1 /* 2 * Copyright (C) 2008 RuggedCom, Inc. 3 * Richard Retanubun <RichardRetanubun@RuggedCom.com> 4 * 5 * SPDX-License-Identifier: GPL-2.0+ 6 */ 7 8 /* 9 * NOTE: 10 * when CONFIG_SYS_64BIT_LBA is not defined, lbaint_t is 32 bits; this 11 * limits the maximum size of addressable storage to < 2 Terra Bytes 12 */ 13 #include <asm/unaligned.h> 14 #include <common.h> 15 #include <command.h> 16 #include <ide.h> 17 #include <inttypes.h> 18 #include <malloc.h> 19 #include <memalign.h> 20 #include <part_efi.h> 21 #include <linux/ctype.h> 22 23 DECLARE_GLOBAL_DATA_PTR; 24 25 #ifdef HAVE_BLOCK_DEVICE 26 /** 27 * efi_crc32() - EFI version of crc32 function 28 * @buf: buffer to calculate crc32 of 29 * @len - length of buf 30 * 31 * Description: Returns EFI-style CRC32 value for @buf 32 */ 33 static inline u32 efi_crc32(const void *buf, u32 len) 34 { 35 return crc32(0, buf, len); 36 } 37 38 /* 39 * Private function prototypes 40 */ 41 42 static int pmbr_part_valid(struct partition *part); 43 static int is_pmbr_valid(legacy_mbr * mbr); 44 static int is_gpt_valid(struct blk_desc *dev_desc, u64 lba, 45 gpt_header *pgpt_head, gpt_entry **pgpt_pte); 46 static gpt_entry *alloc_read_gpt_entries(struct blk_desc *dev_desc, 47 gpt_header *pgpt_head); 48 static int is_pte_valid(gpt_entry * pte); 49 50 static char *print_efiname(gpt_entry *pte) 51 { 52 static char name[PARTNAME_SZ + 1]; 53 int i; 54 for (i = 0; i < PARTNAME_SZ; i++) { 55 u8 c; 56 c = pte->partition_name[i] & 0xff; 57 c = (c && !isprint(c)) ? '.' : c; 58 name[i] = c; 59 } 60 name[PARTNAME_SZ] = 0; 61 return name; 62 } 63 64 static efi_guid_t system_guid = PARTITION_SYSTEM_GUID; 65 66 static inline int is_bootable(gpt_entry *p) 67 { 68 return p->attributes.fields.legacy_bios_bootable || 69 !memcmp(&(p->partition_type_guid), &system_guid, 70 sizeof(efi_guid_t)); 71 } 72 73 static int validate_gpt_header(gpt_header *gpt_h, lbaint_t lba, 74 lbaint_t lastlba) 75 { 76 uint32_t crc32_backup = 0; 77 uint32_t calc_crc32; 78 79 /* Check the GPT header signature */ 80 if (le64_to_cpu(gpt_h->signature) != GPT_HEADER_SIGNATURE) { 81 printf("%s signature is wrong: 0x%llX != 0x%llX\n", 82 "GUID Partition Table Header", 83 le64_to_cpu(gpt_h->signature), 84 GPT_HEADER_SIGNATURE); 85 return -1; 86 } 87 88 /* Check the GUID Partition Table CRC */ 89 memcpy(&crc32_backup, &gpt_h->header_crc32, sizeof(crc32_backup)); 90 memset(&gpt_h->header_crc32, 0, sizeof(gpt_h->header_crc32)); 91 92 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 93 le32_to_cpu(gpt_h->header_size)); 94 95 memcpy(&gpt_h->header_crc32, &crc32_backup, sizeof(crc32_backup)); 96 97 if (calc_crc32 != le32_to_cpu(crc32_backup)) { 98 printf("%s CRC is wrong: 0x%x != 0x%x\n", 99 "GUID Partition Table Header", 100 le32_to_cpu(crc32_backup), calc_crc32); 101 return -1; 102 } 103 104 /* 105 * Check that the my_lba entry points to the LBA that contains the GPT 106 */ 107 if (le64_to_cpu(gpt_h->my_lba) != lba) { 108 printf("GPT: my_lba incorrect: %llX != " LBAF "\n", 109 le64_to_cpu(gpt_h->my_lba), 110 lba); 111 return -1; 112 } 113 114 /* 115 * Check that the first_usable_lba and that the last_usable_lba are 116 * within the disk. 117 */ 118 if (le64_to_cpu(gpt_h->first_usable_lba) > lastlba) { 119 printf("GPT: first_usable_lba incorrect: %llX > " LBAF "\n", 120 le64_to_cpu(gpt_h->first_usable_lba), lastlba); 121 return -1; 122 } 123 if (le64_to_cpu(gpt_h->last_usable_lba) > lastlba) { 124 printf("GPT: last_usable_lba incorrect: %llX > " LBAF "\n", 125 le64_to_cpu(gpt_h->last_usable_lba), lastlba); 126 return -1; 127 } 128 129 debug("GPT: first_usable_lba: %llX last_usable_lba: %llX last lba: " 130 LBAF "\n", le64_to_cpu(gpt_h->first_usable_lba), 131 le64_to_cpu(gpt_h->last_usable_lba), lastlba); 132 133 return 0; 134 } 135 136 static int validate_gpt_entries(gpt_header *gpt_h, gpt_entry *gpt_e) 137 { 138 uint32_t calc_crc32; 139 140 /* Check the GUID Partition Table Entry Array CRC */ 141 calc_crc32 = efi_crc32((const unsigned char *)gpt_e, 142 le32_to_cpu(gpt_h->num_partition_entries) * 143 le32_to_cpu(gpt_h->sizeof_partition_entry)); 144 145 if (calc_crc32 != le32_to_cpu(gpt_h->partition_entry_array_crc32)) { 146 printf("%s: 0x%x != 0x%x\n", 147 "GUID Partition Table Entry Array CRC is wrong", 148 le32_to_cpu(gpt_h->partition_entry_array_crc32), 149 calc_crc32); 150 return -1; 151 } 152 153 return 0; 154 } 155 156 static void prepare_backup_gpt_header(gpt_header *gpt_h) 157 { 158 uint32_t calc_crc32; 159 uint64_t val; 160 161 /* recalculate the values for the Backup GPT Header */ 162 val = le64_to_cpu(gpt_h->my_lba); 163 gpt_h->my_lba = gpt_h->alternate_lba; 164 gpt_h->alternate_lba = cpu_to_le64(val); 165 gpt_h->partition_entry_lba = 166 cpu_to_le64(le64_to_cpu(gpt_h->last_usable_lba) + 1); 167 gpt_h->header_crc32 = 0; 168 169 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 170 le32_to_cpu(gpt_h->header_size)); 171 gpt_h->header_crc32 = cpu_to_le32(calc_crc32); 172 } 173 174 #ifdef CONFIG_EFI_PARTITION 175 /* 176 * Public Functions (include/part.h) 177 */ 178 179 void part_print_efi(struct blk_desc *dev_desc) 180 { 181 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz); 182 gpt_entry *gpt_pte = NULL; 183 int i = 0; 184 char uuid[37]; 185 unsigned char *uuid_bin; 186 187 /* This function validates AND fills in the GPT header and PTE */ 188 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, 189 gpt_head, &gpt_pte) != 1) { 190 printf("%s: *** ERROR: Invalid GPT ***\n", __func__); 191 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1), 192 gpt_head, &gpt_pte) != 1) { 193 printf("%s: *** ERROR: Invalid Backup GPT ***\n", 194 __func__); 195 return; 196 } else { 197 printf("%s: *** Using Backup GPT ***\n", 198 __func__); 199 } 200 } 201 202 debug("%s: gpt-entry at %p\n", __func__, gpt_pte); 203 204 printf("Part\tStart LBA\tEnd LBA\t\tName\n"); 205 printf("\tAttributes\n"); 206 printf("\tType GUID\n"); 207 printf("\tPartition GUID\n"); 208 209 for (i = 0; i < le32_to_cpu(gpt_head->num_partition_entries); i++) { 210 /* Stop at the first non valid PTE */ 211 if (!is_pte_valid(&gpt_pte[i])) 212 break; 213 214 printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1), 215 le64_to_cpu(gpt_pte[i].starting_lba), 216 le64_to_cpu(gpt_pte[i].ending_lba), 217 print_efiname(&gpt_pte[i])); 218 printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw); 219 uuid_bin = (unsigned char *)gpt_pte[i].partition_type_guid.b; 220 uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID); 221 printf("\ttype:\t%s\n", uuid); 222 #ifdef CONFIG_PARTITION_TYPE_GUID 223 if (!uuid_guid_get_str(uuid_bin, uuid)) 224 printf("\ttype:\t%s\n", uuid); 225 #endif 226 uuid_bin = (unsigned char *)gpt_pte[i].unique_partition_guid.b; 227 uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID); 228 printf("\tguid:\t%s\n", uuid); 229 } 230 231 /* Remember to free pte */ 232 free(gpt_pte); 233 return; 234 } 235 236 int part_get_info_efi(struct blk_desc *dev_desc, int