1 /**************************************************************************** 2 * 3 * BIOS emulator and interface 4 * to Realmode X86 Emulator Library 5 * 6 * Copyright (C) 2007 Freescale Semiconductor, Inc. 7 * Jason Jin <Jason.jin@freescale.com> 8 * 9 * Copyright (C) 1996-1999 SciTech Software, Inc. 10 * 11 * ======================================================================== 12 * 13 * Permission to use, copy, modify, distribute, and sell this software and 14 * its documentation for any purpose is hereby granted without fee, 15 * provided that the above copyright notice appear in all copies and that 16 * both that copyright notice and this permission notice appear in 17 * supporting documentation, and that the name of the authors not be used 18 * in advertising or publicity pertaining to distribution of the software 19 * without specific, written prior permission. The authors makes no 20 * representations about the suitability of this software for any purpose. 21 * It is provided "as is" without express or implied warranty. 22 * 23 * THE AUTHORS DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, 24 * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO 25 * EVENT SHALL THE AUTHORS BE LIABLE FOR ANY SPECIAL, INDIRECT OR 26 * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF 27 * USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR 28 * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR 29 * PERFORMANCE OF THIS SOFTWARE. 30 * 31 * ======================================================================== 32 * 33 * Language: ANSI C 34 * Environment: Any 35 * Developer: Kendall Bennett 36 * 37 * Description: Module implementing the system specific functions. This 38 * module is always compiled and linked in the OS depedent 39 * libraries, and never in a binary portable driver. 40 * 41 * Jason ported this file to u-boot to run the ATI video card BIOS 42 * in u-boot. Made all the video memory be emulated during the 43 * BIOS runing process which may affect the VGA function but the 44 * frambuffer function can work after run the BIOS. 45 * 46 ****************************************************************************/ 47 48 #include <malloc.h> 49 #include <common.h> 50 #include "biosemui.h" 51 52 BE_sysEnv _BE_env = {{0}}; 53 static X86EMU_memFuncs _BE_mem __attribute__((section(GOT2_TYPE))) = { 54 BE_rdb, 55 BE_rdw, 56 BE_rdl, 57 BE_wrb, 58 BE_wrw, 59 BE_wrl, 60 }; 61 62 static X86EMU_pioFuncs _BE_pio __attribute__((section(GOT2_TYPE))) = { 63 BE_inb, 64 BE_inw, 65 BE_inl, 66 BE_outb, 67 BE_outw, 68 BE_outl, 69 }; 70 71 #define OFF(addr) (u16)(((addr) >> 0) & 0xffff) 72 #define SEG(addr) (u16)(((addr) >> 4) & 0xf000) 73 74 /**************************************************************************** 75 PARAMETERS: 76 debugFlags - Flags to enable debugging options (debug builds only) 77 memSize - Amount of memory to allocate for real mode machine 78 info - Pointer to default VGA device information 79 80 REMARKS: 81 This functions initialises the BElib, and uses the passed in 82 BIOS image as the BIOS that is used and emulated at 0xC0000. 83 ****************************************************************************/ 84 int X86API BE_init(u32 debugFlags, int memSize, BE_VGAInfo * info, int shared) 85 { 86 #if !defined(__DRIVER__) && !defined(__KERNEL__) 87 88 PM_init(); 89 #endif 90 memset(&M, 0, sizeof(M)); 91 if (memSize < 20480){ 92 printf("Emulator requires at least 20Kb of memory!