1 /* 2 * Copyright (C) 2008 RuggedCom, Inc. 3 * Richard Retanubun <RichardRetanubun@RuggedCom.com> 4 * 5 * SPDX-License-Identifier: GPL-2.0+ 6 */ 7 8 /* 9 * Problems with CONFIG_SYS_64BIT_LBA: 10 * 11 * struct disk_partition.start in include/part.h is sized as ulong. 12 * When CONFIG_SYS_64BIT_LBA is activated, lbaint_t changes from ulong to uint64_t. 13 * For now, it is cast back to ulong at assignment. 14 * 15 * This limits the maximum size of addressable storage to < 2 Terra Bytes 16 */ 17 #include <asm/unaligned.h> 18 #include <common.h> 19 #include <command.h> 20 #include <ide.h> 21 #include <malloc.h> 22 #include <part_efi.h> 23 #include <linux/ctype.h> 24 25 DECLARE_GLOBAL_DATA_PTR; 26 27 #ifdef HAVE_BLOCK_DEVICE 28 /** 29 * efi_crc32() - EFI version of crc32 function 30 * @buf: buffer to calculate crc32 of 31 * @len - length of buf 32 * 33 * Description: Returns EFI-style CRC32 value for @buf 34 */ 35 static inline u32 efi_crc32(const void *buf, u32 len) 36 { 37 return crc32(0, buf, len); 38 } 39 40 /* 41 * Private function prototypes 42 */ 43 44 static int pmbr_part_valid(struct partition *part); 45 static int is_pmbr_valid(legacy_mbr * mbr); 46 static int is_gpt_valid(block_dev_desc_t * dev_desc, unsigned long long lba, 47 gpt_header * pgpt_head, gpt_entry ** pgpt_pte); 48 static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc, 49 gpt_header * pgpt_head); 50 static int is_pte_valid(gpt_entry * pte); 51 52 static char *print_efiname(gpt_entry *pte) 53 { 54 static char name[PARTNAME_SZ + 1]; 55 int i; 56 for (i = 0; i < PARTNAME_SZ; i++) { 57 u8 c; 58 c = pte->partition_name[i] & 0xff; 59 c = (c && !isprint(c)) ? '.' : c; 60 name[i] = c; 61 } 62 name[PARTNAME_SZ] = 0; 63 return name; 64 } 65 66 static void uuid_string(unsigned char *uuid, char *str) 67 { 68 static const u8 le[16] = {3, 2, 1, 0, 5, 4, 7, 6, 8, 9, 10, 11, 69 12, 13, 14, 15}; 70 int i; 71 72 for (i = 0; i < 16; i++) { 73 sprintf(str, "%02x", uuid[le[i]]); 74 str += 2; 75 switch (i) { 76 case 3: 77 case 5: 78 case 7: 79 case 9: 80 *str++ = '-'; 81 break; 82 } 83 } 84 } 85 86 static efi_guid_t system_guid = PARTITION_SYSTEM_GUID; 87 88 static inline int is_bootable(gpt_entry *p) 89 { 90 return p->attributes.fields.legacy_bios_bootable || 91 !memcmp(&(p->partition_type_guid), &system_guid, 92 sizeof(efi_guid_t)); 93 } 94 95 #ifdef CONFIG_EFI_PARTITION 96 /* 97 * Public Functions (include/part.h) 98 */ 99 100 void print_part_efi(block_dev_desc_t * dev_desc) 101 { 102 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz); 103 gpt_entry *gpt_pte = NULL; 104 int i = 0; 105 char uuid[37]; 106 107 if (!dev_desc) { 108 printf("%s: Invalid Argument(s)\n", __func__); 109 return; 110 } 111 /* This function validates AND fills in the GPT header and PTE */ 112 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, 113 gpt_head, &gpt_pte) != 1) { 114 printf("%s: *** ERROR: Invalid GPT ***\n", __func__); 115 return; 116 } 117 118 debug("%s: gpt-entry at %p\n", __func__, gpt_pte); 119 120 printf("Part\tStart LBA\tEnd LBA\t\tName\n"); 121 printf("\tAttributes\n"); 122 printf("\tType UUID\n"); 123 printf("\tPartition UUID\n"); 124 125 for (i = 0; i < le32_to_cpu(gpt_head->num_partition_entries); i++) { 126 /* Stop at the first non valid PTE */ 127 if (!is_pte_valid(&gpt_pte[i])) 128 break; 129 130 printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1), 131 le64_to_cpu(gpt_pte[i].starting_lba), 132 le64_to_cpu(gpt_pte[i].ending_lba), 133 print_efiname(&gpt_pte[i])); 134 printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw); 135 uuid_string(gpt_pte[i].partition_type_guid.b, uuid); 136 printf("\ttype:\t%s\n", uuid); 137 uuid_string(gpt_pte[i].unique_partition_guid.b, uuid); 138 printf("\tuuid:\t%s\n", uuid); 139 } 140 141 /* Remember to free pte */ 142 free(gpt_pte); 143 return; 144 } 145 146 int get_partition_info_efi(block_dev_desc_t * dev_desc, int part, 147 disk_partition_t * info) 148 { 149 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz); 150 gpt_entry *gpt_pte = NULL; 151 152 /* "part" argument must be at least 1 */ 153 if (!dev_desc || !info || part < 1) { 154 printf("%s: Invalid Argument(s)\n", __func__); 155 return -1; 156 } 157 158 /* This function validates AND fills in the GPT header and PTE */ 159 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, 160 gpt_head, &gpt_pte) != 1) { 161 printf("%s: *** ERROR: Invalid GPT ***\n", __func__); 162 return -1; 163 } 164 165 if (part > le32_to_cpu(gpt_head->num_partition_entries) || 166 !is_pte_valid(&gpt_pte[part - 1])) { 167 debug("%s: *** ERROR: Invalid partition number %d ***\n", 168 __func__, part); 169 free(gpt_pte); 170 return -1; 171 } 172 173 /* The ulong casting limits the maximum disk size to 2 TB */ 174 info->start = (u64)le64_to_cpu(gpt_pte[part - 1].starting_lba); 175 /* The ending LBA is inclusive, to calculate size, add 1 to it */ 176 info->size = ((u64)le64_to_cpu(gpt_pte[part - 1].ending_lba) + 1) 177 - info->start; 178 info->blksz = dev_desc->blksz; 179 180 sprintf((char *)info->name, "%s", 181 print_efiname(&gpt_pte[part - 1])); 182 sprintf((char *)info->type, "U-Boot"); 183 info->bootable = is_bootable(&gpt_pte[part - 1]); 184 #ifdef CONFIG_PARTITION_UUIDS 185 uuid_string(gpt_pte[part - 1].unique_partition_guid.b, info->uuid); 186 #endif 187 188 debug("%s: start 0x" LBAF ", size 0x" LBAF ", name %s", __func__, 189 info->start, info->size, info->name); 190 191 /* Remember to free pte */ 192 free(gpt_pte); 193 return 0; 194 } 195 196 int test_part_efi(block_dev_desc_t * dev_desc) 197 { 198 ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, legacymbr, 1, dev_desc->blksz); 199 200 /* Read legacy MBR from block 0 and validate it */ 201 if ((dev_desc->block_read(dev_desc->dev, 0, 1, (ulong *)legacymbr) != 1) 202 || (is_pmbr_valid(legacymbr) != 1)) { 203 return -1; 204 } 205 return 0; 206 } 207 208 /** 209 * set_protective_mbr(): Set the EFI protective MBR 210 * @param dev_desc - block device descriptor 211 * 212 * @return - zero on success, otherwise error 213 */ 214 static int set_protective_mbr(block_dev_desc_t *dev_desc) 215 { 216 legacy_mbr *p_mbr; 217 218 /* Setup the Protective MBR */ 219 p_mbr = calloc(1, sizeof(p_mbr)); 220 if (p_mbr == NULL) { 221 printf("%s: calloc failed!