1 /* 2 * Copyright (C) 2008 RuggedCom, Inc. 3 * Richard Retanubun <RichardRetanubun@RuggedCom.com> 4 * 5 * SPDX-License-Identifier: GPL-2.0+ 6 */ 7 8 /* 9 * NOTE: 10 * when CONFIG_SYS_64BIT_LBA is not defined, lbaint_t is 32 bits; this 11 * limits the maximum size of addressable storage to < 2 Terra Bytes 12 */ 13 #include <asm/unaligned.h> 14 #include <common.h> 15 #include <command.h> 16 #include <ide.h> 17 #include <inttypes.h> 18 #include <malloc.h> 19 #include <memalign.h> 20 #include <part_efi.h> 21 #include <linux/ctype.h> 22 23 DECLARE_GLOBAL_DATA_PTR; 24 25 #ifdef HAVE_BLOCK_DEVICE 26 /** 27 * efi_crc32() - EFI version of crc32 function 28 * @buf: buffer to calculate crc32 of 29 * @len - length of buf 30 * 31 * Description: Returns EFI-style CRC32 value for @buf 32 */ 33 static inline u32 efi_crc32(const void *buf, u32 len) 34 { 35 return crc32(0, buf, len); 36 } 37 38 /* 39 * Private function prototypes 40 */ 41 42 static int pmbr_part_valid(struct partition *part); 43 static int is_pmbr_valid(legacy_mbr * mbr); 44 static int is_gpt_valid(struct blk_desc *dev_desc, u64 lba, 45 gpt_header *pgpt_head, gpt_entry **pgpt_pte); 46 static gpt_entry *alloc_read_gpt_entries(struct blk_desc *dev_desc, 47 gpt_header *pgpt_head); 48 static int is_pte_valid(gpt_entry * pte); 49 50 static char *print_efiname(gpt_entry *pte) 51 { 52 static char name[PARTNAME_SZ + 1]; 53 int i; 54 for (i = 0; i < PARTNAME_SZ; i++) { 55 u8 c; 56 c = pte->partition_name[i] & 0xff; 57 c = (c && !isprint(c)) ? '.' : c; 58 name[i] = c; 59 } 60 name[PARTNAME_SZ] = 0; 61 return name; 62 } 63 64 static efi_guid_t system_guid = PARTITION_SYSTEM_GUID; 65 66 static inline int is_bootable(gpt_entry *p) 67 { 68 return p->attributes.fields.legacy_bios_bootable || 69 !memcmp(&(p->partition_type_guid), &system_guid, 70 sizeof(efi_guid_t)); 71 } 72 73 static int validate_gpt_header(gpt_header *gpt_h, lbaint_t lba, 74 lbaint_t lastlba) 75 { 76 uint32_t crc32_backup = 0; 77 uint32_t calc_crc32; 78 79 /* Check the GPT header signature */ 80 if (le64_to_cpu(gpt_h->signature) != GPT_HEADER_SIGNATURE) { 81 printf("%s signature is wrong: 0x%llX != 0x%llX\n", 82 "GUID Partition Table Header", 83 le64_to_cpu(gpt_h->signature), 84 GPT_HEADER_SIGNATURE); 85 return -1; 86 } 87 88 /* Check the GUID Partition Table CRC */ 89 memcpy(&crc32_backup, &gpt_h->header_crc32, sizeof(crc32_backup)); 90 memset(&gpt_h->header_crc32, 0, sizeof(gpt_h->header_crc32)); 91 92 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 93 le32_to_cpu(gpt_h->header_size)); 94 95 memcpy(&gpt_h->header_crc32, &crc32_backup, sizeof(crc32_backup)); 96 97 if (calc_crc32 != le32_to_cpu(crc32_backup)) { 98 printf("%s CRC is wrong: 0x%x != 0x%x\n", 99 "GUID Partition Table Header", 100 le32_to_cpu(crc32_backup), calc_crc32); 101 return -1; 102 } 103 104 /* 105 * Check that the my_lba entry points to the LBA that contains the GPT 106 */ 107 if (le64_to_cpu(gpt_h->my_lba) != lba) { 108 printf("GPT: my_lba incorrect: %llX != " LBAF "\n", 109 le64_to_cpu(gpt_h->my_lba), 110 lba); 111 return -1; 112 } 113 114 /* 115 * Check that the first_usable_lba and that the last_usable_lba are 116 * within the disk. 117 */ 118 if (le64_to_cpu(gpt_h->first_usable_lba) > lastlba) { 119 printf("GPT: first_usable_lba incorrect: %llX > " LBAF "\n", 120 le64_to_cpu(gpt_h->first_usable_lba), lastlba); 121 return -1; 122 } 123 if (le64_to_cpu(gpt_h->last_usable_lba) > lastlba) { 