xref: /openbmc/u-boot/disk/part_efi.c (revision a818704b)
1 /*
2  * Copyright (C) 2008 RuggedCom, Inc.
3  * Richard Retanubun <RichardRetanubun@RuggedCom.com>
4  *
5  * SPDX-License-Identifier:	GPL-2.0+
6  */
7 
8 /*
9  * NOTE:
10  *   when CONFIG_SYS_64BIT_LBA is not defined, lbaint_t is 32 bits; this
11  *   limits the maximum size of addressable storage to < 2 Terra Bytes
12  */
13 #include <asm/unaligned.h>
14 #include <common.h>
15 #include <command.h>
16 #include <fdtdec.h>
17 #include <ide.h>
18 #include <inttypes.h>
19 #include <malloc.h>
20 #include <memalign.h>
21 #include <part_efi.h>
22 #include <linux/compiler.h>
23 #include <linux/ctype.h>
24 
25 DECLARE_GLOBAL_DATA_PTR;
26 
27 #ifdef HAVE_BLOCK_DEVICE
28 /**
29  * efi_crc32() - EFI version of crc32 function
30  * @buf: buffer to calculate crc32 of
31  * @len - length of buf
32  *
33  * Description: Returns EFI-style CRC32 value for @buf
34  */
35 static inline u32 efi_crc32(const void *buf, u32 len)
36 {
37 	return crc32(0, buf, len);
38 }
39 
40 /*
41  * Private function prototypes
42  */
43 
44 static int pmbr_part_valid(struct partition *part);
45 static int is_pmbr_valid(legacy_mbr * mbr);
46 static int is_gpt_valid(struct blk_desc *dev_desc, u64 lba,
47 				gpt_header *pgpt_head, gpt_entry **pgpt_pte);
48 static gpt_entry *alloc_read_gpt_entries(struct blk_desc *dev_desc,
49 					 gpt_header *pgpt_head);
50 static int is_pte_valid(gpt_entry * pte);
51 
52 static char *print_efiname(gpt_entry *pte)
53 {
54 	static char name[PARTNAME_SZ + 1];
55 	int i;
56 	for (i = 0; i < PARTNAME_SZ; i++) {
57 		u8 c;
58 		c = pte->partition_name[i] & 0xff;
59 		c = (c && !isprint(c)) ? '.' : c;
60 		name[i] = c;
61 	}
62 	name[PARTNAME_SZ] = 0;
63 	return name;
64 }
65 
66 static efi_guid_t system_guid = PARTITION_SYSTEM_GUID;
67 
68 static inline int is_bootable(gpt_entry *p)
69 {
70 	return p->attributes.fields.legacy_bios_bootable ||
71 		!memcmp(&(p->partition_type_guid), &system_guid,
72 			sizeof(efi_guid_t));
73 }
74 
75 static int validate_gpt_header(gpt_header *gpt_h, lbaint_t lba,
76 		lbaint_t lastlba)
77 {
78 	uint32_t crc32_backup = 0;
79 	uint32_t calc_crc32;
80 
81 	/* Check the GPT header signature */
82 	if (le64_to_cpu(gpt_h->signature) != GPT_HEADER_SIGNATURE) {
83 		printf("%s signature is wrong: 0x%llX != 0x%llX\n",
84 		       "GUID Partition Table Header",
85 		       le64_to_cpu(gpt_h->signature),
86 		       GPT_HEADER_SIGNATURE);
87 		return -1;
88 	}
89 
90 	/* Check the GUID Partition Table CRC */
91 	memcpy(&crc32_backup, &gpt_h->header_crc32, sizeof(crc32_backup));
92 	memset(&gpt_h->header_crc32, 0, sizeof(gpt_h->header_crc32));
93 
94 	calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
95 		le32_to_cpu(gpt_h->header_size));
96 
97 	memcpy(&gpt_h->header_crc32, &crc32_backup, sizeof(crc32_backup));
98 
99 	if (calc_crc32 != le32_to_cpu(crc32_backup)) {
100 		printf("%s CRC is wrong: 0x%x != 0x%x\n",
101 		       "GUID Partition Table Header",
102 		       le32_to_cpu(crc32_backup), calc_crc32);
103 		return -1;
104 	}
105 
106 	/*
107 	 * Check that the my_lba entry points to the LBA that contains the GPT
108 	 */
109 	if (le64_to_cpu(gpt_h->my_lba) != lba) {
110 		printf("GPT: my_lba incorrect: %llX != " LBAF "\n",
111 		       le64_to_cpu(gpt_h->my_lba),
112 		       lba);
113 		return -1;
114 	}
115 
116 	/*
117 	 * Check that the first_usable_lba and that the last_usable_lba are
118 	 * within the disk.