part, 237 disk_partition_t *info) 238 { 239 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz); 240 gpt_entry *gpt_pte = NULL; 241 242 /* "part" argument must be at least 1 */ 243 if (part < 1) { 244 printf("%s: Invalid Argument(s)\n", __func__); 245 return -1; 246 } 247 248 /* This function validates AND fills in the GPT header and PTE */ 249 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, 250 gpt_head, &gpt_pte) != 1) { 251 printf("%s: *** ERROR: Invalid GPT ***\n", __func__); 252 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1), 253 gpt_head, &gpt_pte) != 1) { 254 printf("%s: *** ERROR: Invalid Backup GPT ***\n", 255 __func__); 256 return -1; 257 } else { 258 printf("%s: *** Using Backup GPT ***\n", 259 __func__); 260 } 261 } 262 263 if (part > le32_to_cpu(gpt_head->num_partition_entries) || 264 !is_pte_valid(&gpt_pte[part - 1])) { 265 debug("%s: *** ERROR: Invalid partition number %d ***\n", 266 __func__, part); 267 free(gpt_pte); 268 return -1; 269 } 270 271 /* The 'lbaint_t' casting may limit the maximum disk size to 2 TB */ 272 info->start = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].starting_lba); 273 /* The ending LBA is inclusive, to calculate size, add 1 to it */ 274 info->size = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].ending_lba) + 1 275 - info->start; 276 info->blksz = dev_desc->blksz; 277 278 sprintf((char *)info->name, "%s", 279 print_efiname(&gpt_pte[part - 1])); 280 strcpy((char *)info->type, "U-Boot"); 281 info->bootable = is_bootable(&gpt_pte[part - 1]); 282 #ifdef CONFIG_PARTITION_UUIDS 283 uuid_bin_to_str(gpt_pte[part - 1].unique_partition_guid.b, info->uuid, 284 UUID_STR_FORMAT_GUID); 285 #endif 286 #ifdef CONFIG_PARTITION_TYPE_GUID 287 uuid_bin_to_str(gpt_pte[part - 1].partition_type_guid.b, 288 info->type_guid, UUID_STR_FORMAT_GUID); 289 #endif 290 291 debug("%s: start 0x" LBAF ", size 0x" LBAF ", name %s\n", __func__, 292 info->start, info->size, info->name); 293 294 /* Remember to free pte */ 295 free(gpt_pte); 296 return 0; 297 } 298 299 int part_get_info_efi_by_name(struct blk_desc *dev_desc, 300 const char *name, disk_partition_t *info) 301 { 302 int ret; 303 int i; 304 for (i = 1; i < GPT_ENTRY_NUMBERS; i++) { 305 ret = part_get_info_efi(dev_desc, i, info); 306 if (ret != 0) { 307 /* no more entries in table */ 308 return -1; 309 } 310 if (strcmp(name, (const char *)info->name) == 0) { 311 /* matched */ 312 return 0; 313 } 314 } 315 return -2; 316 } 317 318 static int part_test_efi(struct blk_desc *dev_desc) 319 { 320 ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, legacymbr, 1, dev_desc->blksz); 321 322 /* Read legacy MBR from block 0 and validate it */ 323 if ((blk_dread(dev_desc, 0, 1, (ulong *)legacymbr) != 1) 324 || (is_pmbr_valid(legacymbr) != 1)) { 325 return -1; 326 } 327 return 0; 328 } 329 330 /** 331 * set_protective_mbr(): Set the EFI protective MBR 332 * @param dev_desc - block device descriptor 333 * 334 * @return - zero on success, otherwise error 335 */ 336 static int set_protective_mbr(struct blk_desc *dev_desc) 337 { 338 /* Setup the Protective MBR */ 339 ALLOC_CACHE_ALIGN_BUFFER(legacy_mbr, p_mbr, 1); 340 memset(p_mbr, 0, sizeof(*p_mbr)); 341 342 if (p_mbr == NULL) { 343 printf("%s: calloc failed!