124 printf("GPT: last_usable_lba incorrect: %llX > " LBAF "\n", 125 le64_to_cpu(gpt_h->last_usable_lba), lastlba); 126 return -1; 127 } 128 129 debug("GPT: first_usable_lba: %llX last_usable_lba: %llX last lba: " 130 LBAF "\n", le64_to_cpu(gpt_h->first_usable_lba), 131 le64_to_cpu(gpt_h->last_usable_lba), lastlba); 132 133 return 0; 134 } 135 136 static int validate_gpt_entries(gpt_header *gpt_h, gpt_entry *gpt_e) 137 { 138 uint32_t calc_crc32; 139 140 /* Check the GUID Partition Table Entry Array CRC */ 141 calc_crc32 = efi_crc32((const unsigned char *)gpt_e, 142 le32_to_cpu(gpt_h->num_partition_entries) * 143 le32_to_cpu(gpt_h->sizeof_partition_entry)); 144 145 if (calc_crc32 != le32_to_cpu(gpt_h->partition_entry_array_crc32)) { 146 printf("%s: 0x%x != 0x%x\n", 147 "GUID Partition Table Entry Array CRC is wrong", 148 le32_to_cpu(gpt_h->partition_entry_array_crc32), 149 calc_crc32); 150 return -1; 151 } 152 153 return 0; 154 } 155 156 static void prepare_backup_gpt_header(gpt_header *gpt_h) 157 { 158 uint32_t calc_crc32; 159 uint64_t val; 160 161 /* recalculate the values for the Backup GPT Header */ 162 val = le64_to_cpu(gpt_h->my_lba); 163 gpt_h->my_lba = gpt_h->alternate_lba; 164 gpt_h->alternate_lba = cpu_to_le64(val); 165 gpt_h->partition_entry_lba = 166 cpu_to_le64(le64_to_cpu(gpt_h->last_usable_lba) + 1); 167 gpt_h->header_crc32 = 0; 168 169 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 170 le32_to_cpu(gpt_h->header_size)); 171 gpt_h->header_crc32 = cpu_to_le32(calc_crc32); 172 } 173 174 #if CONFIG_IS_ENABLED(EFI_PARTITION) 175 /* 176 * Public Functions (include/part.h) 177 */ 178 179 void part_print_efi(struct blk_desc *dev_desc) 180 { 181 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz); 182 gpt_entry *gpt_pte = NULL; 183 int i = 0; 184 char uuid[37]; 185 unsigned char *uuid_bin; 186 187 /* This function validates AND fills in the GPT header and PTE */ 188 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, 189 gpt_head, &gpt_pte) != 1) { 190 printf("%s: *** ERROR: Invalid GPT ***\n", __func__); 191 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1), 192 gpt_head, &gpt_pte) != 1) { 193 printf("%s: *** ERROR: Invalid Backup GPT ***\n", 194 __func__); 195 return; 196 } else { 197 printf("%s: *** Using Backup GPT ***\n", 198 __func__); 199 } 200 } 201 202 debug("%s: gpt-entry at %p\n", __func__, gpt_pte); 203 204 printf("Part\tStart LBA\tEnd LBA\t\tName\n"); 205 printf("\tAttributes\n"); 206 printf("\tType GUID\n"); 207 printf("\tPartition GUID\n"); 208 209 for (i = 0; i < le32_to_cpu(gpt_head->num_partition_entries); i++) { 210 /* Stop at the first non valid PTE */ 211 if (!is_pte_valid(&gpt_pte[i])) 212 break; 213 214 printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1), 215 le64_to_cpu(gpt_pte[i].starting_lba), 216 le64_to_cpu(gpt_pte[i].ending_lba), 217 print_efiname(&gpt_pte[i])); 218 printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw); 219 uuid_bin = (unsigned char *)gpt_pte[i].partition_type_guid.b; 220 uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID); 221 printf("\ttype:\t%s\n", uuid); 222 #ifdef CONFIG_PARTITION_TYPE_GUID 223 if (!uuid_guid_get_str(uuid_bin, uuid)) 224 printf("\ttype:\t%s\n", uuid); 225 #endif 226 uuid_bin = (unsigned char *)gpt_pte[i].unique_partition_guid.b; 227 uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID); 228 printf("\tguid:\t%s\n", uuid); 229 } 230 231 /* Remember to free