xref: /openbmc/u-boot/drivers/clk/aspeed/clk_ast2500.c (revision f0d895afccab714692730726e314911580307710)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * (C) Copyright 2016 Google, Inc
4  *
5  * Copyright (C) ASPEED Technology Inc.
6  *
7  */
8 
9 #include <common.h>
10 #include <clk-uclass.h>
11 #include <dm.h>
12 #include <asm/io.h>
13 #include <asm/arch/scu_ast2500.h>
14 #include <dm/lists.h>
15 #include <dt-bindings/clock/ast2500-clock.h>
16 
17 /*
18  * MAC Clock Delay settings, taken from Aspeed SDK
19  */
20 #define RGMII_TXCLK_ODLY		8
21 #define RMII_RXCLK_IDLY		2
22 
23 /*
24  * TGMII Clock Duty constants, taken from Aspeed SDK
25  */
26 #define RGMII2_TXCK_DUTY	0x66
27 #define RGMII1_TXCK_DUTY	0x64
28 
29 #define D2PLL_DEFAULT_RATE	(250 * 1000 * 1000)
30 
31 DECLARE_GLOBAL_DATA_PTR;
32 
33 /*
34  * Clock divider/multiplier configuration struct.
35  * For H-PLL and M-PLL the formula is
36  * (Output Frequency) = CLKIN * ((M + 1) / (N + 1)) / (P + 1)
37  * M - Numerator
38  * N - Denumerator
39  * P - Post Divider
40  * They have the same layout in their control register.
41  *
42  * D-PLL and D2-PLL have extra divider (OD + 1), which is not
43  * yet needed and ignored by clock configurations.
44  */
45 struct ast2500_div_config {
46 	unsigned int num;
47 	unsigned int denum;
48 	unsigned int post_div;
49 };
50 
51 /*
52  * Get the rate of the M-PLL clock from input clock frequency and
53  * the value of the M-PLL Parameter Register.
54  */
55 static ulong ast2500_get_mpll_rate(ulong clkin, u32 mpll_reg)
56 {
57 	const ulong num = (mpll_reg & SCU_MPLL_NUM_MASK) >> SCU_MPLL_NUM_SHIFT;
58 	const ulong denum = (mpll_reg & SCU_MPLL_DENUM_MASK)
59 			>> SCU_MPLL_DENUM_SHIFT;
60 	const ulong post_div = (mpll_reg & SCU_MPLL_POST_MASK)
61 			>> SCU_MPLL_POST_SHIFT;
62 
63 	return (clkin * ((num + 1) / (denum + 1))) / (post_div + 1);
64 }
65 
66 /*
67  * Get the rate of the H-PLL clock from input clock frequency and
68  * the value of the H-PLL Parameter Register.
69  */
70 static ulong ast2500_get_hpll_rate(ulong clkin, u32 hpll_reg)
71 {
72 	/* F = clkin * [(M+1) / (N+1)] / (P + 1) */
73 	const ulong num = (hpll_reg & SCU_HPLL_NUM_MASK) >> SCU_HPLL_NUM_SHIFT;
74 	const ulong denum = (hpll_reg & SCU_HPLL_DENUM_MASK)
75 			>> SCU_HPLL_DENUM_SHIFT;
76 	const ulong post_div = (hpll_reg & SCU_HPLL_POST_MASK)
77 			>> SCU_HPLL_POST_SHIFT;
78 
79 	return (clkin * ((num + 1) / (denum + 1))) / (post_div + 1);
80 }
81 
82 static ulong ast2500_get_clkin(struct ast2500_scu *scu)
83 {
84 	return readl(&scu->hwstrap) & SCU_HWSTRAP_CLKIN_25MHZ
85 			? 25 * 1000 * 1000 : 24 * 1000 * 1000;
86 }
87 
88 /**
89  * Get current rate or uart clock
90  *
91  * @scu SCU registers
92  * @uart_index UART index, 1-5
93  *
94  * @return current setting for uart clock rate
95  */
96 static ulong ast2500_get_uart_clk_rate(struct ast2500_scu *scu, int uart_index)
97 {
98 	/*
99 	 * ast2500 datasheet is very confusing when it comes to UART clocks,
100 	 * especially when CLKIN = 25 MHz. The settings are in
101 	 * different registers and it is unclear how they interact.
102 	 *
103 	 * This has only been tested with default settings and CLKIN = 24 MHz.
