xref: /openbmc/u-boot/drivers/clk/clk_stm32h7.c (revision d983a0f00853624b31d30811cdd45180b6682636)
1 /*
2  * Copyright (C) STMicroelectronics SA 2017
3  * Author(s): Patrice CHOTARD, <patrice.chotard@st.com> for STMicroelectronics.
4  *
5  * SPDX-License-Identifier:	GPL-2.0+
6  */
7 
8 #include <common.h>
9 #include <clk-uclass.h>
10 #include <dm.h>
11 #include <regmap.h>
12 #include <syscon.h>
13 #include <asm/io.h>
14 #include <dm/root.h>
15 
16 #include <dt-bindings/clock/stm32h7-clks.h>
17 
18 DECLARE_GLOBAL_DATA_PTR;
19 
20 /* RCC CR specific definitions */
21 #define RCC_CR_HSION			BIT(0)
22 #define RCC_CR_HSIRDY			BIT(2)
23 
24 #define RCC_CR_HSEON			BIT(16)
25 #define RCC_CR_HSERDY			BIT(17)
26 #define RCC_CR_HSEBYP			BIT(18)
27 #define RCC_CR_PLL1ON			BIT(24)
28 #define RCC_CR_PLL1RDY			BIT(25)
29 
30 #define RCC_CR_HSIDIV_MASK		GENMASK(4, 3)
31 #define RCC_CR_HSIDIV_SHIFT		3
32 
33 #define RCC_CFGR_SW_MASK		GENMASK(2, 0)
34 #define RCC_CFGR_SW_HSI			0
35 #define RCC_CFGR_SW_CSI			1
36 #define RCC_CFGR_SW_HSE			2
37 #define RCC_CFGR_SW_PLL1		3
38 
39 #define RCC_PLLCKSELR_PLLSRC_HSI	0
40 #define RCC_PLLCKSELR_PLLSRC_CSI	1
41 #define RCC_PLLCKSELR_PLLSRC_HSE	2
42 #define RCC_PLLCKSELR_PLLSRC_NO_CLK	3
43 
44 #define RCC_PLLCKSELR_PLLSRC_MASK	GENMASK(1, 0)
45 
46 #define RCC_PLLCKSELR_DIVM1_SHIFT	4
47 #define RCC_PLLCKSELR_DIVM1_MASK	GENMASK(9, 4)
48 
49 #define RCC_PLL1DIVR_DIVN1_MASK		GENMASK(8, 0)
50 
51 #define RCC_PLL1DIVR_DIVP1_SHIFT	9
52 #define RCC_PLL1DIVR_DIVP1_MASK		GENMASK(15, 9)
53 
54 #define RCC_PLL1DIVR_DIVQ1_SHIFT	16
55 #define RCC_PLL1DIVR_DIVQ1_MASK		GENMASK(22, 16)
56 
57 #define RCC_PLL1DIVR_DIVR1_SHIFT	24
58 #define RCC_PLL1DIVR_DIVR1_MASK		GENMASK(30, 24)
59 
60 #define RCC_PLL1FRACR_FRACN1_SHIFT	3
61 #define RCC_PLL1FRACR_FRACN1_MASK	GENMASK(15, 3)
62 
63 #define RCC_PLLCFGR_PLL1RGE_SHIFT	2
64 #define		PLL1RGE_1_2_MHZ		0
65 #define		PLL1RGE_2_4_MHZ		1
66 #define		PLL1RGE_4_8_MHZ		2
67 #define		PLL1RGE_8_16_MHZ	3
68 #define RCC_PLLCFGR_DIVP1EN		BIT(16)
69 #define RCC_PLLCFGR_DIVQ1EN		BIT(17)
70 #define RCC_PLLCFGR_DIVR1EN		BIT(18)
71 
72 #define RCC_D1CFGR_HPRE_MASK		GENMASK(3, 0)
73 #define RCC_D1CFGR_HPRE_DIVIDED		BIT(3)
74 #define RCC_D1CFGR_HPRE_DIVIDER		GENMASK(2, 0)
75 
76 #define RCC_D1CFGR_HPRE_DIV2		8
77 
78 #define RCC_D1CFGR_D1PPRE_SHIFT		4
79 #define RCC_D1CFGR_D1PPRE_DIVIDED	BIT(6)
80 #define RCC_D1CFGR_D1PPRE_DIVIDER	GENMASK(5, 4)
81 
82 #define RCC_D1CFGR_D1CPRE_SHIFT		8
83 #define RCC_D1CFGR_D1CPRE_DIVIDER	GENMASK(10, 8)
84 #define RCC_D1CFGR_D1CPRE_DIVIDED	BIT(11)
85 
86 #define RCC_D2CFGR_D2PPRE1_SHIFT	4
87 #define RCC_D2CFGR_D2PPRE1_DIVIDED	BIT(6)
88 #define RCC_D2CFGR_D2PPRE1_DIVIDER	GENMASK(5, 4)
89 
90 #define RCC_D2CFGR_D2PPRE2_SHIFT	8
91 #define RCC_D2CFGR_D2PPRE2_DIVIDED	BIT(10)
92 #define RCC_D2CFGR_D2PPRE2_DIVIDER	GENMASK(9, 8)
93 
94 #define RCC_D3CFGR_D3PPRE_SHIFT		4
95 #define RCC_D3CFGR_D3PPRE_DIVIDED	BIT(6)
96 #define RCC_D3CFGR_D3PPRE_DIVIDER	GENMASK(5, 4)
97 
98 #define RCC_D1CCIPR_FMCSRC_MASK		GENMASK(1, 0)
99 #define		FMCSRC_HCLKD1		0
100 #define		FMCSRC_PLL1_Q_CK	1
101 #define		FMCSRC_PLL2_R_CK	2
102 #define		FMCSRC_PER_CK		3
103 
