1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2008 RuggedCom, Inc. 4 * Richard Retanubun <RichardRetanubun@RuggedCom.com> 5 */ 6 7 /* 8 * NOTE: 9 * when CONFIG_SYS_64BIT_LBA is not defined, lbaint_t is 32 bits; this 10 * limits the maximum size of addressable storage to < 2 Terra Bytes 11 */ 12 #include <asm/unaligned.h> 13 #include <common.h> 14 #include <command.h> 15 #include <fdtdec.h> 16 #include <ide.h> 17 #include <malloc.h> 18 #include <memalign.h> 19 #include <part_efi.h> 20 #include <linux/compiler.h> 21 #include <linux/ctype.h> 22 23 DECLARE_GLOBAL_DATA_PTR; 24 25 /* 26 * GUID for basic data partions. 27 */ 28 static const efi_guid_t partition_basic_data_guid = PARTITION_BASIC_DATA_GUID; 29 30 #ifdef CONFIG_HAVE_BLOCK_DEVICE 31 /** 32 * efi_crc32() - EFI version of crc32 function 33 * @buf: buffer to calculate crc32 of 34 * @len - length of buf 35 * 36 * Description: Returns EFI-style CRC32 value for @buf 37 */ 38 static inline u32 efi_crc32(const void *buf, u32 len) 39 { 40 return crc32(0, buf, len); 41 } 42 43 /* 44 * Private function prototypes 45 */ 46 47 static int pmbr_part_valid(struct partition *part); 48 static int is_pmbr_valid(legacy_mbr * mbr); 49 static int is_gpt_valid(struct blk_desc *dev_desc, u64 lba, 50 gpt_header *pgpt_head, gpt_entry **pgpt_pte); 51 static gpt_entry *alloc_read_gpt_entries(struct blk_desc *dev_desc, 52 gpt_header *pgpt_head); 53 static int is_pte_valid(gpt_entry * pte); 54 55 static char *print_efiname(gpt_entry *pte) 56 { 57 static char name[PARTNAME_SZ + 1]; 58 int i; 59 for (i = 0; i < PARTNAME_SZ; i++) { 60 u8 c; 61 c = pte->partition_name[i] & 0xff; 62 c = (c && !isprint(c)) ? '.' : c; 63 name[i] = c; 64 } 65 name[PARTNAME_SZ] = 0; 66 return name; 67 } 68 69 static efi_guid_t system_guid = PARTITION_SYSTEM_GUID; 70 71 static inline int is_bootable(gpt_entry *p) 72 { 73 return p->attributes.fields.legacy_bios_bootable || 74 !memcmp(&(p->partition_type_guid), &system_guid, 75 sizeof(efi_guid_t)); 76 } 77 78 static int validate_gpt_header(gpt_header *gpt_h, lbaint_t lba, 79 lbaint_t lastlba) 80 { 81 uint32_t crc32_backup = 0; 82 uint32_t calc_crc32; 83 84 /* Check the GPT header signature */ 85 if (le64_to_cpu(gpt_h->signature) != GPT_HEADER_SIGNATURE_UBOOT) { 86 printf("%s signature is wrong: 0x%llX != 0x%llX\n", 87 "GUID Partition Table Header", 88 le64_to_cpu(gpt_h->signature), 89 GPT_HEADER_SIGNATURE_UBOOT); 90 return -1; 91 } 92 93 /* Check the GUID Partition Table CRC */ 94 memcpy(&crc32_backup, &gpt_h->header_crc32, sizeof(crc32_backup)); 95 memset(&gpt_h->header_crc32, 0, sizeof(gpt_h->header_crc32)); 96 97 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 98 le32_to_cpu(gpt_h->header_size)); 99 100 memcpy(&gpt_h->header_crc32, &crc32_backup, sizeof(crc32_backup)); 101 102 if (calc_crc32 != le32_to_cpu(crc32_backup)) { 103 printf("%s CRC is wrong: 0x%x != 0x%x\n", 104 "GUID Partition Table Header", 105 le32_to_cpu(crc32_backup), calc_crc32); 106 return -1; 107 } 108 109 /* 110 * Check that the my_lba entry points to the LBA that contains the GPT 111 */ 112 if (le64_to_cpu(gpt_h->my_lba) != lba) { 113 printf("GPT: my_lba incorrect: %llX != " LBAF "\n", 114 le64_to_cpu(gpt_h->my_lba), 115 lba); 116 return -1; 117 } 118 119 /* 120 * Check that the first_usable_lba and that the last_usable_lba are 121 * within the disk. 122 */ 123 if (le64_to_cpu(gpt_h->first_usable_lba) > lastlba) { 124 printf("GPT: first_usable_lba incorrect: %llX > " LBAF "\n", 125 le64_to_cpu(gpt_h->first_usable_lba), lastlba); 126 return -1; 127 } 128 if (le64_to_cpu(gpt_h->last_usable_lba) > lastlba) { 129 printf("GPT: last_usable_lba incorrect: %llX > " LBAF "\n", 130 le64_to_cpu(gpt_h->last_usable_lba), lastlba); 131 return -1; 132 } 133 134 debug("GPT: first_usable_lba: %llX last_usable_lba: %llX last lba: " 135 LBAF "\n", le64_to_cpu(gpt_h->first_usable_lba), 136 le64_to_cpu(gpt_h->last_usable_lba), lastlba); 137 138 return 0; 139 } 140 141 static int validate_gpt_entries(gpt_header *gpt_h, gpt_entry *gpt_e) 142 { 143 uint32_t calc_crc32; 144 145 /* Check the GUID Partition Table Entry Array CRC */ 146 calc_crc32 = efi_crc32((const unsigned char *)gpt_e, 147 le32_to_cpu(gpt_h->num_partition_entries) * 148 le32_to_cpu(gpt_h->sizeof_partition_entry)); 149 150 if (calc_crc32 != le32_to_cpu(gpt_h->partition_entry_array_crc32)) { 151 printf("%s: 0x%x != 0x%x\n", 152 "GUID Partition Table Entry Array CRC is wrong", 153 le32_to_cpu(gpt_h->partition_entry_array_crc32), 154 calc_crc32); 155 return -1; 156 } 157 158 return 0; 159 } 160 161 static void prepare_backup_gpt_header(gpt_header *gpt_h) 162 { 163 uint32_t calc_crc32; 164 uint64_t val; 165 166 /* recalculate the values for the Backup GPT Header */ 167 val = le64_to_cpu(gpt_h->my_lba); 168 gpt_h->my_lba = gpt_h->alternate_lba; 169 gpt_h->alternate_lba = cpu_to_le64(val); 170 gpt_h->partition_entry_lba = 171 cpu_to_le64(le64_to_cpu(gpt_h->last_usable_lba) + 1); 172 gpt_h->header_crc32 = 0; 173 174 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 175 le32_to_cpu(gpt_h->header_size)); 176 gpt_h->header_crc32 = cpu_to_le32(calc_crc32); 177 } 178 179 #if CONFIG_IS_ENABLED(EFI_PARTITION) 180 /* 181 * Public Functions (include/part.h) 182 */ 183 184 /* 185 * UUID is displayed as 32 hexadecimal digits, in 5 groups, 186 * separated by hyphens, in the form 8-4-4-4-12 for a total of 36 characters 187 */ 188 int get_disk_guid(struct blk_desc * dev_desc, char *guid) 189 { 190 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz); 191 gpt_entry *gpt_pte = NULL; 192 unsigned char *guid_bin; 193 194 /* This function validates AND fills in the GPT header and PTE */ 195 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, 196 gpt_head, &gpt_pte) != 1) { 197 printf("%s: *** ERROR: Invalid GPT ***\n", __func__); 198 if (is_gpt_valid(dev_desc, dev_desc->lba - 1, 199 gpt_head, &gpt_pte) != 1) { 200 printf("%s: *** ERROR: Invalid Backup GPT ***\n", 201 __func__); 202 return -EINVAL; 203 } else { 204 printf("%s: *** Using Backup GPT ***\n", 205 __func__); 206 } 207 } 208 209 guid_bin = gpt_head->disk_guid.b; 210 uuid_bin_to_str(guid_bin, guid, UUID_STR_FORMAT_GUID); 211 212 return 0; 213 } 214 215 void part_print_efi(struct blk_desc *dev_desc) 216 { 217 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz); 218 gpt_entry *gpt_pte = NULL; 219 int i = 0; 220 char uuid[UUID_STR_LEN + 1]; 221 unsigned char *uuid_bin; 222 223 /* This function validates AND fills in the GPT header and PTE */ 224 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, 225 gpt_head, &gpt_pte) != 1) { 226 printf("%s: *** ERROR: Invalid GPT ***\n", __func__); 227 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1), 228 gpt_head, &gpt_pte) != 1) { 229 printf("%s: *** ERROR: Invalid Backup GPT ***\n", 230 __func__); 231 return; 232 } else { 233 printf("%s: *** Using Backup GPT ***\n", 234 __func__); 235 } 236 } 237 238 debug("%s: gpt-entry at %p\n", __func__, gpt_pte); 239 240 printf("Part\tStart LBA\tEnd LBA\t\tName\n"); 241 printf("\tAttributes\n"); 242 printf("\tType GUID\n"); 243 printf("\tPartition GUID\n"); 244 245 for (i = 0; i < le32_to_cpu(gpt_head->num_partition_entries); i++) { 246 /* Stop at the first non valid PTE */ 247 if (!is_pte_valid(&gpt_pte[i])) 248 break; 249 250 printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1), 251 le64_to_cpu(gpt_pte[i].starting_lba), 252 le64_to_cpu(gpt_pte[i].ending_lba), 253 print_efiname(&gpt_pte[i])); 254 printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw); 255 uuid_bin = (unsigned char *)gpt_pte[i].partition_type_guid.b; 256 uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID); 257 printf("\ttype:\t%s\n", uuid); 258 #ifdef CONFIG_PARTITION_TYPE_GUID 259 if (!uuid_guid_get_str(uuid_bin, uuid)) 260 printf("\ttype:\t%s\n", uuid); 261 #endif 262 uuid_bin = (unsigned char *)gpt_pte[i].unique_partition_guid.b; 263 uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID); 264 printf("\tguid:\t%s\n", uuid); 265 } 266 267 /* Remember to