\n", __func__); 222 return -1; 223 } 224 /* Append signature */ 225 p_mbr->signature = MSDOS_MBR_SIGNATURE; 226 p_mbr->partition_record[0].sys_ind = EFI_PMBR_OSTYPE_EFI_GPT; 227 p_mbr->partition_record[0].start_sect = 1; 228 p_mbr->partition_record[0].nr_sects = (u32) dev_desc->lba; 229 230 /* Write MBR sector to the MMC device */ 231 if (dev_desc->block_write(dev_desc->dev, 0, 1, p_mbr) != 1) { 232 printf("** Can't write to device %d **\n", 233 dev_desc->dev); 234 free(p_mbr); 235 return -1; 236 } 237 238 free(p_mbr); 239 return 0; 240 } 241 242 /** 243 * string_uuid(); Convert UUID stored as string to bytes 244 * 245 * @param uuid - UUID represented as string 246 * @param dst - GUID buffer 247 * 248 * @return return 0 on successful conversion 249 */ 250 static int string_uuid(char *uuid, u8 *dst) 251 { 252 efi_guid_t guid; 253 u16 b, c, d; 254 u64 e; 255 u32 a; 256 u8 *p; 257 u8 i; 258 259 const u8 uuid_str_len = 36; 260 261 /* The UUID is written in text: */ 262 /* 1 9 14 19 24 */ 263 /* xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx */ 264 265 debug("%s: uuid: %s\n", __func__, uuid); 266 267 if (strlen(uuid) != uuid_str_len) 268 return -1; 269 270 for (i = 0; i < uuid_str_len; i++) { 271 if ((i == 8) || (i == 13) || (i == 18) || (i == 23)) { 272 if (uuid[i] != '-') 273 return -1; 274 } else { 275 if (!isxdigit(uuid[i])) 276 return -1; 277 } 278 } 279 280 a = (u32)simple_strtoul(uuid, NULL, 16); 281 b = (u16)simple_strtoul(uuid + 9, NULL, 16); 282 c = (u16)simple_strtoul(uuid + 14, NULL, 16); 283 d = (u16)simple_strtoul(uuid + 19, NULL, 16); 284 e = (u64)simple_strtoull(uuid + 24, NULL, 16); 285 286 p = (u8 *) &e; 287 guid = EFI_GUID(a, b, c, d >> 8, d & 0xFF, 288 *(p + 5), *(p + 4), *(p + 3), 289 *(p + 2), *(p + 1) , *p); 290 291 memcpy(dst, guid.b, sizeof(efi_guid_t)); 292 293 return 0; 294 } 295 296 int write_gpt_table(block_dev_desc_t *dev_desc, 297 gpt_header *gpt_h, gpt_entry *gpt_e) 298 { 299 const int pte_blk_cnt = BLOCK_CNT((gpt_h->num_partition_entries 300 * sizeof(gpt_entry)), dev_desc); 301 u32 calc_crc32; 302 u64 val; 303 304 debug("max lba: %x\n", (u32) dev_desc->lba); 305 /* Setup the Protective MBR */ 306 if (set_protective_mbr(dev_desc) < 0) 307 goto err; 308 309 /* Generate CRC for the Primary GPT Header */ 310 calc_crc32 = efi_crc32((const unsigned char *)gpt_e, 311 le32_to_cpu(gpt_h->num_partition_entries) * 312 le32_to_cpu(gpt_h->sizeof_partition_entry)); 313 gpt_h->partition_entry_array_crc32 = cpu_to_le32(calc_crc32); 314 315 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 316 le32_to_cpu(gpt_h->header_size)); 317 gpt_h->header_crc32 = cpu_to_le32(calc_crc32); 318 319 /* Write the First GPT to the block right after the Legacy MBR */ 320 if (dev_desc->block_write(dev_desc->dev, 1, 1, gpt_h) != 1) 321 goto err; 322 323 if (dev_desc->block_write(dev_desc->dev, 2, pte_blk_cnt, gpt_e) 324 != pte_blk_cnt) 325 goto err; 326 327 /* recalculate the values for the Second GPT Header */ 328 val = le64_to_cpu(gpt_h->my_lba); 329 gpt_h->my_lba = gpt_h->alternate_lba; 330 gpt_h->alternate_lba = cpu_to_le64(val); 331 gpt_h->header_crc32 = 0; 332 333 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 334 le32_to_cpu(gpt_h->header_size)); 335 gpt_h->header_crc32 = cpu_to_le32(calc_crc32); 336 337 if (dev_desc->block_write(dev_desc->dev, 338 le32_to_cpu(gpt_h->last_usable_lba + 1), 339 pte_blk_cnt, gpt_e) != pte_blk_cnt) 340 goto err; 341 342 if (dev_desc->block_write(dev_desc->dev, 343 le32_to_cpu(gpt_h->my_lba), 1, gpt_h) != 1) 344 goto err; 345 346 debug("GPT successfully written to block device!\n"); 347 return 0; 348 349 err: 350 printf("** Can't write to device %d **\n", dev_desc->dev); 351 return -1; 352 } 353 354 int gpt_fill_pte(gpt_header *gpt_h, gpt_entry *gpt_e, 355 disk_partition_t *partitions, int parts) 356 { 357 u32 offset = (u32)le32_to_cpu(gpt_h->first_usable_lba); 358 ulong start; 359 int i, k; 360 size_t efiname_len, dosname_len; 361 #ifdef CONFIG_PARTITION_UUIDS 362 char *str_uuid; 363 #endif 364 365 for (i = 0; i < parts; i++) { 366 /* partition starting lba */ 367 start = partitions[i].start; 368 if (start && (start < offset)) { 369 printf("Partition overlap\n"); 370 return -1; 371 } 372 if (start) { 373 gpt_e[i].starting_lba = cpu_to_le64(start); 374 offset = start + partitions[i].size; 375 } else { 376 gpt_e[i].starting_lba = cpu_to_le64(offset); 377 offset += partitions[i].size; 378 } 379 if (offset >= gpt_h->last_usable_lba) { 380 printf("Partitions layout exceds disk size\n"); 381 return -1; 382 } 383 /* partition ending lba */ 384 if ((i == parts - 1) && (partitions[i].size == 0)) 385 /* extend the last partition to maximuim */ 386 gpt_e[i].ending_lba = gpt_h->last_usable_lba; 387 else 388 gpt_e[i].ending_lba = cpu_to_le64(offset - 1); 389 390 /* partition type GUID */ 391 memcpy(gpt_e[i].partition_type_guid.b, 392 &PARTITION_BASIC_DATA_GUID, 16); 393 394 #ifdef CONFIG_PARTITION_UUIDS 395 str_uuid = partitions[i].uuid; 396 if (string_uuid(str_uuid, gpt_e[i].unique_partition_guid.b)) { 397 printf("Partition no. %d: invalid guid: %s\n", 398 i, str_uuid); 399 return -1; 400 } 401 #endif 402 403 /* partition attributes */ 404 memset(&gpt_e[i].attributes, 0, 405 sizeof(gpt_entry_attributes)); 406 407 /* partition name */ 408 efiname_len = sizeof(gpt_e[i].partition_name) 409 / sizeof(efi_char16_t); 410 dosname_len = sizeof(partitions[i].name); 411 412 memset(gpt_e[i].partition_name, 0, 413 sizeof(gpt_e[i].partition_name)); 414 415 for (k = 0; k < min(dosname_len, efiname_len); k++) 416 gpt_e[i].partition_name[k] = 417 (efi_char16_t)(partitions[i].name[k]); 418 419 debug("%s: name: %s offset[%d]: 0x%x size[%d]: 0x" LBAF "\n", 420 __func__, partitions[i].name, i, 421 offset, i, partitions[i].size); 422 } 423 424 return 0; 425 } 426 427 int gpt_fill_header(block_dev_desc_t *dev_desc, gpt_header *gpt_h, 428 char *str_guid, int parts_count) 429 { 430 gpt_h->signature = cpu_to_le64(GPT_HEADER_SIGNATURE); 431 gpt_h->revision = cpu_to_le32(GPT_HEADER_REVISION_V1); 432 gpt_h->header_size = cpu_to_le32(sizeof(gpt_header)); 433 gpt_h->my_lba = cpu_to_le64(1); 434 gpt_h->alternate_lba = cpu_to_le64(dev_desc->lba - 1); 435 gpt_h->first_usable_lba = cpu_to_le64(34); 436 gpt_h->last_usable_lba = cpu_to_le64(dev_desc->lba - 34); 437 gpt_h->partition_entry_lba = cpu_to_le64(2); 438 gpt_h->num_partition_entries = cpu_to_le32(GPT_ENTRY_NUMBERS); 439 gpt_h->sizeof_partition_entry = cpu_to_le32(sizeof(gpt_entry)); 440 gpt_h->header_crc32 = 0; 441 gpt_h->partition_entry_array_crc32 = 0; 442 443 if (string_uuid(str_guid, gpt_h->disk_guid.b)) 444 return -1; 445 446 return 0; 447 } 448 449 int gpt_restore(block_dev_desc_t *dev_desc, char *str_disk_guid, 450 disk_partition_t *partitions, int parts_count) 451 { 452 int ret; 453 454 gpt_header *gpt_h = calloc(1, PAD_TO_BLOCKSIZE(sizeof(gpt_header), 455 dev_desc)); 456 gpt_entry *gpt_e; 457 458 if (gpt_h == NULL) { 459 printf("%s: calloc failed!\n", __func__); 460 return -1; 461 } 462 463 gpt_e = calloc(1, PAD_TO_BLOCKSIZE(GPT_ENTRY_NUMBERS 464 * sizeof(gpt_entry), 465 dev_desc)); 466 if (gpt_e == NULL) { 467 printf("%s: calloc failed!\n", __func__); 468 free(gpt_h); 469 return -1; 470 } 471 472 /* Generate Primary GPT header (LBA1) */ 473 ret = gpt_fill_header(dev_desc, gpt_h, str_disk_guid, parts_count); 474 if (ret) 475 goto err; 476 477 /* Generate partition entries */ 478 ret = gpt_fill_pte(gpt_h, gpt_e, partitions, parts_count); 479 if (ret) 480 goto err; 481 482 /* Write GPT partition table */ 483 ret = write_gpt_table(dev_desc, gpt_h, gpt_e); 484 485 err: 486 free(gpt_e); 487 free(gpt_h); 488 return ret; 489 } 490 #endif 491 492 /* 493 * Private functions 494 */ 495 /* 496 * pmbr_part_valid(): Check for EFI partition signature 497 * 498 * Returns: 1 if EFI GPT partition type is found. 499 */ 500 static int pmbr_part_valid(struct partition *part) 501 { 502 if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT && 503 get_unaligned_le32(&part->start_sect) == 1UL) { 504 return 1; 505 } 506 507 return 0; 508 } 509 510 /* 511 * is_pmbr_valid(): test Protective MBR for validity 512 * 513 * Returns: 1 if PMBR is valid, 0 otherwise. 514 * Validity depends on two things: 515 * 1) MSDOS signature is in the last two bytes of the MBR 516 * 2) One partition of type 0xEE is found, checked by pmbr_part_valid() 517 */ 518 static int is_pmbr_valid(legacy_mbr * mbr) 519 { 520 int i = 0; 521 522 if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE) 523 return 0; 524 525 for (i = 0; i < 4; i++) { 526 if (pmbr_part_valid(&mbr->partition_record[i])) { 527 return 1; 528 } 529 } 530 return 0; 531 } 532 533 /** 534 * is_gpt_valid() - tests one GPT header and PTEs for validity 535 * 536 * lba is the logical block address of the GPT header to test 537 * gpt is a GPT header ptr, filled on return. 