1 /* 2 * Copyright (C) 2008 RuggedCom, Inc. 3 * Richard Retanubun <RichardRetanubun@RuggedCom.com> 4 * 5 * SPDX-License-Identifier: GPL-2.0+ 6 */ 7 8 /* 9 * Problems with CONFIG_SYS_64BIT_LBA: 10 * 11 * struct disk_partition.start in include/part.h is sized as ulong. 12 * When CONFIG_SYS_64BIT_LBA is activated, lbaint_t changes from ulong to uint64_t. 13 * For now, it is cast back to ulong at assignment. 14 * 15 * This limits the maximum size of addressable storage to < 2 Terra Bytes 16 */ 17 #include <asm/unaligned.h> 18 #include <common.h> 19 #include <command.h> 20 #include <ide.h> 21 #include <malloc.h> 22 #include <part_efi.h> 23 #include <linux/ctype.h> 24 25 DECLARE_GLOBAL_DATA_PTR; 26 27 #ifdef HAVE_BLOCK_DEVICE 28 /** 29 * efi_crc32() - EFI version of crc32 function 30 * @buf: buffer to calculate crc32 of 31 * @len - length of buf 32 * 33 * Description: Returns EFI-style CRC32 value for @buf 34 */ 35 static inline u32 efi_crc32(const void *buf, u32 len) 36 { 37 return crc32(0, buf, len); 38 } 39 40 /* 41 * Private function prototypes 42 */ 43 44 static int pmbr_part_valid(struct partition *part); 45 static int is_pmbr_valid(legacy_mbr * mbr); 46 static int is_gpt_valid(block_dev_desc_t * dev_desc, unsigned long long lba, 47 gpt_header * pgpt_head, gpt_entry ** pgpt_pte); 48 static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc, 49 gpt_header * pgpt_head); 50 static int is_pte_valid(gpt_entry * pte); 51 52 static char *print_efiname(gpt_entry *pte) 53 { 54 static char name[PARTNAME_SZ + 1]; 55 int i; 56 for (i = 0; i < PARTNAME_SZ; i++) { 57 u8 c; 58 c = pte->partition_name[i] & 0xff; 59 c = (c && !isprint(c)) ? '.' : c; 60 name[i] = c; 61 } 62 name[PARTNAME_SZ] = 0; 63 return name; 64 } 65 66 static void uuid_string(unsigned char *uuid, char *str) 67 { 68 static const u8 le[16] = {3, 2, 1, 0, 5, 4, 7, 6, 8, 9, 10, 11, 69 12, 13, 14, 15}; 70 int i; 71 72 for (i = 0; i < 16; i++) { 73 sprintf(str, "%02x", uuid[le[i]]); 74 str += 2; 75 switch (i) { 76 case 3: 77 case 5: 78 case 7: 79 case 9: 80 *str++ = '-'; 81 break; 82 } 83 } 84 } 85 86 static efi_guid_t system_guid = PARTITION_SYSTEM_GUID; 87 88 static inline int is_bootable(gpt_entry *p) 89 { 90 return p->attributes.fields.legacy_bios_bootable || 91 !memcmp(&(p->partition_type_guid), &system_guid, 92 sizeof(efi_guid_t)); 93 } 94 95 #ifdef CONFIG_EFI_PARTITION 96 /* 97 * Public Functions (include/part.h) 98 */ 99 100 void print_part_efi(block_dev_desc_t * dev_desc) 101 { 102 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz); 103 gpt_entry *gpt_pte = NULL; 104 int i = 0; 105 char uuid[37]; 106 107 if (!dev_desc) { 108 printf("%s: Invalid Argument(s)\n", __func__); 109 return; 110 } 111 /* This function validates AND fills in the GPT header and PTE */ 112 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, 113 gpt_head, &gpt_pte) != 1) { 114 printf("%s: *** ERROR: Invalid GPT ***\n", __func__); 115 return; 116 } 117 118 debug("%s: gpt-entry at %p\n", __func__, gpt_pte); 119 120 printf("Part\tStart LBA\tEnd LBA\t\tName\n"); 121 printf("\tAttributes\n"); 122 printf("\tType UUID\n"); 123 printf("\tPartition UUID\n"); 124 125 for (i = 0; i < le32_to_cpu(gpt_head->num_partition_entries); i++) { 126 /* Stop at the first non valid PTE */ 127 if (!is_pte_valid(&gpt_pte[i])) 128 break; 129 130 printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1), 131 le64_to_cpu(gpt_pte[i].starting_lba), 132 le64_to_cpu(gpt_pte[i].ending_lba), 133 print_efiname(&gpt_pte[i])); 134 printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw); 135 uuid_string(gpt_pte[i].partition_type_guid.b, uuid); 136 printf("\ttype:\t%s\n", uuid); 137 uuid_string(gpt_pte[i].unique_partition_guid.b, uuid); 138 printf("\tuuid:\t%s\n", uuid); 139 } 140 141 /* Remember to free pte */ 142 free(gpt_pte); 143 return; 144 } 145 146 int get_partition_info_efi(block_dev_desc_t * dev_desc, int part, 147 disk_partition_t * info) 148 { 149 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz); 150 gpt_entry *gpt_pte = NULL; 151 152 /* "part" argument must be at least 1 */ 153 if (!dev_desc || !info || part < 1) { 154 printf("%s: Invalid Argument(s)\n", __func__); 155 return -1; 156 } 157 158 /* This function validates AND fills in the GPT header and PTE */ 159 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, 160 gpt_head, &gpt_pte) != 1) { 161 printf("%s: *** ERROR: Invalid GPT ***\n", __func__); 162 return -1; 163 } 164 165 if (part > le32_to_cpu(gpt_head->num_partition_entries) || 166 !is_pte_valid(&gpt_pte[part - 1])) { 167 debug("%s: *** ERROR: Invalid partition number %d ***\n", 168 __func__, part); 169 free(gpt_pte); 170 return -1; 171 } 172 173 /* The ulong casting limits the maximum disk size to 2 TB */ 174 info->start = (u64)le64_to_cpu(gpt_pte[part - 1].starting_lba); 175 /* The ending LBA is inclusive, to calculate size, add 1 to it */ 176 info->size = ((u64)le64_to_cpu(gpt_pte[part - 1].ending_lba) + 1) 177 - info->start; 178 info->blksz = dev_desc->blksz; 179 180 sprintf((char *)info->name, "%s", 181 print_efiname(&gpt_pte[part - 1])); 182 sprintf((char *)info->type, "U-Boot"); 183 info->bootable = is_bootable(&gpt_pte[part - 1]); 184 #ifdef CONFIG_PARTITION_UUIDS 185 uuid_string(gpt_pte[part - 1].unique_partition_guid.b, info->uuid); 186 #endif 187 188 debug("%s: start 0x" LBAF ", size 0x" LBAF ", name %s", __func__, 189 info->start, info->size, info->name); 190 191 /* Remember to free pte */ 192 free(gpt_pte); 193 return 0; 194 } 195 196 int test_part_efi(block_dev_desc_t * dev_desc) 197 { 198 ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, legacymbr, 1, dev_desc->blksz); 199 200 /* Read legacy MBR from block 0 and validate it */ 201 if ((dev_desc->block_read(dev_desc->dev, 0, 1, (ulong *)legacymbr) != 1) 202 || (is_pmbr_valid(legacymbr) != 1)) { 203 return -1; 204 } 205 return 0; 206 } 207 208 /** 209 * set_protective_mbr(): Set the EFI protective MBR 210 * @param dev_desc - block device descriptor 211 * 212 * @return - zero on success, otherwise error 213 */ 214 static int set_protective_mbr(block_dev_desc_t *dev_desc) 215 { 216 /* Setup the Protective MBR */ 217 ALLOC_CACHE_ALIGN_BUFFER(legacy_mbr, p_mbr, 1); 218 memset(p_mbr, 0, sizeof(*p_mbr)); 219 220 if (p_mbr == NULL) { 221 printf("%s: calloc failed!