free pte */ 268 free(gpt_pte); 269 return; 270 } 271 272 int part_get_info_efi(struct blk_desc *dev_desc, int part, 273 disk_partition_t *info) 274 { 275 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz); 276 gpt_entry *gpt_pte = NULL; 277 278 /* "part" argument must be at least 1 */ 279 if (part < 1) { 280 printf("%s: Invalid Argument(s)\n", __func__); 281 return -1; 282 } 283 284 /* This function validates AND fills in the GPT header and PTE */ 285 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, 286 gpt_head, &gpt_pte) != 1) { 287 printf("%s: *** ERROR: Invalid GPT ***\n", __func__); 288 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1), 289 gpt_head, &gpt_pte) != 1) { 290 printf("%s: *** ERROR: Invalid Backup GPT ***\n", 291 __func__); 292 return -1; 293 } else { 294 printf("%s: *** Using Backup GPT ***\n", 295 __func__); 296 } 297 } 298 299 if (part > le32_to_cpu(gpt_head->num_partition_entries) || 300 !is_pte_valid(&gpt_pte[part - 1])) { 301 debug("%s: *** ERROR: Invalid partition number %d ***\n", 302 __func__, part); 303 free(gpt_pte); 304 return -1; 305 } 306 307 /* The 'lbaint_t' casting may limit the maximum disk size to 2 TB */ 308 info->start = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].starting_lba); 309 /* The ending LBA is inclusive, to calculate size, add 1 to it */ 310 info->size = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].ending_lba) + 1 311 - info->start; 312 info->blksz = dev_desc->blksz; 313 314 sprintf((char *)info->name, "%s", 315 print_efiname(&gpt_pte[part - 1])); 316 strcpy((char *)info->type, "U-Boot"); 317 info->bootable = is_bootable(&gpt_pte[part - 1]); 318 #if CONFIG_IS_ENABLED(PARTITION_UUIDS) 319 uuid_bin_to_str(gpt_pte[part - 1].unique_partition_guid.b, info->uuid, 320 UUID_STR_FORMAT_GUID); 321 #endif 322 #ifdef CONFIG_PARTITION_TYPE_GUID 323 uuid_bin_to_str(gpt_pte[part - 1].partition_type_guid.b, 324 info->type_guid, UUID_STR_FORMAT_GUID); 325 #endif 326 327 debug("%s: start 0x" LBAF ", size 0x" LBAF ", name %s\n", __func__, 328 info->start, info->size, info->name); 329 330 /* Remember to free pte */ 331 free(gpt_pte); 332 return 0; 333 } 334 335 static int part_test_efi(struct blk_desc *dev_desc) 336 { 337 ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, legacymbr, 1, dev_desc->blksz); 338 339 /* Read legacy MBR from block 0 and validate it */ 340 if ((blk_dread(dev_desc, 0, 1, (ulong *)legacymbr) != 1) 341 || (is_pmbr_valid(legacymbr) != 1)) { 342 return -1; 343 } 344 return 0; 345 } 346 347 /** 348 * set_protective_mbr(): Set the EFI protective MBR 349 * @param dev_desc - block device descriptor 350 * 351 * @return - zero on success, otherwise error 352 */ 353 static int set_protective_mbr(struct blk_desc *dev_desc) 354 { 355 /* Setup the Protective MBR */ 356 ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, p_mbr, 1, dev_desc->blksz); 357 if (p_mbr == NULL) { 358 printf("%s: calloc failed!\n", __func__); 359 return -1; 360 } 361 362 /* Read MBR to backup boot code if it exists */ 363 if (blk_dread(dev_desc, 0, 1, p_mbr) != 1) { 364 pr_err("** Can't read from device %d **\n", dev_desc->devnum); 365 return -1; 366 } 367 368 /* Clear all data in MBR except of backed up boot code */ 369 memset((char *)p_mbr + MSDOS_MBR_BOOT_CODE_SIZE, 0, sizeof(*p_mbr) - 370 MSDOS_MBR_BOOT_CODE_SIZE); 371 372 /* Append signature */ 373 p_mbr->signature = MSDOS_MBR_SIGNATURE; 374 p_mbr->partition_record[0].sys_ind = EFI_PMBR_OSTYPE_EFI_GPT; 375 p_mbr->partition_record[0].start_sect = 1; 376 p_mbr->partition_record[0].nr_sects = (u32) dev_desc->lba - 1; 377 378 /* Write MBR sector to the MMC device */ 379 if (blk_dwrite(dev_desc, 0, 1, p_mbr) != 1) { 380 printf("** Can't write to device %d **\n", 381 dev_desc->devnum); 382 return -1; 383 } 384 385 return 0; 386 } 387 388 int write_gpt_table(struct blk_desc *dev_desc, 389 gpt_header *gpt_h, gpt_entry *gpt_e) 390 { 391 const int pte_blk_cnt = BLOCK_CNT((gpt_h->num_partition_entries 392 * sizeof(gpt_entry)), dev_desc); 