1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2008 RuggedCom, Inc. 4 * Richard Retanubun <RichardRetanubun@RuggedCom.com> 5 */ 6 7 /* 8 * NOTE: 9 * when CONFIG_SYS_64BIT_LBA is not defined, lbaint_t is 32 bits; this 10 * limits the maximum size of addressable storage to < 2 Terra Bytes 11 */ 12 #include <asm/unaligned.h> 13 #include <common.h> 14 #include <command.h> 15 #include <fdtdec.h> 16 #include <ide.h> 17 #include <inttypes.h> 18 #include <malloc.h> 19 #include <memalign.h> 20 #include <part_efi.h> 21 #include <linux/compiler.h> 22 #include <linux/ctype.h> 23 24 DECLARE_GLOBAL_DATA_PTR; 25 26 /* 27 * GUID for basic data partions. 28 */ 29 static const efi_guid_t partition_basic_data_guid = PARTITION_BASIC_DATA_GUID; 30 31 #ifdef CONFIG_HAVE_BLOCK_DEVICE 32 /** 33 * efi_crc32() - EFI version of crc32 function 34 * @buf: buffer to calculate crc32 of 35 * @len - length of buf 36 * 37 * Description: Returns EFI-style CRC32 value for @buf 38 */ 39 static inline u32 efi_crc32(const void *buf, u32 len) 40 { 41 return crc32(0, buf, len); 42 } 43 44 /* 45 * Private function prototypes 46 */ 47 48 static int pmbr_part_valid(struct partition *part); 49 static int is_pmbr_valid(legacy_mbr * mbr); 50 static int is_gpt_valid(struct blk_desc *dev_desc, u64 lba, 51 gpt_header *pgpt_head, gpt_entry **pgpt_pte); 52 static gpt_entry *alloc_read_gpt_entries(struct blk_desc *dev_desc, 53 gpt_header *pgpt_head); 54 static int is_pte_valid(gpt_entry * pte); 55 56 static char *print_efiname(gpt_entry *pte) 57 { 58 static char name[PARTNAME_SZ + 1]; 59 int i; 60 for (i = 0; i < PARTNAME_SZ; i++) { 61 u8 c; 62 c = pte->partition_name[i] & 0xff; 63 c = (c && !isprint(c)) ? '.' : c; 64 name[i] = c; 65 } 66 name[PARTNAME_SZ] = 0; 67 return name; 68 } 69 70 static efi_guid_t system_guid = PARTITION_SYSTEM_GUID; 71 72 static inline int is_bootable(gpt_entry *p) 73 { 74 return p->attributes.fields.legacy_bios_bootable || 75 !memcmp(&(p->partition_type_guid), &system_guid, 76 sizeof(efi_guid_t)); 77 } 78 79 static int validate_gpt_header(gpt_header *gpt_h, lbaint_t lba, 80 lbaint_t lastlba) 81 { 82 uint32_t crc32_backup = 0; 83 uint32_t calc_crc32; 84 85 /* Check the GPT header signature */ 86 if (le64_to_cpu(gpt_h->signature) != GPT_HEADER_SIGNATURE) { 87 printf("%s signature is wrong: 0x%llX != 0x%llX\n", 88 "GUID Partition Table Header", 89 le64_to_cpu(gpt_h->signature), 90 GPT_HEADER_SIGNATURE); 91 return -1; 92 } 93 94 /* Check the GUID Partition Table CRC */ 95 memcpy(&crc32_backup, &gpt_h->header_crc32, sizeof(crc32_backup)); 96 memset(&gpt_h->header_crc32, 0, sizeof(gpt_h->header_crc32)); 97 98 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 99 le32_to_cpu(gpt_h->header_size)); 100 101 memcpy(&gpt_h->header_crc32, &crc32_backup, sizeof(crc32_backup)); 102 103 if (calc_crc32 != le32_to_cpu(crc32_backup)) { 104 printf("%s CRC is wrong: 0x%x != 0x%x\n", 105 "GUID Partition Table Header", 106 le32_to_cpu(crc32_backup), calc_crc32); 107 return -1; 108 } 109 110 /* 111 * Check that the my_lba entry points to the LBA that contains the GPT 112 */ 113 if (le64_to_cpu(gpt_h->my_lba) != lba) { 114 printf("GPT: my_lba incorrect: %llX != " LBAF "\n", 115 le64_to_cpu(gpt_h->my_lba), 116 lba); 117 return -1; 118 } 119 120 /* 121 * Check that the first_usable_lba and that the last_usable_lba are 122 * within the disk. 123 */ 124 if (le64_to_cpu(gpt_h->first_usable_lba) > lastlba) { 125 printf("GPT: first_usable_lba incorrect: %llX > " LBAF "\n", 126 le64_to_cpu(gpt_h->first_usable_lba), lastlba); 127 return -1; 128 } 129 if (le64_to_cpu(gpt_h->last_usable_lba) > lastlba) { 130 printf("GPT: last_usable_lba incorrect: %llX > " LBAF "\n", 131 le64_to_cpu(gpt_h->last_usable_lba), lastlba); 132 return -1; 133 } 134 135 debug("GPT: first_usable_lba: %llX last_usable_lba: %llX last lba: " 136 LBAF "\n", le64_to_cpu(gpt_h->first_usable_lba), 137 le64_to_cpu(gpt_h->last_usable_lba), lastlba); 138 139 return 0; 140 } 141 142 static int validate_gpt_entries(gpt_header *gpt_h, gpt_entry *gpt_e) 143 { 144 uint32_t calc_crc32; 145 146 /* Check the GUID Partition Table Entry Array CRC */ 147 calc_crc32 = efi_crc32((const unsigned char *)gpt_e, 148 le32_to_cpu(gpt_h->num_partition_entries) * 149 le32_to_cpu(gpt_h->sizeof_partition_entry)); 150 151 if (calc_crc32 != le32_to_cpu(gpt_h->partition_entry_array_crc32)) { 152 printf("%s: 0x%x != 0x%x\n", 153 "GUID Partition Table Entry Array CRC is wrong", 154 le32_to_cpu(gpt_h->partition_entry_array_crc32), 155 calc_crc32); 156 return -1; 157 } 158 159 return 0; 160 } 161 162 static void prepare_backup_gpt_header(gpt_header *gpt_h) 163 { 164 uint32_t calc_crc32; 165 uint64_t val; 166 167 /* recalculate the values for the Backup GPT Header */ 168 val = le64_to_cpu(gpt_h->my_lba); 169 gpt_h->my_lba = gpt_h->alternate_lba; 170 gpt_h->alternate_lba = cpu_to_le64(val); 171 gpt_h->partition_entry_lba = 172 cpu_to_le64(le64_to_cpu(gpt_h->last_usable_lba) + 1); 173 gpt_h->header_crc32 = 0; 174 175 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 176 le32_to_cpu(gpt_h->header_size)); 177 gpt_h->header_crc32 = cpu_to_le32(calc_crc32); 178 } 179 180 #if CONFIG_IS_ENABLED(EFI_PARTITION) 181 /* 182 * Public Functions (include/part.h) 183 */ 184 185 /* 186 * UUID is displayed as 32 hexadecimal digits, in 5 groups, 187 * separated by hyphens, in the form 8-4-4-4-12 for a total of 36 characters 188 */ 189 int get_disk_guid(struct blk_desc * dev_desc, char *guid) 190 { 191 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz); 192 gpt_entry *gpt_pte = NULL; 193 unsigned char *guid_bin; 194 195 /* This function validates AND fills in the GPT header and PTE */ 196 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, 197 gpt_head, &gpt_pte) != 1) { 198 printf("%s: *** ERROR: Invalid GPT ***\n", __func__); 199 if (is_gpt_valid(dev_desc, dev_desc->lba - 1, 200 gpt_head, &gpt_pte) != 1) { 201 printf("%s: *** ERROR: Invalid Backup GPT ***\n", 202 __func__); 203 return -EINVAL; 204 } else { 205 printf("%s: *** Using Backup GPT ***\n", 206 __func__); 207 } 208 } 209 210 guid_bin = gpt_head->disk_guid.b; 211 uuid_bin_to_str(guid_bin, guid, UUID_STR_FORMAT_GUID); 212 213 return 0; 214 } 215 216 void part_print_efi(struct blk_desc *dev_desc) 217 { 218 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz); 219 gpt_entry *gpt_pte = NULL; 220 int i = 0; 221 char uuid[UUID_STR_LEN + 1]; 222 unsigned char *uuid_bin; 223 224 /* This function validates AND fills in the GPT header and PTE */ 225 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, 226 gpt_head, &gpt_pte) != 1) { 227 printf("%s: *** ERROR: Invalid GPT ***\n", __func__); 228 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1), 229 gpt_head, &gpt_pte) != 1) { 230 printf("%s: *** ERROR: Invalid Backup GPT ***\n", 231 __func__); 232 return; 233 } else { 234 printf("%s: *** Using Backup GPT ***\n", 235 __func__); 236 } 237 } 238 239 debug("%s: gpt-entry at %p\n", __func__, gpt_pte); 240 241 printf("Part\tStart LBA\tEnd LBA\t\tName\n"); 242 printf("\tAttributes\n"); 243 printf("\tType GUID\n"); 244 printf("\tPartition GUID\n"); 245 246 for (i = 0; i < le32_to_cpu(gpt_head->num_partition_entries); i++) { 247 /* Stop at the first non valid PTE */ 248 if (!is_pte_valid(&gpt_pte[i])) 249 break; 250 251 printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1), 252 le64_to_cpu(gpt_pte[i].starting_lba), 253 le64_to_cpu(gpt_pte[i].ending_lba), 254 print_efiname(&gpt_pte[i])); 255 printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw); 256 uuid_bin = (unsigned char *)gpt_pte[i].partition_type_guid.b; 257 uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID); 258 printf("\ttype:\t%s\n", uuid); 259 #ifdef CONFIG_PARTITION_TYPE_GUID 260 if (!uuid_guid_get_str(uuid_bin, uuid)) 261 printf("\ttype:\t%s\n", uuid); 262 #endif 263 uuid_bin = (unsigned char *)gpt_pte[i].unique_partition_guid.b; 264 uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID); 265 printf("\tguid:\t%s\n", uuid); 266 } 267 268 /* Remember to free pte */ 269 free(gpt_pte); 270 return; 271 } 272 273 int part_get_info_efi(struct blk_desc *dev_desc, int part, 274 disk_partition_t *info) 275 { 276 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz); 277 gpt_entry *gpt_pte = NULL; 278 279 /* "part" argument must be at least 1 */ 280 if (part < 1) { 281 printf("%s: Invalid Argument(s)\n", __func__); 282 return -1; 283 } 284 285 /* This function validates AND fills in the GPT header and PTE */ 286 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, 287 gpt_head, &gpt_pte) != 1) { 288 printf("%s: *** ERROR: Invalid GPT ***\n", __func__); 289 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1), 290 gpt_head, &gpt_pte) != 1) { 291 printf("%s: *** ERROR: Invalid Backup GPT ***\n", 292 __func__); 293 return -1; 294 } else { 295 printf("%s: *** Using Backup GPT ***\n", 296 __func__); 297 } 298 } 299 300 if (part > le32_to_cpu(gpt_head->num_partition_entries) || 301 !is_pte_valid(&gpt_pte[part - 1])) { 302 debug("%s: *** ERROR: Invalid partition number %d ***\n", 303 __func__, part); 304 free(gpt_pte); 305 return -1; 306 } 307 308 /* The 'lbaint_t' casting may limit the maximum disk size to 2 TB */ 309 info->start = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].starting_lba); 310 /* The ending LBA is inclusive, to calculate size, add 1 to it */ 311 info->size = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].ending_lba) + 1 312 - info->start; 313 info->blksz = dev_desc->blksz; 314 315 sprintf((char *)info->name, "%s", 316 print_efiname(&gpt_pte[part - 1])); 317 strcpy((char *)info->type, "U-Boot"); 318 info->bootable = is_bootable(&gpt_pte[part - 1]); 319 #if CONFIG_IS_ENABLED(PARTITION_UUIDS) 320 uuid_bin_to_str(gpt_pte[part - 1].unique_partition_guid.b, info->uuid, 321 UUID_STR_FORMAT_GUID); 322 #endif 323 #ifdef CONFIG_PARTITION_TYPE_GUID 324 uuid_bin_to_str(gpt_pte[part - 1].partition_type_guid.b, 325 info->type_guid, UUID_STR_FORMAT_GUID); 326 #endif 327 328 debug("%s: start 0x" LBAF ", size 0x" LBAF ", name %s\n", __func__, 329 info->start, info->size, info->name); 330 331 /* Remember to free pte */ 332 free(gpt_pte); 333 return 0; 334 } 335 336 static int part_test_efi(struct blk_desc *dev_desc) 337 { 338 ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, legacymbr, 1, dev_desc->blksz); 339 340 /* Read legacy MBR from block 0 and validate it */ 341 if ((blk_dread(dev_desc, 0, 1, (ulong *)legacymbr) != 1) 342 || (is_pmbr_valid(legacymbr) != 1)) { 343 return -1; 344 } 345 return 0; 346 } 347 348 /** 349 * set_protective_mbr(): Set the EFI protective MBR 350 * @param dev_desc - block device descriptor 351 * 352 * @return - zero on success, otherwise error 353 */ 354 static int set_protective_mbr(struct blk_desc *dev_desc) 355 { 356 /* Setup the Protective MBR */ 357 ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, p_mbr, 1, dev_desc->blksz); 358 if (p_mbr == NULL) { 359 printf("%s: calloc failed!\n", __func__); 360 return -1; 361 } 362 363 /* Read MBR to backup boot code if it exists */ 364 if (blk_dread(dev_desc, 0, 1, p_mbr) != 1) { 365 pr_err("** Can't read from device %d **\n", dev_desc->devnum); 366 return -1; 367 } 368 369 /* Clear all data in MBR except of backed up boot code */ 370 memset((char *)p_mbr + MSDOS_MBR_BOOT_CODE_SIZE, 0, sizeof(*p_mbr) - 371 MSDOS_MBR_BOOT_CODE_SIZE); 372 373 /* Append signature */ 374 p_mbr->signature = MSDOS_MBR_SIGNATURE; 375 p_mbr->partition_record[0].sys_ind = EFI_PMBR_OSTYPE_EFI_GPT; 376 p_mbr->partition_record[0].start_sect = 1; 377 p_mbr->partition_record[0].nr_sects = (u32) dev_desc->lba - 1; 378 379 /* Write MBR sector to the MMC device */ 380 if (blk_dwrite(dev_desc, 0, 1, p_mbr) != 1) { 381 printf("** Can't write to device %d **\n", 382 dev_desc->devnum); 383 return -1; 384 } 385 386 return 0; 387 } 388 389 int write_gpt_table(struct blk_desc *dev_desc, 390 gpt_header *gpt_h, gpt_entry *gpt_e) 391 { 392 const int pte_blk_cnt = BLOCK_CNT((gpt_h->num_partition_entries 393 * sizeof(gpt_entry)), dev_desc); 394 u32 calc_crc32; 395 396 debug("max lba: %x\n", (u32) dev_desc->lba); 397 /* Setup the Protective MBR */ 398 if (set_protective_mbr(dev_desc) < 0) 399 goto err; 400 401 /* Generate CRC for the Primary GPT Header */ 402 calc_crc32 = efi_crc32((const unsigned char *)gpt_e, 403 le32_to_cpu(gpt_h->num_partition_entries) * 404 le32_to_cpu(gpt_h->sizeof_partition_entry)); 405 gpt_h->partition_entry_array_crc32 = cpu_to_le32(calc_crc32); 406 407 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 408 le32_to_cpu(gpt_h->header_size)); 409 gpt_h->header_crc32 = cpu_to_le32(calc_crc32); 410 411 /* Write the First GPT to the block right after the Legacy MBR */ 412 if (blk_dwrite(dev_desc, 1, 1, gpt_h) != 1) 413 goto err; 414 415 if (blk_dwrite(dev_desc, le64_to_cpu(gpt_h->partition_entry_lba), 416 pte_blk_cnt, gpt_e) != pte_blk_cnt) 417 goto err; 418 419 prepare_backup_gpt_header(gpt_h); 420 421 if (blk_dwrite(dev_desc, (lbaint_t)le64_to_cpu(gpt_h->last_usable_lba) 422 + 1, pte_blk_cnt, gpt_e) != pte_blk_cnt) 423 goto err; 424 425 if (blk_dwrite(dev_desc, (lbaint_t)le64_to_cpu(gpt_h->my_lba), 1, 426 gpt_h) != 1) 427 goto err; 428 429 debug("GPT successfully written to block device!\n"); 430 return 0; 431 432 err: 433 printf("** Can't write to device %d **\n", dev_desc->devnum); 434 return -1; 435 } 436 437 int gpt_fill_pte(struct blk_desc *dev_desc, 438 gpt_header *gpt_h, gpt_entry *gpt_e, 439 disk_partition_t *partitions, int parts) 440 { 441 lbaint_t offset = (lbaint_t)le64_to_cpu(gpt_h->first_usable_lba); 442 lbaint_t last_usable_lba = (lbaint_t) 443 le64_to_cpu(gpt_h->last_usable_lba); 444 int i, k; 445 size_t efiname_len, dosname_len; 446 #if CONFIG_IS_ENABLED(PARTITION_UUIDS) 447 char *str_uuid; 448 unsigned char *bin_uuid; 449 #endif 450 #ifdef CONFIG_PARTITION_TYPE_GUID 451 char *str_type_guid; 452 unsigned char *bin_type_guid; 453 #endif 454 size_t hdr_start = gpt_h->my_lba; 455 size_t hdr_end = hdr_start + 1; 456 457 size_t pte_start = gpt_h->partition_entry_lba; 458 size_t pte_end = pte_start + 459 gpt_h->num_partition_entries * gpt_h->sizeof_partition_entry / 460 dev_desc->blksz; 461 462 for (i = 0; i < parts; i++) { 463 /* partition starting lba */ 464 lbaint_t start = partitions[i].start; 465 lbaint_t size = partitions[i].size; 466 467 if (start) { 468 offset = start + size; 469 } else { 470 start = offset; 471 offset += size; 472 } 473 474 /* 475 * If our partition overlaps with either the GPT 476 * header, or the partition entry, reject it. 477 */ 478 if (((start < hdr_end && hdr_start < (start + size)) || 479 (start < pte_end && pte_start < (start + size)))) { 480 printf("Partition overlap\n"); 481 return -1; 482 } 483 484 gpt_e[i].starting_lba = cpu_to_le64(start); 485 486 if (offset > (last_usable_lba + 1)) { 487 printf("Partitions layout exceds disk size\n"); 488 return -1; 489 } 490 /* partition ending lba */ 491 if ((i == parts - 1) && (size == 0)) 492 /* extend the last partition to maximuim */ 493 gpt_e[i].ending_lba = gpt_h->last_usable_lba; 494 else 495 gpt_e[i].ending_lba = cpu_to_le64(offset - 1); 496 497 #ifdef CONFIG_PARTITION_TYPE_GUID 498 str_type_guid = partitions[i].type_guid; 499 bin_type_guid = gpt_e[i].partition_type_guid.b; 500 if (strlen(str_type_guid)) { 501 if (uuid_str_to_bin(str_type_guid, bin_type_guid, 502 UUID_STR_FORMAT_GUID)) { 503 printf("Partition no. %d: invalid type guid: %s\n", 504 i, str_type_guid); 505 return -1; 506 } 507 } else { 508 /* default partition type GUID */ 509 memcpy(bin_type_guid, 510 &partition_basic_data_guid, 16); 511 } 512 #else 513 /* partition type GUID */ 514 memcpy(gpt_e[i].partition_type_guid.b, 515 &partition_basic_data_guid, 16); 516 #endif 517 518 #if CONFIG_IS_ENABLED(PARTITION_UUIDS) 519 str_uuid = partitions[i].uuid; 520 bin_uuid = gpt_e[i].unique_partition_guid.b; 521 522 if (uuid_str_to_bin(str_uuid, bin_uuid, UUID_STR_FORMAT_GUID)) { 523 printf("Partition no. %d: invalid guid: %s\n", 524 i, str_uuid); 525 return -1; 526 } 527 #endif 528 529 /* partition attributes */ 530 memset(&gpt_e[i].attributes, 0, 531 sizeof(gpt_entry_attributes)); 532 533 if (partitions[i].bootable) 534 gpt_e[i].attributes.fields.legacy_bios_bootable = 1; 535 536 /* partition name */ 537 efiname_len = sizeof(gpt_e[i].partition_name) 538 / sizeof(efi_char16_t); 539 dosname_len = sizeof(partitions[i].name); 540 541 memset(gpt_e[i].partition_name, 0, 542 sizeof(gpt_e[i].partition_name)); 543 544 for (k = 0; k < min(dosname_len, efiname_len); k++) 545 gpt_e[i].partition_name[k] = 546 (efi_char16_t)(partitions[i].name[k]); 547 548 debug("%s: name: %s offset[%d]: 0x" LBAF 549 " size[%d]: 0x" LBAF "\n", 550 __func__, partitions[i].name, i, 551 offset, i, size); 552 } 553 554 return 0; 555 } 556 557 static uint32_t partition_entries_offset(struct blk_desc *dev_desc) 558 { 559 uint32_t offset_blks = 2; 560 uint32_t __maybe_unused offset_bytes; 561 int __maybe_unused config_offset; 562 563 #if defined(CONFIG_EFI_PARTITION_ENTRIES_OFF) 564 /* 565 * Some architectures require their SPL loader at a fixed 566 * address within the first 16KB of the disk. To avoid an 567 * overlap with the partition entries of the EFI partition 568 * table, the first safe offset (in bytes, from the start of 569 * the disk) for the entries can be set in 570 * CONFIG_EFI_PARTITION_ENTRIES_OFF. 571 */ 572 offset_bytes = 573 PAD_TO_BLOCKSIZE(CONFIG_EFI_PARTITION_ENTRIES_OFF, dev_desc); 574 offset_blks = offset_bytes / dev_desc->blksz; 575 #endif 576 577 #if defined(CONFIG_OF_CONTROL) 578 /* 579 * Allow the offset of the first partition entires (in bytes 580 * from the start of the device) to be specified as a property 581 * of the device tree '/config' node. 582 */ 583 config_offset = fdtdec_get_config_int(gd->fdt_blob, 584 "u-boot,efi-partition-entries-offset", 585 -EINVAL); 586 if (config_offset != -EINVAL) { 587 offset_bytes = PAD_TO_BLOCKSIZE(config_offset, dev_desc); 588 offset_blks = offset_bytes / dev_desc->blksz; 589 } 590 #endif 591 592 debug("efi: partition entries offset (in blocks): %d\n", offset_blks); 593 594 /* 595 * The earliest LBA this can be at is LBA#2 (i.e. right behind 596 * the (protective) MBR and the GPT header. 597 */ 598 if (offset_blks < 2) 599 offset_blks = 2; 600 601 return offset_blks; 602 } 603 604 int gpt_fill_header(struct blk_desc *dev_desc, gpt_header *gpt_h, 605 char *str_guid, int parts_count) 606 { 607 gpt_h->signature = cpu_to_le64(GPT_HEADER_SIGNATURE); 608 gpt_h->revision = cpu_to_le32(GPT_HEADER_REVISION_V1); 609 gpt_h->header_size = cpu_to_le32(sizeof(gpt_header)); 610 gpt_h->my_lba = cpu_to_le64(1); 611 gpt_h->alternate_lba = cpu_to_le64(dev_desc->lba - 1); 612 gpt_h->last_usable_lba = cpu_to_le64(dev_desc->lba - 34); 613 gpt_h->partition_entry_lba = 614 cpu_to_le64(partition_entries_offset(dev_desc)); 615 gpt_h->first_usable_lba = 616 cpu_to_le64(le64_to_cpu(gpt_h->partition_entry_lba) + 32); 617 gpt_h->num_partition_entries = cpu_to_le32(GPT_ENTRY_NUMBERS); 618 gpt_h->sizeof_partition_entry = cpu_to_le32(sizeof(gpt_entry)); 619 gpt_h->header_crc32 = 0; 620 gpt_h->partition_entry_array_crc32 = 0; 621 622 if (uuid_str_to_bin(str_guid, gpt_h->disk_guid.b, UUID_STR_FORMAT_GUID)) 623 return -1; 624 625 return 0; 626 } 627 628 int gpt_restore(struct blk_desc *dev_desc, char *str_disk_guid, 629 disk_partition_t *partitions, int parts_count) 630 { 631 gpt_header *gpt_h; 632 gpt_entry *gpt_e; 633 int ret, size; 634 635 size = PAD_TO_BLOCKSIZE(sizeof(gpt_header), dev_desc); 636 gpt_h = malloc_cache_aligned(size); 637 if (gpt_h == NULL) { 638 printf("%s: calloc failed!\n", __func__); 639 return -1; 640 } 641 memset(gpt_h, 0, size); 642 643 size = PAD_TO_BLOCKSIZE(GPT_ENTRY_NUMBERS * sizeof(gpt_entry), 644 dev_desc); 645 gpt_e = malloc_cache_aligned(size); 646 if (gpt_e == NULL) { 647 printf("%s: calloc failed!