIGBYP		BIT(3)
154 #define RCC_BDCR_LSEDRV_MASK	GENMASK(5, 4)
155 #define RCC_BDCR_LSEDRV_SHIFT	4
156 #define RCC_BDCR_LSECSSON	BIT(8)
157 #define RCC_BDCR_RTCCKEN	BIT(20)
158 #define RCC_BDCR_RTCSRC_MASK	GENMASK(17, 16)
159 #define RCC_BDCR_RTCSRC_SHIFT	16
160 
161 /* Fields of RCC_RDLSICR register */
162 #define RCC_RDLSICR_LSION	BIT(0)
163 #define RCC_RDLSICR_LSIRDY	BIT(1)
164 
165 /* used for ALL PLLNCR registers */
166 #define RCC_PLLNCR_PLLON	BIT(0)
167 #define RCC_PLLNCR_PLLRDY	BIT(1)
168 #define RCC_PLLNCR_DIVPEN	BIT(4)
169 #define RCC_PLLNCR_DIVQEN	BIT(5)
170 #define RCC_PLLNCR_DIVREN	BIT(6)
171 #define RCC_PLLNCR_DIVEN_SHIFT	4
172 
173 /* used for ALL PLLNCFGR1 registers */
174 #define RCC_PLLNCFGR1_DIVM_SHIFT	16
175 #define RCC_PLLNCFGR1_DIVM_MASK		GENMASK(21, 16)
176 #define RCC_PLLNCFGR1_DIVN_SHIFT	0
177 #define RCC_PLLNCFGR1_DIVN_MASK		GENMASK(8, 0)
178 /* only for PLL3 and PLL4 */
179 #define RCC_PLLNCFGR1_IFRGE_SHIFT	24
180 #define RCC_PLLNCFGR1_IFRGE_MASK	GENMASK(25, 24)
181 
182 /* used for ALL PLLNCFGR2 registers , using stm32mp1_div_id */
183 #define RCC_PLLNCFGR2_SHIFT(div_id)	((div_id) * 8)
184 #define RCC_PLLNCFGR2_DIVX_MASK		GENMASK(6, 0)
185 #define RCC_PLLNCFGR2_DIVP_SHIFT	RCC_PLLNCFGR2_SHIFT(_DIV_P)
186 #define RCC_PLLNCFGR2_DIVP_MASK		GENMASK(6, 0)
187 #define RCC_PLLNCFGR2_DIVQ_SHIFT	RCC_PLLNCFGR2_SHIFT(_DIV_Q)
188 #define RCC_PLLNCFGR2_DIVQ_MASK		GENMASK(14, 8)
189 #define RCC_PLLNCFGR2_DIVR_SHIFT	RCC_PLLNCFGR2_SHIFT(_DIV_R)
190 #define RCC_PLLNCFGR2_DIVR_MASK		GENMASK(22, 16)
191 
192 /* used for ALL PLLNFRACR registers */
193 #define RCC_PLLNFRACR_FRACV_SHIFT	3
194 #define RCC_PLLNFRACR_FRACV_MASK	GENMASK(15, 3)
195 #define RCC_PLLNFRACR_FRACLE		BIT(16)
196 
197 /* used for ALL PLLNCSGR registers */
198 #define RCC_PLLNCSGR_INC_STEP_SHIFT	16
199 #define RCC_PLLNCSGR_INC_STEP_MASK	GENMASK(30, 16)
200 #define RCC_PLLNCSGR_MOD_PER_SHIFT	0
201 #define RCC_PLLNCSGR_MOD_PER_MASK	GENMASK(12, 0)
202 #define RCC_PLLNCSGR_SSCG_MODE_SHIFT	15
203 #define RCC_PLLNCSGR_SSCG_MODE_MASK	BIT(15)
204 
205 /* used for RCC_OCENSETR and RCC_OCENCLRR registers */
206 #define RCC_OCENR_HSION			BIT(0)
207 #define RCC_OCENR_CSION			BIT(4)
208 #define RCC_OCENR_DIGBYP		BIT(7)
209 #define RCC_OCENR_HSEON			BIT(8)
210 #define RCC_OCENR_HSEBYP		BIT(10)
211 #define RCC_OCENR_HSECSSON		BIT(11)
212 
213 /* Fields of RCC_OCRDYR register */
214 #define RCC_OCRDYR_HSIRDY		BIT(0)
215 #define RCC_OCRDYR_HSIDIVRDY		BIT(2)
216 #define RCC_OCRDYR_CSIRDY		BIT(4)
217 #define RCC_OCRDYR_HSERDY		BIT(8)
218 
219 /* Fields of DDRITFCR register */
220 #define RCC_DDRITFCR_DDRCKMOD_MASK	GENMASK(22, 20)
221 #define RCC_DDRITFCR_DDRCKMOD_SHIFT	20
222 #define RCC_DDRITFCR_DDRCKMOD_SSR	0
223 
224 /* Fields of RCC_HSICFGR register */
225 #define RCC_HSICFGR_HSIDIV_MASK		GENMASK(1, 0)
226 
227 /* used for MCO related operations */
228 #define RCC_MCOCFG_MCOON		BIT(12)
229 #define RCC_MCOCFG_MCODIV_MASK		GENMASK(7, 4)
230 #define RCC_MCOCFG_MCODIV_SHIFT		4
231 #define RCC_MCOCFG_MCOSRC_MASK		GENMASK(2, 0)
232 
233 enum stm32mp1_parent_id {
234 /*
235  * _HSI, _HSE, _CSI, _LSI, _LSE should not be moved
236  * they are used as index in osc[] as entry point
237  */
238 	_HSI,
239 	_HSE,
240 	_CSI,
241 	_LSI,
242 	_LSE,
243 	_I2S_CKIN,
244 	NB_OSC,
245 
246 /* other parent source */
247 	_HSI_KER = NB_OSC,
248 	_HSE_KER,
249 	_HSE_KER_DIV2,
250 	_CSI_KER,
251 	_PLL1_P,
252 	_PLL1_Q,
253 	_PLL1_R,
254 	_PLL2_P,
255 	_PLL2_Q,
256 	_PLL2_R,
257 	_PLL3_P,
258 	_PLL3_Q,
259 	_PLL3_R,
260 	_PLL4_P,
261 	_PLL4_Q,
262 	_PLL4_R,
263 	_ACLK,
264 	_PCLK1,
265 	_PCLK2,
266 	_PCLK3,
267 	_PCLK4,
268 	_PCLK5,
269 	_HCLK6,
270 	_HCLK2,
271 	_CK_PER,
272 	_CK_MPU,
273 	_CK_MCU,
274 	_DSI_PHY,
275 	_USB_PHY_48,
276 	_PARENT_NB,
277 	_UNKNOWN_ID = 0xff,
278 };
279 
280 enum stm32mp1_parent_sel {
281 	_I2C12_SEL,
282 	_I2C35_SEL,
283 	_I2C46_SEL,
284 	_UART6_SEL,
285 	_UART24_SEL,
286 	_UART35_SEL,
287 	_UART78_SEL,
288 	_SDMMC12_SEL,
289 	_SDMMC3_SEL,
290 	_ETH_SEL,
291 	_QSPI_SEL,
292 	_FMC_SEL,
293 	_USBPHY_SEL,
294 	_USBO_SEL,
295 	_STGEN_SEL,
296 	_DSI_SEL,
297 	_ADC12_SEL,
298 	_PARENT_SEL_NB,
299 	_UNKNOWN_SEL = 0xff,
300 };
301 
302 enum stm32mp1_pll_id {
303 	_PLL1,
304 	_PLL2,
305 	_PLL3,
306 	_PLL4,
307 	_PLL_NB
308 };
309 
310 enum stm32mp1_div_id {
311 	_DIV_P,
312 	_DIV_Q,
313 	_DIV_R,
314 	_DIV_NB,
315 };
316 
317 enum stm32mp1_clksrc_id {
318 	CLKSRC_MPU,
319 	CLKSRC_AXI,
320 	CLKSRC_MCU,
321 	CLKSRC_PLL12,
322 	CLKSRC_PLL3,
323 	CLKSRC_PLL4,
324 	CLKSRC_RTC,
325 	CLKSRC_MCO1,
326 	CLKSRC_MCO2,
327 	CLKSRC_NB
328 };
329 
330 enum stm32mp1_clkdiv_id {
331 	CLKDIV_MPU,
332 	CLKDIV_AXI,
333 	CLKDIV_MCU,
334 	CLKDIV_APB1,
335 	CLKDIV_APB2,
336 	CLKDIV_APB3,
337 	CLKDIV_APB4,
338 	CLKDIV_APB5,
339 	CLKDIV_RTC,
340 	CLKDIV_MCO1,
341 	CLKDIV_MCO2,
342 	CLKDIV_NB
343 };
344 
345 enum stm32mp1_pllcfg {
346 	PLLCFG_M,
347 	PLLCFG_N,
348 	PLLCFG_P,
349 	PLLCFG_Q,
350 	PLLCFG_R,
351 	PLLCFG_O,
352 	PLLCFG_NB
353 };
354 
355 enum stm32mp1_pllcsg {
356 	PLLCSG_MOD_PER,
357 	PLLCSG_INC_STEP,
358 	PLLCSG_SSCG_MODE,
359 	PLLCSG_NB
360 };
361 
362 enum stm32mp1_plltype {
363 	PLL_800,
364 	PLL_1600,
365 	PLL_TYPE_NB
366 };
367 
368 struct stm32mp1_pll {
369 	u8 refclk_min;
370 	u8 refclk_max;
371 	u8 divn_max;
372 };
373 
374 struct stm32mp1_clk_gate {
375 	u16 offset;
376 	u8 bit;
377 	u8 index;
378 	u8 set_clr;
379 	u8 sel;
380 	u8 fixed;
381 };
382 
383 struct stm32mp1_clk_sel {
384 	u16 offset;
385 	u8 src;
386 	u8 msk;
387 	u8 nb_parent;
388 	const u8 *parent;
389 };
390 
391 #define REFCLK_SIZE 4
392 struct stm32mp1_clk_pll {
393 	enum stm32mp1_plltype plltype;
394 	u16 rckxselr;
395 	u16 pllxcfgr1;
396 	u16 pllxcfgr2;
397 	u16 pllxfracr;
398 	u16 pllxcr;
399 	u16 pllxcsgr;
400 	u8 refclk[REFCLK_SIZE];
401 };
402 
403 struct stm32mp1_clk_data {
404 	const struct stm32mp1_clk_gate *gate;
405 	const struct stm32mp1_clk_sel *sel;
406 	const struct stm32mp1_clk_pll *pll;
407 	const int nb_gate;
408 };
409 
410 struct stm32mp1_clk_priv {
411 	fdt_addr_t base;
412 	const struct stm32mp1_clk_data *data;
413 	ulong osc[NB_OSC];
414 	struct udevice *osc_dev[NB_OSC];
415 };
416 
417 #define STM32MP1_CLK(off, b, idx, s)		\
418 	{					\
419 		.offset = (off),		\
420 		.bit = (b),			\
421 		.index = (idx),			\
422 		.set_clr = 0,			\
423 		.sel = (s),			\
424 		.fixed = _UNKNOWN_ID,		\
425 	}
426 
427 #define STM32MP1_CLK_F(off, b, idx, f)		\
428 	{					\
429 		.offset = (off),		\
430 		.bit = (b),			\
431 		.index = (idx),			\
432 		.set_clr = 0,			\
433 		.sel = _UNKNOWN_SEL,		\
434 		.fixed = (f),			\
435 	}
436 