393 u32 calc_crc32; 394 395 debug("max lba: %x\n", (u32) dev_desc->lba); 396 /* Setup the Protective MBR */ 397 if (set_protective_mbr(dev_desc) < 0) 398 goto err; 399 400 /* Generate CRC for the Primary GPT Header */ 401 calc_crc32 = efi_crc32((const unsigned char *)gpt_e, 402 le32_to_cpu(gpt_h->num_partition_entries) * 403 le32_to_cpu(gpt_h->sizeof_partition_entry)); 404 gpt_h->partition_entry_array_crc32 = cpu_to_le32(calc_crc32); 405 406 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 407 le32_to_cpu(gpt_h->header_size)); 408 gpt_h->header_crc32 = cpu_to_le32(calc_crc32); 409 410 /* Write the First GPT to the block right after the Legacy MBR */ 411 if (blk_dwrite(dev_desc, 1, 1, gpt_h) != 1) 412 goto err; 413 414 if (blk_dwrite(dev_desc, le64_to_cpu(gpt_h->partition_entry_lba), 415 pte_blk_cnt, gpt_e) != pte_blk_cnt) 416 goto err; 417 418 prepare_backup_gpt_header(gpt_h); 419 420 if (blk_dwrite(dev_desc, (lbaint_t)le64_to_cpu(gpt_h->last_usable_lba) 421 + 1, pte_blk_cnt, gpt_e) != pte_blk_cnt) 422 goto err; 423 424 if (blk_dwrite(dev_desc, (lbaint_t)le64_to_cpu(gpt_h->my_lba), 1, 425 gpt_h) != 1) 426 goto err; 427 428 debug("GPT successfully written to block device!\n"); 429 return 0; 430 431 err: 432 printf("** Can't write to device %d **\n", dev_desc->devnum); 433 return -1; 434 } 435 436 int gpt_fill_pte(struct blk_desc *dev_desc, 437 gpt_header *gpt_h, gpt_entry *gpt_e, 438 disk_partition_t *partitions, int parts) 439 { 440 lbaint_t offset = (lbaint_t)le64_to_cpu(gpt_h->first_usable_lba); 441 lbaint_t last_usable_lba = (lbaint_t) 442 le64_to_cpu(gpt_h->last_usable_lba); 443 int i, k; 444 size_t efiname_len, dosname_len; 445 #if CONFIG_IS_ENABLED(PARTITION_UUIDS) 446 char *str_uuid; 447 unsigned char *bin_uuid; 448 #endif 449 #ifdef CONFIG_PARTITION_TYPE_GUID 450 char *str_type_guid; 451 unsigned char *bin_type_guid; 452 #endif 453 size_t hdr_start = gpt_h->my_lba; 454 size_t hdr_end = hdr_start + 1; 455 456 size_t pte_start = gpt_h->partition_entry_lba; 457 size_t pte_end = pte_start + 458 gpt_h->num_partition_entries * gpt_h->sizeof_partition_entry / 459 dev_desc->blksz; 460 461 for (i = 0; i < parts; i++) { 462 /* partition starting lba */ 463 lbaint_t start = partitions[i].start; 464 lbaint_t size = partitions[i].size; 465 466 if (start) { 467 offset = start + size; 468 } else { 469 start = offset; 470 offset += size; 471 } 472 473 /* 474 * If our partition overlaps with either the GPT 475 * header, or the partition entry, reject it. 476 */ 477 if (((start < hdr_end && hdr_start < (start + size)) || 478 (start < pte_end && pte_start < (start + size)))) { 479 printf("Partition overlap\n"); 480 return -1; 481 } 482 483 gpt_e[i].starting_lba = cpu_to_le64(start); 484 485 if (offset > (last_usable_lba + 1)) { 486 printf("Partitions layout exceds disk size\n"); 487 return -1; 488 } 489 /* partition ending lba */ 490 if ((i == parts - 1) && (size == 0)) 491 /* extend the last partition to maximuim */ 492 gpt_e[i].ending_lba = gpt_h->last_usable_lba; 493 else 494 gpt_e[i].ending_lba = cpu_to_le64(offset - 1); 495 496 #ifdef CONFIG_PARTITION_TYPE_GUID 497 str_type_guid = partitions[i].type_guid; 498 bin_type_guid = gpt_e[i].partition_type_guid.b; 499 if (strlen(str_type_guid)) { 500 if (uuid_str_to_bin(str_type_guid, bin_type_guid, 501 UUID_STR_FORMAT_GUID)) { 502 printf("Partition no. %d: invalid type guid: %s\n", 503 i, str_type_guid); 504 return -1; 505 } 506 } else { 507 /* default partition type GUID */ 508 memcpy(bin_type_guid, 509 &partition_basic_data_guid, 16); 510 } 511 #else 512 /* partition type GUID */ 513 memcpy(gpt_e[i].partition_type_guid.b, 514 &partition_basic_data_guid, 16); 515 #endif 516 517 #if CONFIG_IS_ENABLED(PARTITION_UUIDS) 518 str_uuid = partitions[i].uuid; 519 bin_uuid = gpt_e[i].unique_partition_guid.b; 520 521 if (uuid_str_to_bin(str_uuid, bin_uuid, UUID_STR_FORMAT_GUID)) { 522 printf("Partition no. %d: invalid guid: %s\n", 523 i, str_uuid); 524 return -1; 525 } 526 #endif 527 