104 #define RCC_D1CCIPR_QSPISRC_MASK	GENMASK(5, 4)
105 #define RCC_D1CCIPR_QSPISRC_SHIFT	4
106 #define		QSPISRC_HCLKD1		0
107 #define		QSPISRC_PLL1_Q_CK	1
108 #define		QSPISRC_PLL2_R_CK	2
109 #define		QSPISRC_PER_CK		3
110 
111 #define PWR_CR3				0x0c
112 #define PWR_CR3_SDEN			BIT(2)
113 #define PWR_D3CR			0x18
114 #define PWR_D3CR_VOS_MASK		GENMASK(15, 14)
115 #define PWR_D3CR_VOS_SHIFT		14
116 #define		VOS_SCALE_3		1
117 #define		VOS_SCALE_2		2
118 #define		VOS_SCALE_1		3
119 #define PWR_D3CR_VOSREADY		BIT(13)
120 
121 struct stm32_rcc_regs {
122 	u32 cr;		/* 0x00 Source Control Register */
123 	u32 icscr;	/* 0x04 Internal Clock Source Calibration Register */
124 	u32 crrcr;	/* 0x08 Clock Recovery RC Register */
125 	u32 reserved1;	/* 0x0c reserved */
126 	u32 cfgr;	/* 0x10 Clock Configuration Register */
127 	u32 reserved2;	/* 0x14 reserved */
128 	u32 d1cfgr;	/* 0x18 Domain 1 Clock Configuration Register */
129 	u32 d2cfgr;	/* 0x1c Domain 2 Clock Configuration Register */
130 	u32 d3cfgr;	/* 0x20 Domain 3 Clock Configuration Register */
131 	u32 reserved3;	/* 0x24 reserved */
132 	u32 pllckselr;	/* 0x28 PLLs Clock Source Selection Register */
133 	u32 pllcfgr;	/* 0x2c PLLs Configuration Register */
134 	u32 pll1divr;	/* 0x30 PLL1 Dividers Configuration Register */
135 	u32 pll1fracr;	/* 0x34 PLL1 Fractional Divider Register */
136 	u32 pll2divr;	/* 0x38 PLL2 Dividers Configuration Register */
137 	u32 pll2fracr;	/* 0x3c PLL2 Fractional Divider Register */
138 	u32 pll3divr;	/* 0x40 PLL3 Dividers Configuration Register */
139 	u32 pll3fracr;	/* 0x44 PLL3 Fractional Divider Register */
140 	u32 reserved4;	/* 0x48 reserved */
141 	u32 d1ccipr;	/* 0x4c Domain 1 Kernel Clock Configuration Register */
142 	u32 d2ccip1r;	/* 0x50 Domain 2 Kernel Clock Configuration Register */
143 	u32 d2ccip2r;	/* 0x54 Domain 2 Kernel Clock Configuration Register */
144 	u32 d3ccipr;	/* 0x58 Domain 3 Kernel Clock Configuration Register */
145 	u32 reserved5;	/* 0x5c reserved */
146 	u32 cier;	/* 0x60 Clock Source Interrupt Enable Register */
147 	u32 cifr;	/* 0x64 Clock Source Interrupt Flag Register */
148 	u32 cicr;	/* 0x68 Clock Source Interrupt Clear Register */
149 	u32 reserved6;	/* 0x6c reserved */
150 	u32 bdcr;	/* 0x70 Backup Domain Control Register */
151 	u32 csr;	/* 0x74 Clock Control and Status Register */
152 	u32 reserved7;	/* 0x78 reserved */
153 
154 	u32 ahb3rstr;	/* 0x7c AHB3 Peripheral Reset Register */
155 	u32 ahb1rstr;	/* 0x80 AHB1 Peripheral Reset Register */
156 	u32 ahb2rstr;	/* 0x84 AHB2 Peripheral Reset Register */
157 	u32 ahb4rstr;	/* 0x88 AHB4 Peripheral Reset Register */
158 
159 	u32 apb3rstr;	/* 0x8c APB3 Peripheral Reset Register */
160 	u32 apb1lrstr;	/* 0x90 APB1 low Peripheral Reset Register */
161 	u32 apb1hrstr;	/* 0x94 APB1 high Peripheral Reset Register */
162 	u32 apb2rstr;	/* 0x98 APB2 Clock Register */
163 	u32 apb4rstr;	/* 0x9c APB4 Clock Register */
164 
165 	u32 gcr;	/* 0xa0 Global Control Register */
166 	u32 reserved8;	/* 0xa4 reserved */
167 	u32 d3amr;	/* 0xa8 D3 Autonomous mode Register */
168 	u32 reserved9[9];/* 0xac to 0xcc reserved */
169 	u32 rsr;	/* 0xd0 Reset Status Register */
