1 /* 2 * Copyright (C) 2008 RuggedCom, Inc. 3 * Richard Retanubun <RichardRetanubun@RuggedCom.com> 4 * 5 * SPDX-License-Identifier: GPL-2.0+ 6 */ 7 8 /* 9 * NOTE: 10 * when CONFIG_SYS_64BIT_LBA is not defined, lbaint_t is 32 bits; this 11 * limits the maximum size of addressable storage to < 2 Terra Bytes 12 */ 13 #include <asm/unaligned.h> 14 #include <common.h> 15 #include <command.h> 16 #include <ide.h> 17 #include <inttypes.h> 18 #include <malloc.h> 19 #include <part_efi.h> 20 #include <linux/ctype.h> 21 22 DECLARE_GLOBAL_DATA_PTR; 23 24 #ifdef HAVE_BLOCK_DEVICE 25 /** 26 * efi_crc32() - EFI version of crc32 function 27 * @buf: buffer to calculate crc32 of 28 * @len - length of buf 29 * 30 * Description: Returns EFI-style CRC32 value for @buf 31 */ 32 static inline u32 efi_crc32(const void *buf, u32 len) 33 { 34 return crc32(0, buf, len); 35 } 36 37 /* 38 * Private function prototypes 39 */ 40 41 static int pmbr_part_valid(struct partition *part); 42 static int is_pmbr_valid(legacy_mbr * mbr); 43 static int is_gpt_valid(block_dev_desc_t *dev_desc, u64 lba, 44 gpt_header *pgpt_head, gpt_entry **pgpt_pte); 45 static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc, 46 gpt_header * pgpt_head); 47 static int is_pte_valid(gpt_entry * pte); 48 49 static char *print_efiname(gpt_entry *pte) 50 { 51 static char name[PARTNAME_SZ + 1]; 52 int i; 53 for (i = 0; i < PARTNAME_SZ; i++) { 54 u8 c; 55 c = pte->partition_name[i] & 0xff; 56 c = (c && !isprint(c)) ? '.' : c; 57 name[i] = c; 58 } 59 name[PARTNAME_SZ] = 0; 60 return name; 61 } 62 63 static efi_guid_t system_guid = PARTITION_SYSTEM_GUID; 64 65 static inline int is_bootable(gpt_entry *p) 66 { 67 return p->attributes.fields.legacy_bios_bootable || 68 !memcmp(&(p->partition_type_guid), &system_guid, 69 sizeof(efi_guid_t)); 70 } 71 72 #ifdef CONFIG_EFI_PARTITION 73 /* 74 * Public Functions (include/part.h) 75 */ 76 77 void print_part_efi(block_dev_desc_t * dev_desc) 78 { 79 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz); 80 gpt_entry *gpt_pte = NULL; 81 int i = 0; 82 char uuid[37]; 83 unsigned char *uuid_bin; 84 85 if (!dev_desc) { 86 printf("%s: Invalid Argument(s)\n", __func__); 87 return; 88 } 89 /* This function validates AND fills in the GPT header and PTE */ 90 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, 91 gpt_head, &gpt_pte) != 1) { 92 printf("%s: *** ERROR: Invalid GPT ***\n", __func__); 93 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1), 94 gpt_head, &gpt_pte) != 1) { 95 printf("%s: *** ERROR: Invalid Backup GPT ***\n", 96 __func__); 97 return; 98 } else { 99 printf("%s: *** Using Backup GPT ***\n", 100 __func__); 101 } 102 } 103 104 debug("%s: gpt-entry at %p\n", __func__, gpt_pte); 105 106 printf("Part\tStart LBA\tEnd LBA\t\tName\n"); 107 printf("\tAttributes\n"); 108 printf("\tType GUID\n"); 109 printf("\tPartition GUID\n"); 110 111 for (i = 0; i < le32_to_cpu(gpt_head->num_partition_entries); i++) { 112 /* Stop at the first non valid PTE */ 113 if (!is_pte_valid(&gpt_pte[i])) 114 break; 115 116 printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1), 117 le64_to_cpu(gpt_pte[i].starting_lba), 118 le64_to_cpu(gpt_pte[i].ending_lba), 119 print_efiname(&gpt_pte[i])); 120 printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw); 121 uuid_bin = (unsigned char *)gpt_pte[i].partition_type_guid.b; 122 uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID); 123 printf("\ttype:\t%s\n", uuid); 124 uuid_bin = (unsigned char *)gpt_pte[i].unique_partition_guid.b; 125 uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID); 126 printf("\tguid:\t%s\n", uuid); 127 } 128 129 /* Remember to free pte */ 130 free(gpt_pte); 131 return; 132 } 133 134 int get_partition_info_efi(block_dev_desc_t * dev_desc, int part, 135 disk_partition_t * info) 136 { 137 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz); 138 gpt_entry *gpt_pte = NULL; 139 140 /* "part" argument must be at least 1 */ 141 if (!dev_desc || !info || part < 1) { 142 printf("%s: Invalid Argument(s)\n", __func__); 143 return -1; 144 } 145 146 /* This function validates AND fills in the GPT header and PTE */ 147 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, 148 gpt_head, &gpt_pte) != 1) { 149 printf("%s: *** ERROR: Invalid GPT ***\n", __func__); 150 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1), 151 gpt_head, &gpt_pte) != 1) { 152 printf("%s: *** ERROR: Invalid Backup GPT ***\n", 153 __func__); 154 return -1; 155 } else { 156 printf("%s: *** Using Backup GPT ***\n", 157 __func__); 158 } 159 } 160 161 if (part > le32_to_cpu(gpt_head->num_partition_entries) || 162 !is_pte_valid(&gpt_pte[part - 1])) { 163 debug("%s: *** ERROR: Invalid partition number %d ***\n", 164 __func__, part); 165 free(gpt_pte); 166 return -1; 167 } 168 169 /* The 'lbaint_t' casting may limit the maximum disk size to 2 TB */ 170 info->start = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].starting_lba); 171 /* The ending LBA is inclusive, to calculate size, add 1 to it */ 172 info->size = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].ending_lba) + 1 173 - info->start; 174 info->blksz = dev_desc->blksz; 175 176 sprintf((char *)info->name, "%s", 177 print_efiname(&gpt_pte[part - 1])); 178 sprintf((char *)info->type, "U-Boot"); 179 info->bootable = is_bootable(&gpt_pte[part - 1]); 180 #ifdef CONFIG_PARTITION_UUIDS 181 uuid_bin_to_str(gpt_pte[part - 1].unique_partition_guid.b, info->uuid, 182 UUID_STR_FORMAT_GUID); 183 #endif 184 185 debug("%s: start 0x" LBAF ", size 0x" LBAF ", name %s\n", __func__, 186 info->start, info->size, info->name); 187 188 /* Remember to free pte */ 189 free(gpt_pte); 190 return 0; 191 } 192 193 int get_partition_info_efi_by_name(block_dev_desc_t *dev_desc, 194 const char *name, disk_partition_t *info) 195 { 196 int ret; 197 int i; 198 for (i = 1; i < GPT_ENTRY_NUMBERS; i++) { 199 ret = get_partition_info_efi(dev_desc, i, info); 200 if (ret != 0) { 201 /* no more entries in table */ 202 return -1; 203 } 204 if (strcmp(name, (const char *)info->name) == 0) { 205 /* matched */ 206 return 0; 207 } 208 } 209 return -2; 210 } 211 212 int test_part_efi(block_dev_desc_t * dev_desc) 213 { 214 ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, legacymbr, 1, dev_desc->blksz); 215 216 /* Read legacy MBR from block 0 and validate it */ 217 if ((dev_desc->block_read(dev_desc->dev, 0, 1, (ulong *)legacymbr) != 1) 218 || (is_pmbr_valid(legacymbr) != 1)) { 219 return -1; 220 } 221 return 0; 222 } 223 224 /** 225 * set_protective_mbr(): Set the EFI protective MBR 226 * @param dev_desc - block device descriptor 227 * 228 * @return - zero on success, otherwise error 229 */ 230 static int set_protective_mbr(block_dev_desc_t *dev_desc) 231 { 232 /* Setup the Protective MBR */ 233 ALLOC_CACHE_ALIGN_BUFFER(legacy_mbr, p_mbr, 1); 234 memset(p_mbr, 0, sizeof(*p_mbr)); 235 236 if (p_mbr == NULL) { 237 printf("%s: calloc failed!