1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * (C) Copyright 2016 Google, Inc 4 * 5 * Copyright (C) ASPEED Technology Inc. 6 * 7 */ 8 9 #include <common.h> 10 #include <clk-uclass.h> 11 #include <dm.h> 12 #include <asm/io.h> 13 #include <dm/lists.h> 14 #include <asm/arch/scu_ast2500.h> 15 #include <dt-bindings/clock/ast2500-clock.h> 16 #include <dt-bindings/reset/ast2500-reset.h> 17 18 /* 19 * MAC Clock Delay settings, taken from Aspeed SDK 20 */ 21 #define RGMII_TXCLK_ODLY 8 22 #define RMII_RXCLK_IDLY 2 23 24 /* 25 * TGMII Clock Duty constants, taken from Aspeed SDK 26 */ 27 #define RGMII2_TXCK_DUTY 0x66 28 #define RGMII1_TXCK_DUTY 0x64 29 30 #define D2PLL_DEFAULT_RATE (250 * 1000 * 1000) 31 32 DECLARE_GLOBAL_DATA_PTR; 33 34 /* 35 * Clock divider/multiplier configuration struct. 36 * For H-PLL and M-PLL the formula is 37 * (Output Frequency) = CLKIN * ((M + 1) / (N + 1)) / (P + 1) 38 * M - Numerator 39 * N - Denumerator 40 * P - Post Divider 41 * They have the same layout in their control register. 42 * 43 * D-PLL and D2-PLL have extra divider (OD + 1), which is not 44 * yet needed and ignored by clock configurations. 45 */ 46 struct ast2500_div_config { 47 unsigned int num; 48 unsigned int denum; 49 unsigned int post_div; 50 }; 51 52 extern u32 ast2500_get_clkin(struct ast2500_scu *scu) 53 { 54 return readl(&scu->hwstrap) & SCU_HWSTRAP_CLKIN_25MHZ 55 ? 25 * 1000 * 1000 : 24 * 1000 * 1000; 56 } 57 58 /* 59 * Get the rate of the M-PLL clock from input clock frequency and 60 * the value of the M-PLL Parameter Register. 61 */ 62 extern u32 ast2500_get_mpll_rate(struct ast2500_scu *scu) 63 { 64 u32 clkin = ast2500_get_clkin(scu); 65 u32 mpll_reg = readl(&scu->m_pll_param); 66 67 const ulong num = (mpll_reg & SCU_MPLL_NUM_MASK) >> SCU_MPLL_NUM_SHIFT; 68 const ulong denum = (mpll_reg & SCU_MPLL_DENUM_MASK) 69 >> SCU_MPLL_DENUM_SHIFT; 70 const ulong post_div = (mpll_reg & SCU_MPLL_POST_MASK) 71 >> SCU_MPLL_POST_SHIFT; 72 73 return (clkin * ((num + 1) / (denum + 1))) / (post_div + 1); 74 } 75 76 /* 77 * Get the rate of the H-PLL clock from input clock frequency and 78 * the value of the H-PLL Parameter Register. 79 */ 80 extern u32 ast2500_get_hpll_rate(struct ast2500_scu *scu) 81 { 82 u32 clkin = ast2500_get_clkin(scu); 83 u32 hpll_reg = readl(&scu->h_pll_param); 84 85 /* F = clkin * [(M+1) / (N+1)] / (P + 1) */ 86 const ulong num = (hpll_reg & SCU_HPLL_NUM_MASK) >> SCU_HPLL_NUM_SHIFT; 87 const ulong denum = (hpll_reg & SCU_HPLL_DENUM_MASK) 88 >> SCU_HPLL_DENUM_SHIFT; 89 const ulong post_div = (hpll_reg & SCU_HPLL_POST_MASK) 90 >> SCU_HPLL_POST_SHIFT; 91 92 return (clkin * ((num + 1) / (denum + 1))) / (post_div + 1); 93 } 94 95 /* 96 * Get the rate of the D-PLL clock from input clock frequency and 97 * the value of the D-PLL Parameter Register. 