104 	 */
105 	ulong uart_clkin;
106 
107 	if (readl(&scu->misc_ctrl2) &
108 	    (1 << (uart_index - 1 + SCU_MISC2_UARTCLK_SHIFT)))
109 		uart_clkin = 192 * 1000 * 1000;
110 	else
111 		uart_clkin = 24 * 1000 * 1000;
112 
113 	if (readl(&scu->misc_ctrl1) & SCU_MISC_UARTCLK_DIV13)
114 		uart_clkin /= 13;
115 
116 	return uart_clkin;
117 }
118 
119 static ulong ast2500_clk_get_rate(struct clk *clk)
120 {
121 	struct ast2500_clk_priv *priv = dev_get_priv(clk->dev);
122 	ulong clkin = ast2500_get_clkin(priv->scu);
123 	ulong rate;
124 
125 	switch (clk->id) {
126 	//HPLL
127 	case ASPEED_CLK_HPLL:
128 		rate = ast2500_get_hpll_rate(clkin, readl(&priv->scu->h_pll_param));
129 		break;
130 	//HCLK
131 	case ASPEED_CLK_AHB:
132 		{
133 			ulong ahb_div = 1 + ((readl(&priv->scu->hwstrap)
134 					      & SCU_HWSTRAP_AXIAHB_DIV_MASK)
135 					     >> SCU_HWSTRAP_AXIAHB_DIV_SHIFT);
136 			ulong axi_div = 2;
137 
138 			rate = ast2500_get_hpll_rate(
139 				clkin, readl(&priv->scu->h_pll_param));
140 			rate = rate / axi_div / ahb_div;
141 		}
142 		break;
143 	//mpll
144 	case ASPEED_CLK_MPLL:
145 		rate = ast2500_get_mpll_rate(clkin,
146 					     readl(&priv->scu->m_pll_param));
147 		break;
148 	case BCLK_PCLK:
149 		{
150 			ulong apb_div = 4 + 4 * ((readl(&priv->scu->clk_sel1)
151 						  & SCU_PCLK_DIV_MASK)
152 						 >> SCU_PCLK_DIV_SHIFT);
153 			rate = ast2500_get_hpll_rate(clkin,
154 						     readl(&priv->
155 							   scu->h_pll_param));
156 			rate = rate / apb_div;
157 		}
158 		break;
159 	case PCLK_UART1:
160 		rate = ast2500_get_uart_clk_rate(priv->scu, 1);
161 		break;
162 	case PCLK_UART2:
163 		rate = ast2500_get_uart_clk_rate(priv->scu, 2);
164 		break;
165 	case PCLK_UART3:
166 		rate = ast2500_get_uart_clk_rate(priv->scu, 3);
167 		break;
168 	case PCLK_UART4:
169 		rate = ast2500_get_uart_clk_rate(priv->scu, 4);
170 		break;
171 	case PCLK_UART5:
172 		rate = ast2500_get_uart_clk_rate(priv->scu, 5);
173 		break;
174 	default:
175 		return -ENOENT;
176 	}
177 
178 	return rate;
179 }
180 
181 struct ast2500_clock_config {
182 	ulong input_rate;
183 	ulong rate;
184 	struct ast2500_div_config cfg;
185 };
186 
187 static const struct ast2500_clock_config ast2500_clock_config_defaults[] = {
188 	{ 24000000, 250000000, { .num = 124, .denum = 1, .post_div = 5 } },
189 };
190 
191 static bool ast2500_get_clock_config_default(ulong input_rate,
192 					     ulong requested_rate,
193 					     struct ast2500_div_config *cfg)
194 {
195 	int i;
196 
197 	for (i = 0; i < ARRAY_SIZE(ast2500_clock_config_defaults); i++) {
198 		const struct ast2500_clock_config *default_cfg =
199 			&ast2500_clock_config_defaults[i];
200 		if (default_cfg->input_rate == input_rate &&
201 		    default_cfg->rate == requested_rate) {
202 			*cfg = default_cfg->cfg;
203 			return true;
204 		}
205 	}
206 
207 	return false;
208 }
209 
210 /*
211  * @input_rate - the rate of input clock in Hz
212  * @requested_rate - desired output rate in Hz
213  * @div - this is an IN/OUT parameter, at input all fields of the config
214  * need to be set to their maximum allowed values.
215  * The result (the best config we could find), would also be returned
216  * in this structure.