\n", __func__); 648 free(gpt_h); 649 return -1; 650 } 651 memset(gpt_e, 0, size); 652 653 /* Generate Primary GPT header (LBA1) */ 654 ret = gpt_fill_header(dev_desc, gpt_h, str_disk_guid, parts_count); 655 if (ret) 656 goto err; 657 658 /* Generate partition entries */ 659 ret = gpt_fill_pte(dev_desc, gpt_h, gpt_e, partitions, parts_count); 660 if (ret) 661 goto err; 662 663 /* Write GPT partition table */ 664 ret = write_gpt_table(dev_desc, gpt_h, gpt_e); 665 666 err: 667 free(gpt_e); 668 free(gpt_h); 669 return ret; 670 } 671 672 static void gpt_convert_efi_name_to_char(char *s, efi_char16_t *es, int n) 673 { 674 char *ess = (char *)es; 675 int i, j; 676 677 memset(s, '\0', n); 678 679 for (i = 0, j = 0; j < n; i += 2, j++) { 680 s[j] = ess[i]; 681 if (!ess[i]) 682 return; 683 } 684 } 685 686 int gpt_verify_headers(struct blk_desc *dev_desc, gpt_header *gpt_head, 687 gpt_entry **gpt_pte) 688 { 689 /* 690 * This function validates AND 691 * fills in the GPT header and PTE 692 */ 693 if (is_gpt_valid(dev_desc, 694 GPT_PRIMARY_PARTITION_TABLE_LBA, 695 gpt_head, gpt_pte) != 1) { 696 printf("%s: *** ERROR: Invalid GPT ***\n", 697 __func__); 698 return -1; 699 } 700 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1), 701 gpt_head, gpt_pte) != 1) { 702 printf("%s: *** ERROR: Invalid Backup GPT ***\n", 703 __func__); 704 return -1; 705 } 706 707 return 0; 708 } 709 710 int gpt_verify_partitions(struct blk_desc *dev_desc, 711 disk_partition_t *partitions, int parts, 712 gpt_header *gpt_head, gpt_entry **gpt_pte) 713 { 714 char efi_str[PARTNAME_SZ + 1]; 715 u64 gpt_part_size; 716 gpt_entry *gpt_e; 717 int ret, i; 718 719 ret = gpt_verify_headers(dev_desc, gpt_head, gpt_pte); 720 if (ret) 721 return ret; 722 723 gpt_e = *gpt_pte; 724 725 for (i = 0; i < parts; i++) { 726 if (i == gpt_head->num_partition_entries) { 727 pr_err("More partitions than allowed!\n"); 728 return -1; 729 } 730 731 /* Check if GPT and ENV partition names match */ 732 gpt_convert_efi_name_to_char(efi_str, gpt_e[i].partition_name, 733 PARTNAME_SZ + 1); 734 735 debug("%s: part: %2d name - GPT: %16s, ENV: %16s ", 736 __func__, i, efi_str, partitions[i].name); 737 738 if (strncmp(efi_str, (char *)partitions[i].name, 739 sizeof(partitions->name))) { 740 pr_err("Partition name: %s does not match %s!\n", 741 efi_str, (char *)partitions[i].name); 742 return -1; 743 } 744 745 /* Check if GPT and ENV sizes match */ 746 gpt_part_size = le64_to_cpu(gpt_e[i].ending_lba) - 747 le64_to_cpu(gpt_e[i].starting_lba) + 1; 748 debug("size(LBA) - GPT: %8llu, ENV: %8llu ", 749 (unsigned long long)gpt_part_size, 750 (unsigned long long)partitions[i].size); 751 752 if (le64_to_cpu(gpt_part_size) != partitions[i].size) { 753 /* We do not check the extend partition size */ 754 if ((i == parts - 1) && (partitions[i].size == 0)) 755 continue; 756 757 pr_err("Partition %s size: %llu does not match %llu!\n", 758 efi_str, (unsigned long long)gpt_part_size, 759 (unsigned long long)partitions[i].size); 760 return -1; 761 } 762 763 /* 764 * Start address is optional - check only if provided 765 * in '$partition' variable 766 */ 767 if (!partitions[i].start) { 768 debug("\n"); 769 continue; 770 } 771 772 /* Check if GPT and ENV start LBAs match */ 773 debug("start LBA - GPT: %8llu, ENV: %8llu\n", 774 le64_to_cpu(gpt_e[i].starting_lba), 775 (unsigned long long)partitions[i].start); 776 777 if (le64_to_cpu(gpt_e[i].starting_lba) != partitions[i].start) { 778 pr_err("Partition %s start: %llu does not match %llu!\n", 779 efi_str, le64_to_cpu(gpt_e[i].starting_lba), 780 (unsigned long long)partitions[i].start); 781 return -1; 782 } 783 } 784 785 return 0; 786 } 787 788 int is_valid_gpt_buf(struct blk_desc *dev_desc, void *buf) 789 { 790 gpt_header *gpt_h; 791 gpt_entry *gpt_e; 792 793 /* determine start of GPT Header in the buffer */ 794 gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA * 795 dev_desc->blksz); 796 if (validate_gpt_header(gpt_h, GPT_PRIMARY_PARTITION_TABLE_LBA, 797 dev_desc->lba)) 798 return -1; 799 800 /* determine start of GPT Entries in the buffer */ 801 gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) * 802 dev_desc->blksz); 803 if (validate_gpt_entries(gpt_h, gpt_e)) 804 return -1; 805 806 return 0; 807 } 808 809 int write_mbr_and_gpt_partitions(struct blk_desc *dev_desc, void *buf) 810 { 811 gpt_header *gpt_h; 812 gpt_entry *gpt_e; 813 int gpt_e_blk_cnt; 814 lbaint_t lba; 815 int cnt; 816 817 if (is_valid_gpt_buf(dev_desc, buf)) 818 return -1; 819 820 /* determine start of GPT Header in the buffer */ 821 gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA * 822 dev_desc->blksz); 823 824 /* determine start of GPT Entries in the buffer */ 825 gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) * 826 dev_desc->blksz); 827 gpt_e_blk_cnt = BLOCK_CNT((le32_to_cpu(gpt_h->num_partition_entries) * 828 le32_to_cpu(gpt_h->sizeof_partition_entry)), 829 dev_desc); 830 831 /* write MBR */ 832 lba = 0; /* MBR is always at 0 */ 833 cnt = 1; /* MBR (1 block) */ 834 if (blk_dwrite(dev_desc, lba, cnt, buf) != cnt) { 835 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 836 __func__, "MBR", cnt, lba); 837 return 1; 838 } 839 840 /* write Primary GPT */ 841 lba = GPT_PRIMARY_PARTITION_TABLE_LBA; 842 cnt = 1; /* GPT Header (1 block) */ 843 if (blk_dwrite(dev_desc, lba, cnt, gpt_h) != cnt) { 844 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 845 __func__, "Primary GPT Header", cnt, lba); 846 return 1; 847 } 848 849 lba = le64_to_cpu(gpt_h->partition_entry_lba); 850 cnt = gpt_e_blk_cnt; 851 if (blk_dwrite(dev_desc, lba, cnt, gpt_e) != cnt) { 852 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 853 __func__, "Primary GPT Entries", cnt, lba); 854 return 1; 855 } 856 857 prepare_backup_gpt_header(gpt_h); 858 859 /* write Backup GPT */ 860 lba = le64_to_cpu(gpt_h->partition_entry_lba); 861 cnt = gpt_e_blk_cnt; 862 if (blk_dwrite(dev_desc, lba, cnt, gpt_e) != cnt) { 863 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 864 __func__, "Backup GPT Entries", cnt, lba); 865 return 1; 866 } 867 868 lba = le64_to_cpu(gpt_h->my_lba); 869 cnt = 1; /* GPT Header (1 block) */ 870 if (blk_dwrite(dev_desc, lba, cnt, gpt_h) != cnt) { 871 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 872 __func__, "Backup GPT Header", cnt, lba); 873 return 1; 874 } 875 876 return 0; 877 } 878 #endif 879 880 /* 881 * Private functions 882 */ 883 /* 884 * pmbr_part_valid(): Check for EFI partition signature 885 * 886 * Returns: 1 if EFI GPT partition type is found. 887 */ 888 static int pmbr_part_valid(struct partition *part) 889 { 890 if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT && 891 get_unaligned_le32(&part->start_sect) == 1UL) { 892 return 1; 893 } 894 895 return 0; 896 } 897 898 /* 899 * is_pmbr_valid(): test Protective MBR for validity 900 * 901 * Returns: 1 if PMBR is valid, 0 otherwise. 902 * Validity depends on two things: 903 * 1) MSDOS signature is in the last two bytes of the MBR 904 * 2) One partition of type 0xEE is found, checked by pmbr_part_valid() 905 */ 906 static int is_pmbr_valid(legacy_mbr * mbr) 907 { 908 int i = 0; 909 910 if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE) 911 return 0; 912 913 for (i = 0; i < 4; i++) { 914 if (pmbr_part_valid(&mbr->partition_record[i])) { 915 return 1; 916 } 917 } 918 return 0; 919 } 920 921 /** 922 * is_gpt_valid() - tests one GPT header and PTEs for validity 923 * 924 * lba is the logical block address of the GPT header to test 925 * gpt is a GPT header ptr, filled on return. 926 * ptes is a PTEs ptr, filled on return. 927 * 928 * Description: returns 1 if valid, 0 on error. 