xref: /openbmc/u-boot/doc/README.nand (revision f15ea6e1d67782a1626d4a4922b6c20e380085e5)
1NAND FLASH commands and notes
2
3See NOTE below!!!
4
5# (C) Copyright 2003
6# Dave Ellis, SIXNET, dge@sixnetio.com
7#
8# SPDX-License-Identifier:	GPL-2.0+
9
10Commands:
11
12   nand bad
13      Print a list of all of the bad blocks in the current device.
14
15   nand device
16      Print information about the current NAND device.
17
18   nand device num
19      Make device `num' the current device and print information about it.
20
21   nand erase off|partition size
22   nand erase clean [off|partition size]
23      Erase `size' bytes starting at offset `off'. Alternatively partition
24      name can be specified, in this case size will be eventually limited
25      to not exceed partition size (this behaviour applies also to read
26      and write commands). Only complete erase blocks can be erased.
27
28      If `erase' is specified without an offset or size, the entire flash
29      is erased. If `erase' is specified with partition but without an
30      size, the entire partition is erased.
31
32      If `clean' is specified, a JFFS2-style clean marker is written to
33      each block after it is erased.
34
35      This command will not erase blocks that are marked bad. There is
36      a debug option in cmd_nand.c to allow bad blocks to be erased.
37      Please read the warning there before using it, as blocks marked
38      bad by the manufacturer must _NEVER_ be erased.
39
40   nand info
41      Print information about all of the NAND devices found.
42
43   nand read addr ofs|partition size
44      Read `size' bytes from `ofs' in NAND flash to `addr'.  Blocks that
45      are marked bad are skipped.  If a page cannot be read because an
46      uncorrectable data error is found, the command stops with an error.
47
48   nand read.oob addr ofs|partition size
49      Read `size' bytes from the out-of-band data area corresponding to
50      `ofs' in NAND flash to `addr'. This is limited to the 16 bytes of
51      data for one 512-byte page or 2 256-byte pages. There is no check
52      for bad blocks or ECC errors.
53
54   nand write addr ofs|partition size
55      Write `size' bytes from `addr' to `ofs' in NAND flash.  Blocks that
56      are marked bad are skipped.  If a page cannot be read because an
57      uncorrectable data error is found, the command stops with an error.
58
59      As JFFS2 skips blocks similarly, this allows writing a JFFS2 image,
60      as long as the image is short enough to fit even after skipping the
61      bad blocks.  Compact images, such as those produced by mkfs.jffs2
62      should work well, but loading an image copied from another flash is
63      going to be trouble if there are any bad blocks.
64
65   nand write.trimffs addr ofs|partition size
66      Enabled by the CONFIG_CMD_NAND_TRIMFFS macro. This command will write to
67      the NAND flash in a manner identical to the 'nand write' command
68      described above -- with the additional check that all pages at the end
69      of eraseblocks which contain only 0xff data will not be written to the
70      NAND flash. This behaviour is required when flashing UBI images
71      containing UBIFS volumes as per the UBI FAQ[1].
72
73      [1] http://www.linux-mtd.infradead.org/doc/ubi.html#L_flasher_algo
74
75   nand write.oob addr ofs|partition size
76      Write `size' bytes from `addr' to the out-of-band data area
77      corresponding to `ofs' in NAND flash. This is limited to the 16 bytes
78      of data for one 512-byte page or 2 256-byte pages. There is no check
79      for bad blocks.
80
81   nand read.raw addr ofs|partition [count]
82   nand write.raw addr ofs|partition [count]
83      Read or write one or more pages at "ofs" in NAND flash, from or to
84      "addr" in memory.  This is a raw access, so ECC is avoided and the
85      OOB area is transferred as well.  If count is absent, it is assumed
86      to be one page.  As with .yaffs2 accesses, the data is formatted as
87      a packed sequence of "data, oob, data, oob, ..." -- no alignment of
88      individual pages is maintained.
89
90Configuration Options:
91
92   CONFIG_CMD_NAND
93      Enables NAND support and commmands.
94
95   CONFIG_CMD_NAND_TORTURE
96      Enables the torture command (see description of this command below).
97
98   CONFIG_MTD_NAND_ECC_JFFS2
99      Define this if you want the Error Correction Code information in
100      the out-of-band data to be formatted to match the JFFS2 file system.
