1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) ASPEED Technology Inc.
4  */
5 
6 #include <common.h>
7 #include <linux/bitfield.h>
8 #include <linux/bitops.h>
9 #include <linux/iopoll.h>
10 #include <clk-uclass.h>
11 #include <dm.h>
12 #include <asm/io.h>
13 #include <dm/lists.h>
14 #include <asm/arch/scu_ast2600.h>
15 #include <dt-bindings/clock/ast2600-clock.h>
16 #include <dt-bindings/reset/ast2600-reset.h>
17 
18 /*
19  * SCU 80 & 90 clock stop control for MAC controllers
20  */
21 #define SCU_CLKSTOP_MAC1			(20)
22 #define SCU_CLKSTOP_MAC2			(21)
23 #define SCU_CLKSTOP_MAC3			(20)
24 #define SCU_CLKSTOP_MAC4			(21)
25 
26 /*
27  * MAC Clock Delay settings
28  */
29 #define MAC_CLK_RGMII_125M_SRC_SEL		BIT(31)
30 #define   MAC_CLK_RGMII_125M_SRC_PAD_RGMIICK	0
31 #define   MAC_CLK_RGMII_125M_SRC_PLL		1
32 #define MAC_CLK_RMII2_50M_RCLK_O_CTRL		BIT(30)
33 #define   MAC_CLK_RMII2_50M_RCLK_O_DIS		0
34 #define   MAC_CLK_RMII2_50M_RCLK_O_EN		1
35 #define MAC_CLK_RMII1_50M_RCLK_O_CTRL		BIT(29)
36 #define   MAC_CLK_RMII1_5M_RCLK_O_DIS		0
37 #define   MAC_CLK_RMII1_5M_RCLK_O_EN		1
38 #define MAC_CLK_RGMIICK_PAD_DIR			BIT(28)
39 #define   MAC_CLK_RGMIICK_PAD_DIR_INPUT		0
40 #define   MAC_CLK_RGMIICK_PAD_DIR_OUTPUT	1
41 #define MAC_CLK_RMII_TXD_FALLING_2		BIT(27)
42 #define MAC_CLK_RMII_TXD_FALLING_1		BIT(26)
43 #define MAC_CLK_RXCLK_INV_2			BIT(25)
44 #define MAC_CLK_RXCLK_INV_1			BIT(24)
45 #define MAC_CLK_1G_INPUT_DELAY_2		GENMASK(23, 18)
46 #define MAC_CLK_1G_INPUT_DELAY_1		GENMASK(17, 12)
47 #define MAC_CLK_1G_OUTPUT_DELAY_2		GENMASK(11, 6)
48 #define MAC_CLK_1G_OUTPUT_DELAY_1		GENMASK(5, 0)
49 
50 #define MAC_CLK_100M_10M_RESERVED		GENMASK(31, 26)
51 #define MAC_CLK_100M_10M_RXCLK_INV_2		BIT(25)
52 #define MAC_CLK_100M_10M_RXCLK_INV_1		BIT(24)
53 #define MAC_CLK_100M_10M_INPUT_DELAY_2		GENMASK(23, 18)
54 #define MAC_CLK_100M_10M_INPUT_DELAY_1		GENMASK(17, 12)
55 #define MAC_CLK_100M_10M_OUTPUT_DELAY_2		GENMASK(11, 6)
56 #define MAC_CLK_100M_10M_OUTPUT_DELAY_1		GENMASK(5, 0)
57 
58 #define RGMII12_CLK_OUTPUT_DELAY_PS		1000
59 #define RGMII34_CLK_OUTPUT_DELAY_PS		1600
60 
61 #define MAC_DEF_DELAY_1G			FIELD_PREP(MAC_CLK_1G_OUTPUT_DELAY_1, 16) |        \
62 						FIELD_PREP(MAC_CLK_1G_INPUT_DELAY_1, 10) |         \
63 						FIELD_PREP(MAC_CLK_1G_OUTPUT_DELAY_2, 16) |        \
64 						FIELD_PREP(MAC_CLK_1G_INPUT_DELAY_2, 10)
65 #define MAC_DEF_DELAY_100M			FIELD_PREP(MAC_CLK_100M_10M_OUTPUT_DELAY_1, 16) |  \
66 						FIELD_PREP(MAC_CLK_100M_10M_INPUT_DELAY_1, 16) |   \
67 						FIELD_PREP(MAC_CLK_100M_10M_OUTPUT_DELAY_2, 16) |  \
68 						FIELD_PREP(MAC_CLK_100M_10M_INPUT_DELAY_2, 16)
69 #define MAC_DEF_DELAY_10M			FIELD_PREP(MAC_CLK_100M_10M_OUTPUT_DELAY_1, 16) |  \
70 						FIELD_PREP(MAC_CLK_100M_10M_INPUT_DELAY_1, 16) |   \
71 						FIELD_PREP(MAC_CLK_100M_10M_OUTPUT_DELAY_2, 16) |  \
72 						FIELD_PREP(MAC_CLK_100M_10M_INPUT_DELAY_2, 16)
73 #define MAC34_DEF_DELAY_1G			FIELD_PREP(MAC_CLK_1G_OUTPUT_DELAY_1, 8) |         \
74 						FIELD_PREP(MAC_CLK_1G_INPUT_DELAY_1, 4) |          \
75 						FIELD_PREP(MAC_CLK_1G_OUTPUT_DELAY_2, 8) |         \
76 						FIELD_PREP(MAC_CLK_1G_INPUT_DELAY_2, 4)
77 #define MAC34_DEF_DELAY_100M			FIELD_PREP(MAC_CLK_100M_10M_OUTPUT_DELAY_1, 8) |   \
78 						FIELD_PREP(MAC_CLK_100M_10M_INPUT_DELAY_1, 4) |    \
79 						FIELD_PREP(MAC_CLK_100M_10M_OUTPUT_DELAY_2, 8) |   \
80 						FIELD_PREP(MAC_CLK_100M_10M_INPUT_DELAY_2, 4)
81 #define MAC34_DEF_DELAY_10M			FIELD_PREP(MAC_CLK_100M_10M_OUTPUT_DELAY_1, 8) |   \
82 						FIELD_PREP(MAC_CLK_100M_10M_INPUT_DELAY_1, 4) |    \
83 						FIELD_PREP(MAC_CLK_100M_10M_OUTPUT_DELAY_2, 8) |   \
84 						FIELD_PREP(MAC_CLK_100M_10M_INPUT_DELAY_2, 4)
85 
86 /*
87  * SCU 320 & 330 Frequency counters
88  */
89 #define FREQC_CTRL_RESERVED			GENMASK(31, 30)
90 #define FREQC_CTRL_RESULT			GENMASK(29, 16)
91 #define FREQC_CTRL_RING_STAGE			GENMASK(15, 9)
92 #define FREQC_CTRL_PIN_O_CTRL			BIT(8)
93 #define   FREQC_CTRL_PIN_O_DIS			0
94 #define   FREQC_CTRL_PIN_O_EN			1
95 #define FREQC_CTRL_CMP_RESULT			BIT(7)
96 #define   FREQC_CTRL_CMP_RESULT_FAIL		0
97 #define   FREQC_CTRL_CMP_RESULT_PASS		1
98 #define FREQC_CTRL_STATUS			BIT(6)
99 #define   FREQC_CTRL_STATUS_NOT_FINISHED	0
100 #define   FREQC_CTRL_STATUS_FINISHED		1
101 #define FREQC_CTRL_SRC_SEL			GENMASK(5, 2)
102 #define   FREQC_CTRL_SRC_SEL_HCLK_DIE0		9
103 #define   FREQC_CTRL_SRC_SEL_DLY32_DIE0		3
104 #define   FREQC_CTRL_SRC_SEL_HCLK_DIE1		1
105 #define   FREQC_CTRL_SRC_SEL_DLY32_DIE1		7
106 #define FREQC_CTRL_OSC_CTRL			BIT(1)
107 #define   FREQC_CTRL_OSC_DIS			0
108 #define   FREQC_CTRL_OSC_EN			1
109 #define FREQC_CTRL_RING_CTRL			BIT(0)
110 #define   FREQC_CTRL_RING_DIS			0
111 #define   FREQC_CTRL_RING_EN			1
112 
113 #define FREQC_RANGE_RESERVED0			GENMASK(31, 30)
114 #define FREQC_RANGE_LOWER			GENMASK(29, 16)
115 #define FREQC_RANGE_RESERVED1			GENMASK(15, 14)
116 #define FREQC_RANGE_UPPER			GENMASK(13, 0)
117 
118 #define DLY32_NUM_OF_TAPS			32
119 #define DLY32_AVERAGE_COUNT_LOG2		4
120 #define DLY32_AVERAGE_COUNT			BIT(DLY32_AVERAGE_COUNT_LOG2)
121 
122 /*
123  * TGMII Clock Duty constants, taken from Aspeed SDK
124  */
125 #define RGMII2_TXCK_DUTY		0x66
126 #define RGMII1_TXCK_DUTY		0x64
127 #define D2PLL_DEFAULT_RATE		(250 * 1000 * 1000)
128 #define CHIP_REVISION_ID		GENMASK(23, 16)
129 
130 DECLARE_GLOBAL_DATA_PTR;
131 
132 /*
133  * Clock divider/multiplier configuration struct.
134  * For H-PLL and M-PLL the formula is
135  * (Output Frequency) = CLKIN * ((M + 1) / (N + 1)) / (P + 1)
136  * M - Numerator
137  * N - Denumerator
138  * P - Post Divider
139  * They have the same layout in their control register.
140  *
141  * D-PLL and D2-PLL have extra divider (OD + 1), which is not
142  * yet needed and ignored by clock configurations.
