xref: /openbmc/u-boot/disk/part_efi.c (revision e0a0cbf2)
1 /*
2  * Copyright (C) 2008 RuggedCom, Inc.
3  * Richard Retanubun <RichardRetanubun@RuggedCom.com>
4  *
5  * See file CREDITS for list of people who contributed to this
6  * project.
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as
10  * published by the Free Software Foundation; either version 2 of
11  * the License, or (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21  * MA 02111-1307 USA
22  */
23 
24 /*
25  * Problems with CONFIG_SYS_64BIT_LBA:
26  *
27  * struct disk_partition.start in include/part.h is sized as ulong.
28  * When CONFIG_SYS_64BIT_LBA is activated, lbaint_t changes from ulong to uint64_t.
29  * For now, it is cast back to ulong at assignment.
30  *
31  * This limits the maximum size of addressable storage to < 2 Terra Bytes
32  */
33 #include <common.h>
34 #include <command.h>
35 #include <ide.h>
36 #include <malloc.h>
37 #include "part_efi.h"
38 #include <linux/ctype.h>
39 
40 #if defined(CONFIG_CMD_IDE) || \
41     defined(CONFIG_CMD_SATA) || \
42     defined(CONFIG_CMD_SCSI) || \
43     defined(CONFIG_CMD_USB) || \
44     defined(CONFIG_MMC) || \
45     defined(CONFIG_SYSTEMACE)
46 
47 /* Convert char[2] in little endian format to the host format integer
48  */
49 static inline unsigned short le16_to_int(unsigned char *le16)
50 {
51 	return ((le16[1] << 8) + le16[0]);
52 }
53 
54 /* Convert char[4] in little endian format to the host format integer
55  */
56 static inline unsigned long le32_to_int(unsigned char *le32)
57 {
58 	return ((le32[3] << 24) + (le32[2] << 16) + (le32[1] << 8) + le32[0]);
59 }
60 
61 /* Convert char[8] in little endian format to the host format integer
62  */
63 static inline unsigned long long le64_to_int(unsigned char *le64)
64 {
65 	return (((unsigned long long)le64[7] << 56) +
66 		((unsigned long long)le64[6] << 48) +
67 		((unsigned long long)le64[5] << 40) +
68 		((unsigned long long)le64[4] << 32) +
69 		((unsigned long long)le64[3] << 24) +
70 		((unsigned long long)le64[2] << 16) +
71 		((unsigned long long)le64[1] << 8) +
72 		(unsigned long long)le64[0]);
73 }
74 
75 /**
76  * efi_crc32() - EFI version of crc32 function
77  * @buf: buffer to calculate crc32 of
78  * @len - length of buf
79  *
80  * Description: Returns EFI-style CRC32 value for @buf
81  */
82 static inline unsigned long efi_crc32(const void *buf, unsigned long len)
83 {
84 	return crc32(0, buf, len);
85 }
86 
87 /*
88  * Private function prototypes
89  */
90 
91 static int pmbr_part_valid(struct partition *part);
92 static int is_pmbr_valid(legacy_mbr * mbr);
93 
94 static int is_gpt_valid(block_dev_desc_t * dev_desc, unsigned long long lba,
95 				gpt_header * pgpt_head, gpt_entry ** pgpt_pte);
96 
97 static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc,
98 				gpt_header * pgpt_head);
99 
100 static int is_pte_valid(gpt_entry * pte);
101 
102 static char *print_efiname(gpt_entry *pte)
103 {
104 	static char name[PARTNAME_SZ + 1];
105 	int i;
106 	for (i = 0; i < PARTNAME_SZ; i++) {
107 		u8 c;
108 		c = pte->partition_name[i] & 0xff;
109 		c = (c && !isprint(c)) ? '.' : c;
110 		name[i] = c;
111 	}
112 	name[PARTNAME_SZ] = 0;
113 	return name;
114 }
115 
116 static void uuid_string(unsigned char *uuid, char *str)
117 {
118 	static const u8 le[16] = {3, 2, 1, 0, 5, 4, 7, 6, 8, 9, 10, 11,
119 				  12, 13, 14, 15};
120 	int i;
121 
122 	for (i = 0; i < 16; i++) {
123 		sprintf(str, "%02x", uuid[le[i]]);
124 		str += 2;
125 		switch (i) {
126 		case 3:
127 		case 5:
128 		case 7:
129 		case 9:
130 			*str++ = '-';
131 			break;
132 		}
133 	}
134 }
135 
136 static efi_guid_t system_guid = PARTITION_SYSTEM_GUID;
137 
138 static inline int is_bootable(gpt_entry *p)
139 {
140 	return p->attributes.fields.legacy_bios_bootable ||