pte */ 232 free(gpt_pte); 233 return; 234 } 235 236 int part_get_info_efi(struct blk_desc *dev_desc, int part, 237 disk_partition_t *info) 238 { 239 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz); 240 gpt_entry *gpt_pte = NULL; 241 242 /* "part" argument must be at least 1 */ 243 if (part < 1) { 244 printf("%s: Invalid Argument(s)\n", __func__); 245 return -1; 246 } 247 248 /* This function validates AND fills in the GPT header and PTE */ 249 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, 250 gpt_head, &gpt_pte) != 1) { 251 printf("%s: *** ERROR: Invalid GPT ***\n", __func__); 252 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1), 253 gpt_head, &gpt_pte) != 1) { 254 printf("%s: *** ERROR: Invalid Backup GPT ***\n", 255 __func__); 256 return -1; 257 } else { 258 printf("%s: *** Using Backup GPT ***\n", 259 __func__); 260 } 261 } 262 263 if (part > le32_to_cpu(gpt_head->num_partition_entries) || 264 !is_pte_valid(&gpt_pte[part - 1])) { 265 debug("%s: *** ERROR: Invalid partition number %d ***\n", 266 __func__, part); 267 free(gpt_pte); 268 return -1; 269 } 270 271 /* The 'lbaint_t' casting may limit the maximum disk size to 2 TB */ 272 info->start = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].starting_lba); 273 /* The ending LBA is inclusive, to calculate size, add 1 to it */ 274 info->size = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].ending_lba) + 1 275 - info->start; 276 info->blksz = dev_desc->blksz; 277 278 sprintf((char *)info->name, "%s", 279 print_efiname(&gpt_pte[part - 1])); 280 strcpy((char *)info->type, "U-Boot"); 281 info->bootable = is_bootable(&gpt_pte[part - 1]); 282 #if CONFIG_IS_ENABLED(PARTITION_UUIDS) 283 uuid_bin_to_str(gpt_pte[part - 1].unique_partition_guid.b, info->uuid, 284 UUID_STR_FORMAT_GUID); 285 #endif 286 #ifdef CONFIG_PARTITION_TYPE_GUID 287 uuid_bin_to_str(gpt_pte[part - 1].partition_type_guid.b, 288 info->type_guid, UUID_STR_FORMAT_GUID); 289 #endif 290 291 debug("%s: start 0x" LBAF ", size 0x" LBAF ", name %s\n", __func__, 292 info->start, info->size, info->name); 293 294 /* Remember to free pte */ 295 free(gpt_pte); 296 return 0; 297 } 298 299 static int part_test_efi(struct blk_desc *dev_desc) 300 { 301 ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, legacymbr, 1, dev_desc->blksz); 302 303 /* Read legacy MBR from block 0 and validate it */ 304 if ((blk_dread(dev_desc, 0, 1, (ulong *)legacymbr) != 1) 305 || (is_pmbr_valid(legacymbr) != 1)) { 306 return -1; 307 } 308 return 0; 309 } 310 311 /** 312 * set_protective_mbr(): Set the EFI protective MBR 313 * @param dev_desc - block device descriptor 314 * 315 * @return - zero on success, otherwise error 316 */ 317 static int set_protective_mbr(struct blk_desc *dev_desc) 318 { 319 /* Setup the Protective MBR */ 320 ALLOC_CACHE_ALIGN_BUFFER(legacy_mbr, p_mbr, 1); 321 memset(p_mbr, 0, sizeof(*p_mbr)); 322 323 if (p_mbr == NULL) { 324 printf("%s: calloc failed!