101      CONFIG_MTD_NAND_ECC_YAFFS would be another useful choice for
102      someone to implement.
103
104   CONFIG_SYS_MAX_NAND_DEVICE
105      The maximum number of NAND devices you want to support.
106
107   CONFIG_SYS_NAND_MAX_ECCPOS
108      If specified, overrides the maximum number of ECC bytes
109      supported.  Useful for reducing image size, especially with SPL.
110      This must be at least 48 if nand_base.c is used.
111
112   CONFIG_SYS_NAND_MAX_OOBFREE
113      If specified, overrides the maximum number of free OOB regions
114      supported.  Useful for reducing image size, especially with SPL.
115      This must be at least 2 if nand_base.c is used.
116
117   CONFIG_SYS_NAND_MAX_CHIPS
118      The maximum number of NAND chips per device to be supported.
119
120   CONFIG_SYS_NAND_SELF_INIT
121      Traditionally, glue code in drivers/mtd/nand/nand.c has driven
122      the initialization process -- it provides the mtd and nand
123      structs, calls a board init function for a specific device,
124      calls nand_scan(), and registers with mtd.
125
126      This arrangement does not provide drivers with the flexibility to
127      run code between nand_scan_ident() and nand_scan_tail(), or other
128      deviations from the "normal" flow.
129
130      If a board defines CONFIG_SYS_NAND_SELF_INIT, drivers/mtd/nand/nand.c
131      will make one call to board_nand_init(), with no arguments.  That
132      function is responsible for calling a driver init function for
133      each NAND device on the board, that performs all initialization
134      tasks except setting mtd->name, and registering with the rest of
135      U-Boot.  Those last tasks are accomplished by calling  nand_register()
136      on the new mtd device.
137
138      Example of new init to be added to the end of an existing driver
139      init:
140
141	/*
142	 * devnum is the device number to be used in nand commands
143	 * and in mtd->name.  Must be less than
144	 * CONFIG_SYS_NAND_MAX_DEVICE.
145	 */
146	mtd = &nand_info[devnum];
147
148	/* chip is struct nand_chip, and is now provided by the driver. */
149	mtd->priv = &chip;
150
151	/*
152	 * Fill in appropriate values if this driver uses these fields,
153	 * or uses the standard read_byte/write_buf/etc. functions from
154	 * nand_base.c that use these fields.
155	 */
156	chip.IO_ADDR_R = ...;
157	chip.IO_ADDR_W = ...;
158
159	if (nand_scan_ident(mtd, CONFIG_SYS_MAX_NAND_CHIPS, NULL))
160		error out
161
162	/*
163	 * Insert here any code you wish to run after the chip has been
164	 * identified, but before any other I/O is done.
165	 */
166
167	if (nand_scan_tail(mtd))
168		error out
169
170	if (nand_register(devnum))
171		error out
172
173      In addition to providing more flexibility to the driver, it reduces
174      the difference between a U-Boot driver and its Linux counterpart.
175      nand_init() is now reduced to calling board_nand_init() once, and
176      printing a size summary.  This should also make it easier to
177      transition to delayed NAND initialization.
178
179      Please convert your driver even if you don't need the extra
180      flexibility, so that one day we can eliminate the old mechanism.
181
182
183   CONFIG_SYS_NAND_ONFI_DETECTION
184	Enables detection of ONFI compliant devices during probe.
185	And fetching device parameters flashed on device, by parsing
186	ONFI parameter page.
187
188   CONFIG_BCH
189	Enables software based BCH ECC algorithm present in lib/bch.c
190	This is used by SoC platforms which do not have built-in ELM
191	hardware engine required for BCH ECC correction.
192
193
194Platform specific options
195=========================
196   CONFIG_NAND_OMAP_GPMC
197	Enables omap_gpmc.c driver for OMAPx and AMxxxx platforms.
198	GPMC controller is used for parallel NAND flash devices, and can
199	do ECC calculation (not ECC error detection) for HAM1, BCH4, BCH8
200	and BCH16 ECC algorithms.