143  */
144 union ast2600_pll_reg {
145 	u32 w;
146 	struct {
147 		unsigned int m : 13;		/* bit[12:0]	*/
148 		unsigned int n : 6;		/* bit[18:13]	*/
149 		unsigned int p : 4;		/* bit[22:19]	*/
150 		unsigned int off : 1;		/* bit[23]	*/
151 		unsigned int bypass : 1;	/* bit[24]	*/
152 		unsigned int reset : 1;		/* bit[25]	*/
153 		unsigned int reserved : 6;	/* bit[31:26]	*/
154 	} b;
155 };
156 
157 struct ast2600_pll_cfg {
158 	union ast2600_pll_reg reg;
159 	u32 ext_reg;
160 };
161 
162 struct ast2600_pll_desc {
163 	u32 in;
164 	u32 out;
165 	struct ast2600_pll_cfg cfg;
166 };
167 
168 static const struct ast2600_pll_desc ast2600_pll_lookup[] = {
169 	{
170 		.in = AST2600_CLK_IN,
171 		.out = 400000000,
172 		.cfg.reg.b.m = 95,
173 		.cfg.reg.b.n = 2,
174 		.cfg.reg.b.p = 1,
175 		.cfg.ext_reg = 0x31,
176 	}, {
177 		.in = AST2600_CLK_IN,
178 		.out = 200000000,
179 		.cfg.reg.b.m = 127,
180 		.cfg.reg.b.n = 0,
181 		.cfg.reg.b.p = 15,
182 		.cfg.ext_reg = 0x3f,
183 	}, {
184 		.in = AST2600_CLK_IN,
185 		.out = 334000000,
186 		.cfg.reg.b.m = 667,
187 		.cfg.reg.b.n = 4,
188 		.cfg.reg.b.p = 9,
189 		.cfg.ext_reg = 0x14d,
190 	}, {
191 		.in = AST2600_CLK_IN,
192 		.out = 1000000000,
193 		.cfg.reg.b.m = 119,
194 		.cfg.reg.b.n = 2,
195 		.cfg.reg.b.p = 0,
196 		.cfg.ext_reg = 0x3d,
197 	}, {
198 		.in = AST2600_CLK_IN,
199 		.out = 50000000,
200 		.cfg.reg.b.m = 95,
201 		.cfg.reg.b.n = 2,
202 		.cfg.reg.b.p = 15,
203 		.cfg.ext_reg = 0x31,
204 	},
205 };
206 
207 struct mac_delay_config {
208 	u32 tx_delay_1000;
209 	u32 rx_delay_1000;
210 	u32 tx_delay_100;
211 	u32 rx_delay_100;
212 	u32 tx_delay_10;
213 	u32 rx_delay_10;
214 };
215 
216 extern u32 ast2600_get_pll_rate(struct ast2600_scu *scu, int pll_idx)
217 {
218 	u32 clkin = AST2600_CLK_IN;
219 	u32 pll_reg = 0;
220 	unsigned int mult, div = 1;
221 
222 	switch (pll_idx) {
223 	case ASPEED_CLK_HPLL:
224 		pll_reg = readl(&scu->h_pll_param);
225 		break;
226 	case ASPEED_CLK_MPLL:
227 		pll_reg = readl(&scu->m_pll_param);
228 		break;
229 	case ASPEED_CLK_DPLL:
230 		pll_reg = readl(&scu->d_pll_param);
231 		break;
232 	case ASPEED_CLK_EPLL:
233 		pll_reg = readl(&scu->e_pll_param);
234 		break;
235 	}
236 	if (pll_reg & BIT(24)) {
237 		/* Pass through mode */
238 		mult = 1;
239 		div = 1;
240 	} else {
241 		union ast2600_pll_reg reg;
242 		/* F = 25Mhz * [(M + 2) / (n + 1)] / (p + 1)
243 		 * HPLL Numerator (M) = fix 0x5F when SCU500[10]=1
244 		 * Fixed 0xBF when SCU500[10]=0 and SCU500[8]=1
245 		 * SCU200[12:0] (default 0x8F) when SCU510[10]=0 and SCU510[8]=0
246 		 * HPLL Denumerator (N) =	SCU200[18:13] (default 0x2)
247 		 * HPLL Divider (P)	 =	SCU200[22:19] (default 0x0)
248 		 * HPLL Bandwidth Adj (NB) =  fix 0x2F when SCU500[10]=1
249 		 * Fixed 0x5F when SCU500[10]=0 and SCU500[8]=1
250 		 * SCU204[11:0] (default 0x31) when SCU500[10]=0 and SCU500[8]=0
251 		 */
252 		reg.w = pll_reg;
253 		if (pll_idx == ASPEED_CLK_HPLL) {
254 			u32 hwstrap1 = readl(&scu->hwstrap1.hwstrap);
255 
256 			if (hwstrap1 & BIT(10)) {
257 				reg.b.m = 0x5F;
258 			} else {
259 				if (hwstrap1 & BIT(8))
260 					reg.b.m = 0xBF;
261 				/* Otherwise keep default 0x8F */
262 			}
263 		}
264 		mult = (reg.b.m + 1) / (reg.b.n + 1);
265 		div = (reg.b.p + 1);
266 	}
267 
268 	return ((clkin * mult) / div);
269 }
270 
271 extern u32 ast2600_get_apll_rate(struct ast2600_scu *scu)
272 {
273 	u32 hw_rev = readl(&scu->chip_id1);
274 	u32 clkin = AST2600_CLK_IN;
275 	u32 apll_reg = readl(&scu->a_pll_param);
276 	unsigned int mult, div = 1;
277 
278 	if (((hw_rev & CHIP_REVISION_ID) >> 16) >= 2) {
279 		//after A2 version
280 		if (apll_reg & BIT(24)) {
281 			/* Pass through mode */
282 			mult = 1;
283 			div = 1;
284 		} else {
285 			/* F = 25Mhz * [(m + 1) / (n + 1)] / (p + 1) */
286 			u32 m = apll_reg & 0x1fff;
287 			u32 n = (apll_reg >> 13) & 0x3f;
288 			u32 p = (apll_reg >> 19) & 0xf;
289 
290 			mult = (m + 1);
291 			div = (n + 1) * (p + 1);
292 		}
293 	} else {
294 		if (apll_reg & BIT(20)) {
295 			/* Pass through mode */
296 			mult = 1;
297 			div = 1;
298 		} else {
299 			/* F = 25Mhz * (2-od) * [(m + 2) / (n + 1)] */
300 			u32 m = (apll_reg >> 5) & 0x3f;
301 			u32 od = (apll_reg >> 4) & 0x1;
302 			u32 n = apll_reg & 0xf;
303 
304 			mult = (2 - od) * (m + 2);
305 			div = n + 1;
306 		}
307 	}
308 
309 	return ((clkin * mult) / div);
310 }
311 
312 static u32 ast2600_a0_axi_ahb_div_table[] = {
313 	2,
314 	2,
315 	3,
316 	4,
317 };
318 
319 static u32 ast2600_a1_axi_ahb_div0_table[] = {
320 	3,
321 	2,
322 	3,
323 	4,
324 };
325 
326 static u32 ast2600_a1_axi_ahb_div1_table[] = {
327 	3,
328 	4,
329 	6,
330 	8,
331 };
332 
333 static u32 ast2600_a1_axi_ahb_default_table[] = {
334 	3, 4, 3, 4, 2, 2, 2, 2,
335 };
336 
337 static u32 ast2600_get_hclk(struct ast2600_scu *scu)
338 {
339 	u32 hw_rev = readl(&scu->chip_id1);
340 	u32 hwstrap1 = readl(&scu->hwstrap1.hwstrap);
341 	u32 axi_div = 1;
342 	u32 ahb_div = 0;
343 	u32 rate = 0;
344 
345 	if ((hw_rev & CHIP_REVISION_ID) >> 16) {
346 		//After A0
347 		if (hwstrap1 & BIT(16)) {
348 			ast2600_a1_axi_ahb_div1_table[0] =
349 				ast2600_a1_axi_ahb_default_table[(hwstrap1 >> 8) &
350 								 0x7] * 2;
351 			axi_div = 1;
352 			ahb_div =
353 				ast2600_a1_axi_ahb_div1_table[(hwstrap1 >> 11) &
354 							      0x3];
355 		} else {
356 			ast2600_a1_axi_ahb_div0_table[0] =
357 				ast2600_a1_axi_ahb_default_table[(hwstrap1 >> 8) &
358 								 0x7];
359 			axi_div = 2;
360 			ahb_div =
361 				ast2600_a1_axi_ahb_div0_table[(hwstrap1 >> 11) &
362 							      0x3];
363 		}
364 	} else {
365 		//A0 : fix axi = hpll / 2
366 		axi_div = 2;
367 		ahb_div = ast2600_a0_axi_ahb_div_table[(hwstrap1 >> 11) & 0x3];
368 	}
369 	rate = ast2600_get_pll_rate(scu, ASPEED_CLK_HPLL);
370 
371 	return (rate / axi_div / ahb_div);
372 }
373 
374 static u32 ast2600_get_bclk_rate(struct ast2600_scu *scu)
375 {
376 	u32 rate;
377 	u32 bclk_sel = (readl(&scu->clk_sel1) >> 20) & 0x7;
378 
379 	rate = ast2600_get_pll_rate(scu, ASPEED_CLK_HPLL);
380 
381 	return (rate / ((bclk_sel + 1) * 4));
382 }
383 
384 static u32 ast2600_hpll_pclk1_div_table[] = {
385 	4, 8, 12, 16, 20, 24, 28, 32,
386 };
387 
388 static u32 ast2600_hpll_pclk2_div_table[] = {
389 	2, 4, 6, 8, 10, 12, 14, 16,
390 };
391 
392 static u32 ast2600_get_pclk1(struct ast2600_scu *scu)
393 {
394 	u32 clk_sel1 = readl(&scu->clk_sel1);
395 	u32 apb_div = ast2600_hpll_pclk1_div_table[((clk_sel1 >> 23) & 0x7)];
396 	u32 rate = ast2600_get_pll_rate(scu, ASPEED_CLK_HPLL);
397 
398 	return (rate / apb_div);
399 }
400 
401 static u32 ast2600_get_pclk2(struct ast2600_scu *scu)