98 */ 99 extern u32 ast2500_get_dpll_rate(struct ast2500_scu *scu) 100 { 101 u32 clkin = ast2500_get_clkin(scu); 102 u32 dpll_reg = readl(&scu->d_pll_param); 103 104 /* F = clkin * [(M+1) / (N+1)] / (P + 1)/ (od + 1) */ 105 const ulong num = (dpll_reg & 0xff); 106 const ulong denum = (dpll_reg >> 8) & 0x1f; 107 const ulong post_div = (dpll_reg >> 13) & 0x3f; 108 const ulong od_div = (dpll_reg >> 19) & 0x7; 109 return (((clkin * ((num + 1) / (denum + 1))) / (post_div + 1))/ (od_div + 1)); 110 } 111 112 /* 113 * Get the rate of the D2-PLL clock from input clock frequency and 114 * the value of the D2-PLL Parameter Register. 115 */ 116 extern u32 ast2500_get_d2pll_rate(struct ast2500_scu *scu) 117 { 118 u32 clkin = ast2500_get_clkin(scu); 119 u32 d2pll_reg = readl(&scu->d2_pll_param); 120 121 /* F = clkin * [(M+1) / (N+1)] / (P + 1)/ (od + 1) */ 122 const ulong num = (d2pll_reg & 0xff); 123 const ulong denum = (d2pll_reg >> 8) & 0x1f; 124 const ulong post_div = (d2pll_reg >> 13) & 0x3f; 125 const ulong od_div = (d2pll_reg >> 19) & 0x7 ; 126 127 return (((clkin * ((num + 1) / (denum + 1))) / (post_div + 1))/ (od_div + 1)); 128 } 129 130 /** 131 * Get current rate or uart clock 132 * 133 * @scu SCU registers 134 * @uart_index UART index, 1-5 135 * 136 * @return current setting for uart clock rate 137 */ 138 static u32 ast2500_get_uart_clk_rate(struct ast2500_scu *scu, int uart_index) 139 { 140 /* 141 * ast2500 datasheet is very confusing when it comes to UART clocks, 142 * especially when CLKIN = 25 MHz. The settings are in 143 * different registers and it is unclear how they interact. 144 * 145 * This has only been tested with default settings and CLKIN = 24 MHz. 146 */ 147 u32 uart_clkin; 148 149 if (readl(&scu->misc_ctrl2) & 150 (1 << (uart_index - 1 + SCU_MISC2_UARTCLK_SHIFT))) 151 uart_clkin = 192 * 1000 * 1000; 152 else 153 uart_clkin = 24 * 1000 * 1000; 154 155 if (readl(&scu->misc_ctrl1) & SCU_MISC_UARTCLK_DIV13) 156 uart_clkin /= 13; 157 158 return uart_clkin; 159 } 160 161 static u32 ast2500_get_sdio_clk_rate(struct ast2500_scu *scu) 162 { 163 u32 clkin = ast2500_get_hpll_rate(scu); 164 u32 clk_sel = readl(&scu->clk_sel1); 165 u32 div = (clk_sel >> 12) & 0x7; 166 167 div = (div + 1) << 2; 168 169 return (clkin / div); 170 } 171 172 static unsigned long ast2500_clk_get_rate(struct clk *clk) 173 { 174 struct ast2500_clk_priv *priv = dev_get_priv(clk->dev); 175 ulong rate; 176 177 switch (clk->id) { 178 //HPLL 179 case ASPEED_CLK_HPLL: 180 rate = ast2500_get_hpll_rate(priv->scu); 181 break; 182 //HCLK 183 case ASPEED_CLK_AHB: 184 { 185 ulong ahb_div = 1 + ((readl(&priv->scu->hwstrap) 186 & SCU_HWSTRAP_AXIAHB_DIV_MASK) 187 >> SCU_HWSTRAP_AXIAHB_DIV_SHIFT); 188 ulong axi_div = 2; 189 190 rate = ast2500_get_hpll_rate(priv->scu); 191 rate = rate / axi_div / ahb_div; 192 } 193 break; 194 //mpll 195 case ASPEED_CLK_MPLL: 196 rate = ast2500_get_mpll_rate(priv->scu); 197 break; 198 //pclk 199 case ASPEED_CLK_APB: 200 { 201 ulong apb_div = 4 + 4 * ((readl(&priv->scu->clk_sel1) 202 & SCU_PCLK_DIV_MASK) 203 >> SCU_PCLK_DIV_SHIFT); 