217  *
218  * @return The clock rate, when the resulting div_config is used.
219  */
220 static ulong ast2500_calc_clock_config(ulong input_rate, ulong requested_rate,
221 				       struct ast2500_div_config *cfg)
222 {
223 	/*
224 	 * The assumption is that kHz precision is good enough and
225 	 * also enough to avoid overflow when multiplying.
226 	 */
227 	const ulong input_rate_khz = input_rate / 1000;
228 	const ulong rate_khz = requested_rate / 1000;
229 	const struct ast2500_div_config max_vals = *cfg;
230 	struct ast2500_div_config it = { 0, 0, 0 };
231 	ulong delta = rate_khz;
232 	ulong new_rate_khz = 0;
233 
234 	/*
235 	 * Look for a well known frequency first.
236 	 */
237 	if (ast2500_get_clock_config_default(input_rate, requested_rate, cfg))
238 		return requested_rate;
239 
240 	for (; it.denum <= max_vals.denum; ++it.denum) {
241 		for (it.post_div = 0; it.post_div <= max_vals.post_div;
242 		     ++it.post_div) {
243 			it.num = (rate_khz * (it.post_div + 1) / input_rate_khz)
244 			    * (it.denum + 1);
245 			if (it.num > max_vals.num)
246 				continue;
247 
248 			new_rate_khz = (input_rate_khz
249 					* ((it.num + 1) / (it.denum + 1)))
250 			    / (it.post_div + 1);
251 
252 			/* Keep the rate below requested one. */
253 			if (new_rate_khz > rate_khz)
254 				continue;
255 
256 			if (new_rate_khz - rate_khz < delta) {
257 				delta = new_rate_khz - rate_khz;
258 				*cfg = it;
259 				if (delta == 0)
260 					return new_rate_khz * 1000;
261 			}
262 		}
263 	}
264 
265 	return new_rate_khz * 1000;
266 }
267 
268 static ulong ast2500_configure_ddr(struct ast2500_scu *scu, ulong rate)
269 {
270 	ulong clkin = ast2500_get_clkin(scu);
271 	u32 mpll_reg;
272 	struct ast2500_div_config div_cfg = {
273 		.num = (SCU_MPLL_NUM_MASK >> SCU_MPLL_NUM_SHIFT),
274 		.denum = (SCU_MPLL_DENUM_MASK >> SCU_MPLL_DENUM_SHIFT),
275 		.post_div = (SCU_MPLL_POST_MASK >> SCU_MPLL_POST_SHIFT),
276 	};
277 
278 	ast2500_calc_clock_config(clkin, rate, &div_cfg);
279 
280 	mpll_reg = readl(&scu->m_pll_param);
281 	mpll_reg &= ~(SCU_MPLL_POST_MASK | SCU_MPLL_NUM_MASK
282 		      | SCU_MPLL_DENUM_MASK);
283 	mpll_reg |= (div_cfg.post_div << SCU_MPLL_POST_SHIFT)
284 	    | (div_cfg.num << SCU_MPLL_NUM_SHIFT)
285 	    | (div_cfg.denum << SCU_MPLL_DENUM_SHIFT);
286 
287 	writel(mpll_reg, &scu->m_pll_param);
288 
289 	return ast2500_get_mpll_rate(clkin, mpll_reg);
290 }
291 
292 static ulong ast2500_configure_mac(struct ast2500_scu *scu, int index)
293 {
294 	ulong clkin = ast2500_get_clkin(scu);
295 	ulong hpll_rate = ast2500_get_hpll_rate(clkin,
296 						readl(&scu->h_pll_param));
297 	ulong required_rate;
298 	u32 hwstrap;
299 	u32 divisor;
300 	u32 reset_bit;
301 	u32 clkstop_bit;
302 
303 	/*
304 	 * According to data sheet, for 10/100 mode the MAC clock frequency
305 	 * should be at least 25MHz and for 1000 mode at least 100MHz
306 	 */
307 	hwstrap = readl(&scu->hwstrap);
308 	if (hwstrap & (SCU_HWSTRAP_MAC1_RGMII | SCU_HWSTRAP_MAC2_RGMII))
309 		required_rate = 100 * 1000 * 1000;
310 	else
311 		required_rate = 25 * 1000 * 1000;
312 
313 	divisor = hpll_rate / required_rate;
314 
315 	if (divisor < 4) {
316 		/* Clock can't run fast enough, but let's try anyway */
317 		debug("MAC clock too slow\n");
318 		divisor = 4;
319 	} else if (divisor > 16) {
320 		/* Can't slow down the clock enough, but let's try anyway */
321 		debug("MAC clock too fast\n");
322 		divisor = 16;
323 	}
324 
325 	switch (index) {
326 	case 1:
327 		reset_bit = SCU_SYSRESET_MAC1;
328 		clkstop_bit = SCU_CLKSTOP_MAC1;
329 		break;
330 	case 2:
331 		reset_bit = SCU_SYSRESET_MAC2;
332 		clkstop_bit = SCU_CLKSTOP_MAC2;
333 		break;
334 	default:
335 		return -EINVAL;
336 	}
337 
338 	clrsetbits_le32(&scu->clk_sel1, SCU_MACCLK_MASK,
339 			((divisor - 2) / 2) << SCU_MACCLK_SHIFT);
340 
341 	/*
342 	 * Disable MAC, start its clock and re-enable it.