402 {
403 	u32 clk_sel4 = readl(&scu->clk_sel4);
404 	u32 apb_div = ast2600_hpll_pclk2_div_table[((clk_sel4 >> 9) & 0x7)];
405 	u32 rate = ast2600_get_hclk(scu);
406 
407 	return (rate / apb_div);
408 }
409 
410 static u32 ast2600_get_uxclk_in_rate(struct ast2600_scu *scu)
411 {
412 	u32 clk_in = 0;
413 	u32 uxclk_sel = readl(&scu->clk_sel5);
414 
415 	uxclk_sel &= 0x3;
416 	switch (uxclk_sel) {
417 	case 0:
418 		clk_in = ast2600_get_apll_rate(scu) / 4;
419 		break;
420 	case 1:
421 		clk_in = ast2600_get_apll_rate(scu) / 2;
422 		break;
423 	case 2:
424 		clk_in = ast2600_get_apll_rate(scu);
425 		break;
426 	case 3:
427 		clk_in = ast2600_get_hclk(scu);
428 		break;
429 	}
430 
431 	return clk_in;
432 }
433 
434 static u32 ast2600_get_huxclk_in_rate(struct ast2600_scu *scu)
435 {
436 	u32 clk_in = 0;
437 	u32 huclk_sel = readl(&scu->clk_sel5);
438 
439 	huclk_sel = ((huclk_sel >> 3) & 0x3);
440 	switch (huclk_sel) {
441 	case 0:
442 		clk_in = ast2600_get_apll_rate(scu) / 4;
443 		break;
444 	case 1:
445 		clk_in = ast2600_get_apll_rate(scu) / 2;
446 		break;
447 	case 2:
448 		clk_in = ast2600_get_apll_rate(scu);
449 		break;
450 	case 3:
451 		clk_in = ast2600_get_hclk(scu);
452 		break;
453 	}
454 
455 	return clk_in;
456 }
457 
458 static u32 ast2600_get_uart_uxclk_rate(struct ast2600_scu *scu)
459 {
460 	u32 clk_in = ast2600_get_uxclk_in_rate(scu);
461 	u32 div_reg = readl(&scu->uart_24m_ref_uxclk);
462 	unsigned int mult, div;
463 
464 	u32 n = (div_reg >> 8) & 0x3ff;
465 	u32 r = div_reg & 0xff;
466 
467 	mult = r;
468 	div = (n * 2);
469 	return (clk_in * mult) / div;
470 }
471 
472 static u32 ast2600_get_uart_huxclk_rate(struct ast2600_scu *scu)
473 {
474 	u32 clk_in = ast2600_get_huxclk_in_rate(scu);
475 	u32 div_reg = readl(&scu->uart_24m_ref_huxclk);
476 
477 	unsigned int mult, div;
478 
479 	u32 n = (div_reg >> 8) & 0x3ff;
480 	u32 r = div_reg & 0xff;
481 
482 	mult = r;
483 	div = (n * 2);
484 	return (clk_in * mult) / div;
485 }
486 
487 static u32 ast2600_get_sdio_clk_rate(struct ast2600_scu *scu)
488 {
489 	u32 clkin = 0;
490 	u32 clk_sel = readl(&scu->clk_sel4);
491 	u32 div = (clk_sel >> 28) & 0x7;
492 	u32 hw_rev = readl(&scu->chip_id1);
493 
494 	if (clk_sel & BIT(8))
495 		clkin = ast2600_get_apll_rate(scu);
496 	else
497 		clkin = ast2600_get_hclk(scu);
498 
499 	div = (1 + div) * 2;
500 	if (((hw_rev & GENMASK(23, 16)) >> 16) >= 2)
501 		div = (div & 0xf) ? div : 1;
502 
503 	return (clkin / div);
504 }
505 
506 static u32 ast2600_get_emmc_clk_rate(struct ast2600_scu *scu)
507 {
508 	u32 mmc_clk_src = readl(&scu->clk_sel1);
509 	u32 clkin;
510 	u32 clk_sel = readl(&scu->clk_sel1);
511 	u32 div = (clk_sel >> 12) & 0x7;
512 
513 	if (mmc_clk_src & BIT(11)) {
514 		/* emmc clock comes from MPLL */
515 		clkin = ast2600_get_pll_rate(scu, ASPEED_CLK_MPLL);
516 		div = (div + 1) * 2;
517 	} else {
518 		clkin = ast2600_get_pll_rate(scu, ASPEED_CLK_HPLL);
519 		div = (div + 1) << 2;
520 	}
521 
522 	return (clkin / div);
523 }
524 
525 static u32 ast2600_get_uart_clk_rate(struct ast2600_scu *scu, int uart_idx)
526 {
527 	u32 hicr9 = readl(0x1e789098);
528 	u32 uart_sel = readl(&scu->clk_sel4);
529 	u32 uart_sel5 = readl(&scu->clk_sel5);
530 	ulong uart_clk = 0;
531 
532 	switch (uart_idx) {
533 	case 1:
534 	case 2:
535 	case 3:
536 	case 4:
537 		hicr9 &= ~(BIT(uart_idx + 3));
538 		writel(hicr9, 0x1e789098);
539 	case 6:
540 		if (uart_sel & BIT(uart_idx - 1))
541 			uart_clk = ast2600_get_uart_huxclk_rate(scu);
542 		else
543 			uart_clk = ast2600_get_uart_uxclk_rate(scu);
544 		break;
545 	case 5: //24mhz is come form usb phy 48Mhz
546 	{
547 		u8 uart5_clk_sel = 0;
548 		//high bit
549 		if (readl(&scu->misc_ctrl1) & BIT(12))
550 			uart5_clk_sel = 0x2;
551 		else
552 			uart5_clk_sel = 0x0;
553 
554 		if (readl(&scu->clk_sel2) & BIT(14))
555 			uart5_clk_sel |= 0x1;
556 
557 		switch (uart5_clk_sel) {
558 		case 0:
559 			uart_clk = 24000000;
560 			break;
561 		case 1:
562 			uart_clk = 192000000;
563 			break;
564 		case 2:
565 			uart_clk = 24000000 / 13;
566 			break;
567 		case 3:
568 			uart_clk = 192000000 / 13;
569 			break;
570 		}
571 	} break;
572 	case 7:
573 	case 8:
574 	case 9:
575 	case 10:
576 	case 11:
577 	case 12:
578 	case 13:
579 		if (uart_sel5 & BIT(uart_idx - 1))
580 			uart_clk = ast2600_get_uart_huxclk_rate(scu);
581 		else
582 			uart_clk = ast2600_get_uart_uxclk_rate(scu);
583 		break;
584 	}
585 
586 	return uart_clk;
587 }
588 
589 static ulong ast2600_clk_get_rate(struct clk *clk)
590 {
591 	struct ast2600_clk_priv *priv = dev_get_priv(clk->dev);
592 	ulong rate = 0;
593 
594 	switch (clk->id) {
595 	case ASPEED_CLK_HPLL:
596 	case ASPEED_CLK_EPLL:
597 	case ASPEED_CLK_DPLL:
598 	case ASPEED_CLK_MPLL:
599 		rate = ast2600_get_pll_rate(priv->scu, clk->id);
600 		break;
601 	case ASPEED_CLK_AHB:
602 		rate = ast2600_get_hclk(priv->scu);
603 		break;
604 	case ASPEED_CLK_APB1:
605 		rate = ast2600_get_pclk1(priv->scu);
606 		break;
607 	case ASPEED_CLK_APB2:
608 		rate = ast2600_get_pclk2(priv->scu);
609 		break;
610 	case ASPEED_CLK_APLL:
611 		rate = ast2600_get_apll_rate(priv->scu);
612 		break;
613 	case ASPEED_CLK_GATE_UART1CLK:
614 		rate = ast2600_get_uart_clk_rate(priv->scu, 1);
615 		break;
616 	case ASPEED_CLK_GATE_UART2CLK:
617 		rate = ast2600_get_uart_clk_rate(priv->scu, 2);
618 		break;
619 	case ASPEED_CLK_GATE_UART3CLK:
620 		rate = ast2600_get_uart_clk_rate(priv->scu, 3);
621 		break;
622 	case ASPEED_CLK_GATE_UART4CLK:
623 		rate = ast2600_get_uart_clk_rate(priv->scu, 4);
624 		break;
625 	case ASPEED_CLK_GATE_UART5CLK:
626 		rate = ast2600_get_uart_clk_rate(priv->scu, 5);
627 		break;
628 	case ASPEED_CLK_BCLK:
629 		rate = ast2600_get_bclk_rate(priv->scu);
630 		break;
631 	case ASPEED_CLK_SDIO:
632 		rate = ast2600_get_sdio_clk_rate(priv->scu);
633 		break;
634 	case ASPEED_CLK_EMMC:
635 		rate = ast2600_get_emmc_clk_rate(priv->scu);
636 		break;
637 	case ASPEED_CLK_UARTX:
638 		rate = ast2600_get_uart_uxclk_rate(priv->scu);
639 		break;
640 	case ASPEED_CLK_HUARTX:
641 		rate = ast2600_get_uart_huxclk_rate(priv->scu);
642 		break;
643 	default:
644 		pr_debug("can't get clk rate\n");
645 		return -ENOENT;
646 	}
647 
648 	return rate;
649 }
650 
651 /**
652  * @brief	lookup PLL divider config by input/output rate
653  * @param[in]	*pll - PLL descriptor
654  * @return	true - if PLL divider config is found, false - else
655  * The function caller shall fill "pll->in" and "pll->out",
656  * then this function will search the lookup table
657  * to find a valid PLL divider configuration.
