1 /* 2 * Copyright (C) 2008 RuggedCom, Inc. 3 * Richard Retanubun <RichardRetanubun@RuggedCom.com> 4 * 5 * SPDX-License-Identifier: GPL-2.0+ 6 */ 7 8 /* 9 * NOTE: 10 * when CONFIG_SYS_64BIT_LBA is not defined, lbaint_t is 32 bits; this 11 * limits the maximum size of addressable storage to < 2 Terra Bytes 12 */ 13 #include <asm/unaligned.h> 14 #include <common.h> 15 #include <command.h> 16 #include <ide.h> 17 #include <inttypes.h> 18 #include <malloc.h> 19 #include <memalign.h> 20 #include <part_efi.h> 21 #include <linux/ctype.h> 22 23 DECLARE_GLOBAL_DATA_PTR; 24 25 #ifdef HAVE_BLOCK_DEVICE 26 /** 27 * efi_crc32() - EFI version of crc32 function 28 * @buf: buffer to calculate crc32 of 29 * @len - length of buf 30 * 31 * Description: Returns EFI-style CRC32 value for @buf 32 */ 33 static inline u32 efi_crc32(const void *buf, u32 len) 34 { 35 return crc32(0, buf, len); 36 } 37 38 /* 39 * Private function prototypes 40 */ 41 42 static int pmbr_part_valid(struct partition *part); 43 static int is_pmbr_valid(legacy_mbr * mbr); 44 static int is_gpt_valid(block_dev_desc_t *dev_desc, u64 lba, 45 gpt_header *pgpt_head, gpt_entry **pgpt_pte); 46 static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc, 47 gpt_header * pgpt_head); 48 static int is_pte_valid(gpt_entry * pte); 49 50 static char *print_efiname(gpt_entry *pte) 51 { 52 static char name[PARTNAME_SZ + 1]; 53 int i; 54 for (i = 0; i < PARTNAME_SZ; i++) { 55 u8 c; 56 c = pte->partition_name[i] & 0xff; 57 c = (c && !isprint(c)) ? '.' : c; 58 name[i] = c; 59 } 60 name[PARTNAME_SZ] = 0; 61 return name; 62 } 63 64 static efi_guid_t system_guid = PARTITION_SYSTEM_GUID; 65 66 static inline int is_bootable(gpt_entry *p) 67 { 68 return p->attributes.fields.legacy_bios_bootable || 69 !memcmp(&(p->partition_type_guid), &system_guid, 70 sizeof(efi_guid_t)); 71 } 72 73 static int validate_gpt_header(gpt_header *gpt_h, lbaint_t lba, 74 lbaint_t lastlba) 75 { 76 uint32_t crc32_backup = 0; 77 uint32_t calc_crc32; 78 79 /* Check the GPT header signature */ 80 if (le64_to_cpu(gpt_h->signature) != GPT_HEADER_SIGNATURE) { 81 printf("%s signature is wrong: 0x%llX != 0x%llX\n", 82 "GUID Partition Table Header", 83 le64_to_cpu(gpt_h->signature), 84 GPT_HEADER_SIGNATURE); 85 return -1; 86 } 87 88 /* Check the GUID Partition Table CRC */ 89 memcpy(&crc32_backup, &gpt_h->header_crc32, sizeof(crc32_backup)); 90 memset(&gpt_h->header_crc32, 0, sizeof(gpt_h->header_crc32)); 91 92 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 93 le32_to_cpu(gpt_h->header_size)); 94 95 memcpy(&gpt_h->header_crc32, &crc32_backup, sizeof(crc32_backup)); 96 97 if (calc_crc32 != le32_to_cpu(crc32_backup)) { 98 printf("%s CRC is wrong: 0x%x != 0x%x\n", 99 "GUID Partition Table Header", 100 le32_to_cpu(crc32_backup), calc_crc32); 101 return -1; 102 } 103 104 /* 105 * Check that the my_lba entry points to the LBA that contains the GPT 106 */ 107 if (le64_to_cpu(gpt_h->my_lba) != lba) { 108 printf("GPT: my_lba incorrect: %llX != " LBAF "\n", 109 le64_to_cpu(gpt_h->my_lba), 110 lba); 111 return -1; 112 } 113 114 /* 115 * Check that the first_usable_lba and that the last_usable_lba are 116 * within the disk. 117 */ 118 if (le64_to_cpu(gpt_h->first_usable_lba) > lastlba) { 119 printf("GPT: first_usable_lba incorrect: %llX > " LBAF "\n", 120 le64_to_cpu(gpt_h->first_usable_lba), lastlba); 121 return -1; 122 } 123 if (le64_to_cpu(gpt_h->last_usable_lba) > lastlba) { 124 printf("GPT: last_usable_lba incorrect: %llX > " LBAF "\n", 125 le64_to_cpu(gpt_h->last_usable_lba), lastlba); 126 return -1; 127 } 128 129 debug("GPT: first_usable_lba: %llX last_usable_lba: %llX last lba: " 130 LBAF "\n", le64_to_cpu(gpt_h->first_usable_lba), 131 le64_to_cpu(gpt_h->last_usable_lba), lastlba); 132 133 return 0; 134 } 135 136 static int validate_gpt_entries(gpt_header *gpt_h, gpt_entry *gpt_e) 137 { 138 uint32_t calc_crc32; 139 140 /* Check the GUID Partition Table Entry Array CRC */ 141 calc_crc32 = efi_crc32((const unsigned char *)gpt_e, 142 le32_to_cpu(gpt_h->num_partition_entries) * 143 le32_to_cpu(gpt_h->sizeof_partition_entry)); 144 145 if (calc_crc32 != le32_to_cpu(gpt_h->partition_entry_array_crc32)) { 146 printf("%s: 0x%x != 0x%x\n", 147 "GUID Partition Table Entry Array CRC is wrong", 148 le32_to_cpu(gpt_h->partition_entry_array_crc32), 149 calc_crc32); 150 return -1; 151 } 152 153 return 0; 154 } 155 156 static void prepare_backup_gpt_header(gpt_header *gpt_h) 157 { 158 uint32_t calc_crc32; 159 uint64_t val; 160 161 /* recalculate the values for the Backup GPT Header */ 162 val = le64_to_cpu(gpt_h->my_lba); 163 gpt_h->my_lba = gpt_h->alternate_lba; 164 gpt_h->alternate_lba = cpu_to_le64(val); 165 gpt_h->partition_entry_lba = 166 cpu_to_le64(le64_to_cpu(gpt_h->last_usable_lba) + 1); 167 gpt_h->header_crc32 = 0; 168 169 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 170 le32_to_cpu(gpt_h->header_size)); 171 gpt_h->header_crc32 = cpu_to_le32(calc_crc32); 172 } 173 174 #ifdef CONFIG_EFI_PARTITION 175 /* 176 * Public Functions (include/part.h) 177 */ 178 179 void print_part_efi(block_dev_desc_t * dev_desc) 180 { 181 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz); 182 gpt_entry *gpt_pte = NULL; 183 int i = 0; 184 char uuid[37]; 185 unsigned char *uuid_bin; 186 187 if (!dev_desc) { 188 printf("%s: Invalid Argument(s)\n", __func__); 189 return; 190 } 191 /* This function validates AND fills in the GPT header and PTE */ 192 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, 193 gpt_head, &gpt_pte) != 1) { 194 printf("%s: *** ERROR: Invalid GPT ***\n", __func__); 195 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1), 196 gpt_head, &gpt_pte) != 1) { 197 printf("%s: *** ERROR: Invalid Backup GPT ***\n", 198 __func__); 199 return; 200 } else { 201 printf("%s: *** Using Backup GPT ***\n", 202 __func__); 203 } 204 } 205 206 debug("%s: gpt-entry at %p\n", __func__, gpt_pte); 207 208 printf("Part\tStart LBA\tEnd LBA\t\tName\n"); 209 printf("\tAttributes\n"); 210 printf("\tType GUID\n"); 211 printf("\tPartition GUID\n"); 212 213 for (i = 0; i < le32_to_cpu(gpt_head->num_partition_entries); i++) { 214 /* Stop at the first non valid PTE */ 215 if (!is_pte_valid(&gpt_pte[i])) 216 break; 217 218 printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1), 219 le64_to_cpu(gpt_pte[i].starting_lba), 220 le64_to_cpu(gpt_pte[i].ending_lba), 221 print_efiname(&gpt_pte[i])); 222 printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw); 223 uuid_bin = (unsigned char *)gpt_pte[i].partition_type_guid.b; 224 uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID); 225 printf("\ttype:\t%s\n", uuid); 226 uuid_bin = (unsigned char *)gpt_pte[i].unique_partition_guid.b; 227 uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID); 228 