119 	 */
120 	if (le64_to_cpu(gpt_h->first_usable_lba) > lastlba) {
121 		printf("GPT: first_usable_lba incorrect: %llX > " LBAF "\n",
122 		       le64_to_cpu(gpt_h->first_usable_lba), lastlba);
123 		return -1;
124 	}
125 	if (le64_to_cpu(gpt_h->last_usable_lba) > lastlba) {
126 		printf("GPT: last_usable_lba incorrect: %llX > " LBAF "\n",
127 		       le64_to_cpu(gpt_h->last_usable_lba), lastlba);
128 		return -1;
129 	}
130 
131 	debug("GPT: first_usable_lba: %llX last_usable_lba: %llX last lba: "
132 	      LBAF "\n", le64_to_cpu(gpt_h->first_usable_lba),
133 	      le64_to_cpu(gpt_h->last_usable_lba), lastlba);
134 
135 	return 0;
136 }
137 
138 static int validate_gpt_entries(gpt_header *gpt_h, gpt_entry *gpt_e)
139 {
140 	uint32_t calc_crc32;
141 
142 	/* Check the GUID Partition Table Entry Array CRC */
143 	calc_crc32 = efi_crc32((const unsigned char *)gpt_e,
144 		le32_to_cpu(gpt_h->num_partition_entries) *
145 		le32_to_cpu(gpt_h->sizeof_partition_entry));
146 
147 	if (calc_crc32 != le32_to_cpu(gpt_h->partition_entry_array_crc32)) {
148 		printf("%s: 0x%x != 0x%x\n",
149 		       "GUID Partition Table Entry Array CRC is wrong",
150 		       le32_to_cpu(gpt_h->partition_entry_array_crc32),
151 		       calc_crc32);
152 		return -1;
153 	}
154 
155 	return 0;
156 }
157 
158 static void prepare_backup_gpt_header(gpt_header *gpt_h)
159 {
160 	uint32_t calc_crc32;
161 	uint64_t val;
162 
163 	/* recalculate the values for the Backup GPT Header */
164 	val = le64_to_cpu(gpt_h->my_lba);
165 	gpt_h->my_lba = gpt_h->alternate_lba;
166 	gpt_h->alternate_lba = cpu_to_le64(val);
167 	gpt_h->partition_entry_lba =
168 			cpu_to_le64(le64_to_cpu(gpt_h->last_usable_lba) + 1);
169 	gpt_h->header_crc32 = 0;
170 
171 	calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
172 			       le32_to_cpu(gpt_h->header_size));
173 	gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
174 }
175 
176 #if CONFIG_IS_ENABLED(EFI_PARTITION)
177 /*
178  * Public Functions (include/part.h)
179  */
180 
181 /*
182  * UUID is displayed as 32 hexadecimal digits, in 5 groups,
183  * separated by hyphens, in the form 8-4-4-4-12 for a total of 36 characters
184  */
185 int get_disk_guid(struct blk_desc * dev_desc, char *guid)
186 {
187 	ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz);
188 	gpt_entry *gpt_pte = NULL;
189 	unsigned char *guid_bin;
190 
191 	/* This function validates AND fills in the GPT header and PTE */
192 	if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
193 			 gpt_head, &gpt_pte) != 1) {
194 		printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
195 		if (is_gpt_valid(dev_desc, dev_desc->lba - 1,
196 				 gpt_head, &gpt_pte) != 1) {
197 			printf("%s: *** ERROR: Invalid Backup GPT ***\n",
198 			       __func__);
199 			return -EINVAL;
200 		} else {
201 			printf("%s: ***        Using Backup GPT ***\n",
202 			       __func__);
203 		}
204 	}
205 
206 	guid_bin = gpt_head->disk_guid.b;
207 	uuid_bin_to_str(guid_bin, guid, UUID_STR_FORMAT_GUID);
208 
209 	return 0;
210 }
211 
212 void part_print_efi(struct blk_desc *dev_desc)
213 {
214 	ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz);
215 	gpt_entry *gpt_pte = NULL;
216 	int i = 0;
217 	char uuid[UUID_STR_LEN + 1];
218 	unsigned char *uuid_bin;
219 
220 	/* This function validates AND fills in the GPT header and PTE */
221 	if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
222 			 gpt_head, &gpt_pte) != 1) {
223 		printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
224 		if (is_gpt_valid(dev_desc, (dev_desc->lba - 1),
225 				 gpt_head, &gpt_pte) != 1) {
226 			printf("%s: *** ERROR: Invalid Backup GPT ***\n",
227 			       __func__);
228 			return;
229 		} else {
230 			printf("%s: ***        Using Backup GPT ***\n",
231 			       __func__);
232 		}
233 	}
234 
235 	debug("%s: gpt-entry at %p\n", __func__, gpt_pte);
236 
237 	printf("Part\tStart LBA\tEnd LBA\t\tName\n");
238 	printf("\tAttributes\n");
239 	printf("\tType GUID\n");
240 	printf("\tPartition GUID\n");
241 
242 	for (i = 0; i < le32_to_cpu(gpt_head->num_partition_entries); i++) {
243 		/* Stop at the first non valid PTE */