141 		!memcmp(&(p->partition_type_guid), &system_guid,
142 			sizeof(efi_guid_t));
143 }
144 
145 /*
146  * Public Functions (include/part.h)
147  */
148 
149 void print_part_efi(block_dev_desc_t * dev_desc)
150 {
151 	ALLOC_CACHE_ALIGN_BUFFER(gpt_header, gpt_head, 1);
152 	gpt_entry *gpt_pte = NULL;
153 	int i = 0;
154 	char uuid[37];
155 
156 	if (!dev_desc) {
157 		printf("%s: Invalid Argument(s)\n", __func__);
158 		return;
159 	}
160 	/* This function validates AND fills in the GPT header and PTE */
161 	if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
162 			 gpt_head, &gpt_pte) != 1) {
163 		printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
164 		return;
165 	}
166 
167 	debug("%s: gpt-entry at %p\n", __func__, gpt_pte);
168 
169 	printf("Part\tStart LBA\tEnd LBA\t\tName\n");
170 	printf("\tAttributes\n");
171 	printf("\tType UUID\n");
172 	printf("\tPartition UUID\n");
173 
174 	for (i = 0; i < le32_to_int(gpt_head->num_partition_entries); i++) {
175 		/* Stop at the first non valid PTE */
176 		if (!is_pte_valid(&gpt_pte[i]))
177 			break;
178 
179 		printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1),
180 			le64_to_int(gpt_pte[i].starting_lba),
181 			le64_to_int(gpt_pte[i].ending_lba),
182 			print_efiname(&gpt_pte[i]));
183 		printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw);
184 		uuid_string(gpt_pte[i].partition_type_guid.b, uuid);
185 		printf("\ttype:\t%s\n", uuid);
186 		uuid_string(gpt_pte[i].unique_partition_guid.b, uuid);
187 		printf("\tuuid:\t%s\n", uuid);
188 	}
189 
190 	/* Remember to free pte */
191 	free(gpt_pte);
192 	return;
193 }
194 
195 int get_partition_info_efi(block_dev_desc_t * dev_desc, int part,
196 				disk_partition_t * info)
197 {
198 	ALLOC_CACHE_ALIGN_BUFFER(gpt_header, gpt_head, 1);
199 	gpt_entry *gpt_pte = NULL;
200 
201 	/* "part" argument must be at least 1 */
202 	if (!dev_desc || !info || part < 1) {
203 		printf("%s: Invalid Argument(s)\n", __func__);
204 		return -1;
205 	}
206 
207 	/* This function validates AND fills in the GPT header and PTE */
208 	if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
209 			gpt_head, &gpt_pte) != 1) {
210 		printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
211 		return -1;
212 	}
213 
214 	if (part > le32_to_int(gpt_head->num_partition_entries) ||
215 	    !is_pte_valid(&gpt_pte[part - 1])) {
216 		printf("%s: *** ERROR: Invalid partition number %d ***\n",
217 			__func__, part);
218 		return -1;
219 	}
220 
221 	/* The ulong casting limits the maximum disk size to 2 TB */
222 	info->start = (ulong) le64_to_int(gpt_pte[part - 1].starting_lba);
223 	/* The ending LBA is inclusive, to calculate size, add 1 to it */
224 	info->size = ((ulong)le64_to_int(gpt_pte[part - 1].ending_lba) + 1)
225 		     - info->start;
226 	info->blksz = GPT_BLOCK_SIZE;
227 
228 	sprintf((char *)info->name, "%s",
229 			print_efiname(&gpt_pte[part - 1]));
230 	sprintf((char *)info->type, "U-Boot");
231 	info->bootable = is_bootable(&gpt_pte[part - 1]);
232 #ifdef CONFIG_PARTITION_UUIDS
233 	uuid_string(gpt_pte[part - 1].unique_partition_guid.b, info->uuid);
234 #endif
235 
236 	debug("%s: start 0x%lX, size 0x%lX, name %s", __func__,
237 		info->start, info->size, info->name);
238 
239 	/* Remember to free pte */
240 	free(gpt_pte);
241 	return 0;
242 }
243 
244 int test_part_efi(block_dev_desc_t * dev_desc)
245 {
246 	ALLOC_CACHE_ALIGN_BUFFER(legacy_mbr, legacymbr, 1);
247 
248 	/* Read legacy MBR from block 0 and validate it */
249 	if ((dev_desc->block_read(dev_desc->dev, 0, 1, (ulong *)legacymbr) != 1)
250 		|| (is_pmbr_valid(legacymbr) != 1)) {
251 		return -1;
252 	}
253 	return 0;
254 }
255 
256 /*
257  * Private functions
258  */
259 /*
260  * pmbr_part_valid(): Check for EFI partition signature
261  *
262  * Returns: 1 if EFI GPT partition type is found.