printf("\tguid:\t%s\n", uuid); 229 } 230 231 /* Remember to free pte */ 232 free(gpt_pte); 233 return; 234 } 235 236 int get_partition_info_efi(block_dev_desc_t * dev_desc, int part, 237 disk_partition_t * info) 238 { 239 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz); 240 gpt_entry *gpt_pte = NULL; 241 242 /* "part" argument must be at least 1 */ 243 if (!dev_desc || !info || part < 1) { 244 printf("%s: Invalid Argument(s)\n", __func__); 245 return -1; 246 } 247 248 /* This function validates AND fills in the GPT header and PTE */ 249 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, 250 gpt_head, &gpt_pte) != 1) { 251 printf("%s: *** ERROR: Invalid GPT ***\n", __func__); 252 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1), 253 gpt_head, &gpt_pte) != 1) { 254 printf("%s: *** ERROR: Invalid Backup GPT ***\n", 255 __func__); 256 return -1; 257 } else { 258 printf("%s: *** Using Backup GPT ***\n", 259 __func__); 260 } 261 } 262 263 if (part > le32_to_cpu(gpt_head->num_partition_entries) || 264 !is_pte_valid(&gpt_pte[part - 1])) { 265 debug("%s: *** ERROR: Invalid partition number %d ***\n", 266 __func__, part); 267 free(gpt_pte); 268 return -1; 269 } 270 271 /* The 'lbaint_t' casting may limit the maximum disk size to 2 TB */ 272 info->start = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].starting_lba); 273 /* The ending LBA is inclusive, to calculate size, add 1 to it */ 274 info->size = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].ending_lba) + 1 275 - info->start; 276 info->blksz = dev_desc->blksz; 277 278 sprintf((char *)info->name, "%s", 279 print_efiname(&gpt_pte[part - 1])); 280 sprintf((char *)info->type, "U-Boot"); 281 info->bootable = is_bootable(&gpt_pte[part - 1]); 282 #ifdef CONFIG_PARTITION_UUIDS 283 uuid_bin_to_str(gpt_pte[part - 1].unique_partition_guid.b, info->uuid, 284 UUID_STR_FORMAT_GUID); 285 #endif 286 287 debug("%s: start 0x" LBAF ", size 0x" LBAF ", name %s\n", __func__, 288 info->start, info->size, info->name); 289 290 /* Remember to free pte */ 291 free(gpt_pte); 292 return 0; 293 } 294 295 int get_partition_info_efi_by_name(block_dev_desc_t *dev_desc, 296 const char *name, disk_partition_t *info) 297 { 298 int ret; 299 int i; 300 for (i = 1; i < GPT_ENTRY_NUMBERS; i++) { 301 ret = get_partition_info_efi(dev_desc, i, info); 302 if (ret != 0) { 303 /* no more entries in table */ 304 return -1; 305 } 306 if (strcmp(name, (const char *)info->name) == 0) { 307 /* matched */ 308 return 0; 309 } 310 } 311 return -2; 312 } 313 314 int test_part_efi(block_dev_desc_t * dev_desc) 315 { 316 ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, legacymbr, 1, dev_desc->blksz); 317 318 /* Read legacy MBR from block 0 and validate it */ 319 if ((dev_desc->block_read(dev_desc->dev, 0, 1, (ulong *)legacymbr) != 1) 320 || (is_pmbr_valid(legacymbr) != 1)) { 321 return -1; 322 } 323 return 0; 324 } 325 326 /** 327 * set_protective_mbr(): Set the EFI protective MBR 328 * @param dev_desc - block device descriptor 329 * 330 * @return - zero on success, otherwise error 331 */ 332 static int set_protective_mbr(block_dev_desc_t *dev_desc) 333 { 334 /* Setup the Protective MBR */ 335 ALLOC_CACHE_ALIGN_BUFFER(legacy_mbr, p_mbr, 1); 336 memset(p_mbr, 0, sizeof(*p_mbr)); 337 338 if (p_mbr == NULL) { 339 printf("%s: calloc failed!