244 		if (!is_pte_valid(&gpt_pte[i]))
245 			break;
246 
247 		printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1),
248 			le64_to_cpu(gpt_pte[i].starting_lba),
249 			le64_to_cpu(gpt_pte[i].ending_lba),
250 			print_efiname(&gpt_pte[i]));
251 		printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw);
252 		uuid_bin = (unsigned char *)gpt_pte[i].partition_type_guid.b;
253 		uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID);
254 		printf("\ttype:\t%s\n", uuid);
255 #ifdef CONFIG_PARTITION_TYPE_GUID
256 		if (!uuid_guid_get_str(uuid_bin, uuid))
257 			printf("\ttype:\t%s\n", uuid);
258 #endif
259 		uuid_bin = (unsigned char *)gpt_pte[i].unique_partition_guid.b;
260 		uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID);
261 		printf("\tguid:\t%s\n", uuid);
262 	}
263 
264 	/* Remember to free pte */
265 	free(gpt_pte);
266 	return;
267 }
268 
269 int part_get_info_efi(struct blk_desc *dev_desc, int part,
270 		      disk_partition_t *info)
271 {
272 	ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz);
273 	gpt_entry *gpt_pte = NULL;
274 
275 	/* "part" argument must be at least 1 */
276 	if (part < 1) {
277 		printf("%s: Invalid Argument(s)\n", __func__);
278 		return -1;
279 	}
280 
281 	/* This function validates AND fills in the GPT header and PTE */
282 	if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
283 			gpt_head, &gpt_pte) != 1) {
284 		printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
285 		if (is_gpt_valid(dev_desc, (dev_desc->lba - 1),
286 				 gpt_head, &gpt_pte) != 1) {
287 			printf("%s: *** ERROR: Invalid Backup GPT ***\n",
288 			       __func__);
289 			return -1;
290 		} else {
291 			printf("%s: ***        Using Backup GPT ***\n",
292 			       __func__);
293 		}
294 	}
295 
296 	if (part > le32_to_cpu(gpt_head->num_partition_entries) ||
297 	    !is_pte_valid(&gpt_pte[part - 1])) {
298 		debug("%s: *** ERROR: Invalid partition number %d ***\n",
299 			__func__, part);
300 		free(gpt_pte);
301 		return -1;
302 	}
303 
304 	/* The 'lbaint_t' casting may limit the maximum disk size to 2 TB */
305 	info->start = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].starting_lba);
306 	/* The ending LBA is inclusive, to calculate size, add 1 to it */
307 	info->size = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].ending_lba) + 1
308 		     - info->start;
309 	info->blksz = dev_desc->blksz;
310 
311 	sprintf((char *)info->name, "%s",
312 			print_efiname(&gpt_pte[part - 1]));
313 	strcpy((char *)info->type, "U-Boot");
314 	info->bootable = is_bootable(&gpt_pte[part - 1]);
315 #if CONFIG_IS_ENABLED(PARTITION_UUIDS)
316 	uuid_bin_to_str(gpt_pte[part - 1].unique_partition_guid.b, info->uuid,
317 			UUID_STR_FORMAT_GUID);
318 #endif
319 #ifdef CONFIG_PARTITION_TYPE_GUID
320 	uuid_bin_to_str(gpt_pte[part - 1].partition_type_guid.b,
321 			info->type_guid, UUID_STR_FORMAT_GUID);
322 #endif
323 
324 	debug("%s: start 0x" LBAF ", size 0x" LBAF ", name %s\n", __func__,
325 	      info->start, info->size, info->name);
326 
327 	/* Remember to free pte */
328 	free(gpt_pte);
329 	return 0;
330 }
331 
332 static int part_test_efi(struct blk_desc *dev_desc)
333 {
334 	ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, legacymbr, 1, dev_desc->blksz);
335 
336 	/* Read legacy MBR from block 0 and validate it */
337 	if ((blk_dread(dev_desc, 0, 1, (ulong *)legacymbr) != 1)
338 		|| (is_pmbr_valid(legacymbr) != 1)) {
339 		return -1;
340 	}
341 	return 0;
342 }
343 
344 /**
345  * set_protective_mbr(): Set the EFI protective MBR
346  * @param dev_desc - block device descriptor
347  *
348  * @return - zero on success, otherwise error
349  */
350 static int set_protective_mbr(struct blk_desc *dev_desc)
351 {
352 	/* Setup the Protective MBR */
353 	ALLOC_CACHE_ALIGN_BUFFER(legacy_mbr, p_mbr, 1);
354 	memset(p_mbr, 0, sizeof(*p_mbr));
355 
356 	if (p_mbr == NULL) {
357 		printf("%s: calloc failed!\n", __func__);
358 		return -1;
359 	}
360 
361 	/* Read MBR to backup boot code if it exists */
362 	if (blk_dread(dev_desc, 0, 1, p_mbr) != 1) {
363 		error("** Can't read from device %d **\n", dev_desc->devnum);