\n"); 93 return 0; 94 } 95 96 M.mem_base = malloc(memSize); 97 98 if (M.mem_base == NULL){ 99 printf("Biosemu:Out of memory!"); 100 return 0; 101 } 102 M.mem_size = memSize; 103 104 _BE_env.emulateVGA = 0; 105 _BE_env.busmem_base = (unsigned long)malloc(128 * 1024); 106 if ((void *)_BE_env.busmem_base == NULL){ 107 printf("Biosemu:Out of memory!"); 108 return 0; 109 } 110 M.x86.debug = debugFlags; 111 _BE_bios_init((u32*)info->LowMem); 112 X86EMU_setupMemFuncs(&_BE_mem); 113 X86EMU_setupPioFuncs(&_BE_pio); 114 BE_setVGA(info); 115 return 1; 116 } 117 118 /**************************************************************************** 119 PARAMETERS: 120 info - Pointer to VGA device information to make current 121 122 REMARKS: 123 This function sets the VGA BIOS functions in the emulator to point to the 124 specific VGA BIOS in use. This includes swapping the BIOS interrupt 125 vectors, BIOS image and BIOS data area to the new BIOS. This allows the 126 real mode BIOS to be swapped without resetting the entire emulator. 127 ****************************************************************************/ 128 void X86API BE_setVGA(BE_VGAInfo * info) 129 { 130 131 #ifdef __KERNEL__ 132 _BE_env.vgaInfo.function = info->function; 133 _BE_env.vgaInfo.device = info->device; 134 _BE_env.vgaInfo.bus = info->bus; 135 _BE_env.vgaInfo.pcidev = info->pcidev; 136 #else 137 _BE_env.vgaInfo.pciInfo = info->pciInfo; 138 #endif 139 _BE_env.vgaInfo.BIOSImage = info->BIOSImage; 140 if (info->BIOSImage) { 141 _BE_env.biosmem_base = (ulong) info->BIOSImage; 142 _BE_env.biosmem_limit = 0xC0000 + info->BIOSImageLen - 1; 143 } else { 144 _BE_env.biosmem_base = _BE_env.busmem_base + 0x20000; 145 _BE_env.biosmem_limit = 0xC7FFF; 146 } 147 if ((info->LowMem[0] == 0) && (info->LowMem[1] == 0) && 148 (info->LowMem[2] == 0) && (info->LowMem[3] == 0)) 149 _BE_bios_init((u32 *) info->LowMem); 150 memcpy((u8 *) M.mem_base, info->LowMem, sizeof(info->LowMem)); 151 } 152 153 /**************************************************************************** 154 PARAMETERS: 155 info - Pointer to VGA device information to retrieve current 156 157 REMARKS: 158 This function returns the VGA BIOS functions currently active in the 159 emulator, so they can be restored at a later date. 160 ****************************************************************************/ 161 void X86API BE_getVGA(BE_VGAInfo * info) 162 { 163 #ifdef __KERNEL__ 164 info->function = _BE_env.vgaInfo.function; 165 info->device = _BE_env.vgaInfo.device; 166 info->bus = _BE_env.vgaInfo.bus; 167 info->pcidev = _BE_env.vgaInfo.pcidev; 168 #else 169 info->pciInfo = _BE_env.vgaInfo.pciInfo; 170 #endif 171 info->BIOSImage = _BE_env.vgaInfo.BIOSImage; 172 memcpy(info->LowMem, (u8 *) M.mem_base, sizeof(info->LowMem)); 173 } 174 175 /**************************************************************************** 176 PARAMETERS: 177 r_seg - Segment for pointer to convert 178 r_off - Offset for pointer to convert 179 180 REMARKS: 181 This function maps a real mode pointer in the emulator memory to a protected 182 mode pointer that can be used to directly access the memory. 183 184 NOTE: The memory is *always* in little endian format, son on non-x86 185 systems you will need to do endian translations to access this 186 memory. 