437 #define STM32MP1_CLK_SET_CLR(off, b, idx, s)	\
438 	{					\
439 		.offset = (off),		\
440 		.bit = (b),			\
441 		.index = (idx),			\
442 		.set_clr = 1,			\
443 		.sel = (s),			\
444 		.fixed = _UNKNOWN_ID,		\
445 	}
446 
447 #define STM32MP1_CLK_SET_CLR_F(off, b, idx, f)	\
448 	{					\
449 		.offset = (off),		\
450 		.bit = (b),			\
451 		.index = (idx),			\
452 		.set_clr = 1,			\
453 		.sel = _UNKNOWN_SEL,		\
454 		.fixed = (f),			\
455 	}
456 
457 #define STM32MP1_CLK_PARENT(idx, off, s, m, p)   \
458 	[(idx)] = {				\
459 		.offset = (off),		\
460 		.src = (s),			\
461 		.msk = (m),			\
462 		.parent = (p),			\
463 		.nb_parent = ARRAY_SIZE((p))	\
464 	}
465 
466 #define STM32MP1_CLK_PLL(idx, type, off1, off2, off3, off4, off5, off6,\
467 			p1, p2, p3, p4) \
468 	[(idx)] = {				\
469 		.plltype = (type),			\
470 		.rckxselr = (off1),		\
471 		.pllxcfgr1 = (off2),		\
472 		.pllxcfgr2 = (off3),		\
473 		.pllxfracr = (off4),		\
474 		.pllxcr = (off5),		\
475 		.pllxcsgr = (off6),		\
476 		.refclk[0] = (p1),		\
477 		.refclk[1] = (p2),		\
478 		.refclk[2] = (p3),		\
479 		.refclk[3] = (p4),		\
480 	}
481 
482 static const u8 stm32mp1_clks[][2] = {
483 	{CK_PER, _CK_PER},
484 	{CK_MPU, _CK_MPU},
485 	{CK_AXI, _ACLK},
486 	{CK_MCU, _CK_MCU},
487 	{CK_HSE, _HSE},
488 	{CK_CSI, _CSI},
489 	{CK_LSI, _LSI},
490 	{CK_LSE, _LSE},
491 	{CK_HSI, _HSI},
492 	{CK_HSE_DIV2, _HSE_KER_DIV2},
493 };
494 
495 static const struct stm32mp1_clk_gate stm32mp1_clk_gate[] = {
496 	STM32MP1_CLK(RCC_DDRITFCR, 0, DDRC1, _UNKNOWN_SEL),
497 	STM32MP1_CLK(RCC_DDRITFCR, 1, DDRC1LP, _UNKNOWN_SEL),
498 	STM32MP1_CLK(RCC_DDRITFCR, 2, DDRC2, _UNKNOWN_SEL),
499 	STM32MP1_CLK(RCC_DDRITFCR, 3, DDRC2LP, _UNKNOWN_SEL),
500 	STM32MP1_CLK_F(RCC_DDRITFCR, 4, DDRPHYC, _PLL2_R),
501 	STM32MP1_CLK(RCC_DDRITFCR, 5, DDRPHYCLP, _UNKNOWN_SEL),
502 	STM32MP1_CLK(RCC_DDRITFCR, 6, DDRCAPB, _UNKNOWN_SEL),
503 	STM32MP1_CLK(RCC_DDRITFCR, 7, DDRCAPBLP, _UNKNOWN_SEL),
504 	STM32MP1_CLK(RCC_DDRITFCR, 8, AXIDCG, _UNKNOWN_SEL),
505 	STM32MP1_CLK(RCC_DDRITFCR, 9, DDRPHYCAPB, _UNKNOWN_SEL),
506 	STM32MP1_CLK(RCC_DDRITFCR, 10, DDRPHYCAPBLP, _UNKNOWN_SEL),
507 
508 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 14, USART2_K, _UART24_SEL),
509 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 15, USART3_K, _UART35_SEL),
510 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 16, UART4_K, _UART24_SEL),
511 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 17, UART5_K, _UART35_SEL),
512 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 18, UART7_K, _UART78_SEL),
513 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 19, UART8_K, _UART78_SEL),
514 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 21, I2C1_K, _I2C12_SEL),
515 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 22, I2C2_K, _I2C12_SEL),
516 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 23, I2C3_K, _I2C35_SEL),
517 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 24, I2C5_K, _I2C35_SEL),
518 
519 	STM32MP1_CLK_SET_CLR(RCC_MP_APB2ENSETR, 13, USART6_K, _UART6_SEL),
520 
521 	STM32MP1_CLK_SET_CLR_F(RCC_MP_APB3ENSETR, 13, VREF, _PCLK3),
522 
523 	STM32MP1_CLK_SET_CLR_F(RCC_MP_APB4ENSETR, 0, LTDC_PX, _PLL4_Q),
524 	STM32MP1_CLK_SET_CLR_F(RCC_MP_APB4ENSETR, 4, DSI_PX, _PLL4_Q),
525 	STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 4, DSI_K, _DSI_SEL),
526 	STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 8, DDRPERFM, _UNKNOWN_SEL),
527 	STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 15, IWDG2, _UNKNOWN_SEL),
528 	STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 16, USBPHY_K, _USBPHY_SEL),
529 
530 	STM32MP1_CLK_SET_CLR(RCC_MP_APB5ENSETR, 2, I2C4_K, _I2C46_SEL),
531 	STM32MP1_CLK_SET_CLR(RCC_MP_APB5ENSETR, 20, STGEN_K, _STGEN_SEL),
532 
533 	STM32MP1_CLK_SET_CLR_F(RCC_MP_AHB2ENSETR, 5, ADC12, _HCLK2),
534 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB2ENSETR, 5, ADC12_K, _ADC12_SEL),
535 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB2ENSETR, 8, USBO_K, _USBO_SEL),
536 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB2ENSETR, 16, SDMMC3_K, _SDMMC3_SEL),
537 
538 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB3ENSETR, 11, HSEM, _UNKNOWN_SEL),
539 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB3ENSETR, 12, IPCC, _UNKNOWN_SEL),
540 
541 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 0, GPIOA, _UNKNOWN_SEL),
542 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 1, GPIOB, _UNKNOWN_SEL),
543 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 2, GPIOC, _UNKNOWN_SEL),
544 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 3, GPIOD, _UNKNOWN_SEL),
545 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 4, GPIOE, _UNKNOWN_SEL),
546 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 5, GPIOF, _UNKNOWN_SEL),
547 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 6, GPIOG, _UNKNOWN_SEL),
548 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 7, GPIOH, _UNKNOWN_SEL),
549 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 8, GPIOI, _UNKNOWN_SEL),
550 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 9, GPIOJ, _UNKNOWN_SEL),
551 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 10, GPIOK, _UNKNOWN_SEL),
552 
553 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB5ENSETR, 0, GPIOZ, _UNKNOWN_SEL),
554 
555 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 7, ETHCK, _ETH_SEL),
556 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 8, ETHTX, _UNKNOWN_SEL),
557 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 9, ETHRX, _UNKNOWN_SEL),
558 	STM32MP1_CLK_SET_CLR_F(RCC_MP_AHB6ENSETR, 10, ETHMAC, _ACLK),
559 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 12, FMC_K, _FMC_SEL),
560 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 14, QSPI_K, _QSPI_SEL),
561 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 16, SDMMC1_K, _SDMMC12_SEL),
562 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 17, SDMMC2_K, _SDMMC12_SEL),
563 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 24, USBH, _UNKNOWN_SEL),
564 
565 	STM32MP1_CLK(RCC_DBGCFGR, 8, CK_DBG, _UNKNOWN_SEL),
566 };
567 
568 static const u8 i2c12_parents[] = {_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER};
569 static const u8 i2c35_parents[] = {_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER};
570 static const u8 i2c46_parents[] = {_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER};
571 static const u8 uart6_parents[] = {_PCLK2, _PLL4_Q, _HSI_KER, _CSI_KER,
572 					_HSE_KER};
573 static const u8 uart24_parents[] = {_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER,