929 * If valid, returns pointers to PTEs. 930 */ 931 static int is_gpt_valid(struct blk_desc *dev_desc, u64 lba, 932 gpt_header *pgpt_head, gpt_entry **pgpt_pte) 933 { 934 /* Confirm valid arguments prior to allocation. */ 935 if (!dev_desc || !pgpt_head) { 936 printf("%s: Invalid Argument(s)\n", __func__); 937 return 0; 938 } 939 940 ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, mbr, 1, dev_desc->blksz); 941 942 /* Read MBR Header from device */ 943 if (blk_dread(dev_desc, 0, 1, (ulong *)mbr) != 1) { 944 printf("*** ERROR: Can't read MBR header ***\n"); 945 return 0; 946 } 947 948 /* Read GPT Header from device */ 949 if (blk_dread(dev_desc, (lbaint_t)lba, 1, pgpt_head) != 1) { 950 printf("*** ERROR: Can't read GPT header ***\n"); 951 return 0; 952 } 953 954 if (validate_gpt_header(pgpt_head, (lbaint_t)lba, dev_desc->lba)) 955 return 0; 956 957 if (dev_desc->sig_type == SIG_TYPE_NONE) { 958 efi_guid_t empty = {}; 959 if (memcmp(&pgpt_head->disk_guid, &empty, sizeof(empty))) { 960 dev_desc->sig_type = SIG_TYPE_GUID; 961 memcpy(&dev_desc->guid_sig, &pgpt_head->disk_guid, 962 sizeof(empty)); 963 } else if (mbr->unique_mbr_signature != 0) { 964 dev_desc->sig_type = SIG_TYPE_MBR; 965 dev_desc->mbr_sig = mbr->unique_mbr_signature; 966 } 967 } 968 969 /* Read and allocate Partition Table Entries */ 970 *pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head); 971 if (*pgpt_pte == NULL) { 972 printf("GPT: Failed to allocate memory for PTE\n"); 973 return 0; 974 } 975 976 if (validate_gpt_entries(pgpt_head, *pgpt_pte)) { 977 free(*pgpt_pte); 978 return 0; 979 } 980 981 /* We're done, all's well */ 982 return 1; 983 } 984 985 /** 986 * alloc_read_gpt_entries(): reads partition entries from disk 987 * @dev_desc 988 * @gpt - GPT header 989 * 990 * Description: Returns ptes on success, NULL on error. 991 * Allocates space for PTEs based on information found in @gpt. 992 * Notes: remember to free pte when you're done! 993 */ 994 static gpt_entry *alloc_read_gpt_entries(struct blk_desc *dev_desc, 995 gpt_header *pgpt_head) 996 { 997 size_t count = 0, blk_cnt; 998 lbaint_t blk; 999 gpt_entry *pte = NULL; 1000 1001 if (!dev_desc || !pgpt_head) { 1002 printf("%s: Invalid Argument(s)\n", __func__); 1003 return NULL; 1004 } 1005 1006 count = le32_to_cpu(pgpt_head->num_partition_entries) * 1007 le32_to_cpu(pgpt_head->sizeof_partition_entry); 1008 1009 debug("%s: count = %u * %u = %lu\n", __func__, 1010 (u32) le32_to_cpu(pgpt_head->num_partition_entries), 1011 (u32) le32_to_cpu(pgpt_head->sizeof_partition_entry), 1012 (ulong)count); 1013 1014 /* Allocate memory for PTE, remember to FREE */ 1015 if (count != 0) { 1016 pte = memalign(ARCH_DMA_MINALIGN, 1017 PAD_TO_BLOCKSIZE(count, dev_desc)); 1018 } 1019 1020 if (count == 0 || pte == NULL) { 1021 printf("%s: ERROR: Can't allocate %#lX bytes for GPT Entries\n", 1022 __func__, (ulong)count); 1023 return NULL; 1024 } 1025 1026 /* Read GPT Entries from device */ 1027 blk = le64_to_cpu(pgpt_head->partition_entry_lba); 1028 blk_cnt = BLOCK_CNT(count, dev_desc); 1029 if (blk_dread(dev_desc, blk, (lbaint_t)blk_cnt, pte) != blk_cnt) { 1030 printf("*** ERROR: Can't read GPT Entries ***\n"); 1031 free(pte); 1032 return NULL; 1033 } 1034 return pte; 1035 } 1036 1037 /** 1038 * is_pte_valid(): validates a single Partition Table Entry 1039 * @gpt_entry - Pointer to a single Partition Table Entry 1040 * 1041 * Description: returns 1 if valid, 0 on error. 1042 */ 1043 static int is_pte_valid(gpt_entry * pte) 1044 { 1045 efi_guid_t unused_guid; 1046 1047 if (!pte) { 1048 printf("%s: Invalid Argument(s)\n", __func__); 1049 return 0; 1050 } 1051 1052 /* Only one validation for now: 1053 * The GUID Partition Type != Unused Entry (ALL-ZERO) 1054 */ 1055 memset(unused_guid.b, 0, sizeof(unused_guid.b)); 1056 1057 if (memcmp(pte->partition_type_guid.b, unused_guid.b, 1058 sizeof(unused_guid.b)) == 0) { 1059 1060 debug("%s: Found an unused PTE GUID at 0x%08X\n", __func__, 1061 (unsigned int)(uintptr_t)pte); 1062 1063 return 0; 1064 } else { 1065 return 1; 1066 } 1067 } 1068 1069 /* 1070 * Add an 'a_' prefix so it comes before 'dos' in the linker list. We need to 1071 * check EFI first, since a DOS partition is often used as a 'protective MBR' 1072 * with EFI. 1073 */ 1074 U_BOOT_PART_TYPE(a_efi) = { 1075 .name = "EFI", 1076 .part_type = PART_TYPE_EFI, 1077 .max_entries = GPT_ENTRY_NUMBERS, 1078 .get_info = part_get_info_ptr(part_get_info_efi), 1079 .print = part_print_ptr(part_print_efi), 1080 .test = part_test_efi, 1081 }; 1082 #endif 1083