538 * ptes is a PTEs ptr, filled on return. 539 * 540 * Description: returns 1 if valid, 0 on error. 541 * If valid, returns pointers to PTEs. 542 */ 543 static int is_gpt_valid(block_dev_desc_t * dev_desc, unsigned long long lba, 544 gpt_header * pgpt_head, gpt_entry ** pgpt_pte) 545 { 546 u32 crc32_backup = 0; 547 u32 calc_crc32; 548 unsigned long long lastlba; 549 550 if (!dev_desc || !pgpt_head) { 551 printf("%s: Invalid Argument(s)\n", __func__); 552 return 0; 553 } 554 555 /* Read GPT Header from device */ 556 if (dev_desc->block_read(dev_desc->dev, lba, 1, pgpt_head) != 1) { 557 printf("*** ERROR: Can't read GPT header ***\n"); 558 return 0; 559 } 560 561 /* Check the GPT header signature */ 562 if (le64_to_cpu(pgpt_head->signature) != GPT_HEADER_SIGNATURE) { 563 printf("GUID Partition Table Header signature is wrong:" 564 "0x%llX != 0x%llX\n", 565 le64_to_cpu(pgpt_head->signature), 566 GPT_HEADER_SIGNATURE); 567 return 0; 568 } 569 570 /* Check the GUID Partition Table CRC */ 571 memcpy(&crc32_backup, &pgpt_head->header_crc32, sizeof(crc32_backup)); 572 memset(&pgpt_head->header_crc32, 0, sizeof(pgpt_head->header_crc32)); 573 574 calc_crc32 = efi_crc32((const unsigned char *)pgpt_head, 575 le32_to_cpu(pgpt_head->header_size)); 576 577 memcpy(&pgpt_head->header_crc32, &crc32_backup, sizeof(crc32_backup)); 578 579 if (calc_crc32 != le32_to_cpu(crc32_backup)) { 580 printf("GUID Partition Table Header CRC is wrong:" 581 "0x%x != 0x%x\n", 582 le32_to_cpu(crc32_backup), calc_crc32); 583 return 0; 584 } 585 586 /* Check that the my_lba entry points to the LBA that contains the GPT */ 587 if (le64_to_cpu(pgpt_head->my_lba) != lba) { 588 printf("GPT: my_lba incorrect: %llX != %llX\n", 589 le64_to_cpu(pgpt_head->my_lba), 590 lba); 591 return 0; 592 } 593 594 /* Check the first_usable_lba and last_usable_lba are within the disk. */ 595 lastlba = (unsigned long long)dev_desc->lba; 596 if (le64_to_cpu(pgpt_head->first_usable_lba) > lastlba) { 597 printf("GPT: first_usable_lba incorrect: %llX > %llX\n", 598 le64_to_cpu(pgpt_head->first_usable_lba), lastlba); 599 return 0; 600 } 601 if (le64_to_cpu(pgpt_head->last_usable_lba) > lastlba) { 602 printf("GPT: last_usable_lba incorrect: %llX > %llX\n", 603 (u64) le64_to_cpu(pgpt_head->last_usable_lba), lastlba); 604 return 0; 605 } 606 607 debug("GPT: first_usable_lba: %llX last_usable_lba %llX last lba %llX\n", 608 le64_to_cpu(pgpt_head->first_usable_lba), 609 le64_to_cpu(pgpt_head->last_usable_lba), lastlba); 610 611 /* Read and allocate Partition Table Entries */ 612 *pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head); 613 if (*pgpt_pte == NULL) { 614 printf("GPT: Failed to