1 /**************************************************************************** 2 * 3 * BIOS emulator and interface 4 * to Realmode X86 Emulator Library 5 * 6 * Copyright (C) 2007 Freescale Semiconductor, Inc. All rights reserved. 7 * Jason Jin <Jason.jin@freescale.com> 8 * 9 * Copyright (C) 1996-1999 SciTech Software, Inc. 10 * 11 * ======================================================================== 12 * 13 * Permission to use, copy, modify, distribute, and sell this software and 14 * its documentation for any purpose is hereby granted without fee, 15 * provided that the above copyright notice appear in all copies and that 16 * both that copyright notice and this permission notice appear in 17 * supporting documentation, and that the name of the authors not be used 18 * in advertising or publicity pertaining to distribution of the software 19 * without specific, written prior permission. The authors makes no 20 * representations about the suitability of this software for any purpose. 21 * It is provided "as is" without express or implied warranty. 22 * 23 * THE AUTHORS DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, 24 * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO 25 * EVENT SHALL THE AUTHORS BE LIABLE FOR ANY SPECIAL, INDIRECT OR 26 * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF 27 * USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR 28 * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR 29 * PERFORMANCE OF THIS SOFTWARE. 30 * 31 * ======================================================================== 32 * 33 * Language: ANSI C 34 * Environment: Any 35 * Developer: Kendall Bennett 36 * 37 * Description: Module implementing the BIOS specific functions. 38 * 39 * Jason ported this file to u-boot to run the ATI video card 40 * video BIOS. 41 * 42 ****************************************************************************/ 43 44 #include <common.h> 45 46 #if defined(CONFIG_BIOSEMU) 47 48 #include "biosemui.h" 49 50 /*----------------------------- Implementation ----------------------------*/ 51 52 /**************************************************************************** 53 PARAMETERS: 54 intno - Interrupt number being serviced 55 56 REMARKS: 57 Handler for undefined interrupts. 58 ****************************************************************************/ 59 static void X86API undefined_intr(int intno) 60 { 61 if (BE_rdw(intno * 4 + 2) == BIOS_SEG) { 62 DB(printf("biosEmu: undefined interrupt %xh called!\n", intno);) 63 } else 64 X86EMU_prepareForInt(intno); 65 } 66 67 /**************************************************************************** 68 PARAMETERS: 69 intno - Interrupt number being serviced 70 71 REMARKS: 72 This function handles the default system BIOS Int 10h (the default is stored 73 in the Int 42h vector by the system BIOS at bootup). We only need to handle 74 a small number of special functions used by the BIOS during POST time. 75 ****************************************************************************/ 76 static void X86API int42(int intno) 77 { 78 if (M.x86.R_AH == 0x12 && M.x86.R_BL == 0x32) { 79 if (M.x86.R_AL == 0) { 80 /* Enable CPU accesses to video memory */ 81 PM_outpb(0x3c2, PM_inpb(0x3cc) | (u8) 0x02); 82 return; 83 } else if (M.x86.R_AL == 1) { 84 /* Disable CPU accesses to video memory */ 85 PM_outpb(0x3c2, PM_inpb(0x3cc) & (u8) ~ 0x02); 86 return; 87 } 88 #ifdef DEBUG 89 else { 90 printf("int42: unknown function AH=0x12, BL=0x32, AL=%#02x\n", 91 M.x86.R_AL); 92 } 93 #endif 94 } 95 #ifdef DEBUG 96 else { 97 printf("int42: unknown function AH=%#02x, AL=%#02x, BL=%#02x\n", 98 M.x86.R_AH, M.x86.R_AL, M.x86.R_BL); 99 } 100 #endif 101 } 102 103 /**************************************************************************** 104 PARAMETERS: 105 intno - Interrupt number being serviced 106 107 REMARKS: 108 This function handles the default system BIOS Int 10h. If the POST code 109 has not yet re-vectored the Int 10h BIOS interrupt vector, we handle this 110 by simply calling the int42 interrupt handler above. Very early in the 111 BIOS POST process, the vector gets replaced and we simply let the real 112 mode interrupt handler process the interrupt. 