574 					 _HSE_KER};
575 static const u8 uart35_parents[] = {_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER,
576 					 _HSE_KER};
577 static const u8 uart78_parents[] = {_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER,
578 					 _HSE_KER};
579 static const u8 sdmmc12_parents[] = {_HCLK6, _PLL3_R, _PLL4_P, _HSI_KER};
580 static const u8 sdmmc3_parents[] = {_HCLK2, _PLL3_R, _PLL4_P, _HSI_KER};
581 static const u8 eth_parents[] = {_PLL4_P, _PLL3_Q};
582 static const u8 qspi_parents[] = {_ACLK, _PLL3_R, _PLL4_P, _CK_PER};
583 static const u8 fmc_parents[] = {_ACLK, _PLL3_R, _PLL4_P, _CK_PER};
584 static const u8 usbphy_parents[] = {_HSE_KER, _PLL4_R, _HSE_KER_DIV2};
585 static const u8 usbo_parents[] = {_PLL4_R, _USB_PHY_48};
586 static const u8 stgen_parents[] = {_HSI_KER, _HSE_KER};
587 static const u8 dsi_parents[] = {_DSI_PHY, _PLL4_P};
588 static const u8 adc_parents[] = {_PLL4_R, _CK_PER, _PLL3_Q};
589 
590 static const struct stm32mp1_clk_sel stm32mp1_clk_sel[_PARENT_SEL_NB] = {
591 	STM32MP1_CLK_PARENT(_I2C12_SEL, RCC_I2C12CKSELR, 0, 0x7, i2c12_parents),
592 	STM32MP1_CLK_PARENT(_I2C35_SEL, RCC_I2C35CKSELR, 0, 0x7, i2c35_parents),
593 	STM32MP1_CLK_PARENT(_I2C46_SEL, RCC_I2C46CKSELR, 0, 0x7, i2c46_parents),
594 	STM32MP1_CLK_PARENT(_UART6_SEL, RCC_UART6CKSELR, 0, 0x7, uart6_parents),
595 	STM32MP1_CLK_PARENT(_UART24_SEL, RCC_UART24CKSELR, 0, 0x7,
596 			    uart24_parents),
597 	STM32MP1_CLK_PARENT(_UART35_SEL, RCC_UART35CKSELR, 0, 0x7,
598 			    uart35_parents),
599 	STM32MP1_CLK_PARENT(_UART78_SEL, RCC_UART78CKSELR, 0, 0x7,
600 			    uart78_parents),
601 	STM32MP1_CLK_PARENT(_SDMMC12_SEL, RCC_SDMMC12CKSELR, 0, 0x7,
602 			    sdmmc12_parents),
603 	STM32MP1_CLK_PARENT(_SDMMC3_SEL, RCC_SDMMC3CKSELR, 0, 0x7,
604 			    sdmmc3_parents),
605 	STM32MP1_CLK_PARENT(_ETH_SEL, RCC_ETHCKSELR, 0, 0x3, eth_parents),
606 	STM32MP1_CLK_PARENT(_QSPI_SEL, RCC_QSPICKSELR, 0, 0xf, qspi_parents),
607 	STM32MP1_CLK_PARENT(_FMC_SEL, RCC_FMCCKSELR, 0, 0xf, fmc_parents),
608 	STM32MP1_CLK_PARENT(_USBPHY_SEL, RCC_USBCKSELR, 0, 0x3, usbphy_parents),
609 	STM32MP1_CLK_PARENT(_USBO_SEL, RCC_USBCKSELR, 4, 0x1, usbo_parents),
610 	STM32MP1_CLK_PARENT(_STGEN_SEL, RCC_STGENCKSELR, 0, 0x3, stgen_parents),
611 	STM32MP1_CLK_PARENT(_DSI_SEL, RCC_DSICKSELR, 0, 0x1, dsi_parents),
612 	STM32MP1_CLK_PARENT(_ADC12_SEL, RCC_ADCCKSELR, 0, 0x1, adc_parents),
613 };
614 
615 #ifdef STM32MP1_CLOCK_TREE_INIT
616 /* define characteristic of PLL according type */
617 #define DIVN_MIN	24
618 static const struct stm32mp1_pll stm32mp1_pll[PLL_TYPE_NB] = {
619 	[PLL_800] = {
620 		.refclk_min = 4,
621 		.refclk_max = 16,
622 		.divn_max = 99,
623 		},
624 	[PLL_1600] = {
625 		.refclk_min = 8,
626 		.refclk_max = 16,
627 		.divn_max = 199,
628 		},
629 };
630 #endif /* STM32MP1_CLOCK_TREE_INIT */
631 
632 static const struct stm32mp1_clk_pll stm32mp1_clk_pll[_PLL_NB] = {
633 	STM32MP1_CLK_PLL(_PLL1, PLL_1600,
634 			 RCC_RCK12SELR, RCC_PLL1CFGR1, RCC_PLL1CFGR2,
635 			 RCC_PLL1FRACR, RCC_PLL1CR, RCC_PLL1CSGR,
636 			 _HSI, _HSE, _UNKNOWN_ID, _UNKNOWN_ID),
637 	STM32MP1_CLK_PLL(_PLL2, PLL_1600,
638 			 RCC_RCK12SELR, RCC_PLL2CFGR1, RCC_PLL2CFGR2,
639 			 RCC_PLL2FRACR, RCC_PLL2CR, RCC_PLL2CSGR,
640 			 _HSI, _HSE, _UNKNOWN_ID, _UNKNOWN_ID),
641 	STM32MP1_CLK_PLL(_PLL3, PLL_800,
642 			 RCC_RCK3SELR, RCC_PLL3CFGR1, RCC_PLL3CFGR2,
643 			 RCC_PLL3FRACR, RCC_PLL3CR, RCC_PLL3CSGR,
644 			 _HSI, _HSE, _CSI, _UNKNOWN_ID),
645 	STM32MP1_CLK_PLL(_PLL4, PLL_800,
646 			 RCC_RCK4SELR, RCC_PLL4CFGR1, RCC_PLL4CFGR2,
647 			 RCC_PLL4FRACR, RCC_PLL4CR, RCC_PLL4CSGR,
648 			 _HSI, _HSE, _CSI, _I2S_CKIN),
649 };
650 
651 /* Prescaler table lookups for clock computation */
652 /* div = /1 /2 /4 /8 / 16 /64 /128 /512 */
653 static const u8 stm32mp1_mcu_div[16] = {
654 	0, 1, 2, 3, 4, 6, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9
655 };
656 
657 /* div = /1 /2 /4 /8 /16 : same divider for pmu and apbx*/
658 #define stm32mp1_mpu_div stm32mp1_mpu_apbx_div
659 #define stm32mp1_apbx_div stm32mp1_mpu_apbx_div
660 static const u8 stm32mp1_mpu_apbx_div[8] = {
661 	0, 1, 2, 3, 4, 4, 4, 4
662 };
663 
664 /* div = /1 /2 /3 /4 */
665 static const u8 stm32mp1_axi_div[8] = {
666 	1, 2, 3, 4, 4, 4, 4, 4
667 };
668 
669 static const __maybe_unused
670 char * const stm32mp1_clk_parent_name[_PARENT_NB] = {
671 	[_HSI] = "HSI",
672 	[_HSE] = "HSE",
673 	[_CSI] = "CSI",
674 	[_LSI] = "LSI",
675 	[_LSE] = "LSE",
676 	[_I2S_CKIN] = "I2S_CKIN",
677 	[_HSI_KER] = "HSI_KER",
678 	[_HSE_KER] = "HSE_KER",
679 	[_HSE_KER_DIV2] = "HSE_KER_DIV2",
680 	[_CSI_KER] = "CSI_KER",
681 	[_PLL1_P] = "PLL1_P",
682 	[_PLL1_Q] = "PLL1_Q",
683 	[_PLL1_R] = "PLL1_R",
684 	[_PLL2_P] = "PLL2_P",
685 	[_PLL2_Q] = "PLL2_Q",
686 	[_PLL2_R] = "PLL2_R",
687 	[_PLL3_P] = "PLL3_P",
688 	[_PLL3_Q] = "PLL3_Q",
689 	[_PLL3_R] = "PLL3_R",
690 	[_PLL4_P] = "PLL4_P",
691 	[_PLL4_Q] = "PLL4_Q",
692 	[_PLL4_R] = "PLL4_R",
693 	[_ACLK] = "ACLK",
694 	[_PCLK1] = "PCLK1",
695 	[_PCLK2] = "PCLK2",
696 	[_PCLK3] = "PCLK3",
697 	[_PCLK4] = "PCLK4",
698 	[_PCLK5] = "PCLK5",
699 	[_HCLK6] = "KCLK6",
700 	[_HCLK2] = "HCLK2",
701 	[_CK_PER] = "CK_PER",
702 	[_CK_MPU] = "CK_MPU",
703 	[_CK_MCU] = "CK_MCU",
704 	[_USB_PHY_48] = "USB_PHY_48",
705 	[_DSI_PHY] = "DSI_PHY_PLL",
706 };
707 
708 static const __maybe_unused
709 char * const stm32mp1_clk_parent_sel_name[_PARENT_SEL_NB] = {
710 	[_I2C12_SEL] = "I2C12",
711 	[_I2C35_SEL] = "I2C35",
712 	[_I2C46_SEL] = "I2C46",
713 	[_UART6_SEL] = "UART6",
714 	[_UART24_SEL] = "UART24",
715 	[_UART35_SEL] = "UART35",
716 	[_UART78_SEL] = "UART78",
717 	[_SDMMC12_SEL] = "SDMMC12",
718 	[_SDMMC3_SEL] = "SDMMC3",
719 	[_ETH_SEL] = "ETH",
720 	[_QSPI_SEL] = "QSPI",
721 	[_FMC_SEL] = "FMC",
722 	[_USBPHY_SEL] = "USBPHY",
723 	[_USBO_SEL] = "USBO",
724 	[_STGEN_SEL] = "STGEN",
725 	[_DSI_SEL] = "DSI",
726 	[_ADC12_SEL] = "ADC12",
727 };
728 
729 static const struct stm32mp1_clk_data stm32mp1_data = {
730 	.gate = stm32mp1_clk_gate,
731 	.sel = stm32mp1_clk_sel,
732 	.pll = stm32mp1_clk_pll,
733 	.nb_gate = ARRAY_SIZE(stm32mp1_clk_gate),
734 };
735 
736 static ulong stm32mp1_clk_get_fixed(struct stm32mp1_clk_priv *priv, int idx)
737 {
738 	if (idx >= NB_OSC) {
739 		debug("%s: clk id %d not found\n", __func__, idx);
740 		return 0;
741 	}
742 
743 	debug("%s: clk id %d = %x : %ld kHz\n", __func__, idx,
744 	      (u32)priv->osc[idx], priv->osc[idx] / 1000);
745 
746 	return priv->osc[idx];
747 }
748 
749 static int stm32mp1_clk_get_id(struct stm32mp1_clk_priv *priv, unsigned long id)
750 {