364 		return -1;
365 	}
366 
367 	/* Append signature */
368 	p_mbr->signature = MSDOS_MBR_SIGNATURE;
369 	p_mbr->partition_record[0].sys_ind = EFI_PMBR_OSTYPE_EFI_GPT;
370 	p_mbr->partition_record[0].start_sect = 1;
371 	p_mbr->partition_record[0].nr_sects = (u32) dev_desc->lba - 1;
372 
373 	/* Write MBR sector to the MMC device */
374 	if (blk_dwrite(dev_desc, 0, 1, p_mbr) != 1) {
375 		printf("** Can't write to device %d **\n",
376 			dev_desc->devnum);
377 		return -1;
378 	}
379 
380 	return 0;
381 }
382 
383 int write_gpt_table(struct blk_desc *dev_desc,
384 		gpt_header *gpt_h, gpt_entry *gpt_e)
385 {
386 	const int pte_blk_cnt = BLOCK_CNT((gpt_h->num_partition_entries
387 					   * sizeof(gpt_entry)), dev_desc);
388 	u32 calc_crc32;
389 
390 	debug("max lba: %x\n", (u32) dev_desc->lba);
391 	/* Setup the Protective MBR */
392 	if (set_protective_mbr(dev_desc) < 0)
393 		goto err;
394 
395 	/* Generate CRC for the Primary GPT Header */
396 	calc_crc32 = efi_crc32((const unsigned char *)gpt_e,
397 			      le32_to_cpu(gpt_h->num_partition_entries) *
398 			      le32_to_cpu(gpt_h->sizeof_partition_entry));
399 	gpt_h->partition_entry_array_crc32 = cpu_to_le32(calc_crc32);
400 
401 	calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
402 			      le32_to_cpu(gpt_h->header_size));
403 	gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
404 
405 	/* Write the First GPT to the block right after the Legacy MBR */
406 	if (blk_dwrite(dev_desc, 1, 1, gpt_h) != 1)
407 		goto err;
408 
409 	if (blk_dwrite(dev_desc, le64_to_cpu(gpt_h->partition_entry_lba),
410 		       pte_blk_cnt, gpt_e) != pte_blk_cnt)
411 		goto err;
412 
413 	prepare_backup_gpt_header(gpt_h);
414 
415 	if (blk_dwrite(dev_desc, (lbaint_t)le64_to_cpu(gpt_h->last_usable_lba)
416 		       + 1, pte_blk_cnt, gpt_e) != pte_blk_cnt)
417 		goto err;
418 
419 	if (blk_dwrite(dev_desc, (lbaint_t)le64_to_cpu(gpt_h->my_lba), 1,
420 		       gpt_h) != 1)
421 		goto err;
422 
423 	debug("GPT successfully written to block device!\n");
424 	return 0;
425 
426  err:
427 	printf("** Can't write to device %d **\n", dev_desc->devnum);
428 	return -1;
429 }
430 
431 int gpt_fill_pte(gpt_header *gpt_h, gpt_entry *gpt_e,
432 		disk_partition_t *partitions, int parts)
433 {
434 	lbaint_t offset = (lbaint_t)le64_to_cpu(gpt_h->first_usable_lba);
435 	lbaint_t start;
436 	lbaint_t last_usable_lba = (lbaint_t)
437 			le64_to_cpu(gpt_h->last_usable_lba);
438 	int i, k;
439 	size_t efiname_len, dosname_len;
440 #if CONFIG_IS_ENABLED(PARTITION_UUIDS)
441 	char *str_uuid;
442 	unsigned char *bin_uuid;
443 #endif
444 #ifdef CONFIG_PARTITION_TYPE_GUID
445 	char *str_type_guid;
446 	unsigned char *bin_type_guid;
447 #endif
448 
449 	for (i = 0; i < parts; i++) {
450 		/* partition starting lba */
451 		start = partitions[i].start;
452 		if (start && (start < offset)) {
453 			printf("Partition overlap\n");
454 			return -1;
455 		}
456 		if (start) {
457 			gpt_e[i].starting_lba = cpu_to_le64(start);
458 			offset = start + partitions[i].size;
459 		} else {
460 			gpt_e[i].starting_lba = cpu_to_le64(offset);
461 			offset += partitions[i].size;
462 		}
463 		if (offset > (last_usable_lba + 1)) {
464 			printf("Partitions layout exceds disk size\n");
465 			return -1;
466 		}
467 		/* partition ending lba */
468 		if ((i == parts - 1) && (partitions[i].size == 0))
469 			/* extend the last partition to maximuim */
470 			gpt_e[i].ending_lba = gpt_h->last_usable_lba;
471 		else
472 			gpt_e[i].ending_lba = cpu_to_le64(offset - 1);
473 
474 #ifdef CONFIG_PARTITION_TYPE_GUID
475 		str_type_guid = partitions[i].type_guid;
476 		bin_type_guid = gpt_e[i].partition_type_guid.b;
477 		if (strlen(str_type_guid)) {
478 			if (uuid_str_to_bin(str_type_guid, bin_type_guid,
479 					    UUID_STR_FORMAT_GUID)) {
480 				printf("Partition no. %d: invalid type guid: %s\n",
481 				       i, str_type_guid);
482 				return -1;
483 			}
484 		} else {
485 			/* default partition type GUID */
486 			memcpy(bin_type_guid,
487 			       &PARTITION_BASIC_DATA_GUID, 16);
488 		}
489 #else
490 		/* partition type GUID */
491 		memcpy(gpt_e[i].partition_type_guid.b,