528 /* partition attributes */ 529 memset(&gpt_e[i].attributes, 0, 530 sizeof(gpt_entry_attributes)); 531 532 if (partitions[i].bootable) 533 gpt_e[i].attributes.fields.legacy_bios_bootable = 1; 534 535 /* partition name */ 536 efiname_len = sizeof(gpt_e[i].partition_name) 537 / sizeof(efi_char16_t); 538 dosname_len = sizeof(partitions[i].name); 539 540 memset(gpt_e[i].partition_name, 0, 541 sizeof(gpt_e[i].partition_name)); 542 543 for (k = 0; k < min(dosname_len, efiname_len); k++) 544 gpt_e[i].partition_name[k] = 545 (efi_char16_t)(partitions[i].name[k]); 546 547 debug("%s: name: %s offset[%d]: 0x" LBAF 548 " size[%d]: 0x" LBAF "\n", 549 __func__, partitions[i].name, i, 550 offset, i, size); 551 } 552 553 return 0; 554 } 555 556 static uint32_t partition_entries_offset(struct blk_desc *dev_desc) 557 { 558 uint32_t offset_blks = 2; 559 uint32_t __maybe_unused offset_bytes; 560 int __maybe_unused config_offset; 561 562 #if defined(CONFIG_EFI_PARTITION_ENTRIES_OFF) 563 /* 564 * Some architectures require their SPL loader at a fixed 565 * address within the first 16KB of the disk. To avoid an 566 * overlap with the partition entries of the EFI partition 567 * table, the first safe offset (in bytes, from the start of 568 * the disk) for the entries can be set in 569 * CONFIG_EFI_PARTITION_ENTRIES_OFF. 570 */ 571 offset_bytes = 572 PAD_TO_BLOCKSIZE(CONFIG_EFI_PARTITION_ENTRIES_OFF, dev_desc); 573 offset_blks = offset_bytes / dev_desc->blksz; 574 #endif 575 576 #if defined(CONFIG_OF_CONTROL) 577 /* 578 * Allow the offset of the first partition entires (in bytes 579 * from the start of the device) to be specified as a property 580 * of the device tree '/config' node. 581 */ 582 config_offset = fdtdec_get_config_int(gd->fdt_blob, 583 "u-boot,efi-partition-entries-offset", 584 -EINVAL); 585 if (config_offset != -EINVAL) { 586 offset_bytes = PAD_TO_BLOCKSIZE(config_offset, dev_desc); 587 offset_blks = offset_bytes / dev_desc->blksz; 588 } 589 #endif 590 591 debug("efi: partition entries offset (in blocks): %d\n", offset_blks); 592 593 /* 594 * The earliest LBA this can be at is LBA#2 (i.e. right behind 595 * the (protective) MBR and the GPT header. 596 */ 597 if (offset_blks < 2) 598 offset_blks = 2; 599 600 return offset_blks; 601 } 602 603 int gpt_fill_header(struct blk_desc *dev_desc, gpt_header *gpt_h, 604 char *str_guid, int parts_count) 605 { 606 gpt_h->signature = cpu_to_le64(GPT_HEADER_SIGNATURE_UBOOT); 607 gpt_h->revision = cpu_to_le32(GPT_HEADER_REVISION_V1); 608 gpt_h->header_size = cpu_to_le32(sizeof(gpt_header)); 609 gpt_h->my_lba = cpu_to_le64(1); 610 gpt_h->alternate_lba = cpu_to_le64(dev_desc->lba - 1); 611 gpt_h->last_usable_lba = cpu_to_le64(dev_desc->lba - 34); 612 gpt_h->partition_entry_lba = 613 cpu_to_le64(partition_entries_offset(dev_desc)); 614 gpt_h->first_usable_lba = 615 cpu_to_le64(le64_to_cpu(gpt_h->partition_entry_lba) + 32); 616 gpt_h->num_partition_entries = cpu_to_le32(GPT_ENTRY_NUMBERS); 617 gpt_h->sizeof_partition_entry = cpu_to_le32(sizeof(gpt_entry)); 618 gpt_h->header_crc32 = 0; 619 gpt_h->partition_entry_array_crc32 = 0; 620 621 if (uuid_str_to_bin(str_guid, gpt_h->disk_guid.b, UUID_STR_FORMAT_GUID)) 622 return -1; 623 624 return 0; 625 } 626 627 int gpt_restore(struct blk_desc *dev_desc, char *str_disk_guid, 628 disk_partition_t *partitions, int parts_count) 629 { 630 gpt_header *gpt_h; 631 gpt_entry *gpt_e; 632 int ret, size; 633 634 size = PAD_TO_BLOCKSIZE(sizeof(gpt_header), dev_desc); 635 gpt_h = malloc_cache_aligned(size); 636 if (gpt_h == NULL) { 637 printf("%s: calloc failed!\n", __func__); 638 return -1; 639 } 640 memset(gpt_h, 0, size); 641 642 size = PAD_TO_BLOCKSIZE(GPT_ENTRY_NUMBERS * sizeof(gpt_entry), 643 dev_desc); 644 gpt_e = malloc_cache_aligned(size); 645 if (gpt_e == NULL) { 646 printf("%s: calloc failed!