204 rate = ast2500_get_hpll_rate(priv->scu); 205 rate = rate / apb_div; 206 } 207 break; 208 case ASPEED_CLK_GATE_UART1CLK: 209 rate = ast2500_get_uart_clk_rate(priv->scu, 1); 210 break; 211 case ASPEED_CLK_GATE_UART2CLK: 212 rate = ast2500_get_uart_clk_rate(priv->scu, 2); 213 break; 214 case ASPEED_CLK_GATE_UART3CLK: 215 rate = ast2500_get_uart_clk_rate(priv->scu, 3); 216 break; 217 case ASPEED_CLK_GATE_UART4CLK: 218 rate = ast2500_get_uart_clk_rate(priv->scu, 4); 219 break; 220 case ASPEED_CLK_GATE_UART5CLK: 221 rate = ast2500_get_uart_clk_rate(priv->scu, 5); 222 break; 223 case ASPEED_CLK_SDIO: 224 rate = ast2500_get_sdio_clk_rate(priv->scu); 225 break; 226 default: 227 pr_debug("can't get clk rate \n"); 228 return -ENOENT; 229 } 230 231 return rate; 232 } 233 234 struct ast2500_clock_config { 235 ulong input_rate; 236 ulong rate; 237 struct ast2500_div_config cfg; 238 }; 239 240 static const struct ast2500_clock_config ast2500_clock_config_defaults[] = { 241 { 24000000, 250000000, { .num = 124, .denum = 1, .post_div = 5 } }, 242 }; 243 244 static bool ast2500_get_clock_config_default(ulong input_rate, 245 ulong requested_rate, 246 struct ast2500_div_config *cfg) 247 { 248 int i; 249 250 for (i = 0; i < ARRAY_SIZE(ast2500_clock_config_defaults); i++) { 251 const struct ast2500_clock_config *default_cfg = 252 &ast2500_clock_config_defaults[i]; 253 if (default_cfg->input_rate == input_rate && 254 default_cfg->rate == requested_rate) { 255 *cfg = default_cfg->cfg; 256 return true; 257 } 258 } 259 260 return false; 261 } 262 263 /* 264 * @input_rate - the rate of input clock in Hz 265 * @requested_rate - desired output rate in Hz 266 * @div - this is an IN/OUT parameter, at input all fields of the config 267 * need to be set to their maximum allowed values. 268 * The result (the best config we could find), would also be returned 269 * in this structure. 270 * 271 * @return The clock rate, when the resulting div_config is used. 272 */ 273 static ulong ast2500_calc_clock_config(ulong input_rate, ulong requested_rate, 274 struct ast2500_div_config *cfg) 275 { 276 /* 277 * The assumption is that kHz precision is good enough and 278 * also enough to avoid overflow when multiplying. 279 */ 280 const ulong input_rate_khz = input_rate / 1000; 281 const ulong rate_khz = requested_rate / 1000; 282 const struct ast2500_div_config max_vals = *cfg; 283 struct ast2500_div_config it = { 0, 0, 0 }; 284 ulong delta = rate_khz; 285 ulong new_rate_khz = 0; 286 287 /* 288 * Look for a well known frequency first. 