201
202   CONFIG_NAND_OMAP_ELM
203	Enables omap_elm.c driver for OMAPx and AMxxxx platforms.
204	ELM controller is used for ECC error detection (not ECC calculation)
205	of BCH4, BCH8 and BCH16 ECC algorithms.
206	Some legacy platforms like OMAP3xx do not have in-built ELM h/w engine,
207	thus such SoC platforms need to depend on software library for ECC error
208	detection. However ECC calculation on such plaforms would still be
209	done by GPMC controller.
210
211   CONFIG_NAND_OMAP_ECCSCHEME
212	On OMAP platforms, this CONFIG specifies NAND ECC scheme.
213	It can take following values:
214	OMAP_ECC_HAM1_CODE_SW
215		1-bit Hamming code using software lib.
216		(for legacy devices only)
217	OMAP_ECC_HAM1_CODE_HW
218		1-bit Hamming code using GPMC hardware.
219		(for legacy devices only)
220	OMAP_ECC_BCH4_CODE_HW_DETECTION_SW
221		4-bit BCH code (unsupported)
222	OMAP_ECC_BCH4_CODE_HW
223		4-bit BCH code (unsupported)
224	OMAP_ECC_BCH8_CODE_HW_DETECTION_SW
225		8-bit BCH code with
226		- ecc calculation using GPMC hardware engine,
227		- error detection using software library.
228		- requires CONFIG_BCH to enable software BCH library
229		(For legacy device which do not have ELM h/w engine)
230	OMAP_ECC_BCH8_CODE_HW
231		8-bit BCH code with
232		- ecc calculation using GPMC hardware engine,
233		- error detection using ELM hardware engine.
234
235NOTE:
236=====
237
238The current NAND implementation is based on what is in recent
239Linux kernels.  The old legacy implementation has been removed.
240
241If you have board code which used CONFIG_NAND_LEGACY, you'll need
242to convert to the current NAND interface for it to continue to work.
243
244The Disk On Chip driver is currently broken and has been for some time.
245There is a driver in drivers/mtd/nand, taken from Linux, that works with
246the current NAND system but has not yet been adapted to the u-boot
247environment.
248
249Additional improvements to the NAND subsystem by Guido Classen, 10-10-2006
250
251JFFS2 related commands:
252
253  implement "nand erase clean" and old "nand erase"
254  using both the new code which is able to skip bad blocks
255  "nand erase clean" additionally writes JFFS2-cleanmarkers in the oob.
256
257Miscellaneous and testing commands:
258  "markbad [offset]"
259  create an artificial bad block (for testing bad block handling)
260
261  "scrub [offset length]"
262  like "erase" but don't skip bad block. Instead erase them.
263  DANGEROUS!!! Factory set bad blocks will be lost. Use only
264  to remove artificial bad blocks created with the "markbad" command.
265
266  "torture offset"
267  Torture block to determine if it is still reliable.
268  Enabled by the CONFIG_CMD_NAND_TORTURE configuration option.
269  This command returns 0 if the block is still reliable, else 1.
270  If the block is detected as unreliable, it is up to the user to decide to
271  mark this block as bad.
272  The analyzed block is put through 3 erase / write cycles (or less if the block
273  is detected as unreliable earlier).
274  This command can be used in scripts, e.g. together with the markbad command to
275  automate retries and handling of possibly newly detected bad blocks if the
276  nand write command fails.
277  It can also be used manually by users having seen some NAND errors in logs to
278  search the root cause of these errors.
279  The underlying nand_torture() function is also useful for code willing to
280  automate actions following a nand->write() error. This would e.g. be required
281  in order to program or update safely firmware to NAND, especially for the UBI
282  part of such firmware.
283
284
285NAND locking command (for chips with active LOCKPRE pin)
286
287  "nand lock"
288  set NAND chip to lock state (all pages locked)
289
290  "nand lock tight"
291  set NAND chip to lock tight state (software can't change locking anymore)
292
293  "nand lock status"
294  displays current locking status of all pages
295
296  "nand unlock [offset] [size]"
297  unlock consecutive area (can be called multiple times for different areas)
298
299  "nand unlock.allexcept [offset] [size]"
300  unlock all except specified consecutive area
301
302I have tested the code with board containing 128MiB NAND large page chips
303and 32MiB small page chips.
304