\n", __func__); 647 free(gpt_h); 648 return -1; 649 } 650 memset(gpt_e, 0, size); 651 652 /* Generate Primary GPT header (LBA1) */ 653 ret = gpt_fill_header(dev_desc, gpt_h, str_disk_guid, parts_count); 654 if (ret) 655 goto err; 656 657 /* Generate partition entries */ 658 ret = gpt_fill_pte(dev_desc, gpt_h, gpt_e, partitions, parts_count); 659 if (ret) 660 goto err; 661 662 /* Write GPT partition table */ 663 ret = write_gpt_table(dev_desc, gpt_h, gpt_e); 664 665 err: 666 free(gpt_e); 667 free(gpt_h); 668 return ret; 669 } 670 671 static void gpt_convert_efi_name_to_char(char *s, efi_char16_t *es, int n) 672 { 673 char *ess = (char *)es; 674 int i, j; 675 676 memset(s, '\0', n); 677 678 for (i = 0, j = 0; j < n; i += 2, j++) { 679 s[j] = ess[i]; 680 if (!ess[i]) 681 return; 682 } 683 } 684 685 int gpt_verify_headers(struct blk_desc *dev_desc, gpt_header *gpt_head, 686 gpt_entry **gpt_pte) 687 { 688 /* 689 * This function validates AND 690 * fills in the GPT header and PTE 691 */ 692 if (is_gpt_valid(dev_desc, 693 GPT_PRIMARY_PARTITION_TABLE_LBA, 694 gpt_head, gpt_pte) != 1) { 695 printf("%s: *** ERROR: Invalid GPT ***\n", 696 __func__); 697 return -1; 698 } 699 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1), 700 gpt_head, gpt_pte) != 1) { 701 printf("%s: *** ERROR: Invalid Backup GPT ***\n", 702 __func__); 703 return -1; 704 } 705 706 return 0; 707 } 708 709 int gpt_verify_partitions(struct blk_desc *dev_desc, 710 disk_partition_t *partitions, int parts, 711 gpt_header *gpt_head, gpt_entry **gpt_pte) 712 { 713 char efi_str[PARTNAME_SZ + 1]; 714 u64 gpt_part_size; 715 gpt_entry *gpt_e; 716 int ret, i; 717 718 ret = gpt_verify_headers(dev_desc, gpt_head, gpt_pte); 719 if (ret) 720 return ret; 721 722 gpt_e = *gpt_pte; 723 724 for (i = 0; i < parts; i++) { 725 if (i == gpt_head->num_partition_entries) { 726 pr_err("More partitions than allowed!\n"); 727 return -1; 728 } 729 730 /* Check if GPT and ENV partition names match */ 731 gpt_convert_efi_name_to_char(efi_str, gpt_e[i].partition_name, 732 PARTNAME_SZ + 1); 733 734 debug("%s: part: %2d name - GPT: %16s, ENV: %16s ", 735 __func__, i, efi_str, partitions[i].name); 736 737 if (strncmp(efi_str, (char *)partitions[i].name, 738 sizeof(partitions->name))) { 739 pr_err("Partition name: %s does not match %s!\n", 740 efi_str, (char *)partitions[i].name); 741 return -1; 742 } 743 744 /* Check if GPT and ENV sizes match */ 745 gpt_part_size = le64_to_cpu(gpt_e[i].ending_lba) - 746 le64_to_cpu(gpt_e[i].starting_lba) + 1; 747 debug("size(LBA) - GPT: %8llu, ENV: %8llu ", 748 (unsigned long long)gpt_part_size, 749 (unsigned long long)partitions[i].size); 750 751 if (le64_to_cpu(gpt_part_size) != partitions[i].size) { 752 /* We do not check the extend partition size */ 753 if ((i == parts - 1) && (partitions[i].size == 0)) 754 continue; 755 756 pr_err("Partition %s size: %llu does not match %llu!\n", 757 efi_str, (unsigned long long)gpt_part_size, 758 (unsigned long long)partitions[i].size); 759 return -1; 760 } 761 762 /* 763 * Start address is optional - check only if provided 764 * in '$partition' variable 765 */ 766 if (!partitions[i].start) { 767 debug("\n"); 768 continue; 769 } 770 771 /* Check if GPT and ENV start LBAs match */ 772 debug("start LBA - GPT: %8llu, ENV: %8llu\n", 773 le64_to_cpu(gpt_e[i].starting_lba), 774 (unsigned long long)partitions[i].start); 775 776 if (le64_to_cpu(gpt_e[i].starting_lba) != partitions[i].start) { 777 pr_err("Partition %s start: %llu does not match %llu!\n", 778 efi_str, le64_to_cpu(gpt_e[i].starting_lba), 779 (unsigned long long)partitions[i].start); 780 return -1; 781 } 782 } 783 784 return 0; 785 } 786 787 int is_valid_gpt_buf(struct blk_desc *dev_desc, void *buf) 788 { 789 gpt_header *gpt_h; 790 gpt_entry *gpt_e; 791 792 /* determine start of GPT Header in the buffer */ 793 gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA * 794 dev_desc->blksz); 795 if (validate_gpt_header(gpt_h, GPT_PRIMARY_PARTITION_TABLE_LBA, 796 dev_desc->lba)) 797 return -1; 798 799 /* determine start of GPT Entries in the buffer */ 800 gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) * 801 dev_desc->blksz); 802 if (validate_gpt_entries(gpt_h, gpt_e)) 803 return -1; 804 805 return 0; 806 } 807 808 int write_mbr_and_gpt_partitions(struct blk_desc *dev_desc, void *buf) 809 { 810 gpt_header *gpt_h; 811 gpt_entry *gpt_e; 812 int gpt_e_blk_cnt; 813 lbaint_t lba; 814 int cnt; 815 816 if (is_valid_gpt_buf(dev_desc, buf)) 817 return -1; 818 819 /* determine start of GPT Header in the buffer */ 820 gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA * 821 dev_desc->blksz); 822 823 /* determine start of GPT Entries in the buffer */ 824 gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) * 825 dev_desc->blksz); 826 gpt_e_blk_cnt = BLOCK_CNT((le32_to_cpu(gpt_h->num_partition_entries) * 827 le32_to_cpu(gpt_h->sizeof_partition_entry)), 828 dev_desc); 829 830 /* write MBR */ 831 lba = 0; /* MBR is always at 0 */ 832 cnt = 1; /* MBR (1 block) */ 833 if (blk_dwrite(dev_desc, lba, cnt, buf) != cnt) { 834 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 835 __func__, "MBR", cnt, lba); 836 return 1; 837 } 838 839 /* write Primary GPT */ 840 lba = GPT_PRIMARY_PARTITION_TABLE_LBA; 841 cnt = 1; /* GPT Header (1 block) */ 842 if (blk_dwrite(dev_desc, lba, cnt, gpt_h) != cnt) { 843 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 844 __func__, "Primary GPT Header", cnt, lba); 845 return 1; 846 } 847 848 lba = le64_to_cpu(gpt_h->partition_entry_lba); 849 cnt = gpt_e_blk_cnt; 850 if (blk_dwrite(dev_desc, lba, cnt, gpt_e) != cnt) { 851 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 852 __func__, "Primary GPT Entries", cnt, lba); 853 return 1; 854 } 855 856 prepare_backup_gpt_header(gpt_h); 857 858 /* write Backup GPT */ 859 lba = le64_to_cpu(gpt_h->partition_entry_lba); 860 cnt = gpt_e_blk_cnt; 861 if (blk_dwrite(dev_desc, lba, cnt, gpt_e) != cnt) { 862 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 863 __func__, "Backup GPT Entries", cnt, lba); 864 return 1; 865 } 866 867 lba = le64_to_cpu(gpt_h->my_lba); 868 cnt = 1; /* GPT Header (1 block) */ 869 if (blk_dwrite(dev_desc, lba, cnt, gpt_h) != cnt) { 870 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 871 __func__, "Backup GPT Header", cnt, lba); 872 return 1; 873 } 874 875 return 0; 876 } 877 #endif 878 879 /* 880 * Private functions 881 */ 882 /* 883 * pmbr_part_valid(): Check for EFI partition signature 884 * 885 * Returns: 1 if EFI GPT partition type is found. 886 */ 887 static int pmbr_part_valid(struct partition *part) 888 { 889 if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT && 890 get_unaligned_le32(&part->start_sect) == 1UL) { 891 return 1; 892 } 893 894 return 0; 895 } 896 897 /* 898 * is_pmbr_valid(): test Protective MBR for validity 899 * 900 * Returns: 1 if PMBR is valid, 0 otherwise. 901 * Validity depends on two things: 902 * 1) MSDOS signature is in the last two bytes of the MBR 903 * 2) One partition of type 0xEE is found, checked by pmbr_part_valid() 904 */ 905 static int is_pmbr_valid(legacy_mbr * mbr) 906 { 907 int i = 0; 908 909 if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE) 910 return 0; 911 912 for (i = 0; i < 4; i++) { 913 if (pmbr_part_valid(&mbr->partition_record[i])) { 914 return 1; 915 } 916 } 917 return 0; 918 } 919 920 /** 921 * is_gpt_valid() - tests one GPT header and PTEs for validity 922 * 923 * lba is the logical block address of the GPT header to test 924 * gpt is a GPT header ptr, filled on return. 925 * ptes is a PTEs ptr, filled on return. 926 * 927 * Description: returns 1 if valid, 0 on error. 