1 /* 2 * Copyright (C) 2008 RuggedCom, Inc. 3 * Richard Retanubun <RichardRetanubun@RuggedCom.com> 4 * 5 * SPDX-License-Identifier: GPL-2.0+ 6 */ 7 8 /* 9 * NOTE: 10 * when CONFIG_SYS_64BIT_LBA is not defined, lbaint_t is 32 bits; this 11 * limits the maximum size of addressable storage to < 2 Terra Bytes 12 */ 13 #include <asm/unaligned.h> 14 #include <common.h> 15 #include <command.h> 16 #include <ide.h> 17 #include <inttypes.h> 18 #include <malloc.h> 19 #include <memalign.h> 20 #include <part_efi.h> 21 #include <linux/ctype.h> 22 23 DECLARE_GLOBAL_DATA_PTR; 24 25 #ifdef HAVE_BLOCK_DEVICE 26 /** 27 * efi_crc32() - EFI version of crc32 function 28 * @buf: buffer to calculate crc32 of 29 * @len - length of buf 30 * 31 * Description: Returns EFI-style CRC32 value for @buf 32 */ 33 static inline u32 efi_crc32(const void *buf, u32 len) 34 { 35 return crc32(0, buf, len); 36 } 37 38 /* 39 * Private function prototypes 40 */ 41 42 static int pmbr_part_valid(struct partition *part); 43 static int is_pmbr_valid(legacy_mbr * mbr); 44 static int is_gpt_valid(struct blk_desc *dev_desc, u64 lba, 45 gpt_header *pgpt_head, gpt_entry **pgpt_pte); 46 static gpt_entry *alloc_read_gpt_entries(struct blk_desc *dev_desc, 47 gpt_header *pgpt_head); 48 static int is_pte_valid(gpt_entry * pte); 49 50 static char *print_efiname(gpt_entry *pte) 51 { 52 static char name[PARTNAME_SZ + 1]; 53 int i; 54 for (i = 0; i < PARTNAME_SZ; i++) { 55 u8 c; 56 c = pte->partition_name[i] & 0xff; 57 c = (c && !isprint(c)) ? '.' : c; 58 name[i] = c; 59 } 60 name[PARTNAME_SZ] = 0; 61 return name; 62 } 63 64 static efi_guid_t system_guid = PARTITION_SYSTEM_GUID; 65 66 static inline int is_bootable(gpt_entry *p) 67 { 68 return p->attributes.fields.legacy_bios_bootable || 69 !memcmp(&(p->partition_type_guid), &system_guid, 70 sizeof(efi_guid_t)); 71 } 72 73 static int validate_gpt_header(gpt_header *gpt_h, lbaint_t lba, 74 lbaint_t lastlba) 75 { 76 uint32_t crc32_backup = 0; 77 uint32_t calc_crc32; 78 79 /* Check the GPT header signature */ 80 if (le64_to_cpu(gpt_h->signature) != GPT_HEADER_SIGNATURE) { 81 printf("%s signature is wrong: 0x%llX != 0x%llX\n", 82 "GUID Partition Table Header", 83 le64_to_cpu(gpt_h->signature), 84 GPT_HEADER_SIGNATURE); 85 return -1; 86 } 87 88 /* Check the GUID Partition Table CRC */ 89 memcpy(&crc32_backup, &gpt_h->header_crc32, sizeof(crc32_backup)); 90 memset(&gpt_h->header_crc32, 0, sizeof(gpt_h->header_crc32)); 91 92 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 93 le32_to_cpu(gpt_h->header_size)); 94 95 memcpy(&gpt_h->header_crc32, &crc32_backup, sizeof(crc32_backup)); 96 97 if (calc_crc32 != le32_to_cpu(crc32_backup)) { 98 printf("%s CRC is wrong: 0x%x != 0x%x\n", 99 "GUID Partition Table Header", 100 le32_to_cpu(crc32_backup), calc_crc32); 101 return -1; 102 } 103 104 /* 105 * Check that the my_lba entry points to the LBA that contains the GPT 106 */ 107 if (le64_to_cpu(gpt_h->my_lba) != lba) { 108 printf("GPT: my_lba incorrect: %llX != " LBAF "\n", 