658  */
659 static bool ast2600_search_clock_config(struct ast2600_pll_desc *pll)
660 {
661 	u32 i;
662 	bool is_found = false;
663 
664 	for (i = 0; i < ARRAY_SIZE(ast2600_pll_lookup); i++) {
665 		const struct ast2600_pll_desc *def_cfg = &ast2600_pll_lookup[i];
666 
667 		if (def_cfg->in == pll->in && def_cfg->out == pll->out) {
668 			is_found = true;
669 			pll->cfg.reg.w = def_cfg->cfg.reg.w;
670 			pll->cfg.ext_reg = def_cfg->cfg.ext_reg;
671 			break;
672 		}
673 	}
674 	return is_found;
675 }
676 
677 static u32 ast2600_configure_pll(struct ast2600_scu *scu,
678 				 struct ast2600_pll_cfg *p_cfg, int pll_idx)
679 {
680 	u32 addr, addr_ext;
681 	u32 reg;
682 
683 	switch (pll_idx) {
684 	case ASPEED_CLK_HPLL:
685 		addr = (u32)(&scu->h_pll_param);
686 		addr_ext = (u32)(&scu->h_pll_ext_param);
687 		break;
688 	case ASPEED_CLK_MPLL:
689 		addr = (u32)(&scu->m_pll_param);
690 		addr_ext = (u32)(&scu->m_pll_ext_param);
691 		break;
692 	case ASPEED_CLK_DPLL:
693 		addr = (u32)(&scu->d_pll_param);
694 		addr_ext = (u32)(&scu->d_pll_ext_param);
695 		break;
696 	case ASPEED_CLK_EPLL:
697 		addr = (u32)(&scu->e_pll_param);
698 		addr_ext = (u32)(&scu->e_pll_ext_param);
699 		break;
700 	default:
701 		debug("unknown PLL index\n");
702 		return 1;
703 	}
704 
705 	p_cfg->reg.b.bypass = 0;
706 	p_cfg->reg.b.off = 1;
707 	p_cfg->reg.b.reset = 1;
708 
709 	reg = readl(addr);
710 	reg &= ~GENMASK(25, 0);
711 	reg |= p_cfg->reg.w;
712 	writel(reg, addr);
713 
714 	/* write extend parameter */
715 	writel(p_cfg->ext_reg, addr_ext);
716 	udelay(100);
717 	p_cfg->reg.b.off = 0;
718 	p_cfg->reg.b.reset = 0;
719 	reg &= ~GENMASK(25, 0);
720 	reg |= p_cfg->reg.w;
721 	writel(reg, addr);
722 	while (!(readl(addr_ext) & BIT(31)))
723 		;
724 
725 	return 0;
726 }
727 
728 static u32 ast2600_configure_ddr(struct ast2600_scu *scu, ulong rate)
729 {
730 	struct ast2600_pll_desc mpll;
731 
732 	mpll.in = AST2600_CLK_IN;
733 	mpll.out = rate;
734 	if (ast2600_search_clock_config(&mpll) == false) {
735 		printf("error!! unable to find valid DDR clock setting\n");
736 		return 0;
737 	}
738 	ast2600_configure_pll(scu, &mpll.cfg, ASPEED_CLK_MPLL);
739 
740 	return ast2600_get_pll_rate(scu, ASPEED_CLK_MPLL);
741 }
742 
743 static ulong ast2600_clk_set_rate(struct clk *clk, ulong rate)
744 {
745 	struct ast2600_clk_priv *priv = dev_get_priv(clk->dev);
746 	ulong new_rate;
747 
748 	switch (clk->id) {
749 	case ASPEED_CLK_MPLL:
750 		new_rate = ast2600_configure_ddr(priv->scu, rate);
751 		break;
752 	default:
753 		return -ENOENT;
754 	}
755 
756 	return new_rate;
757 }
758 
759 static int ast2600_calc_dly32_time(struct ast2600_scu *scu, int die_id, int stage)
760 {
761 	int ret, i;
762 	u64 sum = 0;
763 	u32 base, value, reset_sel, dly32_sel;
764 
765 	if (die_id) {
766 		base = (u32)&scu->freq_counter_ctrl2;
767 		reset_sel = FREQC_CTRL_SRC_SEL_HCLK_DIE1;
768 		dly32_sel = FREQC_CTRL_SRC_SEL_DLY32_DIE1;
769 	} else {
770 		base = (u32)&scu->freq_counter_ctrl1;
771 		reset_sel = FREQC_CTRL_SRC_SEL_HCLK_DIE0;
772 		dly32_sel = FREQC_CTRL_SRC_SEL_DLY32_DIE0;
773 	}
774 
775 	for (i = 0; i < DLY32_AVERAGE_COUNT; i++) {
776 		/* reset frequency-counter */
777 		writel(FIELD_PREP(FREQC_CTRL_SRC_SEL, reset_sel), base);
778 		ret = readl_poll_timeout(base, value, !(value & FREQC_CTRL_RESULT), 1000);
779 		if (ret)
780 			return -1;
781 
782 		/* start frequency counter */
783 		value = FIELD_PREP(FREQC_CTRL_RING_STAGE, stage)
784 		      | FIELD_PREP(FREQC_CTRL_SRC_SEL, dly32_sel)
785 		      | FIELD_PREP(FREQC_CTRL_RING_CTRL, FREQC_CTRL_RING_EN);
786 		writel(value, base);
787 
788 		/* delay for a while for settling down */
789 		udelay(100);
790 
791 		/* enable osc for measurement */
792 		value |= FIELD_PREP(FREQC_CTRL_OSC_CTRL, FREQC_CTRL_OSC_EN);
793 		writel(value, base);
794 		ret = readl_poll_timeout(base, value, value & FREQC_CTRL_STATUS, 1000);
795 		if (ret)
796 			return -1;
797 
798 		/* the result is represented in T count, will translate to pico-second later */
799 		sum += FIELD_GET(FREQC_CTRL_RESULT, value);
800 	}
801 
802 	/* return the DLY32 value in pico-second */
803 	return (2560000 / (int)(sum >> DLY32_AVERAGE_COUNT_LOG2));
804 }
805 
806 static void ast2600_init_dly32_lookup(struct ast2600_clk_priv *priv)
807 {
808 	struct ast2600_scu *scu = priv->scu;
809 	int i;
810 
811 	for (i = 0; i < DLY32_NUM_OF_TAPS; i++) {
812 		priv->dly32_lookup[0][i] = ast2600_calc_dly32_time(scu, 0, i);
813 		priv->dly32_lookup[1][i] = ast2600_calc_dly32_time(scu, 1, i);
814 	}
815 
816 #ifdef DEBUG
817 	for (i = 0; i < DLY32_NUM_OF_TAPS; i++)
818 		printf("28nm DLY32[%d] = %d ps\n", i, priv->dly32_lookup[0][i]);
819 
820 	for (i = 0; i < DLY32_NUM_OF_TAPS; i++)
821 		printf("55nm DLY32[%d] = %d ps\n", i, priv->dly32_lookup[1][i]);
822 #endif
823 }
824 
825 /**
826  * @brief find the DLY32 tap number fitting the target delay time
827  *
828  * @param target_pico_sec target delay time in pico-second
829  * @param lookup DLY32 lookup table
830  * @return int DLY32 tap number
831  */
832 static int ast2600_find_dly32_tap(int target_pico_sec, int *lookup)
833 {
834 	int tap = DLY32_NUM_OF_TAPS >> 1;
835 	int lower = 0;
836 	int upper = DLY32_NUM_OF_TAPS - 1;
837 
838 	/* binary search for the proper delay tap */
839 	for (;;) {
840 		if (tap == 0 || tap == DLY32_NUM_OF_TAPS - 1)
841 			return -1;
842 
843 		if (lookup[tap] >= target_pico_sec && lookup[tap - 1] < target_pico_sec) {
844 			return tap;
845 		} else if (lookup[tap] > target_pico_sec) {
846 			upper = tap;
847 			tap = (tap + lower) >> 1;
848 		} else if (lookup[tap] < target_pico_sec) {
849 			lower = tap;
850 			tap = (tap + upper) >> 1;
851 		}
852 	}
853 }
854 
855 static u32 ast2600_configure_mac12_clk(struct ast2600_clk_priv *priv, struct udevice *dev)
856 {
857 	struct ast2600_scu *scu = priv->scu;
858 	struct mac_delay_config mac1_cfg, mac2_cfg;
859 	u32 reg[3];
860 	int ret;
861 
862 	reg[0] = MAC_DEF_DELAY_1G;
863 	reg[1] = MAC_DEF_DELAY_100M;
864 	reg[2] = MAC_DEF_DELAY_10M;
865 
866 	ret = ast2600_find_dly32_tap(RGMII12_CLK_OUTPUT_DELAY_PS, priv->dly32_lookup[0]);