\n", __func__); 340 return -1; 341 } 342 /* Append signature */ 343 p_mbr->signature = MSDOS_MBR_SIGNATURE; 344 p_mbr->partition_record[0].sys_ind = EFI_PMBR_OSTYPE_EFI_GPT; 345 p_mbr->partition_record[0].start_sect = 1; 346 p_mbr->partition_record[0].nr_sects = (u32) dev_desc->lba - 1; 347 348 /* Write MBR sector to the MMC device */ 349 if (dev_desc->block_write(dev_desc->dev, 0, 1, p_mbr) != 1) { 350 printf("** Can't write to device %d **\n", 351 dev_desc->dev); 352 return -1; 353 } 354 355 return 0; 356 } 357 358 int write_gpt_table(block_dev_desc_t *dev_desc, 359 gpt_header *gpt_h, gpt_entry *gpt_e) 360 { 361 const int pte_blk_cnt = BLOCK_CNT((gpt_h->num_partition_entries 362 * sizeof(gpt_entry)), dev_desc); 363 u32 calc_crc32; 364 365 debug("max lba: %x\n", (u32) dev_desc->lba); 366 /* Setup the Protective MBR */ 367 if (set_protective_mbr(dev_desc) < 0) 368 goto err; 369 370 /* Generate CRC for the Primary GPT Header */ 371 calc_crc32 = efi_crc32((const unsigned char *)gpt_e, 372 le32_to_cpu(gpt_h->num_partition_entries) * 373 le32_to_cpu(gpt_h->sizeof_partition_entry)); 374 gpt_h->partition_entry_array_crc32 = cpu_to_le32(calc_crc32); 375 376 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 377 le32_to_cpu(gpt_h->header_size)); 378 gpt_h->header_crc32 = cpu_to_le32(calc_crc32); 379 380 /* Write the First GPT to the block right after the Legacy MBR */ 381 if (dev_desc->block_write(dev_desc->dev, 1, 1, gpt_h) != 1) 382 goto err; 383 384 if (dev_desc->block_write(dev_desc->dev, 2, pte_blk_cnt, gpt_e) 385 != pte_blk_cnt) 386 goto err; 387 388 prepare_backup_gpt_header(gpt_h); 389 390 if (dev_desc->block_write(dev_desc->dev, 391 (lbaint_t)le64_to_cpu(gpt_h->last_usable_lba) 392 + 1, 393 pte_blk_cnt, gpt_e) != pte_blk_cnt) 394 goto err; 395 396 if (dev_desc->block_write(dev_desc->dev, 397 (lbaint_t)le64_to_cpu(gpt_h->my_lba), 1, 398 gpt_h) != 1) 399 goto err; 400 401 debug("GPT successfully written to block device!\n"); 402 return 0; 403 404 err: 405 printf("** Can't write to device %d **\n", dev_desc->dev); 406 return -1; 407 } 408 409 int gpt_fill_pte(gpt_header *gpt_h, gpt_entry *gpt_e, 410 disk_partition_t *partitions, int parts) 411 { 412 lbaint_t offset = (lbaint_t)le64_to_cpu(gpt_h->first_usable_lba); 413 lbaint_t start; 414 lbaint_t last_usable_lba = (lbaint_t) 415 le64_to_cpu(gpt_h->last_usable_lba); 416 int i, k; 417 size_t efiname_len, dosname_len; 418 #ifdef CONFIG_PARTITION_UUIDS 419 char *str_uuid; 420 unsigned char *bin_uuid; 421 #endif 422 423 for (i = 0; i < parts; i++) { 424 /* partition starting lba */ 425 start = partitions[i].start; 426 if (start && (start < offset)) { 427 printf("Partition overlap\n"); 428 return -1; 429 } 430 if (start) { 431 gpt_e[i].starting_lba = cpu_to_le64(start); 432 offset = start + partitions[i].size; 433 } else { 434 gpt_e[i].starting_lba = cpu_to_le64(offset); 435 offset += partitions[i].size; 436 } 437 if (offset >= last_usable_lba) { 438 printf("Partitions layout exceds disk size\n"); 439 return -1; 440 } 441 /* partition ending lba */ 442 if ((i == parts - 1) && (partitions[i].size == 0)) 443 /* extend the last partition to maximuim */ 444 gpt_e[i].ending_lba = gpt_h->last_usable_lba; 445 else 446 gpt_e[i].ending_lba = cpu_to_le64(offset - 1); 447 448 /* partition type GUID */ 449 memcpy(gpt_e[i].partition_type_guid.b, 450 &PARTITION_BASIC_DATA_GUID, 16); 451 452 #ifdef CONFIG_PARTITION_UUIDS 453 str_uuid = partitions[i].uuid; 454 bin_uuid = gpt_e[i].unique_partition_guid.b; 455 456 if (uuid_str_to_bin(str_uuid, bin_uuid, UUID_STR_FORMAT_STD)) { 457 printf("Partition no. %d: invalid guid: %s\n", 458 i, str_uuid); 459 return -1; 460 } 461 #endif 462 463 /* partition attributes */ 464 memset(&gpt_e[i].attributes, 0, 465 sizeof(gpt_entry_attributes)); 466 467 /* partition name */ 468 efiname_len = sizeof(gpt_e[i].partition_name) 469 / sizeof(efi_char16_t); 470 dosname_len = sizeof(partitions[i].name); 471 472 memset(gpt_e[i].partition_name, 0, 473 sizeof(gpt_e[i].partition_name)); 474 475 for (k = 0; k < min(dosname_len, efiname_len); k++) 476 gpt_e[i].partition_name[k] = 477 (efi_char16_t)(partitions[i].name[k]); 478 479 debug("%s: name: %s offset[%d]: 0x" LBAF 480 " size[%d]: 0x" LBAF "\n", 481 __func__, partitions[i].name, i, 482 offset, i, partitions[i].size); 483 } 484 485 return 0; 486 } 487 488 int gpt_fill_header(block_dev_desc_t *dev_desc, gpt_header *gpt_h, 489 char *str_guid, int parts_count) 490 { 491 gpt_h->signature = cpu_to_le64(GPT_HEADER_SIGNATURE); 492 gpt_h->revision = cpu_to_le32(GPT_HEADER_REVISION_V1); 493 gpt_h->header_size = cpu_to_le32(sizeof(gpt_header)); 494 gpt_h->my_lba = cpu_to_le64(1); 495 gpt_h->alternate_lba = cpu_to_le64(dev_desc->lba - 1); 496 gpt_h->first_usable_lba = cpu_to_le64(34); 497 gpt_h->last_usable_lba = cpu_to_le64(dev_desc->lba - 34); 498 gpt_h->partition_entry_lba = cpu_to_le64(2); 499 gpt_h->num_partition_entries = cpu_to_le32(GPT_ENTRY_NUMBERS); 500 gpt_h->sizeof_partition_entry = cpu_to_le32(sizeof(gpt_entry)); 501 gpt_h->header_crc32 = 0; 502 gpt_h->partition_entry_array_crc32 = 0; 503 504 if (uuid_str_to_bin(str_guid, gpt_h->disk_guid.b, UUID_STR_FORMAT_GUID)) 505 return -1; 506 507 return 0; 508 } 509 510 int gpt_restore(block_dev_desc_t *dev_desc, char *str_disk_guid, 511 disk_partition_t *partitions, int parts_count) 512 { 513 int ret; 514 515 gpt_header *gpt_h = calloc(1, PAD_TO_BLOCKSIZE(sizeof(gpt_header), 516 dev_desc)); 517 gpt_entry *gpt_e; 518 519 if (gpt_h == NULL) { 520 printf("%s: calloc failed!\n", __func__); 521 return -1; 522 } 523 524 gpt_e = calloc(1, PAD_TO_BLOCKSIZE(GPT_ENTRY_NUMBERS 525 * sizeof(gpt_entry), 526 dev_desc)); 527 if (gpt_e == NULL) { 528 printf("%s: calloc failed!\n", __func__); 529 free(gpt_h); 530 return -1; 531 } 532 533 /* Generate Primary GPT header (LBA1) */ 534 ret = gpt_fill_header(dev_desc, gpt_h, str_disk_guid, parts_count); 535 if (ret) 536 goto err; 537 538 /* Generate partition entries */ 539 ret = gpt_fill_pte(gpt_h, gpt_e, partitions, parts_count); 540 if (ret) 541 goto err; 542 543 /* Write GPT partition table */ 544 ret = write_gpt_table(dev_desc, gpt_h, gpt_e); 545 546 err: 547 free(gpt_e); 548 free(gpt_h); 549 return ret; 550 } 551 552 int is_valid_gpt_buf(block_dev_desc_t *dev_desc, void *buf) 553 { 554 gpt_header *gpt_h; 555 gpt_entry *gpt_e; 556 557 /* determine start of GPT Header in the buffer */ 558 gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA * 559 dev_desc->blksz); 560 if (validate_gpt_header(gpt_h, GPT_PRIMARY_PARTITION_TABLE_LBA, 561 dev_desc->lba)) 562 return -1; 563 564 /* determine start of GPT Entries in the buffer */ 565 gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) * 566 dev_desc->blksz); 567 if (validate_gpt_entries(gpt_h, gpt_e)) 568 return -1; 569 570 return 0; 571 } 572 573 int