\n", __func__); 222 return -1; 223 } 224 /* Append signature */ 225 p_mbr->signature = MSDOS_MBR_SIGNATURE; 226 p_mbr->partition_record[0].sys_ind = EFI_PMBR_OSTYPE_EFI_GPT; 227 p_mbr->partition_record[0].start_sect = 1; 228 p_mbr->partition_record[0].nr_sects = (u32) dev_desc->lba; 229 230 /* Write MBR sector to the MMC device */ 231 if (dev_desc->block_write(dev_desc->dev, 0, 1, p_mbr) != 1) { 232 printf("** Can't write to device %d **\n", 233 dev_desc->dev); 234 return -1; 235 } 236 237 return 0; 238 } 239 240 /** 241 * string_uuid(); Convert UUID stored as string to bytes 242 * 243 * @param uuid - UUID represented as string 244 * @param dst - GUID buffer 245 * 246 * @return return 0 on successful conversion 247 */ 248 static int string_uuid(char *uuid, u8 *dst) 249 { 250 efi_guid_t guid; 251 u16 b, c, d; 252 u64 e; 253 u32 a; 254 u8 *p; 255 u8 i; 256 257 const u8 uuid_str_len = 36; 258 259 /* The UUID is written in text: */ 260 /* 1 9 14 19 24 */ 261 /* xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx */ 262 263 debug("%s: uuid: %s\n", __func__, uuid); 264 265 if (strlen(uuid) != uuid_str_len) 266 return -1; 267 268 for (i = 0; i < uuid_str_len; i++) { 269 if ((i == 8) || (i == 13) || (i == 18) || (i == 23)) { 270 if (uuid[i] != '-') 271 return -1; 272 } else { 273 if (!isxdigit(uuid[i])) 274 return -1; 275 } 276 } 277 278 a = (u32)simple_strtoul(uuid, NULL, 16); 279 b = (u16)simple_strtoul(uuid + 9, NULL, 16); 280 c = (u16)simple_strtoul(uuid + 14, NULL, 16); 281 d = (u16)simple_strtoul(uuid + 19, NULL, 16); 282 e = (u64)simple_strtoull(uuid + 24, NULL, 16); 283 284 p = (u8 *) &e; 285 guid = EFI_GUID(a, b, c, d >> 8, d & 0xFF, 286 *(p + 5), *(p + 4), *(p + 3), 287 *(p + 2), *(p + 1) , *p); 288 289 memcpy(dst, guid.b, sizeof(efi_guid_t)); 290 291 return 0; 292 } 293 294 int write_gpt_table(block_dev_desc_t *dev_desc, 295 gpt_header *gpt_h, gpt_entry *gpt_e) 296 { 297 const int pte_blk_cnt = BLOCK_CNT((gpt_h->num_partition_entries 298 * sizeof(gpt_entry)), dev_desc); 299 u32 calc_crc32; 300 u64 val; 301 302 debug("max lba: %x\n", (u32) dev_desc->lba); 303 /* Setup the Protective MBR */ 304 if (set_protective_mbr(dev_desc) < 0) 305 goto err; 306 307 /* Generate CRC for the Primary GPT Header */ 308 calc_crc32 = efi_crc32((const unsigned char *)gpt_e, 309 le32_to_cpu(gpt_h->num_partition_entries) * 310 le32_to_cpu(gpt_h->sizeof_partition_entry)); 311 gpt_h->partition_entry_array_crc32 = cpu_to_le32(calc_crc32); 312 313 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 314 le32_to_cpu(gpt_h->header_size)); 315 gpt_h->header_crc32 = cpu_to_le32(calc_crc32); 316 317 /* Write the First GPT to the block right after the Legacy MBR */ 318 if (dev_desc->block_write(dev_desc->dev, 1, 1, gpt_h) != 1) 319 goto err; 320 321 if (dev_desc->block_write(dev_desc->dev, 2, pte_blk_cnt, gpt_e) 322 != pte_blk_cnt) 323 goto err; 324 325 /* recalculate the values for the Second GPT Header */ 326 val = le64_to_cpu(gpt_h->my_lba); 327 gpt_h->my_lba = gpt_h->alternate_lba; 328 gpt_h->alternate_lba = cpu_to_le64(val); 329 gpt_h->header_crc32 = 0; 330 331 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 332 le32_to_cpu(gpt_h->header_size)); 333 gpt_h->header_crc32 = cpu_to_le32(calc_crc32); 334 335 if (dev_desc->block_write(dev_desc->dev, 336 le32_to_cpu(gpt_h->last_usable_lba + 1), 337 pte_blk_cnt, gpt_e) != pte_blk_cnt) 338 goto err; 339 340 if (dev_desc->block_write(dev_desc->dev, 341 le32_to_cpu(gpt_h->my_lba), 1, gpt_h) != 1) 342 goto err; 343 344 debug("GPT successfully written to block device!\n"); 345 return 0; 346 347 err: 348 printf("** Can't write to device %d **\n", dev_desc->dev); 349 return -1; 350 } 351 352 int gpt_fill_pte(gpt_header *gpt_h, gpt_entry *gpt_e, 353 disk_partition_t *partitions, int parts) 354 { 355 u32 offset = (u32)le32_to_cpu(gpt_h->first_usable_lba); 356 ulong start; 357 int i, k; 358 size_t efiname_len, dosname_len; 359 #ifdef CONFIG_PARTITION_UUIDS 360 char *str_uuid; 361 #endif 362 363 for (i = 0; i < parts; i++) { 364 /* partition starting lba */ 365 start = partitions[i].start; 366 if (start && (start < offset)) { 367 printf("Partition overlap\n"); 368 return -1; 369 } 370 if (start) { 371 gpt_e[i].starting_lba = cpu_to_le64(start); 372 offset = start + partitions[i].size; 373 } else { 374 gpt_e[i].starting_lba = cpu_to_le64(offset); 375 offset += partitions[i].size; 376 } 377 if (offset >= gpt_h->last_usable_lba) { 378 printf("Partitions layout exceds disk size\n"); 379 return -1; 380 } 381 /* partition ending lba */ 382 if ((i == parts - 1) && (partitions[i].size == 0)) 383 /* extend the last partition to maximuim */ 384 gpt_e[i].ending_lba = gpt_h->last_usable_lba; 385 else 386 gpt_e[i].ending_lba = cpu_to_le64(offset - 1); 387 388 /* partition type GUID */ 389 memcpy(gpt_e[i].partition_type_guid.b, 390 &PARTITION_BASIC_DATA_GUID, 16); 391 392 #ifdef CONFIG_PARTITION_UUIDS 393 str_uuid = partitions[i].uuid; 394 if (string_uuid(str_uuid, gpt_e[i].unique_partition_guid.b)) { 395 printf("Partition no. %d: invalid guid: %s\n", 396 i, str_uuid); 397 return -1; 398 } 399 #endif 400 401 /* partition attributes */ 402 memset(&gpt_e[i].attributes, 0, 403 sizeof(gpt_entry_attributes)); 404 405 /* partition name */ 406 efiname_len = sizeof(gpt_e[i].partition_name) 407 / sizeof(efi_char16_t); 408 dosname_len = sizeof(partitions[i].name); 409 410 memset(gpt_e[i].partition_name, 0, 411 sizeof(gpt_e[i].partition_name)); 412 413 for (k = 0; k < min(dosname_len, efiname_len); k++) 414 gpt_e[i].partition_name[k] = 415 (efi_char16_t)(partitions[i].name[k]); 416 417 debug("%s: name: %s offset[%d]: 0x%x size[%d]: 0x" LBAF "\n", 418 __func__, partitions[i].name, i, 419 offset, i, partitions[i].size); 420 } 421 422 return 0; 423 } 424 425 int gpt_fill_header(block_dev_desc_t *dev_desc, gpt_header *gpt_h, 426 char *str_guid, int parts_count) 427 { 428 gpt_h->signature = cpu_to_le64(GPT_HEADER_SIGNATURE); 429 gpt_h->revision = cpu_to_le32(GPT_HEADER_REVISION_V1); 430 gpt_h->header_size = cpu_to_le32(sizeof(gpt_header)); 431 gpt_h->my_lba = cpu_to_le64(1); 432 gpt_h->alternate_lba = cpu_to_le64(dev_desc->lba - 1); 433 gpt_h->first_usable_lba = cpu_to_le64(34); 434 gpt_h->last_usable_lba = cpu_to_le64(dev_desc->lba - 34); 435 gpt_h->partition_entry_lba = cpu_to_le64(2); 436 gpt_h->num_partition_entries = cpu_to_le32(GPT_ENTRY_NUMBERS); 437 gpt_h->sizeof_partition_entry = cpu_to_le32(sizeof(gpt_entry)); 438 gpt_h->header_crc32 = 0; 439 gpt_h->partition_entry_array_crc32 = 0; 440 441 if (string_uuid(str_guid, gpt_h->disk_guid.b)) 442 return -1; 443 444 return 0; 445 } 446 447 int gpt_restore(block_dev_desc_t *dev_desc, char *str_disk_guid, 448 disk_partition_t *partitions, int parts_count) 449 { 450 int ret; 451 452 gpt_header *gpt_h = calloc(1, PAD_TO_BLOCKSIZE(sizeof(gpt_header), 453 dev_desc)); 454 gpt_entry *gpt_e; 455 456 if (gpt_h == NULL) { 457 printf("%s: calloc failed!\n", __func__); 458 return -1; 459 } 460 461 gpt_e = calloc(1, PAD_TO_BLOCKSIZE(GPT_ENTRY_NUMBERS 462 * sizeof(gpt_entry), 463 dev_desc)); 464 if (gpt_e == NULL) { 465 printf("%s: calloc failed!\n", __func__); 466 free(gpt_h); 467 return -1; 468 } 469 470 /* Generate Primary GPT header (LBA1) */ 471 ret = gpt_fill_header(dev_desc, gpt_h, str_disk_guid, parts_count); 472 if (ret) 473 goto err; 474 475 /* Generate partition entries */ 476 ret = gpt_fill_pte(gpt_h, gpt_e, partitions, parts_count); 477 if (ret) 478 goto err; 479 480 /* Write GPT partition table */ 481 ret = write_gpt_table(dev_desc, gpt_h, gpt_e); 482 483 err: 484 free(gpt_e); 485 free(gpt_h); 486 return ret; 487 } 488 #endif 489 490 /* 491 * Private functions 492 */ 493 /* 494 * pmbr_part_valid(): Check for EFI partition signature 495 * 496 * Returns: 1 if EFI GPT partition type is found. 497 */ 498 static int pmbr_part_valid(struct partition *part) 499 { 500 if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT && 501 get_unaligned_le32(&part->start_sect) == 1UL) { 502 return 1; 503 } 504 505 return 0; 506 } 507 508 /* 509 * is_pmbr_valid(): test Protective MBR for validity 510 * 511 * Returns: 1 if PMBR is valid, 0 otherwise. 512 * Validity depends on two things: 513 * 1) MSDOS signature is in the last two bytes of the MBR 514 * 2) One partition of type 0xEE is found, checked by pmbr_part_valid() 515 */ 516 static int is_pmbr_valid(legacy_mbr * mbr) 517 { 518 int i = 0; 519 520 if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE) 521 return 0; 522 523 for (i = 0; i < 4; i++) { 524 if (pmbr_part_valid(&mbr->partition_record[i])) { 525 return 1; 526 } 527 } 528 return 0; 529 } 530 531 /** 532 * is_gpt_valid() - tests one GPT header and PTEs for validity 533 * 534 * lba is the logical block address of the GPT header to test 535 * gpt is a GPT header ptr, filled on return. 