867 	if (ret > 0) {
868 		debug("suggested tx delay for mac1/2: %d\n", ret);
869 
870 		reg[0] &= ~(MAC_CLK_1G_OUTPUT_DELAY_1 | MAC_CLK_1G_OUTPUT_DELAY_2);
871 		reg[0] |= FIELD_PREP(MAC_CLK_1G_OUTPUT_DELAY_1, ret) |
872 			  FIELD_PREP(MAC_CLK_1G_OUTPUT_DELAY_2, ret);
873 		reg[1] &= ~(MAC_CLK_100M_10M_OUTPUT_DELAY_1 | MAC_CLK_100M_10M_OUTPUT_DELAY_2);
874 		reg[1] |= FIELD_PREP(MAC_CLK_100M_10M_OUTPUT_DELAY_1, ret) |
875 			  FIELD_PREP(MAC_CLK_100M_10M_OUTPUT_DELAY_2, ret);
876 		reg[2] &= ~(MAC_CLK_100M_10M_OUTPUT_DELAY_1 | MAC_CLK_100M_10M_OUTPUT_DELAY_2);
877 		reg[2] |= FIELD_PREP(MAC_CLK_100M_10M_OUTPUT_DELAY_1, ret) |
878 			  FIELD_PREP(MAC_CLK_100M_10M_OUTPUT_DELAY_2, ret);
879 	}
880 	ret = dev_read_u32_array(dev, "mac0-clk-delay", (u32 *)&mac1_cfg,
881 				 sizeof(mac1_cfg) / sizeof(u32));
882 	if (!ret) {
883 		reg[0] &= ~(MAC_CLK_1G_INPUT_DELAY_1 | MAC_CLK_1G_OUTPUT_DELAY_1);
884 		reg[0] |= FIELD_PREP(MAC_CLK_1G_INPUT_DELAY_1, mac1_cfg.rx_delay_1000) |
885 			  FIELD_PREP(MAC_CLK_1G_OUTPUT_DELAY_1, mac1_cfg.tx_delay_1000);
886 
887 		reg[1] &= ~(MAC_CLK_100M_10M_INPUT_DELAY_1 | MAC_CLK_100M_10M_OUTPUT_DELAY_1);
888 		reg[1] |= FIELD_PREP(MAC_CLK_100M_10M_INPUT_DELAY_1, mac1_cfg.rx_delay_100) |
889 			  FIELD_PREP(MAC_CLK_100M_10M_OUTPUT_DELAY_1, mac1_cfg.tx_delay_100);
890 
891 		reg[2] &= ~(MAC_CLK_100M_10M_INPUT_DELAY_1 | MAC_CLK_100M_10M_OUTPUT_DELAY_1);
892 		reg[2] |= FIELD_PREP(MAC_CLK_100M_10M_INPUT_DELAY_1, mac1_cfg.rx_delay_10) |
893 			  FIELD_PREP(MAC_CLK_100M_10M_OUTPUT_DELAY_1, mac1_cfg.tx_delay_10);
894 	}
895 
896 	ret = dev_read_u32_array(dev, "mac1-clk-delay", (u32 *)&mac2_cfg,
897 				 sizeof(mac2_cfg) / sizeof(u32));
898 	if (!ret) {
899 		reg[0] &= ~(MAC_CLK_1G_INPUT_DELAY_2 | MAC_CLK_1G_OUTPUT_DELAY_2);
900 		reg[0] |= FIELD_PREP(MAC_CLK_1G_INPUT_DELAY_2, mac2_cfg.rx_delay_1000) |
901 			  FIELD_PREP(MAC_CLK_1G_OUTPUT_DELAY_2, mac2_cfg.tx_delay_1000);
902 
903 		reg[1] &= ~(MAC_CLK_100M_10M_INPUT_DELAY_2 | MAC_CLK_100M_10M_OUTPUT_DELAY_2);
904 		reg[1] |= FIELD_PREP(MAC_CLK_100M_10M_INPUT_DELAY_2, mac2_cfg.rx_delay_100) |
905 			  FIELD_PREP(MAC_CLK_100M_10M_OUTPUT_DELAY_2, mac2_cfg.tx_delay_100);
906 
907 		reg[2] &= ~(MAC_CLK_100M_10M_INPUT_DELAY_2 | MAC_CLK_100M_10M_OUTPUT_DELAY_2);
908 		reg[2] |= FIELD_PREP(MAC_CLK_100M_10M_INPUT_DELAY_2, mac2_cfg.rx_delay_10) |
909 			  FIELD_PREP(MAC_CLK_100M_10M_OUTPUT_DELAY_2, mac2_cfg.tx_delay_10);
910 	}
911 
912 	reg[0] |= (readl(&scu->mac12_clk_delay) & ~GENMASK(25, 0));
913 	writel(reg[0], &scu->mac12_clk_delay);
914 	writel(reg[1], &scu->mac12_clk_delay_100M);
915 	writel(reg[2], &scu->mac12_clk_delay_10M);
916 
917 	/* MAC AHB = HPLL / 6 */
918 	clrsetbits_le32(&scu->clk_sel1, GENMASK(18, 16), (0x2 << 16));
919 
920 	return 0;
921 }
922 
923 static u32 ast2600_configure_mac34_clk(struct ast2600_clk_priv *priv, struct udevice *dev)
924 {
925 	struct ast2600_scu *scu = priv->scu;
926 	struct mac_delay_config mac3_cfg, mac4_cfg;
927 	u32 reg[3];
928 	int ret;
929 
930 	reg[0] = MAC34_DEF_DELAY_1G;
931 	reg[1] = MAC34_DEF_DELAY_100M;
932 	reg[2] = MAC34_DEF_DELAY_10M;
933 
934 	ret = ast2600_find_dly32_tap(RGMII34_CLK_OUTPUT_DELAY_PS, priv->dly32_lookup[1]);
935 	if (ret > 0) {
936 		debug("suggested tx delay for mac3/4: %d\n", ret);
937 
938 		reg[0] &= ~(MAC_CLK_1G_OUTPUT_DELAY_1 | MAC_CLK_1G_OUTPUT_DELAY_2);
939 		reg[0] |= FIELD_PREP(MAC_CLK_1G_OUTPUT_DELAY_1, ret) |
940 			  FIELD_PREP(MAC_CLK_1G_OUTPUT_DELAY_2, ret);
941 		reg[1] &= ~(MAC_CLK_100M_10M_OUTPUT_DELAY_1 | MAC_CLK_100M_10M_OUTPUT_DELAY_2);
942 		reg[1] |= FIELD_PREP(MAC_CLK_100M_10M_OUTPUT_DELAY_1, ret) |
943 			  FIELD_PREP(MAC_CLK_100M_10M_OUTPUT_DELAY_2, ret);
944 		reg[2] &= ~(MAC_CLK_100M_10M_OUTPUT_DELAY_1 | MAC_CLK_100M_10M_OUTPUT_DELAY_2);
945 		reg[2] |= FIELD_PREP(MAC_CLK_100M_10M_OUTPUT_DELAY_1, ret) |
946 			  FIELD_PREP(MAC_CLK_100M_10M_OUTPUT_DELAY_2, ret);
947 	}
948 
949 	ret = dev_read_u32_array(dev, "mac2-clk-delay", (u32 *)&mac3_cfg, sizeof(mac3_cfg) / sizeof(u32));
950 	if (!ret) {
951 		reg[0] &= ~(MAC_CLK_1G_INPUT_DELAY_1 | MAC_CLK_1G_OUTPUT_DELAY_1);
952 		reg[0] |= FIELD_PREP(MAC_CLK_1G_INPUT_DELAY_1, mac3_cfg.rx_delay_1000) |
953 			  FIELD_PREP(MAC_CLK_1G_OUTPUT_DELAY_1, mac3_cfg.tx_delay_1000);
954 
955 		reg[1] &= ~(MAC_CLK_100M_10M_INPUT_DELAY_1 | MAC_CLK_100M_10M_OUTPUT_DELAY_1);
956 		reg[1] |= FIELD_PREP(MAC_CLK_100M_10M_INPUT_DELAY_1, mac3_cfg.rx_delay_100) |
957 			  FIELD_PREP(MAC_CLK_100M_10M_OUTPUT_DELAY_1, mac3_cfg.tx_delay_100);
958 
959 		reg[2] &= ~(MAC_CLK_100M_10M_INPUT_DELAY_1 | MAC_CLK_100M_10M_OUTPUT_DELAY_1);
960 		reg[2] |= FIELD_PREP(MAC_CLK_100M_10M_INPUT_DELAY_1, mac3_cfg.rx_delay_10) |
961 			  FIELD_PREP(MAC_CLK_100M_10M_OUTPUT_DELAY_1, mac3_cfg.tx_delay_10);
962 	}
963 
964 	ret = dev_read_u32_array(dev, "mac3-clk-delay", (u32 *)&mac4_cfg, sizeof(mac4_cfg) / sizeof(u32));
965 	if (!ret) {
966 		reg[0] &= ~(MAC_CLK_1G_INPUT_DELAY_2 | MAC_CLK_1G_OUTPUT_DELAY_2);
967 		reg[0] |= FIELD_PREP(MAC_CLK_1G_INPUT_DELAY_2, mac4_cfg.rx_delay_1000) |
968 			  FIELD_PREP(MAC_CLK_1G_OUTPUT_DELAY_2, mac4_cfg.tx_delay_1000);
969 
970 		reg[1] &= ~(MAC_CLK_100M_10M_INPUT_DELAY_2 | MAC_CLK_100M_10M_OUTPUT_DELAY_2);
971 		reg[1] |= FIELD_PREP(MAC_CLK_100M_10M_INPUT_DELAY_2, mac4_cfg.rx_delay_100) |
972 			  FIELD_PREP(MAC_CLK_100M_10M_OUTPUT_DELAY_2, mac4_cfg.tx_delay_100);
973 
974 		reg[2] &= ~(MAC_CLK_100M_10M_INPUT_DELAY_2 | MAC_CLK_100M_10M_OUTPUT_DELAY_2);
975 		reg[2] |= FIELD_PREP(MAC_CLK_100M_10M_INPUT_DELAY_2, mac4_cfg.rx_delay_10) |
976 			  FIELD_PREP(MAC_CLK_100M_10M_OUTPUT_DELAY_2, mac4_cfg.tx_delay_10);
977 	}
978 
979 	reg[0] |= (readl(&scu->mac34_clk_delay) & ~GENMASK(25, 0));
980 	reg[0] &= ~MAC_CLK_RGMII_125M_SRC_SEL;
981 	reg[0] |= FIELD_PREP(MAC_CLK_RGMII_125M_SRC_SEL, MAC_CLK_RGMII_125M_SRC_PAD_RGMIICK);
982 	writel(reg[0], &scu->mac34_clk_delay);
983 	writel(reg[1], &scu->mac34_clk_delay_100M);
984 	writel(reg[2], &scu->mac34_clk_delay_10M);
985 
986 	/*
987 	 * clock source seletion and divider
988 	 * scu310[26:24] : MAC AHB bus clock = HCLK / 2
989 	 * scu310[18:16] : RMII 50M = HCLK_200M / 4