109 le64_to_cpu(gpt_h->my_lba), 110 lba); 111 return -1; 112 } 113 114 /* 115 * Check that the first_usable_lba and that the last_usable_lba are 116 * within the disk. 117 */ 118 if (le64_to_cpu(gpt_h->first_usable_lba) > lastlba) { 119 printf("GPT: first_usable_lba incorrect: %llX > " LBAF "\n", 120 le64_to_cpu(gpt_h->first_usable_lba), lastlba); 121 return -1; 122 } 123 if (le64_to_cpu(gpt_h->last_usable_lba) > lastlba) { 124 printf("GPT: last_usable_lba incorrect: %llX > " LBAF "\n", 125 le64_to_cpu(gpt_h->last_usable_lba), lastlba); 126 return -1; 127 } 128 129 debug("GPT: first_usable_lba: %llX last_usable_lba: %llX last lba: " 130 LBAF "\n", le64_to_cpu(gpt_h->first_usable_lba), 131 le64_to_cpu(gpt_h->last_usable_lba), lastlba); 132 133 return 0; 134 } 135 136 static int validate_gpt_entries(gpt_header *gpt_h, gpt_entry *gpt_e) 137 { 138 uint32_t calc_crc32; 139 140 /* Check the GUID Partition Table Entry Array CRC */ 141 calc_crc32 = efi_crc32((const unsigned char *)gpt_e, 142 le32_to_cpu(gpt_h->num_partition_entries) * 143 le32_to_cpu(gpt_h->sizeof_partition_entry)); 144 145 if (calc_crc32 != le32_to_cpu(gpt_h->partition_entry_array_crc32)) { 146 printf("%s: 0x%x != 0x%x\n", 147 "GUID Partition Table Entry Array CRC is wrong", 148 le32_to_cpu(gpt_h->partition_entry_array_crc32), 149 calc_crc32); 150 return -1; 151 } 152 153 return 0; 154 } 155 156 static void prepare_backup_gpt_header(gpt_header *gpt_h) 157 { 158 uint32_t calc_crc32; 159 uint64_t val; 160 161 /* recalculate the values for the Backup GPT Header */ 162 val = le64_to_cpu(gpt_h->my_lba); 163 gpt_h->my_lba = gpt_h->alternate_lba; 164 gpt_h->alternate_lba = cpu_to_le64(val); 165 gpt_h->partition_entry_lba = 166 cpu_to_le64(le64_to_cpu(gpt_h->last_usable_lba) + 1); 167 gpt_h->header_crc32 = 0; 168 169 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 170 le32_to_cpu(gpt_h->header_size)); 171 gpt_h->header_crc32 = cpu_to_le32(calc_crc32); 172 } 173 174 #ifdef CONFIG_EFI_PARTITION 175 /* 176 * Public Functions (include/part.h) 177 */ 178 179 void part_print_efi(struct blk_desc *dev_desc) 180 { 181 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz); 182 gpt_entry *gpt_pte = NULL; 183 int i = 0; 184 char uuid[37]; 185 unsigned char *uuid_bin; 186 187 if (!dev_desc) { 188 printf("%s: Invalid Argument(s)\n", __func__); 189 return; 190 } 191 /* This function validates AND fills in the GPT header and PTE */ 192 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, 193 gpt_head, &gpt_pte) != 1) { 194 printf("%s: *** ERROR: Invalid GPT ***\n", __func__); 195 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1), 196 gpt_head, &gpt_pte) != 1) { 197 printf("%s: *** ERROR: Invalid Backup GPT ***\n", 198 __func__); 199 return; 200 } else { 201 printf("%s: *** Using Backup GPT ***\n", 202 __func__); 203 } 204 } 205 206 debug("%s: gpt-entry at %p\n", __func__, gpt_pte); 207 208 printf("Part\tStart LBA\tEnd LBA\t\tName\n"); 209 printf("\tAttributes\n"); 210 printf("\tType GUID\n"); 211 