751 	const struct stm32mp1_clk_gate *gate = priv->data->gate;
752 	int i, nb_clks = priv->data->nb_gate;
753 
754 	for (i = 0; i < nb_clks; i++) {
755 		if (gate[i].index == id)
756 			break;
757 	}
758 
759 	if (i == nb_clks) {
760 		printf("%s: clk id %d not found\n", __func__, (u32)id);
761 		return -EINVAL;
762 	}
763 
764 	return i;
765 }
766 
767 static int stm32mp1_clk_get_sel(struct stm32mp1_clk_priv *priv,
768 				int i)
769 {
770 	const struct stm32mp1_clk_gate *gate = priv->data->gate;
771 
772 	if (gate[i].sel > _PARENT_SEL_NB) {
773 		printf("%s: parents for clk id %d not found\n",
774 		       __func__, i);
775 		return -EINVAL;
776 	}
777 
778 	return gate[i].sel;
779 }
780 
781 static int stm32mp1_clk_get_fixed_parent(struct stm32mp1_clk_priv *priv,
782 					 int i)
783 {
784 	const struct stm32mp1_clk_gate *gate = priv->data->gate;
785 
786 	if (gate[i].fixed == _UNKNOWN_ID)
787 		return -ENOENT;
788 
789 	return gate[i].fixed;
790 }
791 
792 static int stm32mp1_clk_get_parent(struct stm32mp1_clk_priv *priv,
793 				   unsigned long id)
794 {
795 	const struct stm32mp1_clk_sel *sel = priv->data->sel;
796 	int i;
797 	int s, p;
798 
799 	for (i = 0; i < ARRAY_SIZE(stm32mp1_clks); i++)
800 		if (stm32mp1_clks[i][0] == id)
801 			return stm32mp1_clks[i][1];
802 
803 	i = stm32mp1_clk_get_id(priv, id);
804 	if (i < 0)
805 		return i;
806 
807 	p = stm32mp1_clk_get_fixed_parent(priv, i);
808 	if (p >= 0 && p < _PARENT_NB)
809 		return p;
810 
811 	s = stm32mp1_clk_get_sel(priv, i);
812 	if (s < 0)
813 		return s;
814 
815 	p = (readl(priv->base + sel[s].offset) >> sel[s].src) & sel[s].msk;
816 
817 	if (p < sel[s].nb_parent) {
818 #ifdef DEBUG
819 		debug("%s: %s clock is the parent %s of clk id %d\n", __func__,
820 		      stm32mp1_clk_parent_name[sel[s].parent[p]],
821 		      stm32mp1_clk_parent_sel_name[s],
822 		      (u32)id);
823 #endif
824 		return sel[s].parent[p];
825 	}
826 
827 	pr_err("%s: no parents defined for clk id %d\n",
828 	       __func__, (u32)id);
829 
830 	return -EINVAL;
831 }
832 
833 static ulong  pll_get_fref_ck(struct stm32mp1_clk_priv *priv,
834 			      int pll_id)
835 {
836 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
837 	u32 selr;
838 	int src;
839 	ulong refclk;
840 
841 	/* Get current refclk */
842 	selr = readl(priv->base + pll[pll_id].rckxselr);
843 	src = selr & RCC_SELR_SRC_MASK;
844 
845 	refclk = stm32mp1_clk_get_fixed(priv, pll[pll_id].refclk[src]);
846 	debug("PLL%d : selr=%x refclk = %d kHz\n",
847 	      pll_id, selr, (u32)(refclk / 1000));
848 
849 	return refclk;
850 }
851 
852 /*
853  * pll_get_fvco() : return the VCO or (VCO / 2) frequency for the requested PLL
854  * - PLL1 & PLL2 => return VCO / 2 with Fpll_y_ck = FVCO / 2 * (DIVy + 1)
855  * - PLL3 & PLL4 => return VCO     with Fpll_y_ck = FVCO / (DIVy + 1)
856  * => in all the case Fpll_y_ck = pll_get_fvco() / (DIVy + 1)
857  */
858 static ulong pll_get_fvco(struct stm32mp1_clk_priv *priv,
859 			  int pll_id)
860 {
861 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
862 	int divm, divn;
863 	ulong refclk, fvco;
864 	u32 cfgr1, fracr;
865 
866 	cfgr1 = readl(priv->base + pll[pll_id].pllxcfgr1);
867 	fracr = readl(priv->base + pll[pll_id].pllxfracr);
868 
869 	divm = (cfgr1 & (RCC_PLLNCFGR1_DIVM_MASK)) >> RCC_PLLNCFGR1_DIVM_SHIFT;
870 	divn = cfgr1 & RCC_PLLNCFGR1_DIVN_MASK;
871 
872 	debug("PLL%d : cfgr1=%x fracr=%x DIVN=%d DIVM=%d\n",
873 	      pll_id, cfgr1, fracr, divn, divm);
874 
875 	refclk = pll_get_fref_ck(priv, pll_id);
876 
877 	/* with FRACV :
878 	 *   Fvco = Fck_ref * ((DIVN + 1) + FRACV / 2^13) / (DIVM + 1)
879 	 * without FRACV
880 	 *   Fvco = Fck_ref * ((DIVN + 1) / (DIVM + 1)
881 	 */
882 	if (fracr & RCC_PLLNFRACR_FRACLE) {
883 		u32 fracv = (fracr & RCC_PLLNFRACR_FRACV_MASK)
884 			    >> RCC_PLLNFRACR_FRACV_SHIFT;
885 		fvco = (ulong)lldiv((unsigned long long)refclk *
886 				     (((divn + 1) << 13) + fracv),
887 				     ((unsigned long long)(divm + 1)) << 13);
888 	} else {
889 		fvco = (ulong)(refclk * (divn + 1) / (divm + 1));
890 	}
891 	debug("PLL%d : %s = %ld\n", pll_id, __func__, fvco);
892 
893 	return fvco;
894 }
895 
896 static ulong stm32mp1_read_pll_freq(struct stm32mp1_clk_priv *priv,
897 				    int pll_id, int div_id)
898 {
899 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
900 	int divy;
901 	ulong dfout;
902 	u32 cfgr2;
903 
904 	debug("%s(%d, %d)\n", __func__, pll_id, div_id);
905 	if (div_id >= _DIV_NB)
906 		return 0;
907 
908 	cfgr2 = readl(priv->base + pll[pll_id].pllxcfgr2);
909 	divy = (cfgr2 >> RCC_PLLNCFGR2_SHIFT(div_id)) & RCC_PLLNCFGR2_DIVX_MASK;
910 
911 	debug("PLL%d : cfgr2=%x DIVY=%d\n", pll_id, cfgr2, divy);
912 
913 	dfout = pll_get_fvco(priv, pll_id) / (divy + 1);
914 	debug("        => dfout = %d kHz\n", (u32)(dfout / 1000));
915 
916 	return dfout;
917 }
918 
919 static ulong stm32mp1_clk_get(struct stm32mp1_clk_priv *priv, int p)
920 {
921 	u32 reg;
922 	ulong clock = 0;
923 
924 	switch (p) {
925 	case _CK_MPU:
926 	/* MPU sub system */
927 		reg = readl(priv->base + RCC_MPCKSELR);
928 		switch (reg & RCC_SELR_SRC_MASK) {
929 		case RCC_MPCKSELR_HSI:
930 			clock = stm32mp1_clk_get_fixed(priv, _HSI);
931 			break;
932 		case RCC_MPCKSELR_HSE:
933 			clock = stm32mp1_clk_get_fixed(priv, _HSE);
934 			break;
935 		case RCC_MPCKSELR_PLL:
936 		case RCC_MPCKSELR_PLL_MPUDIV:
937 			clock = stm32mp1_read_pll_freq(priv, _PLL1, _DIV_P);
938 			if (p == RCC_MPCKSELR_PLL_MPUDIV) {
939 				reg = readl(priv->base + RCC_MPCKDIVR);
940 				clock /= stm32mp1_mpu_div[reg &
941 							  RCC_MPUDIV_MASK];
942 			}
943 			break;
944 		}
945 		break;
946 	/* AXI sub system */
947 	case _ACLK:
948 	case _HCLK2:
949 	case _HCLK6:
950 	case _PCLK4:
951 	case _PCLK5:
952 		reg = readl(priv->base + RCC_ASSCKSELR);
953 		switch (reg & RCC_SELR_SRC_MASK) {
954 		case RCC_ASSCKSELR_HSI:
955 			clock = stm32mp1_clk_get_fixed(priv, _HSI);
956 			break;
957 		case RCC_ASSCKSELR_HSE:
958 			clock = stm32mp1_clk_get_fixed(priv, _HSE);
959 			break;
960 		case RCC_ASSCKSELR_PLL:
961 			clock = stm32mp1_read_pll_freq(priv, _PLL2, _DIV_P);
962 			break;
963 		}
964 
965 		/* System clock divider */
966 		reg = readl(priv->base + RCC_AXIDIVR);
967 		clock /= stm32mp1_axi_div[reg & RCC_AXIDIV_MASK];
968 
969 		switch (p) {
970 		case _PCLK4:
971 			reg = readl(priv->base + RCC_APB4DIVR);
972 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
973 			break;
974 		case _PCLK5:
975 			reg = readl(priv->base + RCC_APB5DIVR);
976 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
977 			break;
978 		default:
979 			break;
980 		}
981 		break;
982 	/* MCU sub system */
983 	case _CK_MCU:
984 	case _PCLK1:
985 	case _PCLK2:
986 	case _PCLK3:
987 		reg = readl(priv->base + RCC_MSSCKSELR);
988 		switch (reg & RCC_SELR_SRC_MASK) {
989 		case RCC_MSSCKSELR_HSI:
990 			clock = stm32mp1_clk_get_fixed(priv, _HSI);
991 			break;
992 		case RCC_MSSCKSELR_HSE:
993 			clock = stm32mp1_clk_get_fixed(priv, _HSE);
994 			break;
995 		case RCC_MSSCKSELR_CSI:
996 			clock = stm32mp1_clk_get_fixed(priv, _CSI);
997 			break;
998 		case RCC_MSSCKSELR_PLL:
999 			clock = stm32mp1_read_pll_freq(priv, _PLL3, _DIV_P);
1000 			break;
1001 		}
1002 
1003 		/* MCU clock divider */
1004 		reg = readl(priv->base + RCC_MCUDIVR);
1005 		clock >>= stm32mp1_mcu_div[reg & RCC_MCUDIV_MASK];
1006 
1007 		switch (p) {
1008 		case _PCLK1:
1009 			reg = readl(priv->base + RCC_APB1DIVR);
1010 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
1011 			break;
1012 		case _PCLK2:
1013 			reg = readl(priv->base + RCC_APB2DIVR);
1014 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
1015 			break;
1016 		case _PCLK3:
1017 			reg = readl(priv->base + RCC_APB3DIVR);
1018 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
1019 			break;
1020 		case _CK_MCU:
1021 		default:
1022 			break;
1023 		}
1024 		break;
1025 	case _CK_PER:
1026 		reg = readl(priv->base + RCC_CPERCKSELR);
1027 		switch (reg & RCC_SELR_SRC_MASK) {
1028 		case RCC_CPERCKSELR_HSI:
1029 			clock = stm32mp1_clk_get_fixed(priv, _HSI);
1030 			break;
1031 		case RCC_CPERCKSELR_HSE:
1032 			clock = stm32mp1_clk_get_fixed(priv, _HSE);
1033 			break;
1034 		case RCC_CPERCKSELR_CSI:
1035 			clock = stm32mp1_clk_get_fixed(priv, _CSI);
1036 			break;
1037 		}
1038 		break;
1039 	case _HSI:
1040 	case _HSI_KER:
1041 		clock = stm32mp1_clk_get_fixed(priv, _HSI);
1042 		break;
1043 	case _CSI:
1044 	case _CSI_KER:
1045 		clock = stm32mp1_clk_get_fixed(priv, _CSI);
1046 		break;
1047 	case _HSE:
1048 	case _HSE_KER:
1049 	case _HSE_KER_DIV2:
1050 		clock = stm32mp1_clk_get_fixed(priv, _HSE);
1051 		if (p == _HSE_KER_DIV2)
1052 			clock >>= 1;
1053 		break;
1054 	case _LSI:
1055 		clock = stm32mp1_clk_get_fixed(priv, _LSI);
1056 		break;
1057 	case _LSE:
1058 		clock = stm32mp1_clk_get_fixed(priv, _LSE);
1059 		break;
1060 	/* PLL */
1061 	case _PLL1_P:
1062 	case _PLL1_Q:
1063 	case _PLL1_R:
1064 		clock = stm32mp1_read_pll_freq(priv, _PLL1, p - _PLL1_P);
1065 		break;
1066 	case _PLL2_P:
1067 	case _PLL2_Q:
1068 	case _PLL2_R:
1069 		clock = stm32mp1_read_pll_freq(priv, _PLL2, p - _PLL2_P);
1070 		break;
1071 	case _PLL3_P:
1072 	case _PLL3_Q:
1073 	case _PLL3_R:
1074 		clock = stm32mp1_read_pll_freq(priv, _PLL3, p - _PLL3_P);
1075 		break;
1076 	case _PLL4_P:
1077 	case _PLL4_Q:
1078 	case _PLL4_R:
1079 		clock = stm32mp1_read_pll_freq(priv, _PLL4, p - _PLL4_P);
1080 		break;
1081 	/* other */
1082 	case _USB_PHY_48:
1083 		clock = 48000000;
1084 		break;
1085 	case _DSI_PHY:
1086 	{
1087 		struct clk clk;
1088 		struct udevice *dev = NULL;
1089 
1090 		if (!uclass_get_device_by_name(UCLASS_CLK, "ck_dsi_phy",
1091 					       &dev)) {
1092 			if (clk_request(dev, &clk)) {
1093 				pr_err("ck_dsi_phy request");
1094 			} else {
1095 				clk.id = 0;
1096 				clock = clk_get_rate(&clk);
1097 			}
1098 		}
1099 		break;
1100 	}
1101 	default:
1102 		break;
1103 	}
1104 
1105 	debug("%s(%d) clock = %lx : %ld kHz\n",
1106 	      __func__, p, clock, clock / 1000);
1107 
1108 	return clock;
1109 }
1110 
1111 static int stm32mp1_clk_enable(struct clk *clk)
1112 {
1113 	struct stm32mp1_clk_priv *priv = dev_get_priv(clk->dev);
1114 	const struct stm32mp1_clk_gate *gate = priv->data->gate;
1115 	int i = stm32mp1_clk_get_id(priv, clk->id);
1116 
1117 	if (i < 0)
1118 		return i;
1119 
1120 	if (gate[i].set_clr)
1121 		writel(BIT(gate[i].bit), priv->base + gate[i].offset);
1122 	else
1123 		setbits_le32(priv->base + gate[i].offset, BIT(gate[i].bit));
1124 
1125 	debug("%s: id clock %d has been enabled\n", __func__, (u32)clk->id);
1126 
1127 	return 0;
1128 }
1129 
1130 static int stm32mp1_clk_disable(struct clk *clk)
1131 {
1132 	struct stm32mp1_clk_priv *priv = dev_get_priv(clk->dev);
1133 	const struct stm32mp1_clk_gate *gate = priv->data->gate;
1134 	int i = stm32mp1_clk_get_id(priv, clk->id);
1135 
1136 	if (i < 0)
1137 		return i;
1138 
1139 	if (gate[i].set_clr)
1140 		writel(BIT(gate[i].bit),
1141 		       priv->base + gate[i].offset
1142 		       + RCC_MP_ENCLRR_OFFSET);
1143 	else
1144 		clrbits_le32(priv->base + gate[i].offset, BIT(gate[i].bit));
1145 
1146 	debug("%s: id clock %d has been disabled\n", __func__, (u32)clk->id);
1147 
1148 	return 0;
1149 }
1150 
1151 static ulong stm32mp1_clk_get_rate(struct clk *clk)
1152 {
1153 	struct stm32mp1_clk_priv *priv = dev_get_priv(clk->dev);
1154 	int p = stm32mp1_clk_get_parent(priv, clk->id);
1155 	ulong rate;
1156 
1157 	if (p < 0)
1158 		return 0;
1159 
1160 	rate = stm32mp1_clk_get(priv, p);
1161 
1162 #ifdef DEBUG
1163 	debug("%s: computed rate for id clock %d is %d (parent is %s)\n",
1164 	      __func__, (u32)clk->id, (u32)rate, stm32mp1_clk_parent_name[p]);
1165 #endif
1166 	return rate;
1167 }
1168 
1169 #ifdef STM32MP1_CLOCK_TREE_INIT
1170 static void stm32mp1_ls_osc_set(int enable, fdt_addr_t rcc, u32 offset,
1171 				u32 mask_on)
1172 {
1173 	u32 address = rcc + offset;
1174 
1175 	if (enable)
1176 		setbits_le32(address, mask_on);
1177 	else
1178 		clrbits_le32(address, mask_on);
1179 }
1180 
1181 static void stm32mp1_hs_ocs_set(int enable, fdt_addr_t rcc, u32 mask_on)
1182 {
1183 	writel(mask_on, rcc + (enable ? RCC_OCENSETR : RCC_OCENCLRR));
1184 }
1185 
1186 static int stm32mp1_osc_wait(int enable, fdt_addr_t rcc, u32 offset,
1187 			     u32 mask_rdy)
1188 {
1189 	u32 mask_test = 0;
1190 	u32 address = rcc + offset;
1191 	u32 val;
1192 	int ret;
1193 
1194 	if (enable)
1195 		mask_test = mask_rdy;
1196 
1197 	ret = readl_poll_timeout(address, val,
1198 				 (val & mask_rdy) == mask_test,
1199 				 TIMEOUT_1S);
1200 
1201 	if (ret)
1202 		pr_err("OSC %x @ %x timeout for enable=%d : 0x%x\n",
1203 		       mask_rdy, address, enable, readl(address));
1204 
1205 	return ret;
1206 }
1207 
1208 static void stm32mp1_lse_enable(fdt_addr_t rcc, int bypass, int digbyp,
1209 				int lsedrv)
1210 {
1211 	u32 value;
1212 
1213 	if (digbyp)
1214 		setbits_le32(rcc + RCC_BDCR, RCC_BDCR_DIGBYP);
1215 
1216 	if (bypass || digbyp)
1217 		setbits_le32(rcc + RCC_BDCR, RCC_BDCR_LSEBYP);
1218 
1219 	/*
1220 	 * warning: not recommended to switch directly from "high drive"
1221 	 * to "medium low drive", and vice-versa.