187 ****************************************************************************/ 188 void *X86API BE_mapRealPointer(uint r_seg, uint r_off) 189 { 190 u32 addr = ((u32) r_seg << 4) + r_off; 191 192 if (addr >= 0xC0000 && addr <= _BE_env.biosmem_limit) { 193 return (void *)(_BE_env.biosmem_base + addr - 0xC0000); 194 } else if (addr >= 0xA0000 && addr <= 0xFFFFF) { 195 return (void *)(_BE_env.busmem_base + addr - 0xA0000); 196 } 197 return (void *)(M.mem_base + addr); 198 } 199 200 /**************************************************************************** 201 PARAMETERS: 202 len - Return the length of the VESA buffer 203 rseg - Place to store VESA buffer segment 204 roff - Place to store VESA buffer offset 205 206 REMARKS: 207 This function returns the address of the VESA transfer buffer in real 208 _BE_piomode emulator memory. The VESA transfer buffer is always 1024 bytes long, 209 and located at 15Kb into the start of the real mode memory (16Kb is where 210 we put the real mode code we execute for issuing interrupts). 211 212 NOTE: The memory is *always* in little endian format, son on non-x86 213 systems you will need to do endian translations to access this 214 memory. 215 ****************************************************************************/ 216 void *X86API BE_getVESABuf(uint * len, uint * rseg, uint * roff) 217 { 218 *len = 1024; 219 *rseg = SEG(0x03C00); 220 *roff = OFF(0x03C00); 221 return (void *)(M.mem_base + ((u32) * rseg << 4) + *roff); 222 } 223 224 /**************************************************************************** 225 REMARKS: 226 Cleans up and exits the emulator. 227 ****************************************************************************/ 228 void X86API BE_exit(void) 229 { 230 free(M.mem_base); 231 free((void *)_BE_env.busmem_base); 232 } 233 234 /**************************************************************************** 235 PARAMETERS: 236 seg - Segment of code to call 237 off - Offset of code to call 238 regs - Real mode registers to load 239 sregs - Real mode segment registers to load 240 241 REMARKS: 242 This functions calls a real mode far function at the specified address, 243 and loads all the x86 registers from the passed in registers structure. 244 On exit the registers returned from the call are returned in the same 245 structures. 246 ****************************************************************************/ 247 void X86API BE_callRealMode(uint seg, uint off, RMREGS * regs, RMSREGS * sregs) 248 { 249 M.x86.R_EAX = regs->e.eax; 250 M.x86.R_EBX = regs->e.ebx; 251 M.x86.R_ECX = regs->e.ecx; 252 M.x86.R_EDX = regs->e.edx; 253 M.x86.R_ESI = regs->e.esi; 254 M.x86.R_EDI = regs->e.edi; 255 M.x86.R_DS = sregs->ds; 256 M.x86.R_ES = sregs->es; 257 M.x86.R_FS = sregs->fs; 258 M.x86.R_GS = sregs->gs; 259 260 ((u8 *) M.mem_base)[0x4000] = 0x9A; 261 ((u8 *) M.mem_base)[0x4001] = (u8) off; 262 ((u8 *) M.mem_base)[0x4002] = (u8) (off >> 8); 263 ((u8 *) M.mem_base)[0x4003] = (u8) seg; 264 ((u8 *) M.mem_base)[0x4004] = (u8) (seg >> 8); 265 ((u8 *) M.mem_base)[0x4005] = 0xF1; /* Illegal op-code */ 266 M.x86.R_CS = SEG(0x04000); 267 M.x86.R_IP = OFF(0x04000); 268 269 M.x86.R_SS = SEG(M.mem_size - 2); 270 M.x86.R_SP = OFF(M.mem_size - 2) + 2; 271 272 X86EMU_exec(); 273 274 