289 */ 290 if (ast2500_get_clock_config_default(input_rate, requested_rate, cfg)) 291 return requested_rate; 292 293 for (; it.denum <= max_vals.denum; ++it.denum) { 294 for (it.post_div = 0; it.post_div <= max_vals.post_div; 295 ++it.post_div) { 296 it.num = (rate_khz * (it.post_div + 1) / input_rate_khz) 297 * (it.denum + 1); 298 if (it.num > max_vals.num) 299 continue; 300 301 new_rate_khz = (input_rate_khz 302 * ((it.num + 1) / (it.denum + 1))) 303 / (it.post_div + 1); 304 305 /* Keep the rate below requested one. */ 306 if (new_rate_khz > rate_khz) 307 continue; 308 309 if (new_rate_khz - rate_khz < delta) { 310 delta = new_rate_khz - rate_khz; 311 *cfg = it; 312 if (delta == 0) 313 return new_rate_khz * 1000; 314 } 315 } 316 } 317 318 return new_rate_khz * 1000; 319 } 320 321 static ulong ast2500_configure_ddr(struct ast2500_scu *scu, ulong rate) 322 { 323 ulong clkin = ast2500_get_clkin(scu); 324 u32 mpll_reg; 325 struct ast2500_div_config div_cfg = { 326 .num = (SCU_MPLL_NUM_MASK >> SCU_MPLL_NUM_SHIFT), 327 .denum = (SCU_MPLL_DENUM_MASK >> SCU_MPLL_DENUM_SHIFT), 328 .post_div = (SCU_MPLL_POST_MASK >> SCU_MPLL_POST_SHIFT), 329 }; 330 331 ast2500_calc_clock_config(clkin, rate, &div_cfg); 332 333 mpll_reg = readl(&scu->m_pll_param); 334 mpll_reg &= ~(SCU_MPLL_POST_MASK | SCU_MPLL_NUM_MASK 335 | SCU_MPLL_DENUM_MASK); 336 mpll_reg |= (div_cfg.post_div << SCU_MPLL_POST_SHIFT) 337 | (div_cfg.num << SCU_MPLL_NUM_SHIFT) 338 | (div_cfg.denum << SCU_MPLL_DENUM_SHIFT); 339 340 writel(mpll_reg, &scu->m_pll_param); 341 342 return ast2500_get_mpll_rate(scu); 343 } 344 345 #define SCU_CLKSTOP_MAC1 (20) 346 #define SCU_CLKSTOP_MAC2 (21) 347 static ulong ast2500_configure_mac(struct ast2500_scu *scu, int index) 348 { 349 ulong hpll_rate = ast2500_get_hpll_rate(scu); 350 ulong required_rate; 351 u32 hwstrap; 352 u32 divisor; 353 u32 reset_bit; 354 u32 clkstop_bit; 355 u32 clk_delay_settings = 356 (RMII_RXCLK_IDLY << SCU_MICDS_MAC1RMII_RDLY_SHIFT) 357 | (RMII_RXCLK_IDLY << SCU_MICDS_MAC2RMII_RDLY_SHIFT) 358 | (RGMII_TXCLK_ODLY << SCU_MICDS_MAC1RGMII_TXDLY_SHIFT) 359 | (RGMII_TXCLK_ODLY << SCU_MICDS_MAC2RGMII_TXDLY_SHIFT); 360 361 /* 362 * According to data sheet, for 10/100 mode the MAC clock frequency 363 * should be at least 25MHz and for 1000 mode at least 100MHz 364 */ 365 hwstrap = readl(&scu->hwstrap); 366 if (hwstrap & (SCU_HWSTRAP_MAC1_RGMII | SCU_HWSTRAP_MAC2_RGMII)) 367 required_rate = 100 * 1000 * 1000; 368 else 369 required_rate = 25 * 1000 * 1000; 370 371 divisor = hpll_rate / required_rate; 372 373 if (divisor < 4) { 374 /* Clock can't run fast enough, but let's try anyway */ 375 debug("MAC clock too slow\n"); 376 divisor = 4; 377 } else if (divisor > 16) { 378 /* Can't slow down the clock enough, but let's try anyway */ 379 debug("MAC clock too fast\n"); 380 divisor = 16; 381 } 382 383 switch (index) { 384 case 1: 385 reset_bit = BIT(ASPEED_RESET_MAC1); 386 clkstop_bit = BIT(SCU_CLKSTOP_MAC1); 387 break; 388 case 2: 389 reset_bit = BIT(ASPEED_RESET_MAC2); 390 clkstop_bit = BIT(SCU_CLKSTOP_MAC2); 391 break; 392 default: 393 return -EINVAL; 394 } 395 396 clrsetbits_le32(&scu->clk_sel1, SCU_MACCLK_MASK, 397 ((divisor - 2) / 2) << SCU_MACCLK_SHIFT); 398 399 /* 400 * Disable MAC, start its clock and re-enable it. 401 * The procedure and the delays (100us & 10ms) are 402 * specified in the datasheet. 