allocate memory for PTE\n"); 615 return 0; 616 } 617 618 /* Check the GUID Partition Table Entry Array CRC */ 619 calc_crc32 = efi_crc32((const unsigned char *)*pgpt_pte, 620 le32_to_cpu(pgpt_head->num_partition_entries) * 621 le32_to_cpu(pgpt_head->sizeof_partition_entry)); 622 623 if (calc_crc32 != le32_to_cpu(pgpt_head->partition_entry_array_crc32)) { 624 printf("GUID Partition Table Entry Array CRC is wrong:" 625 "0x%x != 0x%x\n", 626 le32_to_cpu(pgpt_head->partition_entry_array_crc32), 627 calc_crc32); 628 629 free(*pgpt_pte); 630 return 0; 631 } 632 633 /* We're done, all's well */ 634 return 1; 635 } 636 637 /** 638 * alloc_read_gpt_entries(): reads partition entries from disk 639 * @dev_desc 640 * @gpt - GPT header 641 * 642 * Description: Returns ptes on success, NULL on error. 643 * Allocates space for PTEs based on information found in @gpt. 644 * Notes: remember to free pte when you're done! 645 */ 646 static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc, 647 gpt_header * pgpt_head) 648 { 649 size_t count = 0, blk_cnt; 650 gpt_entry *pte = NULL; 651 652 if (!dev_desc || !pgpt_head) { 653 printf("%s: Invalid Argument(s)\n", __func__); 654 return NULL; 655 } 656 657 count = le32_to_cpu(pgpt_head->num_partition_entries) * 658 le32_to_cpu(pgpt_head->sizeof_partition_entry); 659 660 debug("%s: count = %u * %u = %zu\n", __func__, 661 (u32) le32_to_cpu(pgpt_head->num_partition_entries), 662 (u32) le32_to_cpu(pgpt_head->sizeof_partition_entry), count); 663 664 /* Allocate memory for PTE, remember to FREE */ 665 if (count != 0) { 666 pte = memalign(ARCH_DMA_MINALIGN, 667 PAD_TO_BLOCKSIZE(count, dev_desc)); 668 } 669 670 if (count == 0 || pte == NULL) { 671 printf("%s: ERROR: Can't allocate 0x%zX " 672 "bytes for GPT Entries\n", 673 __func__, count); 674 return NULL; 675 } 676 677 /* Read GPT Entries from device */ 678 blk_cnt = BLOCK_CNT(count, dev_desc); 679 if (dev_desc->block_read (dev_desc->dev, 680 le64_to_cpu(pgpt_head->partition_entry_lba), 681 (lbaint_t) (blk_cnt), pte) 682 != blk_cnt) { 683 684 printf("*** ERROR: Can't read GPT Entries ***\n"); 685 free(pte); 686 return NULL; 687 } 688 return pte; 689 } 690 691 /** 692 * is_pte_valid(): validates a single Partition Table Entry 693 * @gpt_entry - Pointer to a single Partition Table Entry 694 * 695 * Description: returns 1 if valid, 0 on error. 696 */ 697 static int is_pte_valid(gpt_entry * pte) 698 { 699 efi_guid_t unused_guid; 700 701 if (!pte) { 702 printf("%s: Invalid Argument(s)\n", __func__); 703 return 0; 704 } 705 706 /* Only one validation for now: 707 * The GUID Partition Type != Unused Entry (ALL-ZERO) 708 */ 709 memset(unused_guid.b, 0, sizeof(unused_guid.b)); 710 711 if (memcmp(pte->partition_type_guid.b, unused_guid.b, 712 sizeof(unused_guid.b)) == 0) { 713 714 debug("%s: Found an unused PTE GUID at 0x%08X\n", __func__, 715 (unsigned int)(uintptr_t)pte); 716 717 return 0; 718 } else { 719 return 1; 720 } 721 } 722 #endif 723