regs->e.cflag = M.x86.R_EFLG & F_CF; 275 regs->e.eax = M.x86.R_EAX; 276 regs->e.ebx = M.x86.R_EBX; 277 regs->e.ecx = M.x86.R_ECX; 278 regs->e.edx = M.x86.R_EDX; 279 regs->e.esi = M.x86.R_ESI; 280 regs->e.edi = M.x86.R_EDI; 281 sregs->ds = M.x86.R_DS; 282 sregs->es = M.x86.R_ES; 283 sregs->fs = M.x86.R_FS; 284 sregs->gs = M.x86.R_GS; 285 } 286 287 /**************************************************************************** 288 PARAMETERS: 289 intno - Interrupt number to execute 290 in - Real mode registers to load 291 out - Place to store resulting real mode registers 292 293 REMARKS: 294 This functions calls a real mode interrupt function at the specified address, 295 and loads all the x86 registers from the passed in registers structure. 296 On exit the registers returned from the call are returned in out stucture. 297 ****************************************************************************/ 298 int X86API BE_int86(int intno, RMREGS * in, RMREGS * out) 299 { 300 M.x86.R_EAX = in->e.eax; 301 M.x86.R_EBX = in->e.ebx; 302 M.x86.R_ECX = in->e.ecx; 303 M.x86.R_EDX = in->e.edx; 304 M.x86.R_ESI = in->e.esi; 305 M.x86.R_EDI = in->e.edi; 306 ((u8 *) M.mem_base)[0x4000] = 0xCD; 307 ((u8 *) M.mem_base)[0x4001] = (u8) intno; 308 ((u8 *) M.mem_base)[0x4002] = 0xF1; 309 M.x86.R_CS = SEG(0x04000); 310 M.x86.R_IP = OFF(0x04000); 311 312 M.x86.R_SS = SEG(M.mem_size - 1); 313 M.x86.R_SP = OFF(M.mem_size - 1) - 1; 314 315 X86EMU_exec(); 316 out->e.cflag = M.x86.R_EFLG & F_CF; 317 out->e.eax = M.x86.R_EAX; 318 out->e.ebx = M.x86.R_EBX; 319 out->e.ecx = M.x86.R_ECX; 320 out->e.edx = M.x86.R_EDX; 321 out->e.esi = M.x86.R_ESI; 322 out->e.edi = M.x86.R_EDI; 323 return out->x.ax; 324 } 325 326 /**************************************************************************** 327 PARAMETERS: 328 intno - Interrupt number to execute 329 in - Real mode registers to load 330 out - Place to store resulting real mode registers 331 sregs - Real mode segment registers to load 332 333 REMARKS: 334 This functions calls a real mode interrupt function at the specified address, 335 and loads all the x86 registers from the passed in registers structure. 336 On exit the registers returned from the call are returned in out stucture. 337 ****************************************************************************/ 338 int X86API BE_int86x(int intno, RMREGS * in, RMREGS * out, RMSREGS * sregs) 339 { 340 M.x86.R_EAX = in->e.eax; 341 M.x86.R_EBX = in->e.ebx; 342 M.x86.R_ECX = in->e.ecx; 343 M.x86.R_EDX = in->e.edx; 344 M.x86.R_ESI = in->e.esi; 345 M.x86.R_EDI = in->e.edi; 346 M.x86.R_DS = sregs->ds; 347 M.x86.R_ES = sregs->es; 348 M.x86.R_FS = sregs->fs; 349 M.x86.R_GS = sregs->gs; 350 ((u8 *) M.mem_base)[0x4000] = 0xCD; 351 ((u8 *) M.mem_base)[0x4001] = (u8) intno; 352 ((u8 *) M.mem_base)[0x4002] = 0xF1; 353 M.x86.R_CS = SEG(0x04000); 354 M.x86.R_IP = OFF(0x04000); 355 356 M.x86.R_SS = SEG(M.mem_size - 1); 357 M.x86.R_SP = OFF(M.mem_size - 1) - 1; 358 359 X86EMU_exec(); 360 out->e.cflag = M.x86.R_EFLG & F_CF; 361 out->e.eax = M.x86.R_EAX; 362 out->e.ebx = M.x86.R_EBX; 363 out->e.ecx = M.x86.R_ECX; 364 out->e.edx = M.x86.R_EDX; 365 out->e.esi = M.x86.R_ESI; 366 out->e.edi = M.x86.R_EDI; 367 sregs->ds = M.x86.R_DS; 368 sregs->es = M.x86.R_ES; 369 sregs->fs = M.x86.R_FS; 370 sregs->gs = M.x86.R_GS; 371 return out->x.ax; 372 } 373