printf("\tPartition GUID\n"); 212 213 for (i = 0; i < le32_to_cpu(gpt_head->num_partition_entries); i++) { 214 /* Stop at the first non valid PTE */ 215 if (!is_pte_valid(&gpt_pte[i])) 216 break; 217 218 printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1), 219 le64_to_cpu(gpt_pte[i].starting_lba), 220 le64_to_cpu(gpt_pte[i].ending_lba), 221 print_efiname(&gpt_pte[i])); 222 printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw); 223 uuid_bin = (unsigned char *)gpt_pte[i].partition_type_guid.b; 224 uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID); 225 printf("\ttype:\t%s\n", uuid); 226 #ifdef CONFIG_PARTITION_TYPE_GUID 227 if (!uuid_guid_get_str(uuid_bin, uuid)) 228 printf("\ttype:\t%s\n", uuid); 229 #endif 230 uuid_bin = (unsigned char *)gpt_pte[i].unique_partition_guid.b; 231 uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID); 232 printf("\tguid:\t%s\n", uuid); 233 } 234 235 /* Remember to free pte */ 236 free(gpt_pte); 237 return; 238 } 239 240 int part_get_info_efi(struct blk_desc *dev_desc, int part, 241 disk_partition_t *info) 242 { 243 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz); 244 gpt_entry *gpt_pte = NULL; 245 246 /* "part" argument must be at least 1 */ 247 if (!dev_desc || !info || part < 1) { 248 printf("%s: Invalid Argument(s)\n", __func__); 249 return -1; 250 } 251 252 /* This function validates AND fills in the GPT header and PTE */ 253 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, 254 gpt_head, &gpt_pte) != 1) { 255 printf("%s: *** ERROR: Invalid GPT ***\n", __func__); 256 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1), 257 gpt_head, &gpt_pte) != 1) { 258 printf("%s: *** ERROR: Invalid Backup GPT ***\n", 259 __func__); 260 return -1; 261 } else { 262 printf("%s: *** Using Backup GPT ***\n", 263 __func__); 264 } 265 } 266 267 if (part > le32_to_cpu(gpt_head->num_partition_entries) || 268 !is_pte_valid(&gpt_pte[part - 1])) { 269 debug("%s: *** ERROR: Invalid partition number %d ***\n", 270 __func__, part); 271 free(gpt_pte); 272 return -1; 273 } 274 275 /* The 'lbaint_t' casting may limit the maximum disk size to 2 TB */ 276 info->start = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].starting_lba); 277 /* The ending LBA is inclusive, to calculate size, add 1 to it */ 278 info->size = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].ending_lba) + 1 279 - info->start; 280 info->blksz = dev_desc->blksz; 281 282 sprintf((char *)info->name, "%s", 283 print_efiname(&gpt_pte[part - 1])); 284 strcpy((char *)info->type, "U-Boot"); 285 info->bootable = is_bootable(&gpt_pte[part - 1]); 286 #ifdef CONFIG_PARTITION_UUIDS 287 uuid_bin_to_str(gpt_pte[part - 1].unique_partition_guid.b, info->uuid, 288 UUID_STR_FORMAT_GUID); 289 #endif 290 #ifdef CONFIG_PARTITION_TYPE_GUID 291 uuid_bin_to_str(gpt_pte[part - 1].partition_type_guid.b, 292 info->type_guid, UUID_STR_FORMAT_GUID); 293 #endif 294 295 debug("%s: start 0x" LBAF ", size 0x" LBAF ", name %s\n", __func__, 296 