\n", __func__); 344 return -1; 345 } 346 /* Append signature */ 347 p_mbr->signature = MSDOS_MBR_SIGNATURE; 348 p_mbr->partition_record[0].sys_ind = EFI_PMBR_OSTYPE_EFI_GPT; 349 p_mbr->partition_record[0].start_sect = 1; 350 p_mbr->partition_record[0].nr_sects = (u32) dev_desc->lba - 1; 351 352 /* Write MBR sector to the MMC device */ 353 if (blk_dwrite(dev_desc, 0, 1, p_mbr) != 1) { 354 printf("** Can't write to device %d **\n", 355 dev_desc->devnum); 356 return -1; 357 } 358 359 return 0; 360 } 361 362 int write_gpt_table(struct blk_desc *dev_desc, 363 gpt_header *gpt_h, gpt_entry *gpt_e) 364 { 365 const int pte_blk_cnt = BLOCK_CNT((gpt_h->num_partition_entries 366 * sizeof(gpt_entry)), dev_desc); 367 u32 calc_crc32; 368 369 debug("max lba: %x\n", (u32) dev_desc->lba); 370 /* Setup the Protective MBR */ 371 if (set_protective_mbr(dev_desc) < 0) 372 goto err; 373 374 /* Generate CRC for the Primary GPT Header */ 375 calc_crc32 = efi_crc32((const unsigned char *)gpt_e, 376 le32_to_cpu(gpt_h->num_partition_entries) * 377 le32_to_cpu(gpt_h->sizeof_partition_entry)); 378 gpt_h->partition_entry_array_crc32 = cpu_to_le32(calc_crc32); 379 380 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 381 le32_to_cpu(gpt_h->header_size)); 382 gpt_h->header_crc32 = cpu_to_le32(calc_crc32); 383 384 /* Write the First GPT to the block right after the Legacy MBR */ 385 if (blk_dwrite(dev_desc, 1, 1, gpt_h) != 1) 386 goto err; 387 388 if (blk_dwrite(dev_desc, 2, pte_blk_cnt, gpt_e) 389 != pte_blk_cnt) 390 goto err; 391 392 prepare_backup_gpt_header(gpt_h); 393 394 if (blk_dwrite(dev_desc, (lbaint_t)le64_to_cpu(gpt_h->last_usable_lba) 395 + 1, pte_blk_cnt, gpt_e) != pte_blk_cnt) 396 goto err; 397 398 if (blk_dwrite(dev_desc, (lbaint_t)le64_to_cpu(gpt_h->my_lba), 1, 399 gpt_h) != 1) 400 goto err; 401 402 debug("GPT successfully written to block device!\n"); 403 return 0; 404 405 err: 406 printf("** Can't write to device %d **\n", dev_desc->devnum); 407 return -1; 408 } 409 410 int gpt_fill_pte(gpt_header *gpt_h, gpt_entry *gpt_e, 411 disk_partition_t *partitions, int parts) 412 { 413 lbaint_t offset = (lbaint_t)le64_to_cpu(gpt_h->first_usable_lba); 414 lbaint_t start; 415 lbaint_t last_usable_lba = (lbaint_t) 416 le64_to_cpu(gpt_h->last_usable_lba); 417 int i, k; 418 size_t efiname_len, dosname_len; 419 #ifdef CONFIG_PARTITION_UUIDS 420 char *str_uuid; 421 unsigned char *bin_uuid; 422 #endif 423 #ifdef CONFIG_PARTITION_TYPE_GUID 424 char *str_type_guid; 425 unsigned char *bin_type_guid; 426 #endif 427 428 for (i = 0; i < parts; i++) { 429 /* partition starting lba */ 430 start = partitions[i].start; 431 if (start && (start < offset)) { 432 printf("Partition overlap\n"); 433 return -1; 434 } 435 if (start) { 436 gpt_e[i].starting_lba = cpu_to_le64(start); 437 offset = start + partitions[i].size; 438 } else { 439 gpt_e[i].starting_lba = cpu_to_le64(offset); 440 offset += partitions[i].size; 441 } 442 if (offset > (last_usable_lba + 1)) { 443 printf("Partitions layout exceds disk size\n"); 444 return -1; 445 } 446 /* partition ending lba */ 447 if ((i == parts - 1) && (partitions[i].size == 0)) 448 /* extend the last partition to maximuim */ 449 gpt_e[i].ending_lba = gpt_h->last_usable_lba; 450 else 451 gpt_e[i].ending_lba = cpu_to_le64(offset - 1); 452 453 #ifdef CONFIG_PARTITION_TYPE_GUID 454 str_type_guid = partitions[i].type_guid; 455 bin_type_guid = gpt_e[i].partition_type_guid.b; 456 if (strlen(str_type_guid)) { 457 if (uuid_str_to_bin(str_type_guid, bin_type_guid, 458 UUID_STR_FORMAT_GUID)) { 459 printf("Partition no. %d: invalid type guid: %s\n", 460 i, str_type_guid); 461 return -1; 462 } 463 } else { 464 /* default partition type GUID */ 465 