\n", __func__); 238 return -1; 239 } 240 /* Append signature */ 241 p_mbr->signature = MSDOS_MBR_SIGNATURE; 242 p_mbr->partition_record[0].sys_ind = EFI_PMBR_OSTYPE_EFI_GPT; 243 p_mbr->partition_record[0].start_sect = 1; 244 p_mbr->partition_record[0].nr_sects = (u32) dev_desc->lba; 245 246 /* Write MBR sector to the MMC device */ 247 if (dev_desc->block_write(dev_desc->dev, 0, 1, p_mbr) != 1) { 248 printf("** Can't write to device %d **\n", 249 dev_desc->dev); 250 return -1; 251 } 252 253 return 0; 254 } 255 256 int write_gpt_table(block_dev_desc_t *dev_desc, 257 gpt_header *gpt_h, gpt_entry *gpt_e) 258 { 259 const int pte_blk_cnt = BLOCK_CNT((gpt_h->num_partition_entries 260 * sizeof(gpt_entry)), dev_desc); 261 u32 calc_crc32; 262 u64 val; 263 264 debug("max lba: %x\n", (u32) dev_desc->lba); 265 /* Setup the Protective MBR */ 266 if (set_protective_mbr(dev_desc) < 0) 267 goto err; 268 269 /* Generate CRC for the Primary GPT Header */ 270 calc_crc32 = efi_crc32((const unsigned char *)gpt_e, 271 le32_to_cpu(gpt_h->num_partition_entries) * 272 le32_to_cpu(gpt_h->sizeof_partition_entry)); 273 gpt_h->partition_entry_array_crc32 = cpu_to_le32(calc_crc32); 274 275 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 276 le32_to_cpu(gpt_h->header_size)); 277 gpt_h->header_crc32 = cpu_to_le32(calc_crc32); 278 279 /* Write the First GPT to the block right after the Legacy MBR */ 280 if (dev_desc->block_write(dev_desc->dev, 1, 1, gpt_h) != 1) 281 goto err; 282 283 if (dev_desc->block_write(dev_desc->dev, 2, pte_blk_cnt, gpt_e) 284 != pte_blk_cnt) 285 goto err; 286 287 /* recalculate the values for the Backup GPT Header */ 288 val = le64_to_cpu(gpt_h->my_lba); 289 gpt_h->my_lba = gpt_h->alternate_lba; 290 gpt_h->alternate_lba = cpu_to_le64(val); 291 gpt_h->header_crc32 = 0; 292 293 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 294 le32_to_cpu(gpt_h->header_size)); 295 gpt_h->header_crc32 = cpu_to_le32(calc_crc32); 296 297 if (dev_desc->block_write(dev_desc->dev, 298 (lbaint_t)le64_to_cpu(gpt_h->last_usable_lba) 299 + 1, 300 pte_blk_cnt, gpt_e) != pte_blk_cnt) 301 goto err; 302 303 if (dev_desc->block_write(dev_desc->dev, 304 (lbaint_t)le64_to_cpu(gpt_h->my_lba), 1, 305 gpt_h) != 1) 306 goto err; 307 308 debug("GPT successfully written to block device!\n"); 309 return 0; 310 311 err: 312 printf("** Can't write to device %d **\n", dev_desc->dev); 313 return -1; 314 } 315 316 int gpt_fill_pte(gpt_header *gpt_h, gpt_entry *gpt_e, 317 disk_partition_t *partitions, int parts) 318 { 319 lbaint_t offset = (lbaint_t)le64_to_cpu(gpt_h->first_usable_lba); 320 lbaint_t start; 321 lbaint_t last_usable_lba = (lbaint_t) 322 le64_to_cpu(gpt_h->last_usable_lba); 323 int i, k; 324 size_t efiname_len, dosname_len; 325 #ifdef CONFIG_PARTITION_UUIDS 326 char *str_uuid; 327 unsigned char *bin_uuid; 328 #endif 329 330 for (i = 0; i < parts; i++) { 331 /* partition starting lba */ 332 start = partitions[i].start; 333 if (start && (start < offset)) { 334 printf("Partition overlap\n"); 335 return -1; 336 } 337 if (start) { 338 gpt_e[i].starting_lba = cpu_to_le64(start); 339 offset = start + partitions[i].size; 340 } else { 341 gpt_e[i].starting_lba = cpu_to_le64(offset); 342 offset += partitions[i].size; 