990 	 */
991 	clrsetbits_le32(&scu->clk_sel4, (GENMASK(26, 24) | GENMASK(18, 16)),
992 			((0x0 << 24) | (0x3 << 16)));
993 
994 	/*
995 	 * set driving strength
996 	 * scu458[3:2] : MAC4 driving strength
997 	 * scu458[1:0] : MAC3 driving strength
998 	 */
999 	clrsetbits_le32(&scu->pinmux_ctrl16, GENMASK(3, 0),
1000 			(0x3 << 2) | (0x3 << 0));
1001 
1002 	return 0;
1003 }
1004 
1005 /**
1006  * ast2600 RGMII clock source tree
1007  * 125M from external PAD -------->|\
1008  * HPLL -->|\                      | |---->RGMII 125M for MAC#1 & MAC#2
1009  *         | |---->| divider |---->|/                             +
1010  * EPLL -->|/                                                     |
1011  *                                                                |
1012  * +---------<-----------|RGMIICK PAD output enable|<-------------+
1013  * |
1014  * +--------------------------->|\
1015  *                              | |----> RGMII 125M for MAC#3 & MAC#4
1016  * HCLK 200M ---->|divider|---->|/
1017  * To simplify the control flow:
1018  * 1. RGMII 1/2 always use EPLL as the internal clock source
1019  * 2. RGMII 3/4 always use RGMIICK pad as the RGMII 125M source
1020  * 125M from external PAD -------->|\
1021  *                                 | |---->RGMII 125M for MAC#1 & MAC#2
1022  *         EPLL---->| divider |--->|/                             +
1023  *                                                                |
1024  * +<--------------------|RGMIICK PAD output enable|<-------------+
1025  * |
1026  * +--------------------------->RGMII 125M for MAC#3 & MAC#4
1027  */
1028 #define RGMIICK_SRC_PAD		0
1029 #define RGMIICK_SRC_EPLL	1 /* recommended */
1030 #define RGMIICK_SRC_HPLL	2
1031 
1032 #define RGMIICK_DIV2	1
1033 #define RGMIICK_DIV3	2
1034 #define RGMIICK_DIV4	3
1035 #define RGMIICK_DIV5	4
1036 #define RGMIICK_DIV6	5
1037 #define RGMIICK_DIV7	6
1038 #define RGMIICK_DIV8	7 /* recommended */
1039 
1040 #define RMIICK_DIV4		0
1041 #define RMIICK_DIV8		1
1042 #define RMIICK_DIV12	2
1043 #define RMIICK_DIV16	3
1044 #define RMIICK_DIV20	4 /* recommended */
1045 #define RMIICK_DIV24	5
1046 #define RMIICK_DIV28	6
1047 #define RMIICK_DIV32	7
1048 
1049 struct ast2600_mac_clk_div {
1050 	u32 src; /* 0=external PAD, 1=internal PLL */
1051 	u32 fin; /* divider input speed */
1052 	u32 n; /* 0=div2, 1=div2, 2=div3, 3=div4,...,7=div8 */
1053 	u32 fout; /* fout = fin / n */
1054 };
1055 
1056 struct ast2600_mac_clk_div rgmii_clk_defconfig = {
1057 	.src = ASPEED_CLK_EPLL,
1058 	.fin = 1000000000,
1059 	.n = RGMIICK_DIV8,
1060 	.fout = 125000000,
1061 };
1062 
1063 struct ast2600_mac_clk_div rmii_clk_defconfig = {
1064 	.src = ASPEED_CLK_EPLL,
1065 	.fin = 1000000000,
1066 	.n = RMIICK_DIV20,
1067 	.fout = 50000000,
1068 };
1069 
1070 static void ast2600_init_mac_pll(struct ast2600_scu *p_scu,
1071 				 struct ast2600_mac_clk_div *p_cfg)
1072 {
1073 	struct ast2600_pll_desc pll;
1074 
1075 	pll.in = AST2600_CLK_IN;
1076 	pll.out = p_cfg->fin;
1077 	if (ast2600_search_clock_config(&pll) == false) {
1078 		pr_err("unable to find valid ETHNET MAC clock setting\n");
1079 		debug("%s: pll cfg = 0x%08x 0x%08x\n", __func__, pll.cfg.reg.w,
1080 		      pll.cfg.ext_reg);
1081 		debug("%s: pll cfg = %02x %02x %02x\n", __func__,
1082 		      pll.cfg.reg.b.m, pll.cfg.reg.b.n, pll.cfg.reg.b.p);
1083 		return;
1084 	}
1085 	ast2600_configure_pll(p_scu, &pll.cfg, p_cfg->src);
1086 }
1087 
1088 static void ast2600_init_rgmii_clk(struct ast2600_scu *p_scu,
1089 				   struct ast2600_mac_clk_div *p_cfg)
1090 {
1091 	u32 reg_304 = readl(&p_scu->clk_sel2);
1092 	u32 reg_340 = readl(&p_scu->mac12_clk_delay);
1093 	u32 reg_350 = readl(&p_scu->mac34_clk_delay);
1094 
1095 	reg_340 &= ~(MAC_CLK_RGMII_125M_SRC_SEL | MAC_CLK_RMII2_50M_RCLK_O_CTRL |
1096 		     MAC_CLK_RMII1_50M_RCLK_O_CTRL | MAC_CLK_RGMIICK_PAD_DIR);
1097 	/* RGMIICK PAD output enable (to MAC 3/4) */
1098 	reg_340 |= FIELD_PREP(MAC_CLK_RGMIICK_PAD_DIR, MAC_CLK_RGMIICK_PAD_DIR_OUTPUT);
1099 	if (p_cfg->src == ASPEED_CLK_EPLL || p_cfg->src == ASPEED_CLK_HPLL) {
1100 		/*
1101 		 * re-init PLL if the current PLL output frequency doesn't match
1102 		 * the divider setting
1103 		 */
1104 		if (p_cfg->fin != ast2600_get_pll_rate(p_scu, p_cfg->src))
1105 			ast2600_init_mac_pll(p_scu, p_cfg);
1106 		/* select RGMII 125M from internal source */
1107 		reg_340 |= FIELD_PREP(MAC_CLK_RGMII_125M_SRC_SEL, MAC_CLK_RGMII_125M_SRC_PLL);
1108 	}
1109 
1110 	reg_304 &= ~GENMASK(23, 20);
1111 
1112 	/* set clock divider */
1113 	reg_304 |= (p_cfg->n & 0x7) << 20;
1114 
1115 	/* select internal clock source */
1116 	if (p_cfg->src == ASPEED_CLK_HPLL)
1117 		reg_304 |= BIT(23);
1118 
1119 	/* RGMII 3/4 clock source select */
1120 	reg_350 &= ~BIT(31);
1121 
1122 	writel(reg_304, &p_scu->clk_sel2);
1123 	writel(reg_340, &p_scu->mac12_clk_delay);
1124 	writel(reg_350, &p_scu->mac34_clk_delay);
1125 }
1126 
1127 /**
1128  * ast2600 RMII/NCSI clock source tree
1129  * HPLL -->|\
1130  *         | |---->| divider |----> RMII 50M for MAC#1 & MAC#2
1131  * EPLL -->|/
1132  * HCLK(SCLICLK)---->| divider |----> RMII 50M for MAC#3 & MAC#4
1133  */
1134 static void ast2600_init_rmii_clk(struct ast2600_scu *p_scu,
1135 				  struct ast2600_mac_clk_div *p_cfg)
1136 {
1137 	u32 reg_304;
1138 	u32 reg_310;
1139 
1140 	if (p_cfg->src == ASPEED_CLK_EPLL || p_cfg->src == ASPEED_CLK_HPLL) {
1141 		/*
1142 		 * re-init PLL if the current PLL output frequency doesn't match
1143 		 * the divider setting
1144 		 */
1145 		if (p_cfg->fin != ast2600_get_pll_rate(p_scu, p_cfg->src))
1146 			ast2600_init_mac_pll(p_scu, p_cfg);
1147 	}
1148 
1149 	reg_304 = readl(&p_scu->clk_sel2);
1150 	reg_310 = readl(&p_scu->clk_sel4);
1151 
1152 	reg_304 &= ~GENMASK(19, 16);
1153 
1154 	/* set RMII 1/2 clock divider */
1155 	reg_304 |= (p_cfg->n & 0x7) << 16;
1156 
1157 	/* RMII clock source selection */
1158 	if (p_cfg->src == ASPEED_CLK_HPLL)
1159 		reg_304 |= BIT(19);
1160 
1161 	/* set RMII 3/4 clock divider */
1162 	reg_310 &= ~GENMASK(18, 16);
1163 	reg_310 |= (0x3 << 16);
1164 