928 * If valid, returns pointers to PTEs. 929 */ 930 static int is_gpt_valid(struct blk_desc *dev_desc, u64 lba, 931 gpt_header *pgpt_head, gpt_entry **pgpt_pte) 932 { 933 /* Confirm valid arguments prior to allocation. */ 934 if (!dev_desc || !pgpt_head) { 935 printf("%s: Invalid Argument(s)\n", __func__); 936 return 0; 937 } 938 939 ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, mbr, 1, dev_desc->blksz); 940 941 /* Read MBR Header from device */ 942 if (blk_dread(dev_desc, 0, 1, (ulong *)mbr) != 1) { 943 printf("*** ERROR: Can't read MBR header ***\n"); 944 return 0; 945 } 946 947 /* Read GPT Header from device */ 948 if (blk_dread(dev_desc, (lbaint_t)lba, 1, pgpt_head) != 1) { 949 printf("*** ERROR: Can't read GPT header ***\n"); 950 return 0; 951 } 952 953 if (validate_gpt_header(pgpt_head, (lbaint_t)lba, dev_desc->lba)) 954 return 0; 955 956 if (dev_desc->sig_type == SIG_TYPE_NONE) { 957 efi_guid_t empty = {}; 958 if (memcmp(&pgpt_head->disk_guid, &empty, sizeof(empty))) { 959 dev_desc->sig_type = SIG_TYPE_GUID; 960 memcpy(&dev_desc->guid_sig, &pgpt_head->disk_guid, 961 sizeof(empty)); 962 } else if (mbr->unique_mbr_signature != 0) { 963 dev_desc->sig_type = SIG_TYPE_MBR; 964 dev_desc->mbr_sig = mbr->unique_mbr_signature; 965 } 966 } 967 968 /* Read and allocate Partition Table Entries */ 969 *pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head); 970 if (*pgpt_pte == NULL) { 971 printf("GPT: Failed to allocate memory for PTE\n"); 972 return 0; 973 } 974 975 if (validate_gpt_entries(pgpt_head, *pgpt_pte)) { 976 free(*pgpt_pte); 977 return 0; 978 } 979 980 /* We're done, all's well */ 981 return 1; 982 } 983 984 /** 985 * alloc_read_gpt_entries(): reads partition entries from disk 986 * @dev_desc 987 * @gpt - GPT header 988 * 989 * Description: Returns ptes on success, NULL on error. 990 * Allocates space for PTEs based on information found in @gpt. 991 * Notes: remember to free pte when you're done! 992 */ 993 static gpt_entry *alloc_read_gpt_entries(struct blk_desc *dev_desc, 994 gpt_header *pgpt_head) 995 { 996 size_t count = 0, blk_cnt; 997 lbaint_t blk; 998 gpt_entry *pte = NULL; 999 1000 if (!dev_desc || !pgpt_head) { 1001 printf("%s: Invalid Argument(s)\n", __func__); 1002 return NULL; 1003 } 1004 1005 count = le32_to_cpu(pgpt_head->num_partition_entries) * 1006 le32_to_cpu(pgpt_head->sizeof_partition_entry); 1007 1008 debug("%s: count = %u * %u = %lu\n", __func__, 1009 (u32) le32_to_cpu(pgpt_head->num_partition_entries), 1010 (u32) le32_to_cpu(pgpt_head->sizeof_partition_entry), 1011 (ulong)count); 1012 1013 /* Allocate memory for PTE, remember to FREE */ 1014 if (count != 0) { 1015 pte = memalign(ARCH_DMA_MINALIGN, 1016 PAD_TO_BLOCKSIZE(count, dev_desc)); 1017 } 1018 1019 if (count == 0 || pte == NULL) { 1020 printf("%s: ERROR: Can't allocate %#lX bytes for GPT Entries\n", 1021 __func__, (ulong)count); 1022 return NULL; 1023 } 1024 1025 /* Read GPT Entries from device */ 1026 blk = le64_to_cpu(pgpt_head->partition_entry_lba); 1027 blk_cnt = BLOCK_CNT(count, dev_desc); 1028 if (blk_dread(dev_desc, blk, (lbaint_t)blk_cnt, pte) != blk_cnt) { 1029 printf("*** ERROR: Can't read GPT Entries ***\n"); 1030 free(pte); 1031 return NULL; 1032 } 1033 return pte; 1034 } 1035 1036 /** 1037 * is_pte_valid(): validates a single Partition Table Entry 1038 * @gpt_entry - Pointer to a single Partition Table Entry 1039 * 1040 * Description: returns 1 if valid, 0 on error. 1041 */ 1042 static int is_pte_valid(gpt_entry * pte) 1043 { 1044 efi_guid_t unused_guid; 1045 1046 if (!pte) { 1047 printf("%s: Invalid Argument(s)\n", __func__); 1048 return 0; 1049 } 1050 1051 /* Only one validation for now: 1052 * The GUID Partition Type != Unused Entry (ALL-ZERO) 1053 */ 1054 memset(unused_guid.b, 0, sizeof(unused_guid.b)); 1055 1056 if (memcmp(pte->partition_type_guid.b, unused_guid.b, 1057 sizeof(unused_guid.b)) == 0) { 1058 1059 debug("%s: Found an unused PTE GUID at 0x%08X\n", __func__, 1060 (unsigned int)(uintptr_t)pte); 1061 1062 return 0; 1063 } else { 1064 return 1; 1065 } 1066 } 1067 1068 /* 1069 * Add an 'a_' prefix so it comes before 'dos' in the linker list. We need to 1070 * check EFI first, since a DOS partition is often used as a 'protective MBR' 1071 * with EFI. 1072 */ 1073 U_BOOT_PART_TYPE(a_efi) = { 1074 .name = "EFI", 1075 .part_type = PART_TYPE_EFI, 1076 .max_entries = GPT_ENTRY_NUMBERS, 1077 .get_info = part_get_info_ptr(part_get_info_efi), 1078 .print = part_print_ptr(part_print_efi), 1079 .test = part_test_efi, 1080 }; 1081 #endif 1082