info->start, info->size, info->name); 297 298 /* Remember to free pte */ 299 free(gpt_pte); 300 return 0; 301 } 302 303 int part_get_info_efi_by_name(struct blk_desc *dev_desc, 304 const char *name, disk_partition_t *info) 305 { 306 int ret; 307 int i; 308 for (i = 1; i < GPT_ENTRY_NUMBERS; i++) { 309 ret = part_get_info_efi(dev_desc, i, info); 310 if (ret != 0) { 311 /* no more entries in table */ 312 return -1; 313 } 314 if (strcmp(name, (const char *)info->name) == 0) { 315 /* matched */ 316 return 0; 317 } 318 } 319 return -2; 320 } 321 322 static int part_test_efi(struct blk_desc *dev_desc) 323 { 324 ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, legacymbr, 1, dev_desc->blksz); 325 326 /* Read legacy MBR from block 0 and validate it */ 327 if ((blk_dread(dev_desc, 0, 1, (ulong *)legacymbr) != 1) 328 || (is_pmbr_valid(legacymbr) != 1)) { 329 return -1; 330 } 331 return 0; 332 } 333 334 /** 335 * set_protective_mbr(): Set the EFI protective MBR 336 * @param dev_desc - block device descriptor 337 * 338 * @return - zero on success, otherwise error 339 */ 340 static int set_protective_mbr(struct blk_desc *dev_desc) 341 { 342 /* Setup the Protective MBR */ 343 ALLOC_CACHE_ALIGN_BUFFER(legacy_mbr, p_mbr, 1); 344 memset(p_mbr, 0, sizeof(*p_mbr)); 345 346 if (p_mbr == NULL) { 347 printf("%s: calloc failed!\n", __func__); 348 return -1; 349 } 350 /* Append signature */ 351 p_mbr->signature = MSDOS_MBR_SIGNATURE; 352 p_mbr->partition_record[0].sys_ind = EFI_PMBR_OSTYPE_EFI_GPT; 353 p_mbr->partition_record[0].start_sect = 1; 354 p_mbr->partition_record[0].nr_sects = (u32) dev_desc->lba - 1; 355 356 /* Write MBR sector to the MMC device */ 357 if (blk_dwrite(dev_desc, 0, 1, p_mbr) != 1) { 358 printf("** Can't write to device %d **\n", 359 dev_desc->devnum); 360 return -1; 361 } 362 363 return 0; 364 } 365 366 int write_gpt_table(struct blk_desc *dev_desc, 367 gpt_header *gpt_h, gpt_entry *gpt_e) 368 { 369 const int pte_blk_cnt = BLOCK_CNT((gpt_h->num_partition_entries 370 * sizeof(gpt_entry)), dev_desc); 371 u32 calc_crc32; 372 373 debug("max lba: %x\n", (u32) dev_desc->lba); 374 /* Setup the Protective MBR */ 375 if (set_protective_mbr(dev_desc) < 0) 376 goto err; 377 378 /* Generate CRC for the Primary GPT Header */ 379 calc_crc32 = efi_crc32((const unsigned char *)gpt_e, 380 le32_to_cpu(gpt_h->num_partition_entries) * 381 le32_to_cpu(gpt_h->sizeof_partition_entry)); 382 gpt_h->partition_entry_array_crc32 = cpu_to_le32(calc_crc32); 383 384 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 385 le32_to_cpu(gpt_h->header_size)); 386 gpt_h->header_crc32 = cpu_to_le32(calc_crc32); 387 388 /* Write the First GPT to the block right after the Legacy MBR */ 389 if (blk_dwrite(dev_desc, 1, 1, gpt_h) != 1) 390 goto err; 391 392 if (blk_dwrite(dev_desc, 2, pte_blk_cnt, gpt_e) 393 != pte_blk_cnt) 394 goto err; 395 396 prepare_backup_gpt_header(gpt_h); 397 398 if (blk_dwrite(dev_desc, (lbaint_t)le64_to_cpu(gpt_h->last_usable_lba) 399 + 1, pte_blk_cnt, gpt_e) != pte_blk_cnt) 400 goto err; 401 402 if (blk_dwrite(dev_desc, (lbaint_t)le64_to_cpu(gpt_h->my_lba), 1, 403 gpt_h) != 1) 404 goto err; 405 406 debug("GPT successfully written to block device!