343 } 344 if (offset >= last_usable_lba) { 345 printf("Partitions layout exceds disk size\n"); 346 return -1; 347 } 348 /* partition ending lba */ 349 if ((i == parts - 1) && (partitions[i].size == 0)) 350 /* extend the last partition to maximuim */ 351 gpt_e[i].ending_lba = gpt_h->last_usable_lba; 352 else 353 gpt_e[i].ending_lba = cpu_to_le64(offset - 1); 354 355 /* partition type GUID */ 356 memcpy(gpt_e[i].partition_type_guid.b, 357 &PARTITION_BASIC_DATA_GUID, 16); 358 359 #ifdef CONFIG_PARTITION_UUIDS 360 str_uuid = partitions[i].uuid; 361 bin_uuid = gpt_e[i].unique_partition_guid.b; 362 363 if (uuid_str_to_bin(str_uuid, bin_uuid, UUID_STR_FORMAT_STD)) { 364 printf("Partition no. %d: invalid guid: %s\n", 365 i, str_uuid); 366 return -1; 367 } 368 #endif 369 370 /* partition attributes */ 371 memset(&gpt_e[i].attributes, 0, 372 sizeof(gpt_entry_attributes)); 373 374 /* partition name */ 375 efiname_len = sizeof(gpt_e[i].partition_name) 376 / sizeof(efi_char16_t); 377 dosname_len = sizeof(partitions[i].name); 378 379 memset(gpt_e[i].partition_name, 0, 380 sizeof(gpt_e[i].partition_name)); 381 382 for (k = 0; k < min(dosname_len, efiname_len); k++) 383 gpt_e[i].partition_name[k] = 384 (efi_char16_t)(partitions[i].name[k]); 385 386 debug("%s: name: %s offset[%d]: 0x" LBAF 387 " size[%d]: 0x" LBAF "\n", 388 __func__, partitions[i].name, i, 389 offset, i, partitions[i].size); 390 } 391 392 return 0; 393 } 394 395 int gpt_fill_header(block_dev_desc_t *dev_desc, gpt_header *gpt_h, 396 char *str_guid, int parts_count) 397 { 398 gpt_h->signature = cpu_to_le64(GPT_HEADER_SIGNATURE); 399 gpt_h->revision = cpu_to_le32(GPT_HEADER_REVISION_V1); 400 gpt_h->header_size = cpu_to_le32(sizeof(gpt_header)); 401 gpt_h->my_lba = cpu_to_le64(1); 402 gpt_h->alternate_lba = cpu_to_le64(dev_desc->lba - 1); 403 gpt_h->first_usable_lba = cpu_to_le64(34); 404 gpt_h->last_usable_lba = cpu_to_le64(dev_desc->lba - 34); 405 gpt_h->partition_entry_lba = cpu_to_le64(2); 406 gpt_h->num_partition_entries = cpu_to_le32(GPT_ENTRY_NUMBERS); 407 gpt_h->sizeof_partition_entry = cpu_to_le32(sizeof(gpt_entry)); 408 gpt_h->header_crc32 = 0; 409 gpt_h->partition_entry_array_crc32 = 0; 410 411 if (uuid_str_to_bin(str_guid, gpt_h->disk_guid.b, UUID_STR_FORMAT_GUID)) 412 return -1; 413 414 return 0; 415 } 416 417 int gpt_restore(block_dev_desc_t *dev_desc, char *str_disk_guid, 418 disk_partition_t *partitions, int parts_count) 419 { 420 int ret; 421 422 gpt_header *gpt_h = calloc(1, PAD_TO_BLOCKSIZE(sizeof(gpt_header), 423 dev_desc)); 424 gpt_entry *gpt_e; 425 426 if (gpt_h == NULL) { 427 printf("%s: calloc failed!\n", __func__); 428 return -1; 429 } 430 431 gpt_e = calloc(1, PAD_TO_BLOCKSIZE(GPT_ENTRY_NUMBERS 432 * sizeof(gpt_entry), 433 dev_desc)); 434 if (gpt_e == NULL) { 435 printf("%s: calloc failed!\n", __func__); 436 free(gpt_h); 437 return -1; 438 } 439 440 /* Generate Primary GPT header (LBA1) */ 441 ret = gpt_fill_header(dev_desc, gpt_h, str_disk_guid, parts_count); 442 if (ret) 443 goto err; 444 445 /* Generate partition entries */ 446 ret = gpt_fill_pte(gpt_h, gpt_e, partitions, parts_count); 447 if (ret) 448 goto err; 449 450 /* Write GPT partition table */ 451 ret = write_gpt_table(dev_desc, gpt_h, gpt_e); 452 453 err: 454 free(gpt_e); 455 free(gpt_h); 456 return ret; 457 } 458 #endif 459 460 /* 461 * Private functions 462 */ 463 /* 464 * pmbr_part_valid(): Check for EFI partition signature 465 * 466 * Returns: 1 if EFI GPT partition type is found. 