memcpy(bin_type_guid, 466 &PARTITION_BASIC_DATA_GUID, 16); 467 } 468 #else 469 /* partition type GUID */ 470 memcpy(gpt_e[i].partition_type_guid.b, 471 &PARTITION_BASIC_DATA_GUID, 16); 472 #endif 473 474 #ifdef CONFIG_PARTITION_UUIDS 475 str_uuid = partitions[i].uuid; 476 bin_uuid = gpt_e[i].unique_partition_guid.b; 477 478 if (uuid_str_to_bin(str_uuid, bin_uuid, UUID_STR_FORMAT_STD)) { 479 printf("Partition no. %d: invalid guid: %s\n", 480 i, str_uuid); 481 return -1; 482 } 483 #endif 484 485 /* partition attributes */ 486 memset(&gpt_e[i].attributes, 0, 487 sizeof(gpt_entry_attributes)); 488 489 if (partitions[i].bootable) 490 gpt_e[i].attributes.fields.legacy_bios_bootable = 1; 491 492 /* partition name */ 493 efiname_len = sizeof(gpt_e[i].partition_name) 494 / sizeof(efi_char16_t); 495 dosname_len = sizeof(partitions[i].name); 496 497 memset(gpt_e[i].partition_name, 0, 498 sizeof(gpt_e[i].partition_name)); 499 500 for (k = 0; k < min(dosname_len, efiname_len); k++) 501 gpt_e[i].partition_name[k] = 502 (efi_char16_t)(partitions[i].name[k]); 503 504 debug("%s: name: %s offset[%d]: 0x" LBAF 505 " size[%d]: 0x" LBAF "\n", 506 __func__, partitions[i].name, i, 507 offset, i, partitions[i].size); 508 } 509 510 return 0; 511 } 512 513 int gpt_fill_header(struct blk_desc *dev_desc, gpt_header *gpt_h, 514 char *str_guid, int parts_count) 515 { 516 gpt_h->signature = cpu_to_le64(GPT_HEADER_SIGNATURE); 517 gpt_h->revision = cpu_to_le32(GPT_HEADER_REVISION_V1); 518 gpt_h->header_size = cpu_to_le32(sizeof(gpt_header)); 519 gpt_h->my_lba = cpu_to_le64(1); 520 gpt_h->alternate_lba = cpu_to_le64(dev_desc->lba - 1); 521 gpt_h->first_usable_lba = cpu_to_le64(34); 522 gpt_h->last_usable_lba = cpu_to_le64(dev_desc->lba - 34); 523 gpt_h->partition_entry_lba = cpu_to_le64(2); 524 gpt_h->num_partition_entries = cpu_to_le32(GPT_ENTRY_NUMBERS); 525 gpt_h->sizeof_partition_entry = cpu_to_le32(sizeof(gpt_entry)); 526 gpt_h->header_crc32 = 0; 527 gpt_h->partition_entry_array_crc32 = 0; 528 529 if (uuid_str_to_bin(str_guid, gpt_h->disk_guid.b, UUID_STR_FORMAT_GUID)) 530 return -1; 531 532 return 0; 533 } 534 535 int gpt_restore(struct blk_desc *dev_desc, char *str_disk_guid, 536 disk_partition_t *partitions, int parts_count) 537 { 538 int ret; 539 540 gpt_header *gpt_h = calloc(1, PAD_TO_BLOCKSIZE(sizeof(gpt_header), 541 dev_desc)); 542 gpt_entry *gpt_e; 543 544 if (gpt_h == NULL) { 545 printf("%s: calloc failed!\n", __func__); 546 return -1; 547 } 548 549 gpt_e = calloc(1, PAD_TO_BLOCKSIZE(GPT_ENTRY_NUMBERS 550 * sizeof(gpt_entry), 551 dev_desc)); 552 if (gpt_e == NULL) { 553 printf("%s: calloc failed!\n", __func__); 554 free(gpt_h); 555 return -1; 556 } 557 558 /* Generate Primary GPT header (LBA1) */ 559 ret = gpt_fill_header(dev_desc, gpt_h, str_disk_guid, parts_count); 560 if (ret) 561 goto err; 562 563 /* Generate partition entries */ 564 ret = gpt_fill_pte(gpt_h, gpt_e, partitions, parts_count); 565 if (ret) 566 goto err; 567 568 /* Write GPT partition table */ 569 ret = write_gpt_table(dev_desc, gpt_h, gpt_e); 570 571 err: 572 free(gpt_e); 573 free(gpt_h); 574 return ret; 575 } 576 577 static void gpt_convert_efi_name_to_char(char *s, efi_char16_t *es, int n) 578 { 579 char *ess = (char *)es; 580 int i, j; 581 582 memset(s, '\0', n); 583 584 for (i = 0, j = 0; j < n; i += 2, j++) { 585 s[j] = ess[i]; 586 if (!ess[i]) 587 return; 588 } 589 } 590 591 int gpt_verify_headers(struct blk_desc *dev_desc, gpt_header *gpt_head, 592 gpt_entry **gpt_pte) 593 { 594 /* 595 * This function validates AND 596 * fills in the GPT header and PTE 597 */ 598 if (is_gpt_valid(dev_desc, 599 GPT_PRIMARY_PARTITION_TABLE_LBA, 600 gpt_head, gpt_pte) != 1) { 601 printf("%s: *** ERROR: Invalid GPT ***\n", 602 __func__); 603 return -1; 604 } 605 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1), 606 gpt_head, gpt_pte) != 1) { 607 printf("%s: *** ERROR: Invalid Backup GPT ***\n", 608 __func__); 609 return -1; 610 } 611 612 return 0; 613 } 614 615 int gpt_verify_partitions(struct blk_desc *dev_desc, 616 disk_partition_t *partitions, int parts, 617 gpt_header *gpt_head, gpt_entry **gpt_pte) 618 { 619 char efi_str[PARTNAME_SZ + 1]; 620 u64 gpt_part_size; 621 gpt_entry *gpt_e; 622 int ret, i; 623 624 ret = gpt_verify_headers(dev_desc, gpt_head, gpt_pte); 625 if (ret) 626 return ret; 627 628 gpt_e = *gpt_pte; 629 630 for (i = 0; i < parts; i++) { 631 if (i == gpt_head->num_partition_entries) { 632 error("More partitions than allowed!\n"); 633 return -1; 634 } 635 636 /* Check if GPT and ENV partition names match */ 637 gpt_convert_efi_name_to_char(efi_str, gpt_e[i].partition_name, 638 PARTNAME_SZ + 1); 639 640 debug("%s: part: %2d name - GPT: %16s, ENV: %16s ", 641 __func__, i, efi_str, partitions[i].name); 642 643 if (strncmp(efi_str, (char *)partitions[i].name, 644 sizeof(partitions->name))) { 645 error("Partition name: %s does not match %s!\n", 646 efi_str, (char *)partitions[i].name); 647 return -1; 648 } 649 650 /* Check if GPT and ENV sizes match */ 651 gpt_part_size = le64_to_cpu(gpt_e[i].ending_lba) - 652 le64_to_cpu(gpt_e[i].starting_lba) + 1; 653 debug("size(LBA) - GPT: %8llu, ENV: %8llu ", 654 (unsigned long long)gpt_part_size, 655 (unsigned long long)partitions[i].size); 656 657 if (le64_to_cpu(gpt_part_size) != partitions[i].size) { 658 /* We do not check the extend partition size */ 659 if ((i == parts - 1) && (partitions[i].size == 0)) 660 continue; 661 662 error("Partition %s size: %llu does not match %llu!\n", 663 efi_str, (unsigned long long)gpt_part_size, 664 (unsigned long long)partitions[i].size); 665 return -1; 666 } 667 668 /* 669 * Start address is optional - check only if provided 670 * in '$partition' variable 671 */ 672 if (!partitions[i].start) { 673 debug("\n"); 674 continue; 675 } 676 677 /* Check if GPT and ENV start LBAs match */ 678 debug("start LBA - GPT: %8llu, ENV: %8llu\n", 679 le64_to_cpu(gpt_e[i].starting_lba), 680 (unsigned long long)partitions[i].start); 681 682 if (le64_to_cpu(gpt_e[i].starting_lba) != partitions[i].start) { 683 error("Partition %s start: %llu does not match %llu!\n", 684 efi_str, le64_to_cpu(gpt_e[i].starting_lba), 685 (unsigned long long)partitions[i].start); 686 return -1; 687 } 688 } 689 690 return 0; 691 } 692 693 int is_valid_gpt_buf(struct blk_desc *dev_desc, void *buf) 694 { 695 gpt_header *gpt_h; 696 gpt_entry *gpt_e; 697 698 /* determine start of GPT Header in the buffer */ 699 gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA * 700 dev_desc->blksz); 701 if (validate_gpt_header(gpt_h, GPT_PRIMARY_PARTITION_TABLE_LBA, 702 dev_desc->lba)) 703 return -1; 704 705 /* determine start of GPT Entries in the buffer */ 706 gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) * 707 dev_desc->blksz); 708 if (validate_gpt_entries(gpt_h, gpt_e)) 709 return -1; 710 711 return 0; 712 } 713 714 int write_mbr_and_gpt_partitions(struct blk_desc *dev_desc, void *buf) 715 { 716 gpt_header *gpt_h; 717 gpt_entry *gpt_e; 