263  */
264 static int pmbr_part_valid(struct partition *part)
265 {
266 	if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT &&
267 		le32_to_int(part->start_sect) == 1UL) {
268 		return 1;
269 	}
270 
271 	return 0;
272 }
273 
274 /*
275  * is_pmbr_valid(): test Protective MBR for validity
276  *
277  * Returns: 1 if PMBR is valid, 0 otherwise.
278  * Validity depends on two things:
279  *  1) MSDOS signature is in the last two bytes of the MBR
280  *  2) One partition of type 0xEE is found, checked by pmbr_part_valid()
281  */
282 static int is_pmbr_valid(legacy_mbr * mbr)
283 {
284 	int i = 0;
285 
286 	if (!mbr || le16_to_int(mbr->signature) != MSDOS_MBR_SIGNATURE) {
287 		return 0;
288 	}
289 
290 	for (i = 0; i < 4; i++) {
291 		if (pmbr_part_valid(&mbr->partition_record[i])) {
292 			return 1;
293 		}
294 	}
295 	return 0;
296 }
297 
298 /**
299  * is_gpt_valid() - tests one GPT header and PTEs for validity
300  *
301  * lba is the logical block address of the GPT header to test
302  * gpt is a GPT header ptr, filled on return.
303  * ptes is a PTEs ptr, filled on return.
304  *
305  * Description: returns 1 if valid,  0 on error.
306  * If valid, returns pointers to PTEs.
307  */
308 static int is_gpt_valid(block_dev_desc_t * dev_desc, unsigned long long lba,
309 			gpt_header * pgpt_head, gpt_entry ** pgpt_pte)
310 {
311 	unsigned char crc32_backup[4] = { 0 };
312 	unsigned long calc_crc32;
313 	unsigned long long lastlba;
314 
315 	if (!dev_desc || !pgpt_head) {
316 		printf("%s: Invalid Argument(s)\n", __func__);
317 		return 0;
318 	}
319 
320 	/* Read GPT Header from device */
321 	if (dev_desc->block_read(dev_desc->dev, lba, 1, pgpt_head) != 1) {
322 		printf("*** ERROR: Can't read GPT header ***\n");
323 		return 0;
324 	}
325 
326 	/* Check the GPT header signature */
327 	if (le64_to_int(pgpt_head->signature) != GPT_HEADER_SIGNATURE) {
328 		printf("GUID Partition Table Header signature is wrong:"
329 			"0x%llX != 0x%llX\n",
330 			(unsigned long long)le64_to_int(pgpt_head->signature),
331 			(unsigned long long)GPT_HEADER_SIGNATURE);
332 		return 0;
333 	}
334 
335 	/* Check the GUID Partition Table CRC */
336 	memcpy(crc32_backup, pgpt_head->header_crc32, sizeof(crc32_backup));
337 	memset(pgpt_head->header_crc32, 0, sizeof(pgpt_head->header_crc32));
338 
339 	calc_crc32 = efi_crc32((const unsigned char *)pgpt_head,
340 		le32_to_int(pgpt_head->header_size));
341 
342 	memcpy(pgpt_head->header_crc32, crc32_backup, sizeof(crc32_backup));
343 
344 	if (calc_crc32 != le32_to_int(crc32_backup)) {
345 		printf("GUID Partition Table Header CRC is wrong:"
346 			"0x%08lX != 0x%08lX\n",
347 			le32_to_int(crc32_backup), calc_crc32);
348 		return 0;
349 	}
350 
351 	/* Check that the my_lba entry points to the LBA that contains the GPT */
352 	if (le64_to_int(pgpt_head->my_lba) != lba) {
353 		printf("GPT: my_lba incorrect: %llX != %llX\n",
354 			(unsigned long long)le64_to_int(pgpt_head->my_lba),
355 			(unsigned long long)lba);
356 		return 0;
357 	}
358 
359 	/* Check the first_usable_lba and last_usable_lba are within the disk. */
360 	lastlba = (unsigned long long)dev_desc->lba;
361 	if (le64_to_int(pgpt_head->first_usable_lba) > lastlba) {
362 		printf("GPT: first_usable_lba incorrect: %llX > %llX\n",
363 			le64_to_int(pgpt_head->first_usable_lba), lastlba);
364 		return 0;
365 	}
366 	if (le64_to_int(pgpt_head->last_usable_lba) > lastlba) {
367 		printf("GPT: last_usable_lba incorrect: %llX > %llX\n",