\n"); 407 return 0; 408 409 err: 410 printf("** Can't write to device %d **\n", dev_desc->devnum); 411 return -1; 412 } 413 414 int gpt_fill_pte(gpt_header *gpt_h, gpt_entry *gpt_e, 415 disk_partition_t *partitions, int parts) 416 { 417 lbaint_t offset = (lbaint_t)le64_to_cpu(gpt_h->first_usable_lba); 418 lbaint_t start; 419 lbaint_t last_usable_lba = (lbaint_t) 420 le64_to_cpu(gpt_h->last_usable_lba); 421 int i, k; 422 size_t efiname_len, dosname_len; 423 #ifdef CONFIG_PARTITION_UUIDS 424 char *str_uuid; 425 unsigned char *bin_uuid; 426 #endif 427 #ifdef CONFIG_PARTITION_TYPE_GUID 428 char *str_type_guid; 429 unsigned char *bin_type_guid; 430 #endif 431 432 for (i = 0; i < parts; i++) { 433 /* partition starting lba */ 434 start = partitions[i].start; 435 if (start && (start < offset)) { 436 printf("Partition overlap\n"); 437 return -1; 438 } 439 if (start) { 440 gpt_e[i].starting_lba = cpu_to_le64(start); 441 offset = start + partitions[i].size; 442 } else { 443 gpt_e[i].starting_lba = cpu_to_le64(offset); 444 offset += partitions[i].size; 445 } 446 if (offset >= last_usable_lba) { 447 printf("Partitions layout exceds disk size\n"); 448 return -1; 449 } 450 /* partition ending lba */ 451 if ((i == parts - 1) && (partitions[i].size == 0)) 452 /* extend the last partition to maximuim */ 453 gpt_e[i].ending_lba = gpt_h->last_usable_lba; 454 else 455 gpt_e[i].ending_lba = cpu_to_le64(offset - 1); 456 457 #ifdef CONFIG_PARTITION_TYPE_GUID 458 str_type_guid = partitions[i].type_guid; 459 bin_type_guid = gpt_e[i].partition_type_guid.b; 460 if (strlen(str_type_guid)) { 461 if (uuid_str_to_bin(str_type_guid, bin_type_guid, 462 UUID_STR_FORMAT_GUID)) { 463 printf("Partition no. %d: invalid type guid: %s\n", 464 i, str_type_guid); 465 return -1; 466 } 467 } else { 468 /* default partition type GUID */ 469 memcpy(bin_type_guid, 470 &PARTITION_BASIC_DATA_GUID, 16); 471 } 472 #else 473 /* partition type GUID */ 474 memcpy(gpt_e[i].partition_type_guid.b, 475 &PARTITION_BASIC_DATA_GUID, 16); 476 #endif 477 478 #ifdef CONFIG_PARTITION_UUIDS 479 str_uuid = partitions[i].uuid; 480 bin_uuid = gpt_e[i].unique_partition_guid.b; 481 482 if (uuid_str_to_bin(str_uuid, bin_uuid, UUID_STR_FORMAT_STD)) { 483 printf("Partition no. %d: invalid guid: %s\n", 484 i, str_uuid); 485 return -1; 486 } 487 #endif 488 489 /* partition attributes */ 490 memset(&gpt_e[i].attributes, 0, 491 sizeof(gpt_entry_attributes)); 492 493 if (partitions[i].bootable) 494 gpt_e[i].attributes.fields.legacy_bios_bootable = 1; 495 496 /* partition name */ 497 efiname_len = sizeof(gpt_e[i].partition_name) 498 / sizeof(efi_char16_t); 499 dosname_len = sizeof(partitions[i].name); 500 501 memset(gpt_e[i].partition_name, 0, 502 sizeof(gpt_e[i].partition_name)); 503 504 for (k = 0; k < min(dosname_len, efiname_len); k++) 505 