536 * ptes is a PTEs ptr, filled on return. 537 * 538 * Description: returns 1 if valid, 0 on error. 539 * If valid, returns pointers to PTEs. 540 */ 541 static int is_gpt_valid(block_dev_desc_t * dev_desc, unsigned long long lba, 542 gpt_header * pgpt_head, gpt_entry ** pgpt_pte) 543 { 544 u32 crc32_backup = 0; 545 u32 calc_crc32; 546 unsigned long long lastlba; 547 548 if (!dev_desc || !pgpt_head) { 549 printf("%s: Invalid Argument(s)\n", __func__); 550 return 0; 551 } 552 553 /* Read GPT Header from device */ 554 if (dev_desc->block_read(dev_desc->dev, lba, 1, pgpt_head) != 1) { 555 printf("*** ERROR: Can't read GPT header ***\n"); 556 return 0; 557 } 558 559 /* Check the GPT header signature */ 560 if (le64_to_cpu(pgpt_head->signature) != GPT_HEADER_SIGNATURE) { 561 printf("GUID Partition Table Header signature is wrong:" 562 "0x%llX != 0x%llX\n", 563 le64_to_cpu(pgpt_head->signature), 564 GPT_HEADER_SIGNATURE); 565 return 0; 566 } 567 568 /* Check the GUID Partition Table CRC */ 569 memcpy(&crc32_backup, &pgpt_head->header_crc32, sizeof(crc32_backup)); 570 memset(&pgpt_head->header_crc32, 0, sizeof(pgpt_head->header_crc32)); 571 572 calc_crc32 = efi_crc32((const unsigned char *)pgpt_head, 573 le32_to_cpu(pgpt_head->header_size)); 574 575 memcpy(&pgpt_head->header_crc32, &crc32_backup, sizeof(crc32_backup)); 576 577 if (calc_crc32 != le32_to_cpu(crc32_backup)) { 578 printf("GUID Partition Table Header CRC is wrong:" 579 "0x%x != 0x%x\n", 580 le32_to_cpu(crc32_backup), calc_crc32); 581 return 0; 582 } 583 584 /* Check that the my_lba entry points to the LBA that contains the GPT */ 585 if (le64_to_cpu(pgpt_head->my_lba) != lba) { 586 printf("GPT: my_lba incorrect: %llX != %llX\n", 587 le64_to_cpu(pgpt_head->my_lba), 588 lba); 589 return 0; 590 } 591 592 /* Check the first_usable_lba and last_usable_lba are within the disk. */ 593 lastlba = (unsigned long long)dev_desc->lba; 594 if (le64_to_cpu(pgpt_head->first_usable_lba) > lastlba) { 595 printf("GPT: first_usable_lba incorrect: %llX > %llX\n", 596 le64_to_cpu(pgpt_head->first_usable_lba), lastlba); 597 return 0; 598 } 599 if (le64_to_cpu(pgpt_head->last_usable_lba) > lastlba) { 600 printf("GPT: last_usable_lba incorrect: %llX > %llX\n", 601 (u64) le64_to_cpu(pgpt_head->last_usable_lba), lastlba); 602 return 0; 603 } 604 605 debug("GPT: first_usable_lba: %llX last_usable_lba %llX last lba %llX\n", 606 le64_to_cpu(pgpt_head->first_usable_lba), 607 le64_to_cpu(pgpt_head->last_usable_lba), lastlba); 608 609 /* Read and allocate Partition Table Entries */ 610 *pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head); 611 if (*pgpt_pte == NULL) { 612 printf("GPT: Failed to