\n", __func__); 325 return -1; 326 } 327 /* Append signature */ 328 p_mbr->signature = MSDOS_MBR_SIGNATURE; 329 p_mbr->partition_record[0].sys_ind = EFI_PMBR_OSTYPE_EFI_GPT; 330 p_mbr->partition_record[0].start_sect = 1; 331 p_mbr->partition_record[0].nr_sects = (u32) dev_desc->lba - 1; 332 333 /* Write MBR sector to the MMC device */ 334 if (blk_dwrite(dev_desc, 0, 1, p_mbr) != 1) { 335 printf("** Can't write to device %d **\n", 336 dev_desc->devnum); 337 return -1; 338 } 339 340 return 0; 341 } 342 343 int write_gpt_table(struct blk_desc *dev_desc, 344 gpt_header *gpt_h, gpt_entry *gpt_e) 345 { 346 const int pte_blk_cnt = BLOCK_CNT((gpt_h->num_partition_entries 347 * sizeof(gpt_entry)), dev_desc); 348 u32 calc_crc32; 349 350 debug("max lba: %x\n", (u32) dev_desc->lba); 351 /* Setup the Protective MBR */ 352 if (set_protective_mbr(dev_desc) < 0) 353 goto err; 354 355 /* Generate CRC for the Primary GPT Header */ 356 calc_crc32 = efi_crc32((const unsigned char *)gpt_e, 357 le32_to_cpu(gpt_h->num_partition_entries) * 358 le32_to_cpu(gpt_h->sizeof_partition_entry)); 359 gpt_h->partition_entry_array_crc32 = cpu_to_le32(calc_crc32); 360 361 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 362 le32_to_cpu(gpt_h->header_size)); 363 gpt_h->header_crc32 = cpu_to_le32(calc_crc32); 364 365 /* Write the First GPT to the block right after the Legacy MBR */ 366 if (blk_dwrite(dev_desc, 1, 1, gpt_h) != 1) 367 goto err; 368 369 if (blk_dwrite(dev_desc, 2, pte_blk_cnt, gpt_e) 370 != pte_blk_cnt) 371 goto err; 372 373 prepare_backup_gpt_header(gpt_h); 374 375 if (blk_dwrite(dev_desc, (lbaint_t)le64_to_cpu(gpt_h->last_usable_lba) 376 + 1, pte_blk_cnt, gpt_e) != pte_blk_cnt) 377 goto err; 378 379 if (blk_dwrite(dev_desc, (lbaint_t)le64_to_cpu(gpt_h->my_lba), 1, 380 gpt_h) != 1) 381 goto err; 382 383 debug("GPT successfully written to block device!\n"); 384 return 0; 385 386 err: 387 printf("** Can't write to device %d **\n", dev_desc->devnum); 388 return -1; 389 } 390 391 int gpt_fill_pte(gpt_header *gpt_h, gpt_entry *gpt_e, 392 disk_partition_t *partitions, int parts) 393 { 394 lbaint_t offset = (lbaint_t)le64_to_cpu(gpt_h->first_usable_lba); 395 lbaint_t start; 396 lbaint_t last_usable_lba = (lbaint_t) 397 le64_to_cpu(gpt_h->last_usable_lba); 398 int i, k; 399 size_t efiname_len, dosname_len; 400 #if CONFIG_IS_ENABLED(PARTITION_UUIDS) 401 char *str_uuid; 402 unsigned char *bin_uuid; 403 #endif 404 #ifdef CONFIG_PARTITION_TYPE_GUID 405 char *str_type_guid; 406 unsigned char *bin_type_guid; 407 #endif 408 409 for (i = 0; i < parts; i++) { 410 /* partition starting lba */ 411 start = partitions[i].start; 412 if (start && (start < offset)) { 413 printf("Partition overlap\n"); 414 return -1; 415 } 416 if (start) { 417 gpt_e[i].starting_lba = cpu_to_le64(start); 418 offset = start + partitions[i].size; 419 } else { 420 gpt_e[i].starting_lba = cpu_to_le64(offset); 421 offset += partitions[i].size; 422 } 423 if (offset > (last_usable_lba + 1)) { 424 printf("Partitions layout exceds disk size\n"); 425 return -1; 426 } 427 /* partition ending lba */ 428 if ((i == parts - 1) && (partitions[i].size == 0)) 429 /* extend the last partition to maximuim */ 430 gpt_e[i].ending_lba = gpt_h->last_usable_lba; 431 else 432 gpt_e[i].ending_lba = cpu_to_le64(offset - 1); 433 434 #ifdef CONFIG_PARTITION_TYPE_GUID 435 str_type_guid = partitions[i].type_guid; 436 bin_type_guid = gpt_e[i].partition_type_guid.b; 437 if (strlen(str_type_guid)) { 438 if (uuid_str_to_bin(str_type_guid, bin_type_guid, 439 UUID_STR_FORMAT_GUID)) { 440 printf("Partition no. %d: invalid type guid: %s\n", 441 i, str_type_guid); 442 return -1; 443 } 444 } else { 445 /* default partition type GUID */ 446 memcpy(bin_type_guid, 447 &PARTITION_BASIC_DATA_GUID, 16); 448 } 449 #else 450 /* partition type GUID */ 451 memcpy(gpt_e[i].partition_type_guid.b, 452 &PARTITION_BASIC_DATA_GUID, 16); 453 #endif 454 455 #if