gpt_e[i].partition_name[k] = 506 (efi_char16_t)(partitions[i].name[k]); 507 508 debug("%s: name: %s offset[%d]: 0x" LBAF 509 " size[%d]: 0x" LBAF "\n", 510 __func__, partitions[i].name, i, 511 offset, i, partitions[i].size); 512 } 513 514 return 0; 515 } 516 517 int gpt_fill_header(struct blk_desc *dev_desc, gpt_header *gpt_h, 518 char *str_guid, int parts_count) 519 { 520 gpt_h->signature = cpu_to_le64(GPT_HEADER_SIGNATURE); 521 gpt_h->revision = cpu_to_le32(GPT_HEADER_REVISION_V1); 522 gpt_h->header_size = cpu_to_le32(sizeof(gpt_header)); 523 gpt_h->my_lba = cpu_to_le64(1); 524 gpt_h->alternate_lba = cpu_to_le64(dev_desc->lba - 1); 525 gpt_h->first_usable_lba = cpu_to_le64(34); 526 gpt_h->last_usable_lba = cpu_to_le64(dev_desc->lba - 34); 527 gpt_h->partition_entry_lba = cpu_to_le64(2); 528 gpt_h->num_partition_entries = cpu_to_le32(GPT_ENTRY_NUMBERS); 529 gpt_h->sizeof_partition_entry = cpu_to_le32(sizeof(gpt_entry)); 530 gpt_h->header_crc32 = 0; 531 gpt_h->partition_entry_array_crc32 = 0; 532 533 if (uuid_str_to_bin(str_guid, gpt_h->disk_guid.b, UUID_STR_FORMAT_GUID)) 534 return -1; 535 536 return 0; 537 } 538 539 int gpt_restore(struct blk_desc *dev_desc, char *str_disk_guid, 540 disk_partition_t *partitions, int parts_count) 541 { 542 int ret; 543 544 gpt_header *gpt_h = calloc(1, PAD_TO_BLOCKSIZE(sizeof(gpt_header), 545 dev_desc)); 546 gpt_entry *gpt_e; 547 548 if (gpt_h == NULL) { 549 printf("%s: calloc failed!\n", __func__); 550 return -1; 551 } 552 553 gpt_e = calloc(1, PAD_TO_BLOCKSIZE(GPT_ENTRY_NUMBERS 554 * sizeof(gpt_entry), 555 dev_desc)); 556 if (gpt_e == NULL) { 557 printf("%s: calloc failed!\n", __func__); 558 free(gpt_h); 559 return -1; 560 } 561 562 /* Generate Primary GPT header (LBA1) */ 563 ret = gpt_fill_header(dev_desc, gpt_h, str_disk_guid, parts_count); 564 if (ret) 565 goto err; 566 567 /* Generate partition entries */ 568 ret = gpt_fill_pte(gpt_h, gpt_e, partitions, parts_count); 569 if (ret) 570 goto err; 571 572 /* Write GPT partition table */ 573 ret = write_gpt_table(dev_desc, gpt_h, gpt_e); 574 575 err: 576 free(gpt_e); 577 free(gpt_h); 578 return ret; 579 } 580 581 static void gpt_convert_efi_name_to_char(char *s, efi_char16_t *es, int n) 582 { 583 char *ess = (char *)es; 584 int i, j; 585 586 memset(s, '\0', n); 587 588 for (i = 0, j = 0; j < n; i += 2, j++) { 589 s[j] = ess[i]; 590 if (!ess[i]) 591 return; 592 } 593 } 594 595 int gpt_verify_headers(struct blk_desc *dev_desc, gpt_header *gpt_head, 596 gpt_entry **gpt_pte) 597 { 598 /* 599 * This function validates AND 600 * fills in the GPT header and PTE 601 */ 602 if (is_gpt_valid(dev_desc, 603 GPT_PRIMARY_PARTITION_TABLE_LBA, 604 gpt_head, gpt_pte) != 1) { 605 printf("%s: *** ERROR: Invalid GPT ***\n", 606 __func__); 607 return -1; 608 } 609 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1), 610 gpt_head, gpt_pte) != 1) { 611 printf("%s: *** ERROR: Invalid Backup GPT ***\n", 612 __func__); 613 return -1; 614 } 615 616 return 0; 617 } 618 619 int gpt_verify_partitions(struct