170 	u32 ahb3enr;	/* 0xd4 AHB3 Clock Register */
171 	u32 ahb1enr;	/* 0xd8 AHB1 Clock Register */
172 	u32 ahb2enr;	/* 0xdc AHB2 Clock Register */
173 	u32 ahb4enr;	/* 0xe0 AHB4 Clock Register */
174 
175 	u32 apb3enr;	/* 0xe4 APB3 Clock Register */
176 	u32 apb1lenr;	/* 0xe8 APB1 low Clock Register */
177 	u32 apb1henr;	/* 0xec APB1 high Clock Register */
178 	u32 apb2enr;	/* 0xf0 APB2 Clock Register */
179 	u32 apb4enr;	/* 0xf4 APB4 Clock Register */
180 };
181 
182 #define RCC_AHB3ENR	offsetof(struct stm32_rcc_regs, ahb3enr)
183 #define RCC_AHB1ENR	offsetof(struct stm32_rcc_regs, ahb1enr)
184 #define RCC_AHB2ENR	offsetof(struct stm32_rcc_regs, ahb2enr)
185 #define RCC_AHB4ENR	offsetof(struct stm32_rcc_regs, ahb4enr)
186 #define RCC_APB3ENR	offsetof(struct stm32_rcc_regs, apb3enr)
187 #define RCC_APB1LENR	offsetof(struct stm32_rcc_regs, apb1lenr)
188 #define RCC_APB1HENR	offsetof(struct stm32_rcc_regs, apb1henr)
189 #define RCC_APB2ENR	offsetof(struct stm32_rcc_regs, apb2enr)
190 #define RCC_APB4ENR	offsetof(struct stm32_rcc_regs, apb4enr)
191 
192 struct clk_cfg {
193 	u32 gate_offset;
194 	u8  gate_bit_idx;
195 	const char *name;
196 };
197 
198 #define CLK(_gate_offset, _bit_idx, _name) \
199 { \
200 	.gate_offset = _gate_offset,\
201 	.gate_bit_idx = _bit_idx,\
202 	.name = _name,\
203 }
204 
205 /*
206  * the way all these entries are sorted in this array could seem
207  * unlogical, but we are dependant of kernel DT_bindings,
208  * where clocks are separate in 2 banks, peripheral clocks and
209  * kernel clocks.
210  */
211 
212 static const struct clk_cfg clk_map[] = {
213 	CLK(RCC_AHB3ENR,  31, "d1sram1"),	/* peripheral clocks */
214 	CLK(RCC_AHB3ENR,  30, "itcm"),
215 	CLK(RCC_AHB3ENR,  29, "dtcm2"),
216 	CLK(RCC_AHB3ENR,  28, "dtcm1"),
217 	CLK(RCC_AHB3ENR,   8, "flitf"),
218 	CLK(RCC_AHB3ENR,   5, "jpgdec"),
219 	CLK(RCC_AHB3ENR,   4, "dma2d"),
220 	CLK(RCC_AHB3ENR,   0, "mdma"),
221 	CLK(RCC_AHB1ENR,  28, "usb2ulpi"),
222 	CLK(RCC_AHB1ENR,  17, "eth1rx"),
223 	CLK(RCC_AHB1ENR,  16, "eth1tx"),
224 	CLK(RCC_AHB1ENR,  15, "eth1mac"),
225 	CLK(RCC_AHB1ENR,  14, "art"),
226 	CLK(RCC_AHB1ENR,  26, "usb1ulpi"),
227 	CLK(RCC_AHB1ENR,   1, "dma2"),
228 	CLK(RCC_AHB1ENR,   0, "dma1"),
229 	CLK(RCC_AHB2ENR,  31, "d2sram3"),
230 	CLK(RCC_AHB2ENR,  30, "d2sram2"),
231 	CLK(RCC_AHB2ENR,  29, "d2sram1"),
232 	CLK(RCC_AHB2ENR,   5, "hash"),
233 	CLK(RCC_AHB2ENR,   4, "crypt"),
234 	CLK(RCC_AHB2ENR,   0, "camitf"),
235 	CLK(RCC_AHB4ENR,  28, "bkpram"),
236 	CLK(RCC_AHB4ENR,  25, "hsem"),
237 	CLK(RCC_AHB4ENR,  21, "bdma"),
238 	CLK(RCC_AHB4ENR,  19, "crc"),
239 	CLK(RCC_AHB4ENR,  10, "gpiok"),
240 	CLK(RCC_AHB4ENR,   9, "gpioj"),
241 	CLK(RCC_AHB4ENR,   8, "gpioi"),
242 	CLK(RCC_AHB4ENR,   7, "gpioh"),
243 	CLK(RCC_AHB4ENR,   6, "gpiog"),
244 	CLK(RCC_AHB4ENR,   5, "gpiof"),
245 	CLK(RCC_AHB4ENR,   4, "gpioe"),
246 	CLK(RCC_AHB4ENR,   3, "gpiod"),
247 	CLK(RCC_AHB4ENR,   2, "gpioc"),
248 	CLK(RCC_AHB4ENR,   1, "gpiob"),
249 	CLK(RCC_AHB4ENR,   0, "gpioa"),
250 	CLK(RCC_APB3ENR,   6, "wwdg1"),
251 	CLK(RCC_APB1LENR, 29, "dac12"),
252 	CLK(RCC_APB1LENR, 11, "wwdg2"),
253 	CLK(RCC_APB1LENR,  8, "tim14"),
254 	CLK(RCC_APB1LENR,  7, "tim13"),