write_mbr_and_gpt_partitions(block_dev_desc_t *dev_desc, void *buf) 574 { 575 gpt_header *gpt_h; 576 gpt_entry *gpt_e; 577 int gpt_e_blk_cnt; 578 lbaint_t lba; 579 int cnt; 580 581 if (is_valid_gpt_buf(dev_desc, buf)) 582 return -1; 583 584 /* determine start of GPT Header in the buffer */ 585 gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA * 586 dev_desc->blksz); 587 588 /* determine start of GPT Entries in the buffer */ 589 gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) * 590 dev_desc->blksz); 591 gpt_e_blk_cnt = BLOCK_CNT((le32_to_cpu(gpt_h->num_partition_entries) * 592 le32_to_cpu(gpt_h->sizeof_partition_entry)), 593 dev_desc); 594 595 /* write MBR */ 596 lba = 0; /* MBR is always at 0 */ 597 cnt = 1; /* MBR (1 block) */ 598 if (dev_desc->block_write(dev_desc->dev, lba, cnt, buf) != cnt) { 599 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 600 __func__, "MBR", cnt, lba); 601 return 1; 602 } 603 604 /* write Primary GPT */ 605 lba = GPT_PRIMARY_PARTITION_TABLE_LBA; 606 cnt = 1; /* GPT Header (1 block) */ 607 if (dev_desc->block_write(dev_desc->dev, lba, cnt, gpt_h) != cnt) { 608 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 609 __func__, "Primary GPT Header", cnt, lba); 610 return 1; 611 } 612 613 lba = le64_to_cpu(gpt_h->partition_entry_lba); 614 cnt = gpt_e_blk_cnt; 615 if (dev_desc->block_write(dev_desc->dev, lba, cnt, gpt_e) != cnt) { 616 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 617 __func__, "Primary GPT Entries", cnt, lba); 618 return 1; 619 } 620 621 prepare_backup_gpt_header(gpt_h); 622 623 /* write Backup GPT */ 624 lba = le64_to_cpu(gpt_h->partition_entry_lba); 625 cnt = gpt_e_blk_cnt; 626 if (dev_desc->block_write(dev_desc->dev, lba, cnt, gpt_e) != cnt) { 627 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 628 __func__, "Backup GPT Entries", cnt, lba); 629 return 1; 630 } 631 632 lba = le64_to_cpu(gpt_h->my_lba); 633 cnt = 1; /* GPT Header (1 block) */ 634 if (dev_desc->block_write(dev_desc->dev, lba, cnt, gpt_h) != cnt) { 635 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 636 __func__, "Backup GPT Header", cnt, lba); 637 return 1; 638 } 639 640 return 0; 641 } 642 #endif 643 644 /* 645 * Private functions 646 */ 647 /* 648 * pmbr_part_valid(): Check for EFI partition signature 649 * 650 * Returns: 1 if EFI GPT partition type is found. 651 */ 652 static int pmbr_part_valid(struct partition *part) 653 { 654 if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT && 655 get_unaligned_le32(&part->start_sect) == 1UL) { 656 return 1; 657 } 658 659 return 0; 660 } 661 662 /* 663 * is_pmbr_valid(): test Protective MBR for validity 664 * 665 * Returns: 1 if PMBR is valid, 0 otherwise. 666 * Validity depends on two things: 667 * 1) MSDOS signature is in the last two bytes of the MBR 668 * 2) One partition of type 0xEE is found, checked by pmbr_part_valid() 669 */ 670 static int is_pmbr_valid(legacy_mbr * mbr) 671 { 672 int i = 0; 673 674 if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE) 675 return 0; 676 677 for (i = 0; i < 4; i++) { 678 if (pmbr_part_valid(&mbr->partition_record[i])) { 679 return 1; 680 } 681 } 682 return 0; 683 } 684 685 /** 686 * is_gpt_valid() - tests one GPT header and PTEs for validity 687 * 688 * lba is the logical block address of the GPT header to test 689 * gpt is a GPT header ptr, filled on return. 690 * ptes is a PTEs ptr, filled on return. 