492 			&PARTITION_BASIC_DATA_GUID, 16);
493 #endif
494 
495 #if CONFIG_IS_ENABLED(PARTITION_UUIDS)
496 		str_uuid = partitions[i].uuid;
497 		bin_uuid = gpt_e[i].unique_partition_guid.b;
498 
499 		if (uuid_str_to_bin(str_uuid, bin_uuid, UUID_STR_FORMAT_GUID)) {
500 			printf("Partition no. %d: invalid guid: %s\n",
501 				i, str_uuid);
502 			return -1;
503 		}
504 #endif
505 
506 		/* partition attributes */
507 		memset(&gpt_e[i].attributes, 0,
508 		       sizeof(gpt_entry_attributes));
509 
510 		if (partitions[i].bootable)
511 			gpt_e[i].attributes.fields.legacy_bios_bootable = 1;
512 
513 		/* partition name */
514 		efiname_len = sizeof(gpt_e[i].partition_name)
515 			/ sizeof(efi_char16_t);
516 		dosname_len = sizeof(partitions[i].name);
517 
518 		memset(gpt_e[i].partition_name, 0,
519 		       sizeof(gpt_e[i].partition_name));
520 
521 		for (k = 0; k < min(dosname_len, efiname_len); k++)
522 			gpt_e[i].partition_name[k] =
523 				(efi_char16_t)(partitions[i].name[k]);
524 
525 		debug("%s: name: %s offset[%d]: 0x" LBAF
526 		      " size[%d]: 0x" LBAF "\n",
527 		      __func__, partitions[i].name, i,
528 		      offset, i, partitions[i].size);
529 	}
530 
531 	return 0;
532 }
533 
534 static uint32_t partition_entries_offset(struct blk_desc *dev_desc)
535 {
536 	uint32_t offset_blks = 2;
537 	int __maybe_unused config_offset;
538 
539 #if defined(CONFIG_EFI_PARTITION_ENTRIES_OFF)
540 	/*
541 	 * Some architectures require their SPL loader at a fixed
542 	 * address within the first 16KB of the disk.  To avoid an
543 	 * overlap with the partition entries of the EFI partition
544 	 * table, the first safe offset (in bytes, from the start of
545 	 * the disk) for the entries can be set in
546 	 * CONFIG_EFI_PARTITION_ENTRIES_OFF.
547 	 */
548 	offset_blks =
549 		PAD_TO_BLOCKSIZE(CONFIG_EFI_PARTITION_ENTRIES_OFF, dev_desc);
550 #endif
551 
552 #if defined(CONFIG_OF_CONTROL)
553 	/*
554 	 * Allow the offset of the first partition entires (in bytes
555 	 * from the start of the device) to be specified as a property
556 	 * of the device tree '/config' node.
557 	 */
558 	config_offset = fdtdec_get_config_int(gd->fdt_blob,
559 					      "u-boot,efi-partition-entries-offset",
560 					      -EINVAL);
561 	if (config_offset != -EINVAL)
562 		offset_blks = PAD_TO_BLOCKSIZE(config_offset, dev_desc);
563 #endif
564 
565 	debug("efi: partition entries offset (in blocks): %d\n", offset_blks);
566 
567 	/*
568 	 * The earliest LBA this can be at is LBA#2 (i.e. right behind
569 	 * the (protective) MBR and the GPT header.
570 	 */
571 	if (offset_blks < 2)
572 		offset_blks = 2;
573 
574 	return offset_blks;
575 }
576 
577 int gpt_fill_header(struct blk_desc *dev_desc, gpt_header *gpt_h,
578 		char *str_guid, int parts_count)
579 {
580 	gpt_h->signature = cpu_to_le64(GPT_HEADER_SIGNATURE);
581 	gpt_h->revision = cpu_to_le32(GPT_HEADER_REVISION_V1);
582 	gpt_h->header_size = cpu_to_le32(sizeof(gpt_header));
583 	gpt_h->my_lba = cpu_to_le64(1);
584 	gpt_h->alternate_lba = cpu_to_le64(dev_desc->lba - 1);
585 	gpt_h->last_usable_lba = cpu_to_le64(dev_desc->lba - 34);
586 	gpt_h->partition_entry_lba =
587 		cpu_to_le64(partition_entries_offset(dev_desc));
588 	gpt_h->first_usable_lba =
589 		cpu_to_le64(le64_to_cpu(gpt_h->partition_entry_lba) + 32);
590 	gpt_h->num_partition_entries = cpu_to_le32(GPT_ENTRY_NUMBERS);
591 	gpt_h->sizeof_partition_entry = cpu_to_le32(sizeof(gpt_entry));
592 	gpt_h->header_crc32 = 0;
593 	gpt_h->partition_entry_array_crc32 = 0;
594 
595 	if (uuid_str_to_bin(str_guid, gpt_h->disk_guid.b, UUID_STR_FORMAT_GUID))
596 		return -1;
597 
598 	return 0;
599 }
600 
601 int gpt_restore(struct blk_desc *dev_desc, char *str_disk_guid,
602 		disk_partition_t *partitions, int parts_count)
603 {
604 	int ret;
605 
606 	gpt_header *gpt_h = calloc(1, PAD_TO_BLOCKSIZE(sizeof(gpt_header),
607 						       dev_desc));
608 	gpt_entry *gpt_e;
609 
610 	if (gpt_h == NULL) {
611 		printf("%s: calloc failed!\n", __func__);
612 		return -1;
613 	}
614 
615 	gpt_e = calloc(1, PAD_TO_BLOCKSIZE(GPT_ENTRY_NUMBERS
616 					       * sizeof(gpt_entry),