255 	CLK(RCC_APB1LENR,  6, "tim12"),
256 	CLK(RCC_APB1LENR,  5, "tim7"),
257 	CLK(RCC_APB1LENR,  4, "tim6"),
258 	CLK(RCC_APB1LENR,  3, "tim5"),
259 	CLK(RCC_APB1LENR,  2, "tim4"),
260 	CLK(RCC_APB1LENR,  1, "tim3"),
261 	CLK(RCC_APB1LENR,  0, "tim2"),
262 	CLK(RCC_APB1HENR,  5, "mdios"),
263 	CLK(RCC_APB1HENR,  4, "opamp"),
264 	CLK(RCC_APB1HENR,  1, "crs"),
265 	CLK(RCC_APB2ENR,  18, "tim17"),
266 	CLK(RCC_APB2ENR,  17, "tim16"),
267 	CLK(RCC_APB2ENR,  16, "tim15"),
268 	CLK(RCC_APB2ENR,   1, "tim8"),
269 	CLK(RCC_APB2ENR,   0, "tim1"),
270 	CLK(RCC_APB4ENR,  26, "tmpsens"),
271 	CLK(RCC_APB4ENR,  16, "rtcapb"),
272 	CLK(RCC_APB4ENR,  15, "vref"),
273 	CLK(RCC_APB4ENR,  14, "comp12"),
274 	CLK(RCC_APB4ENR,   1, "syscfg"),
275 	CLK(RCC_AHB3ENR,  16, "sdmmc1"),	/* kernel clocks */
276 	CLK(RCC_AHB3ENR,  14, "quadspi"),
277 	CLK(RCC_AHB3ENR,  12, "fmc"),
278 	CLK(RCC_AHB1ENR,  27, "usb2otg"),
279 	CLK(RCC_AHB1ENR,  25, "usb1otg"),
280 	CLK(RCC_AHB1ENR,   5, "adc12"),
281 	CLK(RCC_AHB2ENR,   9, "sdmmc2"),
282 	CLK(RCC_AHB2ENR,   6, "rng"),
283 	CLK(RCC_AHB4ENR,  24, "adc3"),
284 	CLK(RCC_APB3ENR,   4, "dsi"),
285 	CLK(RCC_APB3ENR,   3, "ltdc"),
286 	CLK(RCC_APB1LENR, 31, "usart8"),
287 	CLK(RCC_APB1LENR, 30, "usart7"),
288 	CLK(RCC_APB1LENR, 27, "hdmicec"),
289 	CLK(RCC_APB1LENR, 23, "i2c3"),
290 	CLK(RCC_APB1LENR, 22, "i2c2"),
291 	CLK(RCC_APB1LENR, 21, "i2c1"),
292 	CLK(RCC_APB1LENR, 20, "uart5"),
293 	CLK(RCC_APB1LENR, 19, "uart4"),
294 	CLK(RCC_APB1LENR, 18, "usart3"),
295 	CLK(RCC_APB1LENR, 17, "usart2"),
296 	CLK(RCC_APB1LENR, 16, "spdifrx"),
297 	CLK(RCC_APB1LENR, 15, "spi3"),
298 	CLK(RCC_APB1LENR, 14, "spi2"),
299 	CLK(RCC_APB1LENR,  9, "lptim1"),
300 	CLK(RCC_APB1HENR,  8, "fdcan"),
301 	CLK(RCC_APB1HENR,  2, "swp"),
302 	CLK(RCC_APB2ENR,  29, "hrtim"),
303 	CLK(RCC_APB2ENR,  28, "dfsdm1"),
304 	CLK(RCC_APB2ENR,  24, "sai3"),
305 	CLK(RCC_APB2ENR,  23, "sai2"),
306 	CLK(RCC_APB2ENR,  22, "sai1"),
307 	CLK(RCC_APB2ENR,  20, "spi5"),
308 	CLK(RCC_APB2ENR,  13, "spi4"),
309 	CLK(RCC_APB2ENR,  12, "spi1"),
310 	CLK(RCC_APB2ENR,   5, "usart6"),
311 	CLK(RCC_APB2ENR,   4, "usart1"),
312 	CLK(RCC_APB4ENR,  21, "sai4a"),
313 	CLK(RCC_APB4ENR,  21, "sai4b"),
314 	CLK(RCC_APB4ENR,  12, "lptim5"),
315 	CLK(RCC_APB4ENR,  11, "lptim4"),
316 	CLK(RCC_APB4ENR,  10, "lptim3"),
317 	CLK(RCC_APB4ENR,   9, "lptim2"),
318 	CLK(RCC_APB4ENR,   7, "i2c4"),
319 	CLK(RCC_APB4ENR,   5,  "spi6"),
320 	CLK(RCC_APB4ENR,   3, "lpuart1"),
321 };
322 
323 struct stm32_clk {
324 	struct stm32_rcc_regs *rcc_base;
325 	struct regmap *pwr_regmap;
326 };
327 
328 struct pll_psc {
329 	u8	divm;
330 	u16	divn;
331 	u8	divp;
332 	u8	divq;
333 	u8	divr;
334 };
335 
336 /*
337  * OSC_HSE = 25 MHz
338  * VCO = 500MHz
339  * pll1_p = 250MHz / pll1_q = 250MHz pll1_r = 250Mhz
340  */
341 struct pll_psc sys_pll_psc = {
342 	.divm = 4,
343 	.divn = 80,
344 	.divp = 2,
345 	.divq = 2,
346 	.divr = 2,
347 };
348 
349 int configure_clocks(struct udevice *dev)
350 {
351 	struct stm32_clk *priv = dev_get_priv(dev);
352 	struct stm32_rcc_regs *regs = priv->rcc_base;
353 	uint8_t *pwr_base = (uint8_t *)regmap_get_range(priv->pwr_regmap, 0);