1222 	 */
1223 	value = (readl(rcc + RCC_BDCR) & RCC_BDCR_LSEDRV_MASK)
1224 		>> RCC_BDCR_LSEDRV_SHIFT;
1225 
1226 	while (value != lsedrv) {
1227 		if (value > lsedrv)
1228 			value--;
1229 		else
1230 			value++;
1231 
1232 		clrsetbits_le32(rcc + RCC_BDCR,
1233 				RCC_BDCR_LSEDRV_MASK,
1234 				value << RCC_BDCR_LSEDRV_SHIFT);
1235 	}
1236 
1237 	stm32mp1_ls_osc_set(1, rcc, RCC_BDCR, RCC_BDCR_LSEON);
1238 }
1239 
1240 static void stm32mp1_lse_wait(fdt_addr_t rcc)
1241 {
1242 	stm32mp1_osc_wait(1, rcc, RCC_BDCR, RCC_BDCR_LSERDY);
1243 }
1244 
1245 static void stm32mp1_lsi_set(fdt_addr_t rcc, int enable)
1246 {
1247 	stm32mp1_ls_osc_set(enable, rcc, RCC_RDLSICR, RCC_RDLSICR_LSION);
1248 	stm32mp1_osc_wait(enable, rcc, RCC_RDLSICR, RCC_RDLSICR_LSIRDY);
1249 }
1250 
1251 static void stm32mp1_hse_enable(fdt_addr_t rcc, int bypass, int digbyp, int css)
1252 {
1253 	if (digbyp)
1254 		writel(RCC_OCENR_DIGBYP, rcc + RCC_OCENSETR);
1255 	if (bypass || digbyp)
1256 		writel(RCC_OCENR_HSEBYP, rcc + RCC_OCENSETR);
1257 
1258 	stm32mp1_hs_ocs_set(1, rcc, RCC_OCENR_HSEON);
1259 	stm32mp1_osc_wait(1, rcc, RCC_OCRDYR, RCC_OCRDYR_HSERDY);
1260 
1261 	if (css)
1262 		writel(RCC_OCENR_HSECSSON, rcc + RCC_OCENSETR);
1263 }
1264 
1265 static void stm32mp1_csi_set(fdt_addr_t rcc, int enable)
1266 {
1267 	stm32mp1_hs_ocs_set(enable, rcc, RCC_OCENR_CSION);
1268 	stm32mp1_osc_wait(enable, rcc, RCC_OCRDYR, RCC_OCRDYR_CSIRDY);
1269 }
1270 
1271 static void stm32mp1_hsi_set(fdt_addr_t rcc, int enable)
1272 {
1273 	stm32mp1_hs_ocs_set(enable, rcc, RCC_OCENR_HSION);
1274 	stm32mp1_osc_wait(enable, rcc, RCC_OCRDYR, RCC_OCRDYR_HSIRDY);
1275 }
1276 
1277 static int stm32mp1_set_hsidiv(fdt_addr_t rcc, u8 hsidiv)
1278 {
1279 	u32 address = rcc + RCC_OCRDYR;
1280 	u32 val;
1281 	int ret;
1282 
1283 	clrsetbits_le32(rcc + RCC_HSICFGR,
1284 			RCC_HSICFGR_HSIDIV_MASK,
1285 			RCC_HSICFGR_HSIDIV_MASK & hsidiv);
1286 
1287 	ret = readl_poll_timeout(address, val,
1288 				 val & RCC_OCRDYR_HSIDIVRDY,
1289 				 TIMEOUT_200MS);
1290 	if (ret)
1291 		pr_err("HSIDIV failed @ 0x%x: 0x%x\n",
1292 		       address, readl(address));
1293 
1294 	return ret;
1295 }
1296 
1297 static int stm32mp1_hsidiv(fdt_addr_t rcc, ulong hsifreq)
1298 {
1299 	u8 hsidiv;
1300 	u32 hsidivfreq = MAX_HSI_HZ;
1301 
1302 	for (hsidiv = 0; hsidiv < 4; hsidiv++,
1303 	     hsidivfreq = hsidivfreq / 2)
1304 		if (hsidivfreq == hsifreq)
1305 			break;
1306 
1307 	if (hsidiv == 4) {
1308 		pr_err("clk-hsi frequency invalid");
1309 		return -1;
1310 	}
1311 
1312 	if (hsidiv > 0)
1313 		return stm32mp1_set_hsidiv(rcc, hsidiv);
1314 
1315 	return 0;
1316 }
1317 
1318 static void pll_start(struct stm32mp1_clk_priv *priv, int pll_id)
1319 {
1320 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
1321 
1322 	writel(RCC_PLLNCR_PLLON, priv->base + pll[pll_id].pllxcr);
1323 }
1324 
1325 static int pll_output(struct stm32mp1_clk_priv *priv, int pll_id, int output)
1326 {
1327 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
1328 	u32 pllxcr = priv->base + pll[pll_id].pllxcr;
1329 	u32 val;
1330 	int ret;
1331 
1332 	ret = readl_poll_timeout(pllxcr, val, val & RCC_PLLNCR_PLLRDY,
1333 				 TIMEOUT_200MS);
1334 
1335 	if (ret) {
1336 		pr_err("PLL%d start failed @ 0x%x: 0x%x\n",
1337 		       pll_id, pllxcr, readl(pllxcr));
1338 		return ret;
1339 	}
1340 
1341 	/* start the requested output */
1342 	setbits_le32(pllxcr, output << RCC_PLLNCR_DIVEN_SHIFT);
1343 
1344 	return 0;
1345 }
1346 
1347 static int pll_stop(struct stm32mp1_clk_priv *priv, int pll_id)
1348 {
1349 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
1350 	u32 pllxcr = priv->base + pll[pll_id].pllxcr;
1351 	u32 val;
1352 
1353 	/* stop all output */
1354 	clrbits_le32(pllxcr,
1355 		     RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN | RCC_PLLNCR_DIVREN);
1356 
1357 	/* stop PLL */
1358 	clrbits_le32(pllxcr, RCC_PLLNCR_PLLON);
1359 
1360 	/* wait PLL stopped */
1361 	return readl_poll_timeout(pllxcr, val, (val & RCC_PLLNCR_PLLRDY) == 0,
1362 				  TIMEOUT_200MS);
1363 }
1364 
1365 static void pll_config_output(struct stm32mp1_clk_priv *priv,
1366 			      int pll_id, u32 *pllcfg)
1367 {
1368 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
1369 	fdt_addr_t rcc = priv->base;
1370 	u32 value;
1371 
1372 	value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT)
1373 		& RCC_PLLNCFGR2_DIVP_MASK;
1374 	value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT)
1375 		 & RCC_PLLNCFGR2_DIVQ_MASK;
1376 	value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT)
1377 		 & RCC_PLLNCFGR2_DIVR_MASK;
1378 	writel(value, rcc + pll[pll_id].pllxcfgr2);
1379 }
1380 
1381 static int pll_config(struct stm32mp1_clk_priv *priv, int pll_id,
1382 		      u32 *pllcfg, u32 fracv)
1383 {
1384 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
1385 	fdt_addr_t rcc = priv->base;
1386 	enum stm32mp1_plltype type = pll[pll_id].plltype;
1387 	int src;
1388 	ulong refclk;
1389 	u8 ifrge = 0;
1390 	u32 value;
1391 
1392 	src = readl(priv->base + pll[pll_id].rckxselr) & RCC_SELR_SRC_MASK;
1393 
1394 	refclk = stm32mp1_clk_get_fixed(priv, pll[pll_id].refclk[src]) /
1395 		 (pllcfg[PLLCFG_M] + 1);
1396 
1397 	if (refclk < (stm32mp1_pll[type].refclk_min * 1000000) ||
1398 	    refclk > (stm32mp1_pll[type].refclk_max * 1000000)) {
1399 		debug("invalid refclk = %x\n", (u32)refclk);
1400 		return -EINVAL;
1401 	}
1402 	if (type == PLL_800 && refclk >= 8000000)
1403 		ifrge = 1;
1404 
1405 	value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT)
1406 		 & RCC_PLLNCFGR1_DIVN_MASK;
1407 	value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT)
1408 		 & RCC_PLLNCFGR1_DIVM_MASK;
1409 	value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT)
1410 		 & RCC_PLLNCFGR1_IFRGE_MASK;
1411 	writel(value, rcc + pll[pll_id].pllxcfgr1);
1412 
1413 	/* fractional configuration: load sigma-delta modulator (SDM) */
1414 
1415 	/* Write into FRACV the new fractional value , and FRACLE to 0 */
1416 	writel(fracv << RCC_PLLNFRACR_FRACV_SHIFT,
1417 	       rcc + pll[pll_id].pllxfracr);
1418 
1419 	/* Write FRACLE to 1 : FRACV value is loaded into the SDM */
1420 	setbits_le32(rcc + pll[pll_id].pllxfracr,
1421 		     RCC_PLLNFRACR_FRACLE);
1422 
1423 	pll_config_output(priv, pll_id, pllcfg);
1424 
1425 	return 0;
1426 }
1427 
1428 static void pll_csg(struct stm32mp1_clk_priv *priv, int pll_id, u32 *csg)
1429 {
1430 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
1431 	u32 pllxcsg;
1432 
1433 	pllxcsg = ((csg[PLLCSG_MOD_PER] << RCC_PLLNCSGR_MOD_PER_SHIFT) &
1434 		    RCC_PLLNCSGR_MOD_PER_MASK) |
1435 		  ((csg[PLLCSG_INC_STEP] << RCC_PLLNCSGR_INC_STEP_SHIFT) &
1436 		    RCC_PLLNCSGR_INC_STEP_MASK) |
1437 		  ((csg[PLLCSG_SSCG_MODE] << RCC_PLLNCSGR_SSCG_MODE_SHIFT) &
1438 		    RCC_PLLNCSGR_SSCG_MODE_MASK);
1439 
1440 	writel(pllxcsg, priv->base + pll[pll_id].pllxcsgr);
1441 }
1442 
1443 static int set_clksrc(struct stm32mp1_clk_priv *priv, unsigned int clksrc)
1444 {
1445 	u32 address = priv->base + (clksrc >> 4);
1446 	u32 val;
1447 	int ret;
1448 
1449 	clrsetbits_le32(address, RCC_SELR_SRC_MASK, clksrc & RCC_SELR_SRC_MASK);
1450 	ret = readl_poll_timeout(address, val, val & RCC_SELR_SRCRDY,
1451 				 TIMEOUT_200MS);
1452 	if (ret)
1453 		pr_err("CLKSRC %x start failed @ 0x%x: 0x%x\n",
1454 		       clksrc, address, readl(address));
1455 
1456 	return ret;
1457 }
1458 
1459 static void stgen_config(struct stm32mp1_clk_priv *priv)
1460 {
1461 	int p;
1462 	u32 stgenc, cntfid0;
1463 	ulong rate;
1464 
1465 	stgenc = (u32)syscon_get_first_range(STM32MP_SYSCON_STGEN);
1466 
1467 	cntfid0 = readl(stgenc + STGENC_CNTFID0);
1468 	p = stm32mp1_clk_get_parent(priv, STGEN_K);
1469 	rate = stm32mp1_clk_get(priv, p);
1470 
1471 	if (cntfid0 != rate) {
1472 		u64 counter;
1473 
1474 		pr_debug("System Generic Counter (STGEN) update\n");