467 */ 468 static int pmbr_part_valid(struct partition *part) 469 { 470 if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT && 471 get_unaligned_le32(&part->start_sect) == 1UL) { 472 return 1; 473 } 474 475 return 0; 476 } 477 478 /* 479 * is_pmbr_valid(): test Protective MBR for validity 480 * 481 * Returns: 1 if PMBR is valid, 0 otherwise. 482 * Validity depends on two things: 483 * 1) MSDOS signature is in the last two bytes of the MBR 484 * 2) One partition of type 0xEE is found, checked by pmbr_part_valid() 485 */ 486 static int is_pmbr_valid(legacy_mbr * mbr) 487 { 488 int i = 0; 489 490 if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE) 491 return 0; 492 493 for (i = 0; i < 4; i++) { 494 if (pmbr_part_valid(&mbr->partition_record[i])) { 495 return 1; 496 } 497 } 498 return 0; 499 } 500 501 /** 502 * is_gpt_valid() - tests one GPT header and PTEs for validity 503 * 504 * lba is the logical block address of the GPT header to test 505 * gpt is a GPT header ptr, filled on return. 506 * ptes is a PTEs ptr, filled on return. 507 * 508 * Description: returns 1 if valid, 0 on error. 509 * If valid, returns pointers to PTEs. 510 */ 511 static int is_gpt_valid(block_dev_desc_t *dev_desc, u64 lba, 512 gpt_header *pgpt_head, gpt_entry **pgpt_pte) 513 { 514 u32 crc32_backup = 0; 515 u32 calc_crc32; 516 u64 lastlba; 517 518 if (!dev_desc || !pgpt_head) { 519 printf("%s: Invalid Argument(s)\n", __func__); 520 return 0; 521 } 522 523 /* Read GPT Header from device */ 524 if (dev_desc->block_read(dev_desc->dev, (lbaint_t)lba, 1, pgpt_head) 525 != 1) { 526 printf("*** ERROR: Can't read GPT header ***\n"); 527 return 0; 528 } 529 530 /* Check the GPT header signature */ 531 if (le64_to_cpu(pgpt_head->signature) != GPT_HEADER_SIGNATURE) { 532 printf("GUID Partition Table Header signature is wrong:" 533 "0x%llX != 0x%llX\n", 534 le64_to_cpu(pgpt_head->signature), 535 GPT_HEADER_SIGNATURE); 536 return 0; 537 } 538 539 /* Check the GUID Partition Table CRC */ 540 memcpy(&crc32_backup, &pgpt_head->header_crc32, sizeof(crc32_backup)); 541 memset(&pgpt_head->header_crc32, 0, sizeof(pgpt_head->header_crc32)); 542 543 calc_crc32 = efi_crc32((const unsigned char *)pgpt_head, 544 le32_to_cpu(pgpt_head->header_size)); 545 546 memcpy(&pgpt_head->header_crc32, &crc32_backup, sizeof(crc32_backup)); 547 548 if (calc_crc32 != le32_to_cpu(crc32_backup)) { 549 printf("GUID Partition Table Header CRC is wrong:" 550 "0x%x != 0x%x\n", 551 le32_to_cpu(crc32_backup), calc_crc32); 552 return 0; 553 } 554 555 /* Check that the my_lba entry points to the LBA that contains the GPT */ 556 if (le64_to_cpu(pgpt_head->my_lba) != lba) { 557 printf("GPT: my_lba incorrect: %llX != %" PRIX64 "\n", 558 le64_to_cpu(pgpt_head->my_lba), 559 lba); 560 return 0; 561 } 562 563 /* Check the first_usable_lba and last_usable_lba are within the disk. */ 564 lastlba = (u64)dev_desc->lba; 565 if (le64_to_cpu(pgpt_head->first_usable_lba) > lastlba) { 566 printf("GPT: first_usable_lba incorrect: %llX > %" PRIX64 "\n", 567 le64_to_cpu(pgpt_head->first_usable_lba), lastlba); 568 return 0; 569 } 570 if (le64_to_cpu(pgpt_head->last_usable_lba) > lastlba) { 571 printf("GPT: last_usable_lba incorrect: %llX > %" PRIX64 "\n", 572 le64_to_cpu(pgpt_head->last_usable_lba), lastlba); 