354 	uint32_t pllckselr = 0;
355 	uint32_t pll1divr = 0;
356 	uint32_t pllcfgr = 0;
357 
358 	/* Switch on HSI */
359 	setbits_le32(&regs->cr, RCC_CR_HSION);
360 	while (!(readl(&regs->cr) & RCC_CR_HSIRDY))
361 		;
362 
363 	/* Reset CFGR, now HSI is the default system clock */
364 	writel(0, &regs->cfgr);
365 
366 	/* Set all kernel domain clock registers to reset value*/
367 	writel(0x0, &regs->d1ccipr);
368 	writel(0x0, &regs->d2ccip1r);
369 	writel(0x0, &regs->d2ccip2r);
370 
371 	/* Set voltage scaling at scale 1 */
372 	clrsetbits_le32(pwr_base + PWR_D3CR, PWR_D3CR_VOS_MASK,
373 			VOS_SCALE_1 << PWR_D3CR_VOS_SHIFT);
374 	/* disable step down converter */
375 	clrbits_le32(pwr_base + PWR_CR3, PWR_CR3_SDEN);
376 	while (!(readl(pwr_base + PWR_D3CR) & PWR_D3CR_VOSREADY))
377 		;
378 
379 	/* disable HSE to configure it  */
380 	clrbits_le32(&regs->cr, RCC_CR_HSEON);
381 	while ((readl(&regs->cr) & RCC_CR_HSERDY))
382 		;
383 
384 	/* clear HSE bypass and set it ON */
385 	clrbits_le32(&regs->cr, RCC_CR_HSEBYP);
386 	/* Switch on HSE */
387 	setbits_le32(&regs->cr, RCC_CR_HSEON);
388 	while (!(readl(&regs->cr) & RCC_CR_HSERDY))
389 		;
390 
391 	/* pll setup, disable it */
392 	clrbits_le32(&regs->cr, RCC_CR_PLL1ON);
393 	while ((readl(&regs->cr) & RCC_CR_PLL1RDY))
394 		;
395 
396 	/* Select HSE as PLL clock source */
397 	pllckselr |= RCC_PLLCKSELR_PLLSRC_HSE;
398 	pllckselr |= sys_pll_psc.divm << RCC_PLLCKSELR_DIVM1_SHIFT;
399 	writel(pllckselr, &regs->pllckselr);
400 
401 	pll1divr |= (sys_pll_psc.divr - 1) << RCC_PLL1DIVR_DIVR1_SHIFT;
402 	pll1divr |= (sys_pll_psc.divq - 1) << RCC_PLL1DIVR_DIVQ1_SHIFT;
403 	pll1divr |= (sys_pll_psc.divp - 1) << RCC_PLL1DIVR_DIVP1_SHIFT;
404 	pll1divr |= (sys_pll_psc.divn - 1);
405 	writel(pll1divr, &regs->pll1divr);
406 
407 	pllcfgr |= PLL1RGE_4_8_MHZ << RCC_PLLCFGR_PLL1RGE_SHIFT;
408 	pllcfgr |= RCC_PLLCFGR_DIVP1EN;
409 	pllcfgr |= RCC_PLLCFGR_DIVQ1EN;
410 	pllcfgr |= RCC_PLLCFGR_DIVR1EN;
411 	writel(pllcfgr, &regs->pllcfgr);
412 
413 	/* pll setup, enable it */
414 	setbits_le32(&regs->cr, RCC_CR_PLL1ON);
415 
416 	/* set HPRE (/2) DI clk --> 125MHz */
417 	clrsetbits_le32(&regs->d1cfgr, RCC_D1CFGR_HPRE_MASK,
418 			RCC_D1CFGR_HPRE_DIV2);
419 
420 	/*  select PLL1 as system clock source (sys_ck)*/
421 	clrsetbits_le32(&regs->cfgr, RCC_CFGR_SW_MASK, RCC_CFGR_SW_PLL1);
422 	while ((readl(&regs->cfgr) & RCC_CFGR_SW_MASK) != RCC_CFGR_SW_PLL1)
423 		;
424 
425 	/* sdram: use pll1_q as fmc_k clk */
426 	clrsetbits_le32(&regs->d1ccipr, RCC_D1CCIPR_FMCSRC_MASK,
427 			FMCSRC_PLL1_Q_CK);
428 
429 	return 0;
430 }
431 
432 static u32 stm32_get_HSI_divider(struct stm32_rcc_regs *regs)
433 {
434 	u32 divider;
435 
436 	/* get HSI divider value */
437 	divider = readl(&regs->cr) & RCC_CR_HSIDIV_MASK;
438 	divider = divider >> RCC_CR_HSIDIV_SHIFT;
439 
440 	return divider;
441 };
442 
443 enum pllsrc {
444 	HSE,
445 	LSE,
446 	HSI,
447 	CSI,
448 	I2S,
449 	TIMER,
450 	PLLSRC_NB,
451 };
452 
453 static const char * const pllsrc_name[PLLSRC_NB] = {
454 	[HSE] = "clk-hse",
455 	[LSE] = "clk-lse",
456 	[HSI] = "clk-hsi",
457 	[CSI] = "clk-csi",
458 	[I2S] = "clk-i2s",
459 	[TIMER] = "timer-clk"
460 };