1475 		clrbits_le32(stgenc + STGENC_CNTCR, STGENC_CNTCR_EN);
1476 		counter = (u64)readl(stgenc + STGENC_CNTCVL);
1477 		counter |= ((u64)(readl(stgenc + STGENC_CNTCVU))) << 32;
1478 		counter = lldiv(counter * (u64)rate, cntfid0);
1479 		writel((u32)counter, stgenc + STGENC_CNTCVL);
1480 		writel((u32)(counter >> 32), stgenc + STGENC_CNTCVU);
1481 		writel(rate, stgenc + STGENC_CNTFID0);
1482 		setbits_le32(stgenc + STGENC_CNTCR, STGENC_CNTCR_EN);
1483 
1484 		__asm__ volatile("mcr p15, 0, %0, c14, c0, 0" : : "r" (rate));
1485 
1486 		/* need to update gd->arch.timer_rate_hz with new frequency */
1487 		timer_init();
1488 		pr_debug("gd->arch.timer_rate_hz = %x\n",
1489 			 (u32)gd->arch.timer_rate_hz);
1490 		pr_debug("Tick = %x\n", (u32)(get_ticks()));
1491 	}
1492 }
1493 
1494 static int set_clkdiv(unsigned int clkdiv, u32 address)
1495 {
1496 	u32 val;
1497 	int ret;
1498 
1499 	clrsetbits_le32(address, RCC_DIVR_DIV_MASK, clkdiv & RCC_DIVR_DIV_MASK);
1500 	ret = readl_poll_timeout(address, val, val & RCC_DIVR_DIVRDY,
1501 				 TIMEOUT_200MS);
1502 	if (ret)
1503 		pr_err("CLKDIV %x start failed @ 0x%x: 0x%x\n",
1504 		       clkdiv, address, readl(address));
1505 
1506 	return ret;
1507 }
1508 
1509 static void stm32mp1_mco_csg(struct stm32mp1_clk_priv *priv,
1510 			     u32 clksrc, u32 clkdiv)
1511 {
1512 	u32 address = priv->base + (clksrc >> 4);
1513 
1514 	/*
1515 	 * binding clksrc : bit15-4 offset
1516 	 *                  bit3:   disable
1517 	 *                  bit2-0: MCOSEL[2:0]
1518 	 */
1519 	if (clksrc & 0x8) {
1520 		clrbits_le32(address, RCC_MCOCFG_MCOON);
1521 	} else {
1522 		clrsetbits_le32(address,
1523 				RCC_MCOCFG_MCOSRC_MASK,
1524 				clksrc & RCC_MCOCFG_MCOSRC_MASK);
1525 		clrsetbits_le32(address,
1526 				RCC_MCOCFG_MCODIV_MASK,
1527 				clkdiv << RCC_MCOCFG_MCODIV_SHIFT);
1528 		setbits_le32(address, RCC_MCOCFG_MCOON);
1529 	}
1530 }
1531 
1532 static void set_rtcsrc(struct stm32mp1_clk_priv *priv,
1533 		       unsigned int clksrc,
1534 		       int lse_css)
1535 {
1536 	u32 address = priv->base + RCC_BDCR;
1537 
1538 	if (readl(address) & RCC_BDCR_RTCCKEN)
1539 		goto skip_rtc;
1540 
1541 	if (clksrc == CLK_RTC_DISABLED)
1542 		goto skip_rtc;
1543 
1544 	clrsetbits_le32(address,
1545 			RCC_BDCR_RTCSRC_MASK,
1546 			clksrc << RCC_BDCR_RTCSRC_SHIFT);
1547 
1548 	setbits_le32(address, RCC_BDCR_RTCCKEN);
1549 
1550 skip_rtc:
1551 	if (lse_css)
1552 		setbits_le32(address, RCC_BDCR_LSECSSON);
1553 }
1554 
1555 static void pkcs_config(struct stm32mp1_clk_priv *priv, u32 pkcs)
1556 {
1557 	u32 address = priv->base + ((pkcs >> 4) & 0xFFF);
1558 	u32 value = pkcs & 0xF;
1559 	u32 mask = 0xF;
1560 
1561 	if (pkcs & BIT(31)) {
1562 		mask <<= 4;
1563 		value <<= 4;
1564 	}
1565 	clrsetbits_le32(address, mask, value);
1566 }
1567 
1568 static int stm32mp1_clktree(struct udevice *dev)
1569 {
1570 	struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
1571 	fdt_addr_t rcc = priv->base;
1572 	unsigned int clksrc[CLKSRC_NB];
1573 	unsigned int clkdiv[CLKDIV_NB];
1574 	unsigned int pllcfg[_PLL_NB][PLLCFG_NB];
1575 	ofnode plloff[_PLL_NB];
1576 	int ret;
1577 	int i, len;
1578 	int lse_css = 0;
1579 	const u32 *pkcs_cell;
1580 
1581 	/* check mandatory field */
1582 	ret = dev_read_u32_array(dev, "st,clksrc", clksrc, CLKSRC_NB);
1583 	if (ret < 0) {
1584 		debug("field st,clksrc invalid: error %d\n", ret);
1585 		return -FDT_ERR_NOTFOUND;
1586 	}
1587 
1588 	ret = dev_read_u32_array(dev, "st,clkdiv", clkdiv, CLKDIV_NB);
1589 	if (ret < 0) {
1590 		debug("field st,clkdiv invalid: error %d\n", ret);
1591 		return -FDT_ERR_NOTFOUND;
1592 	}
1593 
1594 	/* check mandatory field in each pll */
1595 	for (i = 0; i < _PLL_NB; i++) {
1596 		char name[12];
1597 
1598 		sprintf(name, "st,pll@%d", i);
1599 		plloff[i] = dev_read_subnode(dev, name);
1600 		if (!ofnode_valid(plloff[i]))
1601 			continue;
1602 		ret = ofnode_read_u32_array(plloff[i], "cfg",
1603 					    pllcfg[i], PLLCFG_NB);
1604 		if (ret < 0) {
1605 			debug("field cfg invalid: error %d\n", ret);
1606 			return -FDT_ERR_NOTFOUND;
1607 		}
1608 	}
1609 
1610 	debug("configuration MCO\n");
1611 	stm32mp1_mco_csg(priv, clksrc[CLKSRC_MCO1], clkdiv[CLKDIV_MCO1]);
1612 	stm32mp1_mco_csg(priv, clksrc[CLKSRC_MCO2], clkdiv[CLKDIV_MCO2]);
1613 
1614 	debug("switch ON osillator\n");
1615 	/*
1616 	 * switch ON oscillator found in device-tree,
1617 	 * HSI already ON after bootrom
1618 	 */
1619 	if (priv->osc[_LSI])
1620 		stm32mp1_lsi_set(rcc, 1);
1621 
1622 	if (priv->osc[_LSE]) {
1623 		int bypass, digbyp, lsedrv;
1624 		struct udevice *dev = priv->osc_dev[_LSE];
1625 
1626 		bypass = dev_read_bool(dev, "st,bypass");
1627 		digbyp = dev_read_bool(dev, "st,digbypass");
1628 		lse_css = dev_read_bool(dev, "st,css");
1629 		lsedrv = dev_read_u32_default(dev, "st,drive",
1630 					      LSEDRV_MEDIUM_HIGH);
1631 
1632 		stm32mp1_lse_enable(rcc, bypass, digbyp, lsedrv);
1633 	}
1634 
1635 	if (priv->osc[_HSE]) {
1636 		int bypass, digbyp, css;
1637 		struct udevice *dev = priv->osc_dev[_HSE];
1638 
1639 		bypass = dev_read_bool(dev, "st,bypass");
1640 		digbyp = dev_read_bool(dev, "st,digbypass");
1641 		css = dev_read_bool(dev, "st,css");
1642 
1643 		stm32mp1_hse_enable(rcc, bypass, digbyp, css);
1644 	}
1645 	/* CSI is mandatory for automatic I/O compensation (SYSCFG_CMPCR)
1646 	 * => switch on CSI even if node is not present in device tree
1647 	 */
1648 	stm32mp1_csi_set(rcc, 1);
1649 
1650 	/* come back to HSI */
1651 	debug("come back to HSI\n");
1652 	set_clksrc(priv, CLK_MPU_HSI);
1653 	set_clksrc(priv, CLK_AXI_HSI);
1654 	set_clksrc(priv, CLK_MCU_HSI);
1655 
1656 	debug("pll stop\n");
1657 	for (i = 0; i < _PLL_NB; i++)
1658 		pll_stop(priv, i);
1659 
1660 	/* configure HSIDIV */
1661 	debug("configure HSIDIV\n");
1662 	if (priv->osc[_HSI]) {
1663 		stm32mp1_hsidiv(rcc, priv->osc[_HSI]);
1664 		stgen_config(priv);
1665 	}
1666 
1667 	/* select DIV */
1668 	debug("select DIV\n");
1669 	/* no ready bit when MPUSRC != CLK_MPU_PLL1P_DIV, MPUDIV is disabled */
1670 	writel(clkdiv[CLKDIV_MPU] & RCC_DIVR_DIV_MASK, rcc + RCC_MPCKDIVR);
1671 	set_clkdiv(clkdiv[CLKDIV_AXI], rcc + RCC_AXIDIVR);
1672 	set_clkdiv(clkdiv[CLKDIV_APB4], rcc + RCC_APB4DIVR);
1673 	set_clkdiv(clkdiv[CLKDIV_APB5], rcc + RCC_APB5DIVR);
1674 	set_clkdiv(clkdiv[CLKDIV_MCU], rcc + RCC_MCUDIVR);
1675 	set_clkdiv(clkdiv[CLKDIV_APB1], rcc + RCC_APB1DIVR);
1676 	set_clkdiv(clkdiv[CLKDIV_APB2], rcc + RCC_APB2DIVR);
1677 	set_clkdiv(clkdiv[CLKDIV_APB3], rcc + RCC_APB3DIVR);
1678 
1679 	/* no ready bit for RTC */
1680 	writel(clkdiv[CLKDIV_RTC] & RCC_DIVR_DIV_MASK, rcc + RCC_RTCDIVR);
1681 
1682 	/* configure PLLs source */
1683 	debug("configure PLLs source\n");
1684 	set_clksrc(priv, clksrc[CLKSRC_PLL12]);
1685 	set_clksrc(priv, clksrc[CLKSRC_PLL3]);
1686 	set_clksrc(priv, clksrc[CLKSRC_PLL4]);
1687 
1688 	/* configure and start PLLs */
1689 	debug("configure PLLs\n");
1690 	for (i = 0; i < _PLL_NB; i++) {
1691 		u32 fracv;
1692 		u32 csg[PLLCSG_NB];
1693 
1694 		debug("configure PLL %d @ %d\n", i,
1695 		      ofnode_to_offset(plloff[i]));
1696 		if (!ofnode_valid(plloff[i]))
1697 			continue;
1698 
1699 		fracv = ofnode_read_u32_default(plloff[i], "frac", 0);
1700 		pll_config(priv, i, pllcfg[i], fracv);
1701 		ret = ofnode_read_u32_array(plloff[i], "csg", csg, PLLCSG_NB);
1702 		if (!ret) {
1703 			pll_csg(priv, i, csg);
1704 		} else if (ret != -FDT_ERR_NOTFOUND) {
1705 			debug("invalid csg node for pll@%d res=%d\n", i, ret);
1706 			return ret;
1707 		}
1708 		pll_start(priv, i);
1709 	}
1710 
1711 	/* wait and start PLLs ouptut when ready */
1712 	for (i = 0; i < _PLL_NB; i++) {
1713 		if (!ofnode_valid(plloff[i]))
1714 			continue;
1715 		debug("output PLL %d\n", i);
1716 		pll_output(priv, i, pllcfg[i][PLLCFG_O]);
1717 	}
1718 
1719 	/* wait LSE ready before to use it */