718 int gpt_e_blk_cnt; 719 lbaint_t lba; 720 int cnt; 721 722 if (is_valid_gpt_buf(dev_desc, buf)) 723 return -1; 724 725 /* determine start of GPT Header in the buffer */ 726 gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA * 727 dev_desc->blksz); 728 729 /* determine start of GPT Entries in the buffer */ 730 gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) * 731 dev_desc->blksz); 732 gpt_e_blk_cnt = BLOCK_CNT((le32_to_cpu(gpt_h->num_partition_entries) * 733 le32_to_cpu(gpt_h->sizeof_partition_entry)), 734 dev_desc); 735 736 /* write MBR */ 737 lba = 0; /* MBR is always at 0 */ 738 cnt = 1; /* MBR (1 block) */ 739 if (blk_dwrite(dev_desc, lba, cnt, buf) != cnt) { 740 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 741 __func__, "MBR", cnt, lba); 742 return 1; 743 } 744 745 /* write Primary GPT */ 746 lba = GPT_PRIMARY_PARTITION_TABLE_LBA; 747 cnt = 1; /* GPT Header (1 block) */ 748 if (blk_dwrite(dev_desc, lba, cnt, gpt_h) != cnt) { 749 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 750 __func__, "Primary GPT Header", cnt, lba); 751 return 1; 752 } 753 754 lba = le64_to_cpu(gpt_h->partition_entry_lba); 755 cnt = gpt_e_blk_cnt; 756 if (blk_dwrite(dev_desc, lba, cnt, gpt_e) != cnt) { 757 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 758 __func__, "Primary GPT Entries", cnt, lba); 759 return 1; 760 } 761 762 prepare_backup_gpt_header(gpt_h); 763 764 /* write Backup GPT */ 765 lba = le64_to_cpu(gpt_h->partition_entry_lba); 766 cnt = gpt_e_blk_cnt; 767 if (blk_dwrite(dev_desc, lba, cnt, gpt_e) != cnt) { 768 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 769 __func__, "Backup GPT Entries", cnt, lba); 770 return 1; 771 } 772 773 lba = le64_to_cpu(gpt_h->my_lba); 774 cnt = 1; /* GPT Header (1 block) */ 775 if (blk_dwrite(dev_desc, lba, cnt, gpt_h) != cnt) { 776 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 777 __func__, "Backup GPT Header", cnt, lba); 778 return 1; 779 } 780 781 return 0; 782 } 783 #endif 784 785 /* 786 * Private functions 787 */ 788 /* 789 * pmbr_part_valid(): Check for EFI partition signature 790 * 791 * Returns: 1 if EFI GPT partition type is found. 792 */ 793 static int pmbr_part_valid(struct partition *part) 794 { 795 if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT && 796 get_unaligned_le32(&part->start_sect) == 1UL) { 797 return 1; 798 } 799 800 return 0; 801 } 802 803 /* 804 * is_pmbr_valid(): test Protective MBR for validity 805 * 806 * Returns: 1 if PMBR is valid, 0 otherwise. 807 * Validity depends on two things: 808 * 1) MSDOS signature is in the last two bytes of the MBR 809 * 2) One partition of type 0xEE is found, checked by pmbr_part_valid() 810 */ 811 static int is_pmbr_valid(legacy_mbr * mbr) 812 { 813 int i = 0; 814 815 if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE) 816 return 0; 817 818 for (i = 0; i < 4; i++) { 819 if (pmbr_part_valid(&mbr->partition_record[i])) { 820 return 1; 821 } 822 } 823 return 0; 824 } 825 826 /** 827 * is_gpt_valid() - tests one GPT header and PTEs for validity 828 * 829 * lba is the logical block address of the GPT header to test 830 * gpt is a GPT header ptr, filled on return. 831 * ptes is a PTEs ptr, filled on return. 832 * 833 * Description: returns 1 if valid, 0 on error. 