461 
462 static ulong stm32_get_rate(struct stm32_rcc_regs *regs, enum pllsrc pllsrc)
463 {
464 	struct clk clk;
465 	struct udevice *fixed_clock_dev = NULL;
466 	u32 divider;
467 	int ret;
468 	const char *name = pllsrc_name[pllsrc];
469 
470 	debug("%s name %s\n", __func__, name);
471 
472 	clk.id = 0;
473 	ret = uclass_get_device_by_name(UCLASS_CLK, name, &fixed_clock_dev);
474 	if (ret) {
475 		error("Can't find clk %s (%d)", name, ret);
476 		return 0;
477 	}
478 
479 	ret = clk_request(fixed_clock_dev, &clk);
480 	if (ret) {
481 		error("Can't request %s clk (%d)", name, ret);
482 		return 0;
483 	}
484 
485 	divider = 0;
486 	if (pllsrc == HSI)
487 		divider = stm32_get_HSI_divider(regs);
488 
489 	debug("%s divider %d rate %ld\n", __func__,
490 	      divider, clk_get_rate(&clk));
491 
492 	return clk_get_rate(&clk) >> divider;
493 };
494 
495 enum pll1_output {
496 	PLL1_P_CK,
497 	PLL1_Q_CK,
498 	PLL1_R_CK,
499 };
500 
501 static u32 stm32_get_PLL1_rate(struct stm32_rcc_regs *regs,
502 			       enum pll1_output output)
503 {
504 	ulong pllsrc = 0;
505 	u32 divm1, divn1, divp1, divq1, divr1, fracn1;
506 	ulong vco, rate;
507 
508 	/* get the PLLSRC */
509 	switch (readl(&regs->pllckselr) & RCC_PLLCKSELR_PLLSRC_MASK) {
510 	case RCC_PLLCKSELR_PLLSRC_HSI:
511 		pllsrc = stm32_get_rate(regs, HSI);
512 		break;
513 	case RCC_PLLCKSELR_PLLSRC_CSI:
514 		pllsrc = stm32_get_rate(regs, CSI);
515 		break;
516 	case RCC_PLLCKSELR_PLLSRC_HSE:
517 		pllsrc = stm32_get_rate(regs, HSE);
518 		break;
519 	case RCC_PLLCKSELR_PLLSRC_NO_CLK:
520 		/* shouldn't happen */
521 		error("wrong value for RCC_PLLCKSELR register\n");
522 		pllsrc = 0;
523 		break;
524 	}
525 
526 	/* pllsrc = 0 ? no need to go ahead */
527 	if (!pllsrc)
528 		return pllsrc;
529 
530 	/* get divm1, divp1, divn1 and divr1 */
531 	divm1 = readl(&regs->pllckselr) & RCC_PLLCKSELR_DIVM1_MASK;
532 	divm1 = divm1 >> RCC_PLLCKSELR_DIVM1_SHIFT;
533 
534 	divn1 = (readl(&regs->pll1divr) & RCC_PLL1DIVR_DIVN1_MASK) + 1;
535 
536 	divp1 = readl(&regs->pll1divr) & RCC_PLL1DIVR_DIVP1_MASK;
537 	divp1 = (divp1 >> RCC_PLL1DIVR_DIVP1_SHIFT) + 1;
538 
539 	divq1 = readl(&regs->pll1divr) & RCC_PLL1DIVR_DIVQ1_MASK;
540 	divq1 = (divq1 >> RCC_PLL1DIVR_DIVQ1_SHIFT) + 1;
541 
542 	divr1 = readl(&regs->pll1divr) & RCC_PLL1DIVR_DIVR1_MASK;
543 	divr1 = (divr1 >> RCC_PLL1DIVR_DIVR1_SHIFT) + 1;
544 
545 	fracn1 = readl(&regs->pll1fracr) & RCC_PLL1DIVR_DIVR1_MASK;
546 	fracn1 = fracn1 & RCC_PLL1DIVR_DIVR1_SHIFT;
547 
548 	vco = (pllsrc / divm1) * divn1;
549 	rate = (pllsrc * fracn1) / (divm1 * 8192);
550 
551 	debug("%s divm1 = %d divn1 = %d divp1 = %d divq1 = %d divr1 = %d\n",
552 	      __func__, divm1, divn1, divp1, divq1, divr1);
553 	debug("%s fracn1 = %d vco = %ld rate = %ld\n",
554 	      __func__, fracn1, vco, rate);
555 
556 	switch (output) {
557 	case PLL1_P_CK:
558 		return (vco + rate) / divp1;
559 		break;
560 	case PLL1_Q_CK:
561 		return (vco + rate) / divq1;
562 		break;
563 
564 	case PLL1_R_CK:
565 		return (vco + rate) / divr1;
566 		break;
567 	}
568 
569 	return -EINVAL;
570 }
571 
572 static ulong stm32_clk_get_rate(struct clk *clk)
573 {