403 */ 404 setbits_le32(&scu->sysreset_ctrl1, reset_bit); 405 udelay(100); 406 clrbits_le32(&scu->clk_stop_ctrl1, clkstop_bit); 407 mdelay(10); 408 clrbits_le32(&scu->sysreset_ctrl1, reset_bit); 409 410 writel((RGMII2_TXCK_DUTY << SCU_CLKDUTY_RGMII2TXCK_SHIFT) 411 | (RGMII1_TXCK_DUTY << SCU_CLKDUTY_RGMII1TXCK_SHIFT), 412 &scu->clk_duty_sel); 413 414 writel(clk_delay_settings | SCU_MICDS_RGMIIPLL, &scu->mac_clk_delay); 415 writel(clk_delay_settings, &scu->mac_clk_delay_100M); 416 writel(clk_delay_settings, &scu->mac_clk_delay_10M); 417 418 return required_rate; 419 } 420 421 static ulong ast2500_configure_d2pll(struct ast2500_scu *scu, ulong rate) 422 { 423 /* 424 * The values and the meaning of the next three 425 * parameters are undocumented. Taken from Aspeed SDK. 426 * 427 * TODO(clg@kaod.org): the SIP and SIC values depend on the 428 * Numerator value 429 */ 430 const u32 d2_pll_ext_param = 0x2c; 431 const u32 d2_pll_sip = 0x11; 432 const u32 d2_pll_sic = 0x18; 433 struct ast2500_div_config div_cfg = { 434 .num = SCU_D2PLL_NUM_MASK >> SCU_D2PLL_NUM_SHIFT, 435 .denum = SCU_D2PLL_DENUM_MASK >> SCU_D2PLL_DENUM_SHIFT, 436 .post_div = SCU_D2PLL_POST_MASK >> SCU_D2PLL_POST_SHIFT, 437 }; 438 ulong clkin = ast2500_get_clkin(scu); 439 ulong new_rate; 440 441 writel((d2_pll_ext_param << SCU_D2PLL_EXT1_PARAM_SHIFT) 442 | SCU_D2PLL_EXT1_OFF 443 | SCU_D2PLL_EXT1_RESET, &scu->d2_pll_ext_param[0]); 444 445 /* 446 * Select USB2.0 port1 PHY clock as a clock source for GCRT. 447 * This would disconnect it from D2-PLL. 448 */ 449 clrsetbits_le32(&scu->misc_ctrl1, SCU_MISC_D2PLL_OFF, 450 SCU_MISC_GCRT_USB20CLK); 451 452 new_rate = ast2500_calc_clock_config(clkin, rate, &div_cfg); 453 writel((d2_pll_sip << SCU_D2PLL_SIP_SHIFT) 454 | (d2_pll_sic << SCU_D2PLL_SIC_SHIFT) 455 | (div_cfg.num << SCU_D2PLL_NUM_SHIFT) 456 | (div_cfg.denum << SCU_D2PLL_DENUM_SHIFT) 457 | (div_cfg.post_div << SCU_D2PLL_POST_SHIFT), 458 &scu->d2_pll_param); 459 460 clrbits_le32(&scu->d2_pll_ext_param[0], 461 SCU_D2PLL_EXT1_OFF | SCU_D2PLL_EXT1_RESET); 462 463 clrsetbits_le32(&scu->misc_ctrl2, 464 SCU_MISC2_RGMII_HPLL | SCU_MISC2_RMII_MPLL 465 | SCU_MISC2_RGMII_CLKDIV_MASK | 466 SCU_MISC2_RMII_CLKDIV_MASK, 467 (4 << SCU_MISC2_RMII_CLKDIV_SHIFT)); 468 469 return new_rate; 470 } 471 472 473 #define SCU_CLKSTOP_SDIO 27 474 static ulong ast2500_enable_sdclk(struct ast2500_scu *scu) 475 { 476 u32 reset_bit; 477 u32 clkstop_bit; 478 479 reset_bit = BIT(ASEPPD_RESET_SDIO); 480 clkstop_bit = BIT(SCU_CLKSTOP_SDIO); 481 482 setbits_le32(&scu->sysreset_ctrl1, reset_bit); 483 udelay(100); 484 //enable clk 485 clrbits_le32(&scu->clk_stop_ctrl1, clkstop_bit); 486 mdelay(10); 487 clrbits_le32(&scu->sysreset_ctrl1, reset_bit); 488 489 return 0; 490 } 491 492 #define SCU_CLKSTOP_EXTSD 15 493 #define SCU_CLK_SD_MASK (0x7 << 12) 494 #define SCU_CLK_SD_DIV(x) (x << 12) 495 496 static ulong ast2500_enable_extsdclk(struct