617 					       dev_desc));
618 	if (gpt_e == NULL) {
619 		printf("%s: calloc failed!\n", __func__);
620 		free(gpt_h);
621 		return -1;
622 	}
623 
624 	/* Generate Primary GPT header (LBA1) */
625 	ret = gpt_fill_header(dev_desc, gpt_h, str_disk_guid, parts_count);
626 	if (ret)
627 		goto err;
628 
629 	/* Generate partition entries */
630 	ret = gpt_fill_pte(gpt_h, gpt_e, partitions, parts_count);
631 	if (ret)
632 		goto err;
633 
634 	/* Write GPT partition table */
635 	ret = write_gpt_table(dev_desc, gpt_h, gpt_e);
636 
637 err:
638 	free(gpt_e);
639 	free(gpt_h);
640 	return ret;
641 }
642 
643 static void gpt_convert_efi_name_to_char(char *s, efi_char16_t *es, int n)
644 {
645 	char *ess = (char *)es;
646 	int i, j;
647 
648 	memset(s, '\0', n);
649 
650 	for (i = 0, j = 0; j < n; i += 2, j++) {
651 		s[j] = ess[i];
652 		if (!ess[i])
653 			return;
654 	}
655 }
656 
657 int gpt_verify_headers(struct blk_desc *dev_desc, gpt_header *gpt_head,
658 		       gpt_entry **gpt_pte)
659 {
660 	/*
661 	 * This function validates AND
662 	 * fills in the GPT header and PTE
663 	 */
664 	if (is_gpt_valid(dev_desc,
665 			 GPT_PRIMARY_PARTITION_TABLE_LBA,
666 			 gpt_head, gpt_pte) != 1) {
667 		printf("%s: *** ERROR: Invalid GPT ***\n",
668 		       __func__);
669 		return -1;
670 	}
671 	if (is_gpt_valid(dev_desc, (dev_desc->lba - 1),
672 			 gpt_head, gpt_pte) != 1) {
673 		printf("%s: *** ERROR: Invalid Backup GPT ***\n",
674 		       __func__);
675 		return -1;
676 	}
677 
678 	return 0;
679 }
680 
681 int gpt_verify_partitions(struct blk_desc *dev_desc,
682 			  disk_partition_t *partitions, int parts,
683 			  gpt_header *gpt_head, gpt_entry **gpt_pte)
684 {
685 	char efi_str[PARTNAME_SZ + 1];
686 	u64 gpt_part_size;
687 	gpt_entry *gpt_e;
688 	int ret, i;
689 
690 	ret = gpt_verify_headers(dev_desc, gpt_head, gpt_pte);
691 	if (ret)
692 		return ret;
693 
694 	gpt_e = *gpt_pte;
695 
696 	for (i = 0; i < parts; i++) {
697 		if (i == gpt_head->num_partition_entries) {
698 			error("More partitions than allowed!\n");
699 			return -1;
700 		}
701 
702 		/* Check if GPT and ENV partition names match */
703 		gpt_convert_efi_name_to_char(efi_str, gpt_e[i].partition_name,
704 					     PARTNAME_SZ + 1);
705 
706 		debug("%s: part: %2d name - GPT: %16s, ENV: %16s ",
707 		      __func__, i, efi_str, partitions[i].name);
708 
709 		if (strncmp(efi_str, (char *)partitions[i].name,
710 			    sizeof(partitions->name))) {
711 			error("Partition name: %s does not match %s!\n",
712 			      efi_str, (char *)partitions[i].name);
713 			return -1;
714 		}
715 
716 		/* Check if GPT and ENV sizes match */
717 		gpt_part_size = le64_to_cpu(gpt_e[i].ending_lba) -
718 			le64_to_cpu(gpt_e[i].starting_lba) + 1;
719 		debug("size(LBA) - GPT: %8llu, ENV: %8llu ",
720 		      (unsigned long long)gpt_part_size,
721 		      (unsigned long long)partitions[i].size);
722 
723 		if (le64_to_cpu(gpt_part_size) != partitions[i].size) {
724 			/* We do not check the extend partition size */
725 			if ((i == parts - 1) && (partitions[i].size == 0))
726 				continue;
727 
728 			error("Partition %s size: %llu does not match %llu!\n",
729 			      efi_str, (unsigned long long)gpt_part_size,
730 			      (unsigned long long)partitions[i].size);
731 			return -1;
732 		}
733 
734 		/*
735 		 * Start address is optional - check only if provided
736 		 * in '$partition' variable
737 		 */
738 		if (!partitions[i].start) {
739 			debug("\n");
740 			continue;
741 		}
742 
743 		/* Check if GPT and ENV start LBAs match */
744 		debug("start LBA - GPT: %8llu, ENV: %8llu\n",
745 		      le64_to_cpu(gpt_e[i].starting_lba),
746 		      (unsigned long long)partitions[i].start);
747 
748 		if (le64_to_cpu(gpt_e[i].starting_lba) != partitions[i].start) {
749 			error("Partition %s start: %llu does not match %llu!\n",
750 			      efi_str, le64_to_cpu(gpt_e[i].starting_lba),
751 			      (unsigned long long)partitions[i].start);
752 			return -1;
753 		}
754 	}
755 
756 	return 0;
757 }
758 
759 int is_valid_gpt_buf(struct blk_desc *dev_desc, void *buf)
760 {
761 	gpt_header *gpt_h;
762 	gpt_entry *gpt_e;
763 