574 	struct stm32_clk *priv = dev_get_priv(clk->dev);
575 	struct stm32_rcc_regs *regs = priv->rcc_base;
576 	ulong sysclk = 0;
577 	u32 gate_offset;
578 	u32 d1cfgr;
579 	/* prescaler table lookups for clock computation */
580 	u16 prescaler_table[8] = {2, 4, 8, 16, 64, 128, 256, 512};
581 	u8 source, idx;
582 
583 	/*
584 	 * get system clock (sys_ck) source
585 	 * can be HSI_CK, CSI_CK, HSE_CK or pll1_p_ck
586 	 */
587 	source = readl(&regs->cfgr) & RCC_CFGR_SW_MASK;
588 	switch (source) {
589 	case RCC_CFGR_SW_PLL1:
590 		sysclk = stm32_get_PLL1_rate(regs, PLL1_P_CK);
591 		break;
592 	case RCC_CFGR_SW_HSE:
593 		sysclk = stm32_get_rate(regs, HSE);
594 		break;
595 
596 	case RCC_CFGR_SW_CSI:
597 		sysclk = stm32_get_rate(regs, CSI);
598 		break;
599 
600 	case RCC_CFGR_SW_HSI:
601 		sysclk = stm32_get_rate(regs, HSI);
602 		break;
603 	}
604 
605 	/* sysclk = 0 ? no need to go ahead */
606 	if (!sysclk)
607 		return sysclk;
608 
609 	debug("%s system clock: source = %d freq = %ld\n",
610 	      __func__, source, sysclk);
611 
612 	d1cfgr = readl(&regs->d1cfgr);
613 
614 	if (d1cfgr & RCC_D1CFGR_D1CPRE_DIVIDED) {
615 		/* get D1 domain Core prescaler */
616 		idx = (d1cfgr & RCC_D1CFGR_D1CPRE_DIVIDER) >>
617 		      RCC_D1CFGR_D1CPRE_SHIFT;
618 		sysclk = sysclk / prescaler_table[idx];
619 	}
620 
621 	if (d1cfgr & RCC_D1CFGR_HPRE_DIVIDED) {
622 		/* get D1 domain AHB prescaler */
623 		idx = d1cfgr & RCC_D1CFGR_HPRE_DIVIDER;
624 		sysclk = sysclk / prescaler_table[idx];
625 	}
626 
627 	gate_offset = clk_map[clk->id].gate_offset;
628 
629 	debug("%s clk->id=%ld gate_offset=0x%x sysclk=%ld\n",
630 	      __func__, clk->id, gate_offset, sysclk);
631 
632 	switch (gate_offset) {
633 	case RCC_AHB3ENR:
634 	case RCC_AHB1ENR:
635 	case RCC_AHB2ENR:
636 	case RCC_AHB4ENR:
637 		return sysclk;
638 		break;
639 
640 	case RCC_APB3ENR:
641 		if (d1cfgr & RCC_D1CFGR_D1PPRE_DIVIDED) {
642 			/* get D1 domain APB3 prescaler */
643 			idx = (d1cfgr & RCC_D1CFGR_D1PPRE_DIVIDER) >>
644 			      RCC_D1CFGR_D1PPRE_SHIFT;
645 			sysclk = sysclk / prescaler_table[idx];
646 		}
647 
648 		debug("%s system clock: freq after APB3 prescaler = %ld\n",
649 		      __func__, sysclk);
650 
651 		return sysclk;
652 		break;
653 
654 	case RCC_APB4ENR:
655 		if (d1cfgr & RCC_D3CFGR_D3PPRE_DIVIDED) {
656 			/* get D3 domain APB4 prescaler */
657 			idx = (d1cfgr & RCC_D3CFGR_D3PPRE_DIVIDER) >>
658 			      RCC_D3CFGR_D3PPRE_SHIFT;
659 			sysclk = sysclk / prescaler_table[idx];
660 		}
661 
662 		debug("%s system clock: freq after APB4 prescaler = %ld\n",
663 		      __func__, sysclk);
664 
665 		return sysclk;
666 		break;
667 
668 	case RCC_APB1LENR:
669 	case RCC_APB1HENR:
670 		if (d1cfgr & RCC_D2CFGR_D2PPRE1_DIVIDED) {
671 			/* get D2 domain APB1 prescaler */
672 			idx = (d1cfgr & RCC_D2CFGR_D2PPRE1_DIVIDER) >>
673 			      RCC_D2CFGR_D2PPRE1_SHIFT;
674 			sysclk = sysclk / prescaler_table[idx];
675 		}
676 
677 		debug("%s system clock: freq after APB1 prescaler = %ld\n",
678 		      __func__, sysclk);
679 
680 		return sysclk;
681 		break;
682 
683 	case RCC_APB2ENR:
684 		if (d1cfgr & RCC_D2CFGR_D2PPRE2_DIVIDED) {
685 			/* get D2 domain APB1 prescaler */