1720 	if (priv->osc[_LSE])
1721 		stm32mp1_lse_wait(rcc);
1722 
1723 	/* configure with expected clock source */
1724 	debug("CLKSRC\n");
1725 	set_clksrc(priv, clksrc[CLKSRC_MPU]);
1726 	set_clksrc(priv, clksrc[CLKSRC_AXI]);
1727 	set_clksrc(priv, clksrc[CLKSRC_MCU]);
1728 	set_rtcsrc(priv, clksrc[CLKSRC_RTC], lse_css);
1729 
1730 	/* configure PKCK */
1731 	debug("PKCK\n");
1732 	pkcs_cell = dev_read_prop(dev, "st,pkcs", &len);
1733 	if (pkcs_cell) {
1734 		bool ckper_disabled = false;
1735 
1736 		for (i = 0; i < len / sizeof(u32); i++) {
1737 			u32 pkcs = (u32)fdt32_to_cpu(pkcs_cell[i]);
1738 
1739 			if (pkcs == CLK_CKPER_DISABLED) {
1740 				ckper_disabled = true;
1741 				continue;
1742 			}
1743 			pkcs_config(priv, pkcs);
1744 		}
1745 		/* CKPER is source for some peripheral clock
1746 		 * (FMC-NAND / QPSI-NOR) and switching source is allowed
1747 		 * only if previous clock is still ON
1748 		 * => deactivated CKPER only after switching clock
1749 		 */
1750 		if (ckper_disabled)
1751 			pkcs_config(priv, CLK_CKPER_DISABLED);
1752 	}
1753 
1754 	/* STGEN clock source can change with CLK_STGEN_XXX */
1755 	stgen_config(priv);
1756 
1757 	debug("oscillator off\n");
1758 	/* switch OFF HSI if not found in device-tree */
1759 	if (!priv->osc[_HSI])
1760 		stm32mp1_hsi_set(rcc, 0);
1761 
1762 	/* Software Self-Refresh mode (SSR) during DDR initilialization */
1763 	clrsetbits_le32(priv->base + RCC_DDRITFCR,
1764 			RCC_DDRITFCR_DDRCKMOD_MASK,
1765 			RCC_DDRITFCR_DDRCKMOD_SSR <<
1766 			RCC_DDRITFCR_DDRCKMOD_SHIFT);
1767 
1768 	return 0;
1769 }
1770 #endif /* STM32MP1_CLOCK_TREE_INIT */
1771 
1772 static int pll_set_output_rate(struct udevice *dev,
1773 			       int pll_id,
1774 			       int div_id,
1775 			       unsigned long clk_rate)
1776 {
1777 	struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
1778 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
1779 	u32 pllxcr = priv->base + pll[pll_id].pllxcr;
1780 	int div;
1781 	ulong fvco;
1782 
1783 	if (div_id > _DIV_NB)
1784 		return -EINVAL;
1785 
1786 	fvco = pll_get_fvco(priv, pll_id);
1787 
1788 	if (fvco <= clk_rate)
1789 		div = 1;
1790 	else
1791 		div = DIV_ROUND_UP(fvco, clk_rate);
1792 
1793 	if (div > 128)
1794 		div = 128;
1795 
1796 	debug("fvco = %ld, clk_rate = %ld, div=%d\n", fvco, clk_rate, div);
1797 	/* stop the requested output */
1798 	clrbits_le32(pllxcr, 0x1 << div_id << RCC_PLLNCR_DIVEN_SHIFT);
1799 	/* change divider */
1800 	clrsetbits_le32(priv->base + pll[pll_id].pllxcfgr2,
1801 			RCC_PLLNCFGR2_DIVX_MASK << RCC_PLLNCFGR2_SHIFT(div_id),
1802 			(div - 1) << RCC_PLLNCFGR2_SHIFT(div_id));
1803 	/* start the requested output */
1804 	setbits_le32(pllxcr, 0x1 << div_id << RCC_PLLNCR_DIVEN_SHIFT);
1805 
1806 	return 0;
1807 }
1808 
1809 static ulong stm32mp1_clk_set_rate(struct clk *clk, unsigned long clk_rate)
1810 {
1811 	struct stm32mp1_clk_priv *priv = dev_get_priv(clk->dev);
1812 	int p;
1813 
1814 	switch (clk->id) {
1815 	case LTDC_PX:
1816 	case DSI_PX:
1817 		break;
1818 	default:
1819 		pr_err("not supported");
1820 		return -EINVAL;
1821 	}
1822 
1823 	p = stm32mp1_clk_get_parent(priv, clk->id);
1824 	if (p < 0)
1825 		return -EINVAL;
1826 
1827 	switch (p) {
1828 	case _PLL4_Q:
1829 		/* for LTDC_PX and DSI_PX case */
1830 		return pll_set_output_rate(clk->dev, _PLL4, _DIV_Q, clk_rate);
1831 	}
1832 
1833 	return -EINVAL;
1834 }
1835 
1836 static void stm32mp1_osc_clk_init(const char *name,
1837 				  struct stm32mp1_clk_priv *priv,
1838 				  int index)
1839 {
1840 	struct clk clk;
1841 	struct udevice *dev = NULL;
1842 
1843 	priv->osc[index] = 0;
1844 	clk.id = 0;
1845 	if (!uclass_get_device_by_name(UCLASS_CLK, name, &dev)) {
1846 		if (clk_request(dev, &clk))
1847 			pr_err("%s request", name);
1848 		else
1849 			priv->osc[index] = clk_get_rate(&clk);
1850 	}
1851 	priv->osc_dev[index] = dev;
1852 }
1853 
1854 static void stm32mp1_osc_init(struct udevice *dev)
1855 {
1856 	struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
1857 	int i;
1858 	const char *name[NB_OSC] = {
1859 		[_LSI] = "clk-lsi",
1860 		[_LSE] = "clk-lse",
1861 		[_HSI] = "clk-hsi",
1862 		[_HSE] = "clk-hse",
1863 		[_CSI] = "clk-csi",
1864 		[_I2S_CKIN] = "i2s_ckin",
1865 	};
1866 
1867 	for (i = 0; i < NB_OSC; i++) {
1868 		stm32mp1_osc_clk_init(name[i], priv, i);
1869 		debug("%d: %s => %x\n", i, name[i], (u32)priv->osc[i]);
1870 	}
1871 }
1872 
1873 static void  __maybe_unused stm32mp1_clk_dump(struct stm32mp1_clk_priv *priv)
1874 {
1875 	char buf[32];
1876 	int i, s, p;
1877 
1878 	printf("Clocks:\n");
1879 	for (i = 0; i < _PARENT_NB; i++) {
1880 		printf("- %s : %s MHz\n",
1881 		       stm32mp1_clk_parent_name[i],
1882 		       strmhz(buf, stm32mp1_clk_get(priv, i)));
1883 	}
1884 	printf("Source Clocks:\n");
1885 	for (i = 0; i < _PARENT_SEL_NB; i++) {
1886 		p = (readl(priv->base + priv->data->sel[i].offset) >>
1887 		     priv->data->sel[i].src) & priv->data->sel[i].msk;
1888 		if (p < priv->data->sel[i].nb_parent) {
1889 			s = priv->data->sel[i].parent[p];
1890 			printf("- %s(%d) => parent %s(%d)\n",
1891 			       stm32mp1_clk_parent_sel_name[i], i,
1892 			       stm32mp1_clk_parent_name[s], s);
1893 		} else {
1894 			printf("- %s(%d) => parent index %d is invalid\n",
1895 			       stm32mp1_clk_parent_sel_name[i], i, p);
1896 		}
1897 	}
1898 }
1899 
1900 #ifdef CONFIG_CMD_CLK
1901 int soc_clk_dump(void)
1902 {
1903 	struct udevice *dev;
1904 	struct stm32mp1_clk_priv *priv;
1905 	int ret;
1906 
1907 	ret = uclass_get_device_by_driver(UCLASS_CLK,
1908 					  DM_GET_DRIVER(stm32mp1_clock),
1909 					  &dev);
1910 	if (ret)
1911 		return ret;
1912 
1913 	priv = dev_get_priv(dev);
1914 
1915 	stm32mp1_clk_dump(priv);
1916 
1917 	return 0;
1918 }
1919 #endif
1920 
1921 static int stm32mp1_clk_probe(struct udevice *dev)
1922 {
1923 	int result = 0;
1924 	struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
1925 
1926 	priv->base = dev_read_addr(dev->parent);
1927 	if (priv->base == FDT_ADDR_T_NONE)
1928 		return -EINVAL;
1929 
1930 	priv->data = (void *)&stm32mp1_data;
1931 
1932 	if (!priv->data->gate || !priv->data->sel ||
1933 	    !priv->data->pll)
1934 		return -EINVAL;
1935 
1936 	stm32mp1_osc_init(dev);
1937 
1938 #ifdef STM32MP1_CLOCK_TREE_INIT
1939 	/* clock tree init is done only one time, before relocation */
1940 	if (!(gd->flags & GD_FLG_RELOC))
1941 		result = stm32mp1_clktree(dev);
1942 #endif
1943 
1944 #ifndef CONFIG_SPL_BUILD
1945 #if defined(DEBUG)
1946 	/* display debug information for probe after relocation */
1947 	if (gd->flags & GD_FLG_RELOC)
1948 		stm32mp1_clk_dump(priv);
1949 #endif
1950 
1951 #if defined(CONFIG_DISPLAY_CPUINFO)
1952 	if (gd->flags & GD_FLG_RELOC) {
1953 		char buf[32];
1954 
1955 		printf("Clocks:\n");
1956 		printf("- MPU : %s MHz\n",
1957 		       strmhz(buf, stm32mp1_clk_get(priv, _CK_MPU)));
1958 		printf("- MCU : %s MHz\n",
1959 		       strmhz(buf, stm32mp1_clk_get(priv, _CK_MCU)));
1960 		printf("- AXI : %s MHz\n",
1961 		       strmhz(buf, stm32mp1_clk_get(priv, _ACLK)));
1962 		printf("- PER : %s MHz\n",
1963 		       strmhz(buf, stm32mp1_clk_get(priv, _CK_PER)));
1964 		/* DDRPHYC father */
1965 		printf("- DDR : %s MHz\n",
1966 		       strmhz(buf, stm32mp1_clk_get(priv, _PLL2_R)));
1967 	}
1968 #endif /* CONFIG_DISPLAY_CPUINFO */
1969 #endif
1970 
1971 	return result;
1972 }
1973 
1974 static const struct clk_ops stm32mp1_clk_ops = {
1975 	.enable = stm32mp1_clk_enable,
1976 	.disable = stm32mp1_clk_disable,
1977 	.get_rate = stm32mp1_clk_get_rate,
1978 	.set_rate = stm32mp1_clk_set_rate,
1979 };
1980 
1981 U_BOOT_DRIVER(stm32mp1_clock) = {
1982 	.name = "stm32mp1_clk",
1983 	.id = UCLASS_CLK,
1984 	.ops = &stm32mp1_clk_ops,
1985 	.priv_auto_alloc_size = sizeof(struct stm32mp1_clk_priv),
1986 	.probe = stm32mp1_clk_probe,
1987 };
1988