113 ****************************************************************************/ 114 static void X86API int10(int intno) 115 { 116 if (BE_rdw(intno * 4 + 2) == BIOS_SEG) 117 int42(intno); 118 else 119 X86EMU_prepareForInt(intno); 120 } 121 122 /* Result codes returned by the PCI BIOS */ 123 124 #define SUCCESSFUL 0x00 125 #define FUNC_NOT_SUPPORT 0x81 126 #define BAD_VENDOR_ID 0x83 127 #define DEVICE_NOT_FOUND 0x86 128 #define BAD_REGISTER_NUMBER 0x87 129 #define SET_FAILED 0x88 130 #define BUFFER_TOO_SMALL 0x89 131 132 /**************************************************************************** 133 PARAMETERS: 134 intno - Interrupt number being serviced 135 136 REMARKS: 137 This function handles the default Int 1Ah interrupt handler for the real 138 mode code, which provides support for the PCI BIOS functions. Since we only 139 want to allow the real mode BIOS code *only* see the PCI config space for 140 its own device, we only return information for the specific PCI config 141 space that we have passed in to the init function. This solves problems 142 when using the BIOS to warm boot a secondary adapter when there is an 143 identical adapter before it on the bus (some BIOS'es get confused in this 144 case). 145 ****************************************************************************/ 146 static void X86API int1A(int unused) 147 { 148 u16 pciSlot; 149 150 #ifdef __KERNEL__ 151 u8 interface, subclass, baseclass; 152 153 /* Initialise the PCI slot number */ 154 pciSlot = ((int)_BE_env.vgaInfo.bus << 8) | 155 ((int)_BE_env.vgaInfo.device << 3) | (int)_BE_env.vgaInfo.function; 156 #else 157 /* Fail if no PCI device information has been registered */ 158 if (!_BE_env.vgaInfo.pciInfo) 159 return; 160 161 pciSlot = (u16) (_BE_env.vgaInfo.pciInfo->slot.i >> 8); 162 #endif 163 switch (M.x86.R_AX) { 164 case 0xB101: /* PCI bios present? */ 165 M.x86.R_AL = 0x00; /* no config space/special cycle generation support */ 166 M.x86.R_EDX = 0x20494350; /* " ICP" */ 167 M.x86.R_BX = 0x0210; /* Version 2.10 */ 168 M.x86.R_CL = 0; /* Max bus number in system */ 169 CLEAR_FLAG(F_CF); 170 break; 171 case 0xB102: /* Find PCI device */ 172 M.x86.R_AH = DEVICE_NOT_FOUND; 173 #ifdef __KERNEL__ 174 if (M.x86.R_DX == _BE_env.vgaInfo.VendorID && 175 M.x86.R_CX == _BE_env.vgaInfo.DeviceID && M.x86.R_SI == 0) { 176 #else 177 if (M.x86.R_DX == _BE_env.vgaInfo.pciInfo->VendorID && 178 M.x86.R_CX == _BE_env.vgaInfo.pciInfo->DeviceID && 179 M.x86.R_SI == 0) { 180 #endif 181 M.x86.R_AH = SUCCESSFUL; 182 M.x86.R_BX = pciSlot; 183 } 184 CONDITIONAL_SET_FLAG((M.x86.R_AH != SUCCESSFUL), F_CF); 185 break; 186 case 0xB103: /* Find PCI class code */ 187 M.x86.R_AH = DEVICE_NOT_FOUND; 188 #ifdef __KERNEL__ 189 pci_read_config_byte(_BE_env.vgaInfo.pcidev, PCI_CLASS_PROG, 190 &interface); 191 pci_read_config_byte(_BE_env.vgaInfo.pcidev, PCI_CLASS_DEVICE, 192 &subclass); 193 pci_read_config_byte(_BE_env.vgaInfo.pcidev, 194 PCI_CLASS_DEVICE + 1, &baseclass); 195 if (M.x86.R_CL == interface && M.x86.R_CH == subclass 196 && (u8) (M.x86.R_ECX >> 16) == baseclass) { 197 #else 198 if (M.x86.R_CL == _BE_env.vgaInfo.pciInfo->Interface && 199 M.x86.R_CH == _BE_env.vgaInfo.pciInfo->SubClass && 200 (u8) (M.x86.R_ECX >> 16) == 201 _BE_env.vgaInfo.pciInfo->BaseClass) { 202 #endif 203 M.x86.R_AH = SUCCESSFUL; 204 M.x86.R_BX = pciSlot; 205 } 206 CONDITIONAL_SET_FLAG((M.x86.R_AH != SUCCESSFUL), F_CF); 207 break; 208 case 0xB108: /* Read configuration byte */ 209 M.x86.R_AH = BAD_REGISTER_NUMBER; 210 if (M.x86.R_BX == pciSlot) { 211 M.x86.R_AH = SUCCESSFUL; 212 #ifdef __KERNEL__ 213 pci_read_config_byte(_BE_env.vgaInfo.pcidev, M.x86.R_DI, 214 &M.x86.R_CL); 215 #else 216 M.x86.R_CL = 217 (u8) PCI_accessReg(M.x86.R_DI, 0, PCI_READ_BYTE, 218 _BE_env.vgaInfo.pciInfo); 219 #endif 220 } 221 CONDITIONAL_SET_FLAG((M.x86.R_AH != SUCCESSFUL), F_CF); 222 break; 223 case 0xB109: /* Read configuration word */ 224 M.x86.R_AH = BAD_REGISTER_NUMBER; 225 if (M.x86.R_BX == pciSlot) { 226 M.x86.R_AH = SUCCESSFUL; 227 #ifdef __KERNEL__ 228 pci_read_config_word(_BE_env.vgaInfo.pcidev, M.x86.R_DI, 229 &M.x86.R_CX); 230 #else 231 M.x86.R_CX = 232 (u16) PCI_accessReg(M.x86.R_DI, 0, PCI_READ_WORD, 233 _BE_env.vgaInfo.pciInfo); 234 #endif 235 } 236 CONDITIONAL_SET_FLAG((M.x86.R_AH != SUCCESSFUL), F_CF); 237 break; 238 case 0xB10A: /* Read configuration dword */ 239 M.x86.R_AH = BAD_REGISTER_NUMBER; 240 if (M.x86.R_BX == pciSlot) { 241 M.x86.R_AH = SUCCESSFUL; 242 #ifdef __KERNEL__ 243 pci_read_config_dword(_BE_env.vgaInfo.pcidev, 244 M.x86.R_DI, &M.x86.R_ECX); 245 #else 246 M.x86.R_ECX = 247 (u32) PCI_accessReg(M.x86.R_DI, 0, PCI_READ_DWORD, 248 _BE_env.vgaInfo.pciInfo); 249 #endif 250 } 251 CONDITIONAL_SET_FLAG((M.x86.R_AH != SUCCESSFUL), F_CF); 252 break; 253 case 0xB10B: /* Write configuration byte */ 254 M.x86.R_AH = BAD_REGISTER_NUMBER; 255 if (M.x86.R_BX == pciSlot) { 256 M.x86.R_AH = SUCCESSFUL; 257 #ifdef __KERNEL__ 258 pci_write_config_byte(_BE_env.vgaInfo.pcidev, 259 M.x86.R_DI, M.x86.R_CL); 260 #else 261 PCI_accessReg(M.x86.R_DI, M.x86.R_CL, PCI_WRITE_BYTE, 262 _BE_env.vgaInfo.pciInfo); 263 #endif 264 } 265 CONDITIONAL_SET_FLAG((M.x86.R_AH != SUCCESSFUL), F_CF); 266 break; 267 case 0xB10C: /* Write configuration word */ 268 M.x86.R_AH = BAD_REGISTER_NUMBER; 269 if (M.x86.R_BX == pciSlot) { 270 M.x86.R_AH = SUCCESSFUL; 271 #ifdef __KERNEL__ 272 pci_write_config_word(_BE_env.vgaInfo.pcidev, 273 M.x86.R_DI, M.x86.R_CX); 274 #else 275 PCI_accessReg(M.x86.R_DI, M.x86.R_CX, PCI_WRITE_WORD, 276 _BE_env.vgaInfo.pciInfo); 277 #endif 278 } 279 CONDITIONAL_SET_FLAG((M.x86.R_AH != SUCCESSFUL), F_CF); 280 break; 281 case 0xB10D: /* Write configuration dword */ 282 M.x86.R_AH = BAD_REGISTER_NUMBER; 283 if (M.x86.R_BX == pciSlot) { 284 M.x86.R_AH = SUCCESSFUL; 285 #ifdef __KERNEL__ 286 pci_write_config_dword(_BE_env.vgaInfo.pcidev, 287 M.x86.R_DI, M.x86.R_ECX); 288 #else 289 PCI_accessReg(M.x86.R_DI, M.x86.R_ECX, PCI_WRITE_DWORD, 290 _BE_env.vgaInfo.pciInfo); 291 #endif 292 } 293 CONDITIONAL_SET_FLAG((M.x86.R_AH != SUCCESSFUL), F_CF); 294 break; 295 default: 296 printf("biosEmu/bios.int1a: unknown function AX=%#04x\n", 297 M.x86.R_AX); 298 } 299 } 300 301 /**************************************************************************** 302 REMARKS: 303 This function initialises the BIOS emulation functions for the specific 304 PCI display device. We insulate the real mode BIOS from any other devices 305 on the bus, so that it will work correctly thinking that it is the only 306 device present on the bus (ie: avoiding any adapters present in from of 307 the device we are trying to control). 308 ****************************************************************************/ 309 #define BE_constLE_32(v) ((((((v)&0xff00)>>8)|(((v)&0xff)<<8))<<16)|(((((v)&0xff000000)>>8)|(((v)&0x00ff0000)<<8))>>16)) 310 311 void _BE_bios_init(u32 * intrTab) 312 { 313 int i; 314 X86EMU_intrFuncs bios_intr_tab[256]; 315 316 for (i = 0; i < 256; ++i) { 317 intrTab[i] = BE_constLE_32(BIOS_SEG << 16); 318 bios_intr_tab[i] = undefined_intr; 319 } 320 bios_intr_tab[0x10] = int10; 321 bios_intr_tab[0x1A] = int1A; 322 bios_intr_tab[0x42] = int42; 323 bios_intr_tab[0x6D] = int10; 324 X86EMU_setupIntrFuncs(bios_intr_tab); 325 } 326 #endif 327