573 return 0; 574 } 575 576 debug("GPT: first_usable_lba: %llX last_usable_lba %llX last lba %" 577 PRIX64 "\n", le64_to_cpu(pgpt_head->first_usable_lba), 578 le64_to_cpu(pgpt_head->last_usable_lba), lastlba); 579 580 /* Read and allocate Partition Table Entries */ 581 *pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head); 582 if (*pgpt_pte == NULL) { 583 printf("GPT: Failed to allocate memory for PTE\n"); 584 return 0; 585 } 586 587 /* Check the GUID Partition Table Entry Array CRC */ 588 calc_crc32 = efi_crc32((const unsigned char *)*pgpt_pte, 589 le32_to_cpu(pgpt_head->num_partition_entries) * 590 le32_to_cpu(pgpt_head->sizeof_partition_entry)); 591 592 if (calc_crc32 != le32_to_cpu(pgpt_head->partition_entry_array_crc32)) { 593 printf("GUID Partition Table Entry Array CRC is wrong:" 594 "0x%x != 0x%x\n", 595 le32_to_cpu(pgpt_head->partition_entry_array_crc32), 596 calc_crc32); 597 598 free(*pgpt_pte); 599 return 0; 600 } 601 602 /* We're done, all's well */ 603 return 1; 604 } 605 606 /** 607 * alloc_read_gpt_entries(): reads partition entries from disk 608 * @dev_desc 609 * @gpt - GPT header 610 * 611 * Description: Returns ptes on success, NULL on error. 612 * Allocates space for PTEs based on information found in @gpt. 613 * Notes: remember to free pte when you're done! 614 */ 615 static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc, 616 gpt_header * pgpt_head) 617 { 618 size_t count = 0, blk_cnt; 619 gpt_entry *pte = NULL; 620 621 if (!dev_desc || !pgpt_head) { 622 printf("%s: Invalid Argument(s)\n", __func__); 623 return NULL; 624 } 625 626 count = le32_to_cpu(pgpt_head->num_partition_entries) * 627 le32_to_cpu(pgpt_head->sizeof_partition_entry); 628 629 debug("%s: count = %u * %u = %zu\n", __func__, 630 (u32) le32_to_cpu(pgpt_head->num_partition_entries), 631 (u32) le32_to_cpu(pgpt_head->sizeof_partition_entry), count); 632 633 /* Allocate memory for PTE, remember to FREE */ 634 if (count != 0) { 635 pte = memalign(ARCH_DMA_MINALIGN, 636 PAD_TO_BLOCKSIZE(count, dev_desc)); 637 } 638 639 if (count == 0 || pte == NULL) { 640 printf("%s: ERROR: Can't allocate 0x%zX " 641 "bytes for GPT Entries\n", 642 __func__, count); 643 return NULL; 644 } 645 646 /* Read GPT Entries from device */ 647 blk_cnt = BLOCK_CNT(count, dev_desc); 648 if (dev_desc->block_read (dev_desc->dev, 649 (lbaint_t)le64_to_cpu(pgpt_head->partition_entry_lba), 650 (lbaint_t) (blk_cnt), pte) 651 != blk_cnt) { 652 653 printf("*** ERROR: Can't read GPT Entries ***\n"); 654 free(pte); 655 return NULL; 656 } 657 return pte; 658 } 659 660 /** 661 * is_pte_valid(): validates a single Partition Table Entry 662 * @gpt_entry - Pointer to a single Partition Table Entry 663 * 664 * Description: returns 1 if valid, 0 on error. 665 */ 666 static int is_pte_valid(gpt_entry * pte) 667 { 668 efi_guid_t unused_guid; 669 670 if (!pte) { 671 printf("%s: Invalid Argument(s)\n", __func__); 672 return 0; 673 } 674 675 /* Only one validation for now: 676 * The GUID Partition Type != Unused Entry (ALL-ZERO) 677 */ 678 memset(unused_guid.b, 0, sizeof(unused_guid.b)); 679 680 if (memcmp(pte->partition_type_guid.b, unused_guid.b, 681 sizeof(unused_guid.b)) == 0) { 682 683 debug("%s: Found an unused PTE GUID at 0x%08X\n", __func__, 684 (unsigned int)(uintptr_t)pte); 685 686 return 0; 687 } else { 688 return 1; 689 } 690 } 691 #endif 692