691 * 692 * Description: returns 1 if valid, 0 on error. 693 * If valid, returns pointers to PTEs. 694 */ 695 static int is_gpt_valid(block_dev_desc_t *dev_desc, u64 lba, 696 gpt_header *pgpt_head, gpt_entry **pgpt_pte) 697 { 698 if (!dev_desc || !pgpt_head) { 699 printf("%s: Invalid Argument(s)\n", __func__); 700 return 0; 701 } 702 703 /* Read GPT Header from device */ 704 if (dev_desc->block_read(dev_desc->dev, (lbaint_t)lba, 1, pgpt_head) 705 != 1) { 706 printf("*** ERROR: Can't read GPT header ***\n"); 707 return 0; 708 } 709 710 if (validate_gpt_header(pgpt_head, (lbaint_t)lba, dev_desc->lba)) 711 return 0; 712 713 /* Read and allocate Partition Table Entries */ 714 *pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head); 715 if (*pgpt_pte == NULL) { 716 printf("GPT: Failed to allocate memory for PTE\n"); 717 return 0; 718 } 719 720 if (validate_gpt_entries(pgpt_head, *pgpt_pte)) { 721 free(*pgpt_pte); 722 return 0; 723 } 724 725 /* We're done, all's well */ 726 return 1; 727 } 728 729 /** 730 * alloc_read_gpt_entries(): reads partition entries from disk 731 * @dev_desc 732 * @gpt - GPT header 733 * 734 * Description: Returns ptes on success, NULL on error. 735 * Allocates space for PTEs based on information found in @gpt. 736 * Notes: remember to free pte when you're done! 737 */ 738 static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc, 739 gpt_header * pgpt_head) 740 { 741 size_t count = 0, blk_cnt; 742 gpt_entry *pte = NULL; 743 744 if (!dev_desc || !pgpt_head) { 745 printf("%s: Invalid Argument(s)\n", __func__); 746 return NULL; 747 } 748 749 count = le32_to_cpu(pgpt_head->num_partition_entries) * 750 le32_to_cpu(pgpt_head->sizeof_partition_entry); 751 752 debug("%s: count = %u * %u = %zu\n", __func__, 753 (u32) le32_to_cpu(pgpt_head->num_partition_entries), 754 (u32) le32_to_cpu(pgpt_head->sizeof_partition_entry), count); 755 756 /* Allocate memory for PTE, remember to FREE */ 757 if (count != 0) { 758 pte = memalign(ARCH_DMA_MINALIGN, 759 PAD_TO_BLOCKSIZE(count, dev_desc)); 760 } 761 762 if (count == 0 || pte == NULL) { 763 printf("%s: ERROR: Can't allocate 0x%zX " 764 "bytes for GPT Entries\n", 765 __func__, count); 766 return NULL; 767 } 768 769 /* Read GPT Entries from device */ 770 blk_cnt = BLOCK_CNT(count, dev_desc); 771 if (dev_desc->block_read (dev_desc->dev, 772 (lbaint_t)le64_to_cpu(pgpt_head->partition_entry_lba), 773 (lbaint_t) (blk_cnt), pte) 774 != blk_cnt) { 775 776 printf("*** ERROR: Can't read GPT Entries ***\n"); 777 free(pte); 778 return NULL; 779 } 780 return pte; 781 } 782 783 /** 784 * is_pte_valid(): validates a single Partition Table Entry 785 * @gpt_entry - Pointer to a single Partition Table Entry 786 * 787 * Description: returns 1 if valid, 0 on error. 788 */ 789 static int is_pte_valid(gpt_entry * pte) 790 { 791 efi_guid_t unused_guid; 792 793 if (!pte) { 794 printf("%s: Invalid Argument(s)\n", __func__); 795 return 0; 796 } 797 798 /* Only one validation for now: 799 * The GUID Partition Type != Unused Entry (ALL-ZERO) 800 */ 801 memset(unused_guid.b, 0, sizeof(unused_guid.b)); 802 803 if (memcmp(pte->partition_type_guid.b, unused_guid.b, 804 sizeof(unused_guid.b)) == 0) { 805 806 debug("%s: Found an unused PTE GUID at 0x%08X\n", __func__, 807 (unsigned int)(uintptr_t)pte); 808 809 return 0; 810 } else { 811 return 1; 812 } 813 } 814 #endif 815