allocate memory for PTE\n"); 613 return 0; 614 } 615 616 /* Check the GUID Partition Table Entry Array CRC */ 617 calc_crc32 = efi_crc32((const unsigned char *)*pgpt_pte, 618 le32_to_cpu(pgpt_head->num_partition_entries) * 619 le32_to_cpu(pgpt_head->sizeof_partition_entry)); 620 621 if (calc_crc32 != le32_to_cpu(pgpt_head->partition_entry_array_crc32)) { 622 printf("GUID Partition Table Entry Array CRC is wrong:" 623 "0x%x != 0x%x\n", 624 le32_to_cpu(pgpt_head->partition_entry_array_crc32), 625 calc_crc32); 626 627 free(*pgpt_pte); 628 return 0; 629 } 630 631 /* We're done, all's well */ 632 return 1; 633 } 634 635 /** 636 * alloc_read_gpt_entries(): reads partition entries from disk 637 * @dev_desc 638 * @gpt - GPT header 639 * 640 * Description: Returns ptes on success, NULL on error. 641 * Allocates space for PTEs based on information found in @gpt. 642 * Notes: remember to free pte when you're done! 643 */ 644 static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc, 645 gpt_header * pgpt_head) 646 { 647 size_t count = 0, blk_cnt; 648 gpt_entry *pte = NULL; 649 650 if (!dev_desc || !pgpt_head) { 651 printf("%s: Invalid Argument(s)\n", __func__); 652 return NULL; 653 } 654 655 count = le32_to_cpu(pgpt_head->num_partition_entries) * 656 le32_to_cpu(pgpt_head->sizeof_partition_entry); 657 658 debug("%s: count = %u * %u = %zu\n", __func__, 659 (u32) le32_to_cpu(pgpt_head->num_partition_entries), 660 (u32) le32_to_cpu(pgpt_head->sizeof_partition_entry), count); 661 662 /* Allocate memory for PTE, remember to FREE */ 663 if (count != 0) { 664 pte = memalign(ARCH_DMA_MINALIGN, 665 PAD_TO_BLOCKSIZE(count, dev_desc)); 666 } 667 668 if (count == 0 || pte == NULL) { 669 printf("%s: ERROR: Can't allocate 0x%zX " 670 "bytes for GPT Entries\n", 671 __func__, count); 672 return NULL; 673 } 674 675 /* Read GPT Entries from device */ 676 blk_cnt = BLOCK_CNT(count, dev_desc); 677 if (dev_desc->block_read (dev_desc->dev, 678 le64_to_cpu(pgpt_head->partition_entry_lba), 679 (lbaint_t) (blk_cnt), pte) 680 != blk_cnt) { 681 682 printf("*** ERROR: Can't read GPT Entries ***\n"); 683 free(pte); 684 return NULL; 685 } 686 return pte; 687 } 688 689 /** 690 * is_pte_valid(): validates a single Partition Table Entry 691 * @gpt_entry - Pointer to a single Partition Table Entry 692 * 693 * Description: returns 1 if valid, 0 on error. 694 */ 695 static int is_pte_valid(gpt_entry * pte) 696 { 697 efi_guid_t unused_guid; 698 699 if (!pte) { 700 printf("%s: Invalid Argument(s)\n", __func__); 701 return 0; 702 } 703 704 /* Only one validation for now: 705 * The GUID Partition Type != Unused Entry (ALL-ZERO) 706 */ 707 memset(unused_guid.b, 0, sizeof(unused_guid.b)); 708 709 if (memcmp(pte->partition_type_guid.b, unused_guid.b, 710 sizeof(unused_guid.b)) == 0) { 711 712 debug("%s: Found an unused PTE GUID at 0x%08X\n", __func__, 713 (unsigned int)(uintptr_t)pte); 714 715 return 0; 716 } else { 717 return 1; 718 } 719 } 720 #endif 721