CONFIG_IS_ENABLED(PARTITION_UUIDS) 456 str_uuid = partitions[i].uuid; 457 bin_uuid = gpt_e[i].unique_partition_guid.b; 458 459 if (uuid_str_to_bin(str_uuid, bin_uuid, UUID_STR_FORMAT_STD)) { 460 printf("Partition no. %d: invalid guid: %s\n", 461 i, str_uuid); 462 return -1; 463 } 464 #endif 465 466 /* partition attributes */ 467 memset(&gpt_e[i].attributes, 0, 468 sizeof(gpt_entry_attributes)); 469 470 if (partitions[i].bootable) 471 gpt_e[i].attributes.fields.legacy_bios_bootable = 1; 472 473 /* partition name */ 474 efiname_len = sizeof(gpt_e[i].partition_name) 475 / sizeof(efi_char16_t); 476 dosname_len = sizeof(partitions[i].name); 477 478 memset(gpt_e[i].partition_name, 0, 479 sizeof(gpt_e[i].partition_name)); 480 481 for (k = 0; k < min(dosname_len, efiname_len); k++) 482 gpt_e[i].partition_name[k] = 483 (efi_char16_t)(partitions[i].name[k]); 484 485 debug("%s: name: %s offset[%d]: 0x" LBAF 486 " size[%d]: 0x" LBAF "\n", 487 __func__, partitions[i].name, i, 488 offset, i, partitions[i].size); 489 } 490 491 return 0; 492 } 493 494 int gpt_fill_header(struct blk_desc *dev_desc, gpt_header *gpt_h, 495 char *str_guid, int parts_count) 496 { 497 gpt_h->signature = cpu_to_le64(GPT_HEADER_SIGNATURE); 498 gpt_h->revision = cpu_to_le32(GPT_HEADER_REVISION_V1); 499 gpt_h->header_size = cpu_to_le32(sizeof(gpt_header)); 500 gpt_h->my_lba = cpu_to_le64(1); 501 gpt_h->alternate_lba = cpu_to_le64(dev_desc->lba - 1); 502 gpt_h->first_usable_lba = cpu_to_le64(34); 503 gpt_h->last_usable_lba = cpu_to_le64(dev_desc->lba - 34); 504 gpt_h->partition_entry_lba = cpu_to_le64(2); 505 gpt_h->num_partition_entries = cpu_to_le32(GPT_ENTRY_NUMBERS); 506 gpt_h->sizeof_partition_entry = cpu_to_le32(sizeof(gpt_entry)); 507 gpt_h->header_crc32 = 0; 508 gpt_h->partition_entry_array_crc32 = 0; 509 510 if (uuid_str_to_bin(str_guid, gpt_h->disk_guid.b, UUID_STR_FORMAT_GUID)) 511 return -1; 512 513 return 0; 514 } 515 516 int gpt_restore(struct blk_desc *dev_desc, char *str_disk_guid, 517 disk_partition_t *partitions, int parts_count) 518 { 519 int ret; 520 521 gpt_header *gpt_h = calloc(1, PAD_TO_BLOCKSIZE(sizeof(gpt_header), 522 dev_desc)); 523 gpt_entry *gpt_e; 524 525 if (gpt_h == NULL) { 526 printf("%s: calloc failed!\n", __func__); 527 return -1; 528 } 529 530 gpt_e = calloc(1, PAD_TO_BLOCKSIZE(GPT_ENTRY_NUMBERS 531 * sizeof(gpt_entry), 532 dev_desc)); 533 if (gpt_e == NULL) { 534 printf("%s: calloc failed!\n", __func__); 535 free(gpt_h); 536 return -1; 537 } 538 539 /* Generate Primary GPT header (LBA1) */ 540 ret = gpt_fill_header(dev_desc, gpt_h, str_disk_guid, parts_count); 541 if (ret) 542 goto err; 543 544 /* Generate partition entries */ 545 ret = gpt_fill_pte(gpt_h, gpt_e, partitions, parts_count); 546 if (ret) 547 goto err; 548 549 /* Write GPT partition table */ 550 ret = write_gpt_table(dev_desc, gpt_h, gpt_e); 551 552 err: 553 free(gpt_e); 554 free(gpt_h); 555 return ret; 556 } 557 558 static void gpt_convert_efi_name_to_char(char *s, efi_char16_t *es, int n) 559 { 560 char *ess = (char *)es; 561 int i, j; 562 563 memset(s, '\0', n); 564 565 for (i = 0, j = 0; j < n; i += 2, j++) { 566 s[j] = ess[i]; 567 if (!ess[i]) 568 return; 569 } 570 } 571 572 int gpt_verify_headers(struct blk_desc *dev_desc, gpt_header *gpt_head, 573 gpt_entry **gpt_pte) 574 { 575 /* 576 * This function validates AND 577 * fills in the GPT header and PTE 578 */ 579 if (is_gpt_valid(dev_desc, 580 GPT_PRIMARY_PARTITION_TABLE_LBA, 