1165 	writel(reg_304, &p_scu->clk_sel2);
1166 	writel(reg_310, &p_scu->clk_sel4);
1167 }
1168 
1169 static u32 ast2600_configure_mac(struct ast2600_scu *scu, int index)
1170 {
1171 	u32 reset_bit;
1172 	u32 clkstop_bit;
1173 
1174 	switch (index) {
1175 	case 1:
1176 		reset_bit = BIT(ASPEED_RESET_MAC1);
1177 		clkstop_bit = BIT(SCU_CLKSTOP_MAC1);
1178 		writel(reset_bit, &scu->sysreset_ctrl1);
1179 		udelay(100);
1180 		writel(clkstop_bit, &scu->clk_stop_clr_ctrl1);
1181 		mdelay(10);
1182 		writel(reset_bit, &scu->sysreset_clr_ctrl1);
1183 		break;
1184 	case 2:
1185 		reset_bit = BIT(ASPEED_RESET_MAC2);
1186 		clkstop_bit = BIT(SCU_CLKSTOP_MAC2);
1187 		writel(reset_bit, &scu->sysreset_ctrl1);
1188 		udelay(100);
1189 		writel(clkstop_bit, &scu->clk_stop_clr_ctrl1);
1190 		mdelay(10);
1191 		writel(reset_bit, &scu->sysreset_clr_ctrl1);
1192 		break;
1193 	case 3:
1194 		reset_bit = BIT(ASPEED_RESET_MAC3 - 32);
1195 		clkstop_bit = BIT(SCU_CLKSTOP_MAC3);
1196 		writel(reset_bit, &scu->sysreset_ctrl2);
1197 		udelay(100);
1198 		writel(clkstop_bit, &scu->clk_stop_clr_ctrl2);
1199 		mdelay(10);
1200 		writel(reset_bit, &scu->sysreset_clr_ctrl2);
1201 		break;
1202 	case 4:
1203 		reset_bit = BIT(ASPEED_RESET_MAC4 - 32);
1204 		clkstop_bit = BIT(SCU_CLKSTOP_MAC4);
1205 		writel(reset_bit, &scu->sysreset_ctrl2);
1206 		udelay(100);
1207 		writel(clkstop_bit, &scu->clk_stop_clr_ctrl2);
1208 		mdelay(10);
1209 		writel(reset_bit, &scu->sysreset_clr_ctrl2);
1210 		break;
1211 	default:
1212 		return -EINVAL;
1213 	}
1214 
1215 	return 0;
1216 }
1217 
1218 #define SCU_CLK_ECC_RSA_FROM_HPLL_CLK	BIT(19)
1219 #define SCU_CLK_ECC_RSA_CLK_MASK		GENMASK(27, 26)
1220 #define SCU_CLK_ECC_RSA_CLK_DIV(x)		((x) << 26)
1221 static void ast2600_configure_rsa_ecc_clk(struct ast2600_scu *scu)
1222 {
1223 	u32 clk_sel = readl(&scu->clk_sel1);
1224 
1225 	/* Configure RSA clock = HPLL/4 */
1226 	clk_sel |= SCU_CLK_ECC_RSA_FROM_HPLL_CLK;
1227 	clk_sel &= ~SCU_CLK_ECC_RSA_CLK_MASK;
1228 	clk_sel |= SCU_CLK_ECC_RSA_CLK_DIV(3);
1229 
1230 	writel(clk_sel, &scu->clk_sel1);
1231 }
1232 
1233 #define SCU_CLKSTOP_SDIO 4
1234 static ulong ast2600_enable_sdclk(struct ast2600_scu *scu)
1235 {
1236 	u32 reset_bit;
1237 	u32 clkstop_bit;
1238 
1239 	reset_bit = BIT(ASPEED_RESET_SD - 32);
1240 	clkstop_bit = BIT(SCU_CLKSTOP_SDIO);
1241 
1242 	writel(reset_bit, &scu->sysreset_ctrl2);
1243 
1244 	udelay(100);
1245 	//enable clk
1246 	writel(clkstop_bit, &scu->clk_stop_clr_ctrl2);
1247 	mdelay(10);
1248 	writel(reset_bit, &scu->sysreset_clr_ctrl2);
1249 
1250 	return 0;
1251 }
1252 
1253 #define SCU_CLKSTOP_EXTSD			31
1254 #define SCU_CLK_SD_MASK				(0x7 << 28)
1255 #define SCU_CLK_SD_DIV(x)			((x) << 28)
1256 #define SCU_CLK_SD_FROM_APLL_CLK	BIT(8)
1257 
1258 static ulong ast2600_enable_extsdclk(struct ast2600_scu *scu)
1259 {
1260 	u32 clk_sel = readl(&scu->clk_sel4);
1261 	u32 enableclk_bit;
1262 	u32 rate = 0;
1263 	u32 div = 0;
1264 	int i = 0;
1265 
1266 	enableclk_bit = BIT(SCU_CLKSTOP_EXTSD);
1267 
1268 	/* ast2600 sd controller max clk is 200Mhz :
1269 	 * use apll for clock source 800/4 = 200 : controller max is 200mhz
1270 	 */
1271 	rate = ast2600_get_apll_rate(scu);
1272 	for (i = 0; i < 8; i++) {
1273 		div = (i + 1) * 2;
1274 		if ((rate / div) <= 200000000)
1275 			break;
1276 	}
1277 	clk_sel &= ~SCU_CLK_SD_MASK;
1278 	clk_sel |= SCU_CLK_SD_DIV(i) | SCU_CLK_SD_FROM_APLL_CLK;
1279 	writel(clk_sel, &scu->clk_sel4);
1280 
1281 	//enable clk
1282 	setbits_le32(&scu->clk_sel4, enableclk_bit);
1283 
1284 	return 0;
1285 }
1286 
1287 #define SCU_CLKSTOP_EMMC 27
1288 static ulong ast2600_enable_emmcclk(struct ast2600_scu *scu)
1289 {
1290 	u32 reset_bit;
1291 	u32 clkstop_bit;
1292 
1293 	reset_bit = BIT(ASPEED_RESET_EMMC);
1294 	clkstop_bit = BIT(SCU_CLKSTOP_EMMC);
1295 
1296 	writel(reset_bit, &scu->sysreset_ctrl1);
1297 	udelay(100);
1298 	//enable clk
1299 	writel(clkstop_bit, &scu->clk_stop_clr_ctrl1);
1300 	mdelay(10);
1301 	writel(reset_bit, &scu->sysreset_clr_ctrl1);
1302 
1303 	return 0;
1304 }
1305 
1306 #define SCU_CLKSTOP_EXTEMMC			15
1307 #define SCU_CLK_EMMC_MASK			(0x7 << 12)
1308 #define SCU_CLK_EMMC_DIV(x)			((x) << 12)
1309 #define SCU_CLK_EMMC_FROM_MPLL_CLK	BIT(11)
1310 
1311 static ulong ast2600_enable_extemmcclk(struct ast2600_scu *scu)
1312 {
1313 	u32 revision_id = readl(&scu->chip_id1);
1314 	u32 clk_sel = readl(&scu->clk_sel1);
1315 	u32 enableclk_bit = BIT(SCU_CLKSTOP_EXTEMMC);
1316 	u32 rate = 0;
1317 	u32 div = 0;
1318 	int i = 0;
1319 
1320 	/*
1321 	 * ast2600 eMMC controller max clk is 200Mhz
1322 	 * HPll->1/2->|\
1323 	 *				|->SCU300[11]->SCU300[14:12][1/N] +
1324 	 * MPLL------>|/								  |
1325 	 * +----------------------------------------------+
1326 	 * |
1327 	 * +---------> EMMC12C[15:8][1/N]-> eMMC clk
1328 	 */
1329 	if (((revision_id & CHIP_REVISION_ID) >> 16)) {
1330 		//AST2600A1 : use mpll to be clk source
1331 		rate = ast2600_get_pll_rate(scu, ASPEED_CLK_MPLL);
1332 		for (i = 0; i < 8; i++) {
1333 			div = (i + 1) * 2;
1334 			if ((rate / div) <= 200000000)
1335 				break;
1336 		}
1337 
1338 		clk_sel &= ~SCU_CLK_EMMC_MASK;
1339 		clk_sel |= SCU_CLK_EMMC_DIV(i) | SCU_CLK_EMMC_FROM_MPLL_CLK;
1340 		writel(clk_sel, &scu->clk_sel1);
1341 
1342 	} else {
1343 		//AST2600A0 : use hpll to be clk source
1344 		rate = ast2600_get_pll_rate(scu, ASPEED_CLK_HPLL);
1345 
1346 		for (i = 0; i < 8; i++) {
1347 			div = (i + 1) * 4;
1348 			if ((rate / div) <= 200000000)
1349 				break;
1350 		}
1351 
1352 		clk_sel &= ~SCU_CLK_EMMC_MASK;
1353 		clk_sel |= SCU_CLK_EMMC_DIV(i);
1354 		writel(clk_sel, &scu->clk_sel1);
1355 	}
1356 	setbits_le32(&scu->clk_sel1, enableclk_bit);
1357 
1358 	return 0;
1359 }
1360 
1361 #define SCU_CLKSTOP_FSICLK 30
1362 
1363 static ulong ast2600_enable_fsiclk(struct ast2600_scu *scu)
1364 {
1365 	u32 reset_bit;
1366 	u32 clkstop_bit;
1367 
1368 	reset_bit = BIT(ASPEED_RESET_FSI % 32);
1369 	clkstop_bit = BIT(SCU_CLKSTOP_FSICLK);
1370 
1371 	/* The FSI clock is shared between masters. If it's already on
1372 	 * don't touch it, as that will reset the existing master.