686 			idx = (d1cfgr & RCC_D2CFGR_D2PPRE2_DIVIDER) >>
687 			      RCC_D2CFGR_D2PPRE2_SHIFT;
688 			sysclk = sysclk / prescaler_table[idx];
689 		}
690 
691 		debug("%s system clock: freq after APB2 prescaler = %ld\n",
692 		      __func__, sysclk);
693 
694 		return sysclk;
695 		break;
696 
697 	default:
698 		error("unexpected gate_offset value (0x%x)\n", gate_offset);
699 		return -EINVAL;
700 		break;
701 	}
702 }
703 
704 static int stm32_clk_enable(struct clk *clk)
705 {
706 	struct stm32_clk *priv = dev_get_priv(clk->dev);
707 	struct stm32_rcc_regs *regs = priv->rcc_base;
708 	u32 gate_offset;
709 	u32 gate_bit_index;
710 	unsigned long clk_id = clk->id;
711 
712 	gate_offset = clk_map[clk_id].gate_offset;
713 	gate_bit_index = clk_map[clk_id].gate_bit_idx;
714 
715 	debug("%s: clkid=%ld gate offset=0x%x bit_index=%d name=%s\n",
716 	      __func__, clk->id, gate_offset, gate_bit_index,
717 	      clk_map[clk_id].name);
718 
719 	setbits_le32(&regs->cr + (gate_offset / 4), BIT(gate_bit_index));
720 
721 	return 0;
722 }
723 
724 static int stm32_clk_probe(struct udevice *dev)
725 {
726 	struct stm32_clk *priv = dev_get_priv(dev);
727 	struct udevice *syscon;
728 	fdt_addr_t addr;
729 	int err;
730 
731 	addr = dev_read_addr(dev);
732 	if (addr == FDT_ADDR_T_NONE)
733 		return -EINVAL;
734 
735 	priv->rcc_base = (struct stm32_rcc_regs *)addr;
736 
737 	/* get corresponding syscon phandle */
738 	err = uclass_get_device_by_phandle(UCLASS_SYSCON, dev,
739 					   "st,syscfg", &syscon);
740 
741 	if (err) {
742 		error("unable to find syscon device\n");
743 		return err;
744 	}
745 
746 	priv->pwr_regmap = syscon_get_regmap(syscon);
747 	if (!priv->pwr_regmap) {
748 		error("unable to find regmap\n");
749 		return -ENODEV;
750 	}
751 
752 	configure_clocks(dev);
753 
754 	return 0;
755 }
756 
757 static int stm32_clk_of_xlate(struct clk *clk,
758 			struct ofnode_phandle_args *args)
759 {
760 	if (args->args_count != 1) {
761 		debug("Invaild args_count: %d\n", args->args_count);
762 		return -EINVAL;
763 	}
764 
765 	if (args->args_count) {
766 		clk->id = args->args[0];
767 		/*
768 		 * this computation convert DT clock index which is used to
769 		 * point into 2 separate clock arrays (peripheral and kernel
770 		 * clocks bank) (see include/dt-bindings/clock/stm32h7-clks.h)
771 		 * into index to point into only one array where peripheral
772 		 * and kernel clocks are consecutive
773 		 */
774 		if (clk->id >= KERN_BANK) {
775 			clk->id -= KERN_BANK;
776 			clk->id += LAST_PERIF_BANK - PERIF_BANK + 1;
777 		} else {
778 			clk->id -= PERIF_BANK;
779 		}
780 	} else {
781 		clk->id = 0;
782 	}
783 
784 	debug("%s clk->id %ld\n", __func__, clk->id);
785 
786 	return 0;
787 }
788 
789 static struct clk_ops stm32_clk_ops = {
790 	.of_xlate	= stm32_clk_of_xlate,
791 	.enable		= stm32_clk_enable,
792 	.get_rate	= stm32_clk_get_rate,
793 };
794 
795 U_BOOT_DRIVER(stm32h7_clk) = {
796 	.name			= "stm32h7_rcc_clock",
797 	.id			= UCLASS_CLK,
798 	.ops			= &stm32_clk_ops,
799 	.probe			= stm32_clk_probe,
800 	.priv_auto_alloc_size	= sizeof(struct stm32_clk),
801 	.flags			= DM_FLAG_PRE_RELOC,
802 };
803