581 gpt_head, gpt_pte) != 1) { 582 printf("%s: *** ERROR: Invalid GPT ***\n", 583 __func__); 584 return -1; 585 } 586 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1), 587 gpt_head, gpt_pte) != 1) { 588 printf("%s: *** ERROR: Invalid Backup GPT ***\n", 589 __func__); 590 return -1; 591 } 592 593 return 0; 594 } 595 596 int gpt_verify_partitions(struct blk_desc *dev_desc, 597 disk_partition_t *partitions, int parts, 598 gpt_header *gpt_head, gpt_entry **gpt_pte) 599 { 600 char efi_str[PARTNAME_SZ + 1]; 601 u64 gpt_part_size; 602 gpt_entry *gpt_e; 603 int ret, i; 604 605 ret = gpt_verify_headers(dev_desc, gpt_head, gpt_pte); 606 if (ret) 607 return ret; 608 609 gpt_e = *gpt_pte; 610 611 for (i = 0; i < parts; i++) { 612 if (i == gpt_head->num_partition_entries) { 613 error("More partitions than allowed!\n"); 614 return -1; 615 } 616 617 /* Check if GPT and ENV partition names match */ 618 gpt_convert_efi_name_to_char(efi_str, gpt_e[i].partition_name, 619 PARTNAME_SZ + 1); 620 621 debug("%s: part: %2d name - GPT: %16s, ENV: %16s ", 622 __func__, i, efi_str, partitions[i].name); 623 624 if (strncmp(efi_str, (char *)partitions[i].name, 625 sizeof(partitions->name))) { 626 error("Partition name: %s does not match %s!\n", 627 efi_str, (char *)partitions[i].name); 628 return -1; 629 } 630 631 /* Check if GPT and ENV sizes match */ 632 gpt_part_size = le64_to_cpu(gpt_e[i].ending_lba) - 633 le64_to_cpu(gpt_e[i].starting_lba) + 1; 634 debug("size(LBA) - GPT: %8llu, ENV: %8llu ", 635 (unsigned long long)gpt_part_size, 636 (unsigned long long)partitions[i].size); 637 638 if (le64_to_cpu(gpt_part_size) != partitions[i].size) { 639 /* We do not check the extend partition size */ 640 if ((i == parts - 1) && (partitions[i].size == 0)) 641 continue; 642 643 error("Partition %s size: %llu does not match %llu!\n", 644 efi_str, (unsigned long long)gpt_part_size, 645 (unsigned long long)partitions[i].size); 646 return -1; 647 } 648 649 /* 650 * Start address is optional - check only if provided 651 * in '$partition' variable 652 */ 653 if (!partitions[i].start) { 654 debug("\n"); 655 continue; 656 } 657 658 /* Check if GPT and ENV start LBAs match */ 659 debug("start LBA - GPT: %8llu, ENV: %8llu\n", 660 le64_to_cpu(gpt_e[i].starting_lba), 661 (unsigned long long)partitions[i].start); 662 663 if (le64_to_cpu(gpt_e[i].starting_lba) != partitions[i].start) { 664 error("Partition %s start: %llu does not match %llu!\n", 665 efi_str, le64_to_cpu(gpt_e[i].starting_lba), 666 (unsigned long long)partitions[i].start); 667 return -1; 668 } 669 } 670 671 return 0; 672 } 673 674 int is_valid_gpt_buf(struct blk_desc *dev_desc, void *buf) 675 { 676 gpt_header *gpt_h; 677 gpt_entry *gpt_e; 678 679 /* determine start of GPT Header in the buffer */ 680 gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA * 681 dev_desc->blksz); 682 if (validate_gpt_header(gpt_h, GPT_PRIMARY_PARTITION_TABLE_LBA, 683 dev_desc->lba)) 684 return -1; 685 686 /* determine start of GPT Entries in the buffer */ 687 gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) * 688 dev_desc->blksz); 689 if (validate_gpt_entries(gpt_h, gpt_e)) 690 return -1; 691 692 return 0; 693 } 694 695 int write_mbr_and_gpt_partitions(struct blk_desc *dev_desc, void *buf) 696 { 697 gpt_header *gpt_h; 698 gpt_entry *gpt_e; 699 int gpt_e_blk_cnt; 700 lbaint_t lba; 701 int cnt; 702 703 if (is_valid_gpt_buf(dev_desc, buf)) 704 return -1; 705 706 /* determine start of GPT Header in the buffer */ 707 gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA * 708 dev_desc->blksz); 709 710 /* determine start of GPT Entries in the buffer */ 711 gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) * 712 dev_desc->blksz); 713 gpt_e_blk_cnt = BLOCK_CNT((le32_to_cpu(gpt_h->num_partition_entries) * 714 le32_to_cpu(gpt_h->sizeof_partition_entry)), 715 dev_desc); 716 717 /* write MBR */ 718 lba = 0; /* MBR is always at 0 */ 719 cnt = 1; /* MBR (1 block) */ 720 if (blk_dwrite(dev_desc, lba, cnt, buf) != cnt) { 721 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 722 __func__, "MBR", cnt, lba); 723 return 1; 724 } 725 726 /* write Primary GPT */ 727 lba = GPT_PRIMARY_PARTITION_TABLE_LBA; 728 cnt = 1; /* GPT Header (1 block) */ 729 if (blk_dwrite(dev_desc, lba, cnt, gpt_h) != cnt) { 730 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 731 __func__, "Primary GPT Header", cnt, lba); 732 return 1; 733 } 734 735 lba = le64_to_cpu(gpt_h->partition_entry_lba); 736 cnt = gpt_e_blk_cnt; 737 if (blk_dwrite(dev_desc, lba, cnt, gpt_e) != cnt) { 738 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 739 __func__, "Primary GPT Entries", cnt, lba); 740 return 1; 741 } 742 743 prepare_backup_gpt_header(gpt_h); 744 745 /* write Backup GPT */ 746 lba = le64_to_cpu(gpt_h->partition_entry_lba); 747 cnt = gpt_e_blk_cnt; 748 if (blk_dwrite(dev_desc, lba, cnt, gpt_e) != cnt) { 749 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 750 __func__, "Backup GPT Entries", cnt, lba); 751 return 1; 752 } 753 754 lba = le64_to_cpu(gpt_h->my_lba); 755 cnt = 1; /* GPT Header (1 block) */ 756 if (blk_dwrite(dev_desc, lba, cnt, gpt_h) != cnt) { 757 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 758 __func__, "Backup GPT Header", cnt, lba); 759 return 1; 760 } 761 762 return 0; 763 } 764 #endif 765 766 /* 767 * Private functions 768 */ 769 /* 770 * pmbr_part_valid(): Check for EFI partition signature 771 * 772 * Returns: 1 if EFI GPT partition type is found. 773 */ 774 static int pmbr_part_valid(struct partition *part) 775 { 776 if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT && 777 get_unaligned_le32(&part->start_sect) == 1UL) { 778 return 1; 779 } 780 781 return 0; 782 } 783 784 /* 785 * is_pmbr_valid(): test Protective MBR for validity 786 * 787 * Returns: 1 if PMBR is valid, 0 otherwise. 788 * Validity depends on two things: 789 * 1) MSDOS signature is in the last two bytes of the MBR 790 * 2) One partition of type 0xEE is found, checked by pmbr_part_valid() 791 */ 792 static int is_pmbr_valid(legacy_mbr * mbr) 793 { 794 int i = 0; 795 796 if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE) 797 return 0; 798 799 for (i = 0; i < 4; i++) { 800 if (pmbr_part_valid(&mbr->partition_record[i])) { 801 return 1; 802 } 803 } 804 return 0; 805 } 806 807 /** 808 * is_gpt_valid() - tests one GPT header and PTEs for validity 809 * 810 * lba is the logical block address of the GPT header to test 811 * gpt is a GPT header ptr, filled on return. 812 * ptes is a PTEs ptr, filled on return. 813 * 814 * Description: returns 1 if valid, 0 on error. 