764 	/* determine start of GPT Header in the buffer */
765 	gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA *
766 		       dev_desc->blksz);
767 	if (validate_gpt_header(gpt_h, GPT_PRIMARY_PARTITION_TABLE_LBA,
768 				dev_desc->lba))
769 		return -1;
770 
771 	/* determine start of GPT Entries in the buffer */
772 	gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) *
773 		       dev_desc->blksz);
774 	if (validate_gpt_entries(gpt_h, gpt_e))
775 		return -1;
776 
777 	return 0;
778 }
779 
780 int write_mbr_and_gpt_partitions(struct blk_desc *dev_desc, void *buf)
781 {
782 	gpt_header *gpt_h;
783 	gpt_entry *gpt_e;
784 	int gpt_e_blk_cnt;
785 	lbaint_t lba;
786 	int cnt;
787 
788 	if (is_valid_gpt_buf(dev_desc, buf))
789 		return -1;
790 
791 	/* determine start of GPT Header in the buffer */
792 	gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA *
793 		       dev_desc->blksz);
794 
795 	/* determine start of GPT Entries in the buffer */
796 	gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) *
797 		       dev_desc->blksz);
798 	gpt_e_blk_cnt = BLOCK_CNT((le32_to_cpu(gpt_h->num_partition_entries) *
799 				   le32_to_cpu(gpt_h->sizeof_partition_entry)),
800 				  dev_desc);
801 
802 	/* write MBR */
803 	lba = 0;	/* MBR is always at 0 */
804 	cnt = 1;	/* MBR (1 block) */
805 	if (blk_dwrite(dev_desc, lba, cnt, buf) != cnt) {
806 		printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
807 		       __func__, "MBR", cnt, lba);
808 		return 1;
809 	}
810 
811 	/* write Primary GPT */
812 	lba = GPT_PRIMARY_PARTITION_TABLE_LBA;
813 	cnt = 1;	/* GPT Header (1 block) */
814 	if (blk_dwrite(dev_desc, lba, cnt, gpt_h) != cnt) {
815 		printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
816 		       __func__, "Primary GPT Header", cnt, lba);
817 		return 1;
818 	}
819 
820 	lba = le64_to_cpu(gpt_h->partition_entry_lba);
821 	cnt = gpt_e_blk_cnt;
822 	if (blk_dwrite(dev_desc, lba, cnt, gpt_e) != cnt) {
823 		printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
824 		       __func__, "Primary GPT Entries", cnt, lba);
825 		return 1;
826 	}
827 
828 	prepare_backup_gpt_header(gpt_h);
829 
830 	/* write Backup GPT */
831 	lba = le64_to_cpu(gpt_h->partition_entry_lba);
832 	cnt = gpt_e_blk_cnt;
833 	if (blk_dwrite(dev_desc, lba, cnt, gpt_e) != cnt) {
834 		printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
835 		       __func__, "Backup GPT Entries", cnt, lba);
836 		return 1;
837 	}
838 
839 	lba = le64_to_cpu(gpt_h->my_lba);
840 	cnt = 1;	/* GPT Header (1 block) */
841 	if (blk_dwrite(dev_desc, lba, cnt, gpt_h) != cnt) {
842 		printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
843 		       __func__, "Backup GPT Header", cnt, lba);
844 		return 1;
845 	}
846 
847 	return 0;
848 }
849 #endif
850 
851 /*
852  * Private functions
853  */
854 /*
855  * pmbr_part_valid(): Check for EFI partition signature
856  *
857  * Returns: 1 if EFI GPT partition type is found.
858  */
859 static int pmbr_part_valid(struct partition *part)
860 {
861 	if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT &&
862 		get_unaligned_le32(&part->start_sect) == 1UL) {
863 		return 1;
864 	}
865 
866 	return 0;
867 }
868 
869 /*
870  * is_pmbr_valid(): test Protective MBR for validity
871  *
872  * Returns: 1 if PMBR is valid, 0 otherwise.
873  * Validity depends on two things:
874  *  1) MSDOS signature is in the last two bytes of the MBR
875  *  2) One partition of type 0xEE is found, checked by pmbr_part_valid()
876  */
877 static int is_pmbr_valid(legacy_mbr * mbr)
878 {
879 	int i = 0;
880 
881 	if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE)
882 		return 0;
883 
884 	for (i = 0; i < 4; i++) {
885 		if (pmbr_part_valid(&mbr->partition_record[i])) {
886 			return 1;
887 		}
888 	}
889 	return 0;
890 }
891 
892 /**
893  * is_gpt_valid() - tests one GPT header and PTEs for validity
894  *
895  * lba is the logical block address of the GPT header to test
896  * gpt is a GPT header ptr, filled on return.
897  * ptes is a PTEs ptr, filled on return.
898  *
899  * Description: returns 1 if valid,  0 on error.
900  * If valid, returns pointers to PTEs.