1373 	 */
1374 	if (!(readl(&scu->clk_stop_ctrl2) & clkstop_bit)) {
1375 		debug("%s: already running, not touching it\n", __func__);
1376 		return 0;
1377 	}
1378 
1379 	writel(reset_bit, &scu->sysreset_ctrl2);
1380 	udelay(100);
1381 	writel(clkstop_bit, &scu->clk_stop_clr_ctrl2);
1382 	mdelay(10);
1383 	writel(reset_bit, &scu->sysreset_clr_ctrl2);
1384 
1385 	return 0;
1386 }
1387 
1388 static ulong ast2600_enable_usbahclk(struct ast2600_scu *scu)
1389 {
1390 	u32 reset_bit;
1391 	u32 clkstop_bit;
1392 
1393 	reset_bit = BIT(ASPEED_RESET_EHCI_P1);
1394 	clkstop_bit = BIT(14);
1395 
1396 	writel(reset_bit, &scu->sysreset_ctrl1);
1397 	udelay(100);
1398 	writel(clkstop_bit, &scu->clk_stop_ctrl1);
1399 	mdelay(20);
1400 	writel(reset_bit, &scu->sysreset_clr_ctrl1);
1401 
1402 	return 0;
1403 }
1404 
1405 static ulong ast2600_enable_usbbhclk(struct ast2600_scu *scu)
1406 {
1407 	u32 reset_bit;
1408 	u32 clkstop_bit;
1409 
1410 	reset_bit = BIT(ASPEED_RESET_EHCI_P2);
1411 	clkstop_bit = BIT(7);
1412 
1413 	writel(reset_bit, &scu->sysreset_ctrl1);
1414 	udelay(100);
1415 	writel(clkstop_bit, &scu->clk_stop_clr_ctrl1);
1416 	mdelay(20);
1417 
1418 	writel(reset_bit, &scu->sysreset_clr_ctrl1);
1419 
1420 	return 0;
1421 }
1422 
1423 /* also known as yclk */
1424 static ulong ast2600_enable_haceclk(struct ast2600_scu *scu)
1425 {
1426 	u32 reset_bit;
1427 	u32 clkstop_bit;
1428 
1429 	reset_bit = BIT(ASPEED_RESET_HACE);
1430 	clkstop_bit = BIT(13);
1431 
1432 	writel(reset_bit, &scu->sysreset_ctrl1);
1433 	udelay(100);
1434 	writel(clkstop_bit, &scu->clk_stop_clr_ctrl1);
1435 	mdelay(20);
1436 
1437 	writel(reset_bit, &scu->sysreset_clr_ctrl1);
1438 
1439 	return 0;
1440 }
1441 
1442 static ulong ast2600_enable_rsaeccclk(struct ast2600_scu *scu)
1443 {
1444 	u32 clkstop_bit;
1445 
1446 	clkstop_bit = BIT(24);
1447 
1448 	writel(clkstop_bit, &scu->clk_stop_clr_ctrl1);
1449 	mdelay(20);
1450 
1451 	return 0;
1452 }
1453 
1454 static int ast2600_clk_enable(struct clk *clk)
1455 {
1456 	struct ast2600_clk_priv *priv = dev_get_priv(clk->dev);
1457 
1458 	switch (clk->id) {
1459 	case ASPEED_CLK_GATE_MAC1CLK:
1460 		ast2600_configure_mac(priv->scu, 1);
1461 		break;
1462 	case ASPEED_CLK_GATE_MAC2CLK:
1463 		ast2600_configure_mac(priv->scu, 2);
1464 		break;
1465 	case ASPEED_CLK_GATE_MAC3CLK:
1466 		ast2600_configure_mac(priv->scu, 3);
1467 		break;
1468 	case ASPEED_CLK_GATE_MAC4CLK:
1469 		ast2600_configure_mac(priv->scu, 4);
1470 		break;
1471 	case ASPEED_CLK_GATE_SDCLK:
1472 		ast2600_enable_sdclk(priv->scu);
1473 		break;
1474 	case ASPEED_CLK_GATE_SDEXTCLK:
1475 		ast2600_enable_extsdclk(priv->scu);
1476 		break;
1477 	case ASPEED_CLK_GATE_EMMCCLK:
1478 		ast2600_enable_emmcclk(priv->scu);
1479 		break;
1480 	case ASPEED_CLK_GATE_EMMCEXTCLK:
1481 		ast2600_enable_extemmcclk(priv->scu);
1482 		break;
1483 	case ASPEED_CLK_GATE_FSICLK:
1484 		ast2600_enable_fsiclk(priv->scu);
1485 		break;
1486 	case ASPEED_CLK_GATE_USBPORT1CLK:
1487 		ast2600_enable_usbahclk(priv->scu);
1488 		break;
1489 	case ASPEED_CLK_GATE_USBPORT2CLK:
1490 		ast2600_enable_usbbhclk(priv->scu);
1491 		break;
1492 	case ASPEED_CLK_GATE_YCLK:
1493 		ast2600_enable_haceclk(priv->scu);
1494 		break;
1495 	case ASPEED_CLK_GATE_RSAECCCLK:
1496 		ast2600_enable_rsaeccclk(priv->scu);
1497 		break;
1498 	default:
1499 		pr_err("can't enable clk\n");
1500 		return -ENOENT;
1501 	}
1502 
1503 	return 0;
1504 }
1505 
1506 struct clk_ops ast2600_clk_ops = {
1507 	.get_rate = ast2600_clk_get_rate,
1508 	.set_rate = ast2600_clk_set_rate,
1509 	.enable = ast2600_clk_enable,
1510 };
1511 
1512 static int ast2600_clk_probe(struct udevice *dev)
1513 {
1514 	struct ast2600_clk_priv *priv = dev_get_priv(dev);
1515 	u32 uart_clk_source;
1516 
1517 	priv->scu = devfdt_get_addr_ptr(dev);
1518 	if (IS_ERR(priv->scu))
1519 		return PTR_ERR(priv->scu);
1520 
1521 	uart_clk_source = dev_read_u32_default(dev, "uart-clk-source", 0x0);
1522 
1523 	if (uart_clk_source) {
1524 		if (uart_clk_source & GENMASK(5, 0))
1525 			setbits_le32(&priv->scu->clk_sel4,
1526 				     uart_clk_source & GENMASK(5, 0));
1527 		if (uart_clk_source & GENMASK(12, 6))
1528 			setbits_le32(&priv->scu->clk_sel5,
1529 				     uart_clk_source & GENMASK(12, 6));
1530 	}
1531 
1532 	ast2600_init_rgmii_clk(priv->scu, &rgmii_clk_defconfig);
1533 	ast2600_init_rmii_clk(priv->scu, &rmii_clk_defconfig);
1534 	ast2600_init_dly32_lookup(priv);
1535 	ast2600_configure_mac12_clk(priv, dev);
1536 	ast2600_configure_mac34_clk(priv, dev);
1537 	ast2600_configure_rsa_ecc_clk(priv->scu);
1538 
1539 	return 0;
1540 }
1541 
1542 static int ast2600_clk_bind(struct udevice *dev)
1543 {
1544 	int ret;
1545 
1546 	/* The reset driver does not have a device node, so bind it here */
1547 	ret = device_bind_driver(gd->dm_root, "ast_sysreset", "reset", &dev);
1548 	if (ret)
1549 		debug("Warning: No reset driver: ret=%d\n", ret);
1550 
1551 	return 0;
1552 }
1553 
1554 struct aspeed_clks {
1555 	ulong id;
1556 	const char *name;
1557 };
1558 
1559 static struct aspeed_clks aspeed_clk_names[] = {
1560 	{ ASPEED_CLK_HPLL, "hpll" },     { ASPEED_CLK_MPLL, "mpll" },
1561 	{ ASPEED_CLK_APLL, "apll" },     { ASPEED_CLK_EPLL, "epll" },
1562 	{ ASPEED_CLK_DPLL, "dpll" },     { ASPEED_CLK_AHB, "hclk" },
1563 	{ ASPEED_CLK_APB1, "pclk1" },    { ASPEED_CLK_APB2, "pclk2" },
1564 	{ ASPEED_CLK_BCLK, "bclk" },     { ASPEED_CLK_UARTX, "uxclk" },
1565 	{ ASPEED_CLK_HUARTX, "huxclk" },
1566 };
1567 
1568 int soc_clk_dump(void)
1569 {
1570 	struct udevice *dev;
1571 	struct clk clk;
1572 	unsigned long rate;
1573 	int i, ret;
1574 
1575 	ret = uclass_get_device_by_driver(UCLASS_CLK, DM_GET_DRIVER(aspeed_scu),
1576 					  &dev);
1577 	if (ret)
1578 		return ret;
1579 
1580 	printf("Clk\t\tHz\n");
1581 
1582 	for (i = 0; i < ARRAY_SIZE(aspeed_clk_names); i++) {
1583 		clk.id = aspeed_clk_names[i].id;
1584 		ret = clk_request(dev, &clk);
1585 		if (ret < 0) {
1586 			debug("%s clk_request() failed: %d\n", __func__, ret);
1587 			continue;
1588 		}
1589 
1590 		ret = clk_get_rate(&clk);
1591 		rate = ret;
1592 
1593 		clk_free(&clk);
1594 
1595 		if (ret == -ENOTSUPP) {
1596 			printf("clk ID %lu not supported yet\n",
1597 			       aspeed_clk_names[i].id);
1598 			continue;
1599 		}
1600 		if (ret < 0) {
1601 			printf("%s %lu: get_rate err: %d\n", __func__,
1602 			       aspeed_clk_names[i].id, ret);
1603 			continue;
1604 		}
1605 
1606 		printf("%s(%3lu):\t%lu\n", aspeed_clk_names[i].name,
1607 		       aspeed_clk_names[i].id, rate);
1608 	}
1609 
1610 	return 0;
1611 }
1612 
1613 static const struct udevice_id ast2600_clk_ids[] = {
1614 	{
1615 		.compatible = "aspeed,ast2600-scu",
1616 	},
1617 	{}
1618 };
1619 
1620 U_BOOT_DRIVER(aspeed_scu) = {
1621 	.name = "aspeed_scu",
1622 	.id = UCLASS_CLK,
1623 	.of_match = ast2600_clk_ids,
1624 	.priv_auto_alloc_size = sizeof(struct ast2600_clk_priv),
1625 	.ops = &ast2600_clk_ops,
1626 	.bind = ast2600_clk_bind,
1627 	.probe = ast2600_clk_probe,
1628 };
1629