368 			le64_to_int(pgpt_head->last_usable_lba), lastlba);
369 		return 0;
370 	}
371 
372 	debug("GPT: first_usable_lba: %llX last_usable_lba %llX last lba %llX\n",
373 		le64_to_int(pgpt_head->first_usable_lba),
374 		le64_to_int(pgpt_head->last_usable_lba), lastlba);
375 
376 	/* Read and allocate Partition Table Entries */
377 	*pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head);
378 	if (*pgpt_pte == NULL) {
379 		printf("GPT: Failed to allocate memory for PTE\n");
380 		return 0;
381 	}
382 
383 	/* Check the GUID Partition Table Entry Array CRC */
384 	calc_crc32 = efi_crc32((const unsigned char *)*pgpt_pte,
385 		le32_to_int(pgpt_head->num_partition_entries) *
386 		le32_to_int(pgpt_head->sizeof_partition_entry));
387 
388 	if (calc_crc32 != le32_to_int(pgpt_head->partition_entry_array_crc32)) {
389 		printf("GUID Partition Table Entry Array CRC is wrong:"
390 			"0x%08lX != 0x%08lX\n",
391 			le32_to_int(pgpt_head->partition_entry_array_crc32),
392 			calc_crc32);
393 
394 		free(*pgpt_pte);
395 		return 0;
396 	}
397 
398 	/* We're done, all's well */
399 	return 1;
400 }
401 
402 /**
403  * alloc_read_gpt_entries(): reads partition entries from disk
404  * @dev_desc
405  * @gpt - GPT header
406  *
407  * Description: Returns ptes on success,  NULL on error.
408  * Allocates space for PTEs based on information found in @gpt.
409  * Notes: remember to free pte when you're done!
410  */
411 static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc,
412 					 gpt_header * pgpt_head)
413 {
414 	size_t count = 0;
415 	gpt_entry *pte = NULL;
416 
417 	if (!dev_desc || !pgpt_head) {
418 		printf("%s: Invalid Argument(s)\n", __func__);
419 		return NULL;
420 	}
421 
422 	count = le32_to_int(pgpt_head->num_partition_entries) *
423 		le32_to_int(pgpt_head->sizeof_partition_entry);
424 
425 	debug("%s: count = %lu * %lu = %zu\n", __func__,
426 		le32_to_int(pgpt_head->num_partition_entries),
427 		le32_to_int(pgpt_head->sizeof_partition_entry), count);
428 
429 	/* Allocate memory for PTE, remember to FREE */
430 	if (count != 0) {
431 		pte = memalign(ARCH_DMA_MINALIGN, count);
432 	}
433 
434 	if (count == 0 || pte == NULL) {
435 		printf("%s: ERROR: Can't allocate 0x%zX "
436 		       "bytes for GPT Entries\n",
437 			__func__, count);
438 		return NULL;
439 	}
440 
441 	/* Read GPT Entries from device */
442 	if (dev_desc->block_read (dev_desc->dev,
443 		(unsigned long)le64_to_int(pgpt_head->partition_entry_lba),
444 		(lbaint_t) (count / GPT_BLOCK_SIZE), pte)
445 		!= (count / GPT_BLOCK_SIZE)) {
446 
447 		printf("*** ERROR: Can't read GPT Entries ***\n");
448 		free(pte);
449 		return NULL;
450 	}
451 	return pte;
452 }
453 
454 /**
455  * is_pte_valid(): validates a single Partition Table Entry
456  * @gpt_entry - Pointer to a single Partition Table Entry
457  *
458  * Description: returns 1 if valid,  0 on error.
459  */
460 static int is_pte_valid(gpt_entry * pte)
461 {
462 	efi_guid_t unused_guid;
463 
464 	if (!pte) {
465 		printf("%s: Invalid Argument(s)\n", __func__);
466 		return 0;
467 	}
468 
469 	/* Only one validation for now:
470 	 * The GUID Partition Type != Unused Entry (ALL-ZERO)
471 	 */
472 	memset(unused_guid.b, 0, sizeof(unused_guid.b));
473 
474 	if (memcmp(pte->partition_type_guid.b, unused_guid.b,
475 		sizeof(unused_guid.b)) == 0) {
476 
477 		debug("%s: Found an unused PTE GUID at 0x%08X\n", __func__,
478 		      (unsigned int)(uintptr_t)pte);
479 
480 		return 0;
481 	} else {
482 		return 1;
483 	}
484 }
485 #endif
486