815 * If valid, returns pointers to PTEs. 816 */ 817 static int is_gpt_valid(struct blk_desc *dev_desc, u64 lba, 818 gpt_header *pgpt_head, gpt_entry **pgpt_pte) 819 { 820 if (!dev_desc || !pgpt_head) { 821 printf("%s: Invalid Argument(s)\n", __func__); 822 return 0; 823 } 824 825 /* Read GPT Header from device */ 826 if (blk_dread(dev_desc, (lbaint_t)lba, 1, pgpt_head) != 1) { 827 printf("*** ERROR: Can't read GPT header ***\n"); 828 return 0; 829 } 830 831 if (validate_gpt_header(pgpt_head, (lbaint_t)lba, dev_desc->lba)) 832 return 0; 833 834 /* Read and allocate Partition Table Entries */ 835 *pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head); 836 if (*pgpt_pte == NULL) { 837 printf("GPT: Failed to allocate memory for PTE\n"); 838 return 0; 839 } 840 841 if (validate_gpt_entries(pgpt_head, *pgpt_pte)) { 842 free(*pgpt_pte); 843 return 0; 844 } 845 846 /* We're done, all's well */ 847 return 1; 848 } 849 850 /** 851 * alloc_read_gpt_entries(): reads partition entries from disk 852 * @dev_desc 853 * @gpt - GPT header 854 * 855 * Description: Returns ptes on success, NULL on error. 856 * Allocates space for PTEs based on information found in @gpt. 857 * Notes: remember to free pte when you're done! 858 */ 859 static gpt_entry *alloc_read_gpt_entries(struct blk_desc *dev_desc, 860 gpt_header *pgpt_head) 861 { 862 size_t count = 0, blk_cnt; 863 lbaint_t blk; 864 gpt_entry *pte = NULL; 865 866 if (!dev_desc || !pgpt_head) { 867 printf("%s: Invalid Argument(s)\n", __func__); 868 return NULL; 869 } 870 871 count = le32_to_cpu(pgpt_head->num_partition_entries) * 872 le32_to_cpu(pgpt_head->sizeof_partition_entry); 873 874 debug("%s: count = %u * %u = %lu\n", __func__, 875 (u32) le32_to_cpu(pgpt_head->num_partition_entries), 876 (u32) le32_to_cpu(pgpt_head->sizeof_partition_entry), 877 (ulong)count); 878 879 /* Allocate memory for PTE, remember to FREE */ 880 if (count != 0) { 881 pte = memalign(ARCH_DMA_MINALIGN, 882 PAD_TO_BLOCKSIZE(count, dev_desc)); 883 } 884 885 if (count == 0 || pte == NULL) { 886 printf("%s: ERROR: Can't allocate %#lX bytes for GPT Entries\n", 887 __func__, (ulong)count); 888 return NULL; 889 } 890 891 /* Read GPT Entries from device */ 892 blk = le64_to_cpu(pgpt_head->partition_entry_lba); 893 blk_cnt = BLOCK_CNT(count, dev_desc); 894 if (blk_dread(dev_desc, blk, (lbaint_t)blk_cnt, pte) != blk_cnt) { 895 printf("*** ERROR: Can't read GPT Entries ***\n"); 896 free(pte); 897 return NULL; 898 } 899 return pte; 900 } 901 902 /** 903 * is_pte_valid(): validates a single Partition Table Entry 904 * @gpt_entry - Pointer to a single Partition Table Entry 905 * 906 * Description: returns 1 if valid, 0 on error. 907 */ 908 static int is_pte_valid(gpt_entry * pte) 909 { 910 efi_guid_t unused_guid; 911 912 if (!pte) { 913 printf("%s: Invalid Argument(s)\n", __func__); 914 return 0; 915 } 916 917 /* Only one validation for now: 918 * The GUID Partition Type != Unused Entry (ALL-ZERO) 919 */ 920 memset(unused_guid.b, 0, sizeof(unused_guid.b)); 921 922 if (memcmp(pte->partition_type_guid.b, unused_guid.b, 923 sizeof(unused_guid.b)) == 0) { 924 925 debug("%s: Found an unused PTE GUID at 0x%08X\n", __func__, 926 (unsigned int)(uintptr_t)pte); 927 928 return 0; 929 } else { 930 return 1; 931 } 932 } 933 934 /* 935 * Add an 'a_' prefix so it comes before 'dos' in the linker list. We need to 936 * check EFI first, since a DOS partition is often used as a 'protective MBR' 937 * with EFI. 938 */ 939 U_BOOT_PART_TYPE(a_efi) = { 940 .name = "EFI", 941 .part_type = PART_TYPE_EFI, 942 .max_entries = GPT_ENTRY_NUMBERS, 943 .get_info = part_get_info_ptr(part_get_info_efi), 944 .print = part_print_ptr(part_print_efi), 945 .test = part_test_efi, 946 }; 947 #endif 948