343 	 * The procedure and the delays (100us & 10ms) are
344 	 * specified in the datasheet.
345 	 */
346 	setbits_le32(&scu->sysreset_ctrl1, reset_bit);
347 	udelay(100);
348 	clrbits_le32(&scu->clk_stop_ctrl1, clkstop_bit);
349 	mdelay(10);
350 	clrbits_le32(&scu->sysreset_ctrl1, reset_bit);
351 
352 	writel((RGMII2_TXCK_DUTY << SCU_CLKDUTY_RGMII2TXCK_SHIFT)
353 	       | (RGMII1_TXCK_DUTY << SCU_CLKDUTY_RGMII1TXCK_SHIFT),
354 	       &scu->clk_duty_sel);
355 
356 	return required_rate;
357 }
358 
359 static ulong ast2500_configure_d2pll(struct ast2500_scu *scu, ulong rate)
360 {
361 	/*
362 	 * The values and the meaning of the next three
363 	 * parameters are undocumented. Taken from Aspeed SDK.
364 	 *
365 	 * TODO(clg@kaod.org): the SIP and SIC values depend on the
366 	 * Numerator value
367 	 */
368 	const u32 d2_pll_ext_param = 0x2c;
369 	const u32 d2_pll_sip = 0x11;
370 	const u32 d2_pll_sic = 0x18;
371 	u32 clk_delay_settings =
372 	    (RMII_RXCLK_IDLY << SCU_MICDS_MAC1RMII_RDLY_SHIFT)
373 	    | (RMII_RXCLK_IDLY << SCU_MICDS_MAC2RMII_RDLY_SHIFT)
374 	    | (RGMII_TXCLK_ODLY << SCU_MICDS_MAC1RGMII_TXDLY_SHIFT)
375 	    | (RGMII_TXCLK_ODLY << SCU_MICDS_MAC2RGMII_TXDLY_SHIFT);
376 	struct ast2500_div_config div_cfg = {
377 		.num = SCU_D2PLL_NUM_MASK >> SCU_D2PLL_NUM_SHIFT,
378 		.denum = SCU_D2PLL_DENUM_MASK >> SCU_D2PLL_DENUM_SHIFT,
379 		.post_div = SCU_D2PLL_POST_MASK >> SCU_D2PLL_POST_SHIFT,
380 	};
381 	ulong clkin = ast2500_get_clkin(scu);
382 	ulong new_rate;
383 
384 	writel((d2_pll_ext_param << SCU_D2PLL_EXT1_PARAM_SHIFT)
385 	       | SCU_D2PLL_EXT1_OFF
386 	       | SCU_D2PLL_EXT1_RESET, &scu->d2_pll_ext_param[0]);
387 
388 	/*
389 	 * Select USB2.0 port1 PHY clock as a clock source for GCRT.
390 	 * This would disconnect it from D2-PLL.