ast2500_scu *scu) 497 { 498 u32 clk_sel = readl(&scu->clk_sel1); 499 u32 enableclk_bit; 500 501 enableclk_bit = BIT(SCU_CLKSTOP_EXTSD); 502 503 // SDCLK = G4 H-PLL / 4, G5 = H-PLL /8 504 clk_sel &= ~SCU_CLK_SD_MASK; 505 clk_sel |= SCU_CLK_SD_DIV(1); 506 writel(clk_sel, &scu->clk_sel1); 507 508 //enable clk 509 setbits_le32(&scu->clk_sel1, enableclk_bit); 510 511 return 0; 512 } 513 514 static int ast2500_clk_enable(struct clk *clk) 515 { 516 struct ast2500_clk_priv *priv = dev_get_priv(clk->dev); 517 518 switch (clk->id) { 519 /* 520 * For MAC clocks the clock rate is 521 * configured based on whether RGMII or RMII mode has been selected 522 * through hardware strapping. 523 */ 524 case ASPEED_CLK_GATE_MAC1CLK: 525 ast2500_configure_mac(priv->scu, 1); 526 break; 527 case ASPEED_CLK_GATE_MAC2CLK: 528 ast2500_configure_mac(priv->scu, 2); 529 break; 530 case ASPEED_CLK_D2PLL: 531 ast2500_configure_d2pll(priv->scu, D2PLL_DEFAULT_RATE); 532 break; 533 case ASPEED_CLK_GATE_SDCLK: 534 ast2500_enable_sdclk(priv->scu); 535 break; 536 case ASPEED_CLK_GATE_SDEXTCLK: 537 ast2500_enable_extsdclk(priv->scu); 538 break; 539 default: 540 pr_debug("can't enable clk \n"); 541 return -ENOENT; 542 } 543 544 return 0; 545 } 546 547 static unsigned long ast2500_clk_set_rate(struct clk *clk, ulong rate) 548 { 549 struct ast2500_clk_priv *priv = dev_get_priv(clk->dev); 550 551 ulong new_rate; 552 switch (clk->id) { 553 //mpll 554 case ASPEED_CLK_MPLL: 555 new_rate = ast2500_configure_ddr(priv->scu, rate); 556 // printf("ast2500_clk_set_rate mpll %ld \n", new_rate); 557 break; 558 case ASPEED_CLK_D2PLL: 559 new_rate = ast2500_configure_d2pll(priv->scu, rate); 560 // printf("ast2500_clk_set_rate d2pll ==== %ld \n", new_rate); 561 break; 562 default: 563 return -ENOENT; 564 } 565 566 return new_rate; 567 } 568 569 struct clk_ops ast2500_clk_ops = { 570 .get_rate = ast2500_clk_get_rate, 571 .set_rate = ast2500_clk_set_rate, 572 .enable = ast2500_clk_enable, 573 }; 574 575 static int ast2500_clk_probe(struct udevice *dev) 576 { 577 struct ast2500_clk_priv *priv = dev_get_priv(dev); 578 579 priv->scu = devfdt_get_addr_ptr(dev); 580 if (IS_ERR(priv->scu)) 581 return PTR_ERR(priv->scu); 582 583 return 0; 584 } 585 586 static int ast2500_clk_bind(struct udevice *dev) 587 { 588 int ret; 589 590 /* The reset driver does not have a device node, so bind it here */ 591 ret = device_bind_driver(gd->dm_root, "ast_sysreset", "reset", &dev); 592 if (ret) 593 debug("Warning: No reset driver: ret=%d\n", ret); 594 595 return 0; 596 } 597 598 static const struct udevice_id ast2500_clk_ids[] = { 599 { .compatible = "aspeed,ast2500-scu" }, 600 { } 601 }; 602 603 U_BOOT_DRIVER(aspeed_scu) = { 604 .name = "aspeed_scu", 605 .id = UCLASS_CLK, 606 .of_match = ast2500_clk_ids, 607 .priv_auto_alloc_size = sizeof(struct ast2500_clk_priv), 608 .ops = &ast2500_clk_ops, 609 .bind = ast2500_clk_bind, 610 .probe = ast2500_clk_probe, 611 }; 612