834 * If valid, returns pointers to PTEs. 835 */ 836 static int is_gpt_valid(struct blk_desc *dev_desc, u64 lba, 837 gpt_header *pgpt_head, gpt_entry **pgpt_pte) 838 { 839 if (!dev_desc || !pgpt_head) { 840 printf("%s: Invalid Argument(s)\n", __func__); 841 return 0; 842 } 843 844 /* Read GPT Header from device */ 845 if (blk_dread(dev_desc, (lbaint_t)lba, 1, pgpt_head) != 1) { 846 printf("*** ERROR: Can't read GPT header ***\n"); 847 return 0; 848 } 849 850 if (validate_gpt_header(pgpt_head, (lbaint_t)lba, dev_desc->lba)) 851 return 0; 852 853 /* Read and allocate Partition Table Entries */ 854 *pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head); 855 if (*pgpt_pte == NULL) { 856 printf("GPT: Failed to allocate memory for PTE\n"); 857 return 0; 858 } 859 860 if (validate_gpt_entries(pgpt_head, *pgpt_pte)) { 861 free(*pgpt_pte); 862 return 0; 863 } 864 865 /* We're done, all's well */ 866 return 1; 867 } 868 869 /** 870 * alloc_read_gpt_entries(): reads partition entries from disk 871 * @dev_desc 872 * @gpt - GPT header 873 * 874 * Description: Returns ptes on success, NULL on error. 875 * Allocates space for PTEs based on information found in @gpt. 876 * Notes: remember to free pte when you're done! 877 */ 878 static gpt_entry *alloc_read_gpt_entries(struct blk_desc *dev_desc, 879 gpt_header *pgpt_head) 880 { 881 size_t count = 0, blk_cnt; 882 lbaint_t blk; 883 gpt_entry *pte = NULL; 884 885 if (!dev_desc || !pgpt_head) { 886 printf("%s: Invalid Argument(s)\n", __func__); 887 return NULL; 888 } 889 890 count = le32_to_cpu(pgpt_head->num_partition_entries) * 891 le32_to_cpu(pgpt_head->sizeof_partition_entry); 892 893 debug("%s: count = %u * %u = %lu\n", __func__, 894 (u32) le32_to_cpu(pgpt_head->num_partition_entries), 895 (u32) le32_to_cpu(pgpt_head->sizeof_partition_entry), 896 (ulong)count); 897 898 /* Allocate memory for PTE, remember to FREE */ 899 if (count != 0) { 900 pte = memalign(ARCH_DMA_MINALIGN, 901 PAD_TO_BLOCKSIZE(count, dev_desc)); 902 } 903 904 if (count == 0 || pte == NULL) { 905 printf("%s: ERROR: Can't allocate %#lX bytes for GPT Entries\n", 906 __func__, (ulong)count); 907 return NULL; 908 } 909 910 /* Read GPT Entries from device */ 911 blk = le64_to_cpu(pgpt_head->partition_entry_lba); 912 blk_cnt = BLOCK_CNT(count, dev_desc); 913 if (blk_dread(dev_desc, blk, (lbaint_t)blk_cnt, pte) != blk_cnt) { 914 printf("*** ERROR: Can't read GPT Entries ***\n"); 915 free(pte); 916 return NULL; 917 } 918 return pte; 919 } 920 921 /** 922 * is_pte_valid(): validates a single Partition Table Entry 923 * @gpt_entry - Pointer to a single Partition Table Entry 924 * 925 * Description: returns 1 if valid, 0 on error. 926 */ 927 static int is_pte_valid(gpt_entry * pte) 928 { 929 efi_guid_t unused_guid; 930 931 if (!pte) { 932 printf("%s: Invalid Argument(s)\n", __func__); 933 return 0; 934 } 935 936 /* Only one validation for now: 937 * The GUID Partition Type != Unused Entry (ALL-ZERO) 938 */ 939 memset(unused_guid.b, 0, sizeof(unused_guid.b)); 940 941 if (memcmp(pte->partition_type_guid.b, unused_guid.b, 942 sizeof(unused_guid.b)) == 0) { 943 944 debug("%s: Found an unused PTE GUID at 0x%08X\n", __func__, 945 (unsigned int)(uintptr_t)pte); 946 947 return 0; 948 } else { 949 return 1; 950 } 951 } 952 953 /* 954 * Add an 'a_' prefix so it comes before 'dos' in the linker list. We need to 955 * check EFI first, since a DOS partition is often used as a 'protective MBR' 956 * with EFI. 957 */ 958 U_BOOT_PART_TYPE(a_efi) = { 959 .name = "EFI", 960 .part_type = PART_TYPE_EFI, 961 .get_info = part_get_info_ptr(part_get_info_efi), 962 .print = part_print_ptr(part_print_efi), 963 .test = part_test_efi, 964 }; 965 #endif 966