901  */
902 static int is_gpt_valid(struct blk_desc *dev_desc, u64 lba,
903 			gpt_header *pgpt_head, gpt_entry **pgpt_pte)
904 {
905 	if (!dev_desc || !pgpt_head) {
906 		printf("%s: Invalid Argument(s)\n", __func__);
907 		return 0;
908 	}
909 
910 	/* Read GPT Header from device */
911 	if (blk_dread(dev_desc, (lbaint_t)lba, 1, pgpt_head) != 1) {
912 		printf("*** ERROR: Can't read GPT header ***\n");
913 		return 0;
914 	}
915 
916 	if (validate_gpt_header(pgpt_head, (lbaint_t)lba, dev_desc->lba))
917 		return 0;
918 
919 	/* Read and allocate Partition Table Entries */
920 	*pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head);
921 	if (*pgpt_pte == NULL) {
922 		printf("GPT: Failed to allocate memory for PTE\n");
923 		return 0;
924 	}
925 
926 	if (validate_gpt_entries(pgpt_head, *pgpt_pte)) {
927 		free(*pgpt_pte);
928 		return 0;
929 	}
930 
931 	/* We're done, all's well */
932 	return 1;
933 }
934 
935 /**
936  * alloc_read_gpt_entries(): reads partition entries from disk
937  * @dev_desc
938  * @gpt - GPT header
939  *
940  * Description: Returns ptes on success,  NULL on error.
941  * Allocates space for PTEs based on information found in @gpt.
942  * Notes: remember to free pte when you're done!
943  */
944 static gpt_entry *alloc_read_gpt_entries(struct blk_desc *dev_desc,
945 					 gpt_header *pgpt_head)
946 {
947 	size_t count = 0, blk_cnt;
948 	lbaint_t blk;
949 	gpt_entry *pte = NULL;
950 
951 	if (!dev_desc || !pgpt_head) {
952 		printf("%s: Invalid Argument(s)\n", __func__);
953 		return NULL;
954 	}
955 
956 	count = le32_to_cpu(pgpt_head->num_partition_entries) *
957 		le32_to_cpu(pgpt_head->sizeof_partition_entry);
958 
959 	debug("%s: count = %u * %u = %lu\n", __func__,
960 	      (u32) le32_to_cpu(pgpt_head->num_partition_entries),
961 	      (u32) le32_to_cpu(pgpt_head->sizeof_partition_entry),
962 	      (ulong)count);
963 
964 	/* Allocate memory for PTE, remember to FREE */
965 	if (count != 0) {
966 		pte = memalign(ARCH_DMA_MINALIGN,
967 			       PAD_TO_BLOCKSIZE(count, dev_desc));
968 	}
969 
970 	if (count == 0 || pte == NULL) {
971 		printf("%s: ERROR: Can't allocate %#lX bytes for GPT Entries\n",
972 		       __func__, (ulong)count);
973 		return NULL;
974 	}
975 
976 	/* Read GPT Entries from device */
977 	blk = le64_to_cpu(pgpt_head->partition_entry_lba);
978 	blk_cnt = BLOCK_CNT(count, dev_desc);
979 	if (blk_dread(dev_desc, blk, (lbaint_t)blk_cnt, pte) != blk_cnt) {
980 		printf("*** ERROR: Can't read GPT Entries ***\n");
981 		free(pte);
982 		return NULL;
983 	}
984 	return pte;
985 }
986 
987 /**
988  * is_pte_valid(): validates a single Partition Table Entry
989  * @gpt_entry - Pointer to a single Partition Table Entry
990  *
991  * Description: returns 1 if valid,  0 on error.
992  */
993 static int is_pte_valid(gpt_entry * pte)
994 {
995 	efi_guid_t unused_guid;
996 
997 	if (!pte) {
998 		printf("%s: Invalid Argument(s)\n", __func__);
999 		return 0;
1000 	}
1001 
1002 	/* Only one validation for now:
1003 	 * The GUID Partition Type != Unused Entry (ALL-ZERO)
1004 	 */
1005 	memset(unused_guid.b, 0, sizeof(unused_guid.b));
1006 
1007 	if (memcmp(pte->partition_type_guid.b, unused_guid.b,
1008 		sizeof(unused_guid.b)) == 0) {
1009 
1010 		debug("%s: Found an unused PTE GUID at 0x%08X\n", __func__,
1011 		      (unsigned int)(uintptr_t)pte);
1012 
1013 		return 0;
1014 	} else {
1015 		return 1;
1016 	}
1017 }
1018 
1019 /*
1020  * Add an 'a_' prefix so it comes before 'dos' in the linker list. We need to
1021  * check EFI first, since a DOS partition is often used as a 'protective MBR'
1022  * with EFI.
1023  */
1024 U_BOOT_PART_TYPE(a_efi) = {
1025 	.name		= "EFI",
1026 	.part_type	= PART_TYPE_EFI,
1027 	.max_entries	= GPT_ENTRY_NUMBERS,
1028 	.get_info	= part_get_info_ptr(part_get_info_efi),
1029 	.print		= part_print_ptr(part_print_efi),
1030 	.test		= part_test_efi,
1031 };
1032 #endif
1033