391 	 */
392 	clrsetbits_le32(&scu->misc_ctrl1, SCU_MISC_D2PLL_OFF,
393 			SCU_MISC_GCRT_USB20CLK);
394 
395 	new_rate = ast2500_calc_clock_config(clkin, rate, &div_cfg);
396 	writel((d2_pll_sip << SCU_D2PLL_SIP_SHIFT)
397 	       | (d2_pll_sic << SCU_D2PLL_SIC_SHIFT)
398 	       | (div_cfg.num << SCU_D2PLL_NUM_SHIFT)
399 	       | (div_cfg.denum << SCU_D2PLL_DENUM_SHIFT)
400 	       | (div_cfg.post_div << SCU_D2PLL_POST_SHIFT),
401 	       &scu->d2_pll_param);
402 
403 	clrbits_le32(&scu->d2_pll_ext_param[0],
404 		     SCU_D2PLL_EXT1_OFF | SCU_D2PLL_EXT1_RESET);
405 
406 	clrsetbits_le32(&scu->misc_ctrl2,
407 			SCU_MISC2_RGMII_HPLL | SCU_MISC2_RMII_MPLL
408 			| SCU_MISC2_RGMII_CLKDIV_MASK |
409 			SCU_MISC2_RMII_CLKDIV_MASK,
410 			(4 << SCU_MISC2_RMII_CLKDIV_SHIFT));
411 
412 	writel(clk_delay_settings | SCU_MICDS_RGMIIPLL, &scu->mac_clk_delay);
413 	writel(clk_delay_settings, &scu->mac_clk_delay_100M);
414 	writel(clk_delay_settings, &scu->mac_clk_delay_10M);
415 
416 	return new_rate;
417 }
418 
419 static ulong ast2500_clk_set_rate(struct clk *clk, ulong rate)
420 {
421 	struct ast2500_clk_priv *priv = dev_get_priv(clk->dev);
422 
423 	ulong new_rate;
424 	switch (clk->id) {
425 	//mpll
426 	case ASPEED_CLK_MPLL:
427 		new_rate = ast2500_configure_ddr(priv->scu, rate);
428 		break;
429 	case PLL_D2PLL:
430 		new_rate = ast2500_configure_d2pll(priv->scu, rate);
431 		break;
432 	default:
433 		return -ENOENT;
434 	}
435 
436 	return new_rate;
437 }
438 
439 static int ast2500_clk_enable(struct clk *clk)
440 {
441 	struct ast2500_clk_priv *priv = dev_get_priv(clk->dev);
442 
443 	switch (clk->id) {
444 	/*
445 	 * For MAC clocks the clock rate is
446 	 * configured based on whether RGMII or RMII mode has been selected
447 	 * through hardware strapping.
448 	 */
449 	case PCLK_MAC1:
450 		ast2500_configure_mac(priv->scu, 1);
451 		break;
452 	case PCLK_MAC2:
453 		ast2500_configure_mac(priv->scu, 2);
454 		break;
455 	case PLL_D2PLL:
456 		ast2500_configure_d2pll(priv->scu, D2PLL_DEFAULT_RATE);
457 		break;
458 	default:
459 		return -ENOENT;
460 	}
461 
462 	return 0;
463 }
464 
465 struct clk_ops ast2500_clk_ops = {
466 	.get_rate = ast2500_clk_get_rate,
467 	.set_rate = ast2500_clk_set_rate,
468 	.enable = ast2500_clk_enable,
469 };
470 
471 static int ast2500_clk_probe(struct udevice *dev)
472 {
473 	struct ast2500_clk_priv *priv = dev_get_priv(dev);
474 
475 	priv->scu = devfdt_get_addr_ptr(dev);
476 	if (IS_ERR(priv->scu))
477 		return PTR_ERR(priv->scu);
478 
479 	return 0;
480 }
481 
482 static int ast2500_clk_bind(struct udevice *dev)
483 {
484 	int ret;
485 
486 	/* The reset driver does not have a device node, so bind it here */
487 	ret = device_bind_driver(gd->dm_root, "ast_sysreset", "reset", &dev);
488 	if (ret)
489 		debug("Warning: No reset driver: ret=%d\n", ret);
490 
491 	return 0;
492 }
493 
494 static const struct udevice_id ast2500_clk_ids[] = {
495 	{ .compatible = "aspeed,ast2500-scu" },
496 	{ }
497 };
498 
499 U_BOOT_DRIVER(aspeed_scu) = {
500 	.name		= "aspeed_scu",
501 	.id		= UCLASS_CLK,
502 	.of_match	= ast2500_clk_ids,
503 	.priv_auto_alloc_size = sizeof(struct ast2500_clk_priv),
504 	.ops		= &ast2500_clk_ops,
505 	.bind		= ast2500_clk_bind,
506 	.probe		= ast2500_clk_probe,
507 };
508