blk_desc *dev_desc, 620 disk_partition_t *partitions, int parts, 621 gpt_header *gpt_head, gpt_entry **gpt_pte) 622 { 623 char efi_str[PARTNAME_SZ + 1]; 624 u64 gpt_part_size; 625 gpt_entry *gpt_e; 626 int ret, i; 627 628 ret = gpt_verify_headers(dev_desc, gpt_head, gpt_pte); 629 if (ret) 630 return ret; 631 632 gpt_e = *gpt_pte; 633 634 for (i = 0; i < parts; i++) { 635 if (i == gpt_head->num_partition_entries) { 636 error("More partitions than allowed!\n"); 637 return -1; 638 } 639 640 /* Check if GPT and ENV partition names match */ 641 gpt_convert_efi_name_to_char(efi_str, gpt_e[i].partition_name, 642 PARTNAME_SZ + 1); 643 644 debug("%s: part: %2d name - GPT: %16s, ENV: %16s ", 645 __func__, i, efi_str, partitions[i].name); 646 647 if (strncmp(efi_str, (char *)partitions[i].name, 648 sizeof(partitions->name))) { 649 error("Partition name: %s does not match %s!\n", 650 efi_str, (char *)partitions[i].name); 651 return -1; 652 } 653 654 /* Check if GPT and ENV sizes match */ 655 gpt_part_size = le64_to_cpu(gpt_e[i].ending_lba) - 656 le64_to_cpu(gpt_e[i].starting_lba) + 1; 657 debug("size(LBA) - GPT: %8llu, ENV: %8llu ", 658 (unsigned long long)gpt_part_size, 659 (unsigned long long)partitions[i].size); 660 661 if (le64_to_cpu(gpt_part_size) != partitions[i].size) { 662 error("Partition %s size: %llu does not match %llu!\n", 663 efi_str, (unsigned long long)gpt_part_size, 664 (unsigned long long)partitions[i].size); 665 return -1; 666 } 667 668 /* 669 * Start address is optional - check only if provided 670 * in '$partition' variable 671 */ 672 if (!partitions[i].start) { 673 debug("\n"); 674 continue; 675 } 676 677 /* Check if GPT and ENV start LBAs match */ 678 debug("start LBA - GPT: %8llu, ENV: %8llu\n", 679 le64_to_cpu(gpt_e[i].starting_lba), 680 (unsigned long long)partitions[i].start); 681 682 if (le64_to_cpu(gpt_e[i].starting_lba) != partitions[i].start) { 683 error("Partition %s start: %llu does not match %llu!\n", 684 efi_str, le64_to_cpu(gpt_e[i].starting_lba), 685 (unsigned long long)partitions[i].start); 686 return -1; 687 } 688 } 689 690 return 0; 691 } 692 693 int is_valid_gpt_buf(struct blk_desc *dev_desc, void *buf) 694 { 695 gpt_header *gpt_h; 696 gpt_entry *gpt_e; 697 698 /* determine start of GPT Header in the buffer */ 699 gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA * 700 dev_desc->blksz); 701 if (validate_gpt_header(gpt_h, GPT_PRIMARY_PARTITION_TABLE_LBA, 702 dev_desc->lba)) 703 return -1; 704 705 /* determine start of GPT Entries in the buffer */ 706 gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) * 707 dev_desc->blksz); 708 if (validate_gpt_entries(gpt_h, gpt_e)) 709 return -1; 710 711 return 0; 712 } 713 714 int write_mbr_and_gpt_partitions(struct blk_desc *dev_desc, void *buf) 715 { 716 gpt_header *gpt_h; 717 gpt_entry *gpt_e; 718 int gpt_e_blk_cnt; 719 lbaint_t lba; 720 int cnt; 721 722 if (is_valid_gpt_buf(dev_desc, buf)) 723 return -1; 724 725 /* determine start of GPT Header in the buffer */ 726 gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA * 727 dev_desc->blksz); 728 729 /* determine start of GPT Entries in the buffer */ 730 gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) * 731 dev_desc->blksz); 732 gpt_e_blk_cnt = BLOCK_CNT((le32_to_cpu(gpt_h->num_partition_entries) * 733 le32_to_cpu(gpt_h->sizeof_partition_entry)), 734 dev_desc); 735 736 /* write MBR */ 737 lba = 0; /* MBR is always at 0 */ 738 cnt = 1; /* MBR (1 block) */ 739 if (blk_dwrite(dev_desc, lba, cnt, buf) != cnt) { 740 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 741 __func__, "MBR", cnt, lba); 742 return 1; 743 } 744 745 /* write Primary GPT */ 746 lba = GPT_PRIMARY_PARTITION_TABLE_LBA; 747 cnt = 1; /* GPT Header (1 block) */ 748 if (blk_dwrite(dev_desc, lba, cnt, gpt_h) != cnt) { 749 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 750 __func__, "Primary GPT Header", cnt, lba); 751 return 1; 752 } 753 754 lba = le64_to_cpu(gpt_h->partition_entry_lba); 755 cnt = gpt_e_blk_cnt; 756 if (blk_dwrite(dev_desc, lba, cnt, gpt_e) != cnt) { 757 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 758 __func__, "Primary GPT Entries", cnt, lba); 759 return 1; 760 } 761 762 prepare_backup_gpt_header(gpt_h); 763 764 /* write Backup GPT */ 765 lba = le64_to_cpu(gpt_h->partition_entry_lba); 766 cnt = gpt_e_blk_cnt; 767 if (blk_dwrite(dev_desc, lba, cnt, gpt_e) != cnt) { 768 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 769 __func__, "Backup GPT Entries", cnt, lba); 770 return 1; 771 } 772 773 lba = le64_to_cpu(gpt_h->my_lba); 774 cnt = 1; /* GPT Header (1 block) */ 775 if (blk_dwrite(dev_desc, lba, cnt, gpt_h) != cnt) { 776 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 777 __func__, "Backup GPT Header", cnt, lba); 778 return 1; 779 } 780 781 return 0; 782 } 783 #endif 784 785 /* 786 * Private functions 787 */ 788 /* 789 * pmbr_part_valid(): Check for EFI partition signature 790 * 791 * Returns: 1 if EFI GPT partition type is found. 792 */ 793 static int pmbr_part_valid(struct partition *part) 794 { 795 if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT && 796 get_unaligned_le32(&part->start_sect) == 1UL) { 797 return 1; 798 } 799 800 return 0; 801 } 802 803 /* 804 * is_pmbr_valid(): test Protective MBR for validity 805 * 806 * Returns: 1 if PMBR is valid, 0 otherwise. 807 * Validity depends on two things: 808 * 1) MSDOS signature is in the last two bytes of the MBR 809 * 2) One partition of type 0xEE is found, checked by pmbr_part_valid() 810 */ 811 static int is_pmbr_valid(legacy_mbr * mbr) 812 { 813 int i = 0; 814 815 if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE) 816 return 0; 817 818 for (i = 0; i < 4; i++) { 819 if (pmbr_part_valid(&mbr->partition_record[i])) { 820 return 1; 821 } 822 } 823 return 0; 824 } 825 826 /** 827 * is_gpt_valid() - tests one GPT header and PTEs for validity 828 * 829 * lba is the logical block address of the GPT header to test 830 * gpt is a GPT header ptr, filled on return. 831 * ptes is a PTEs ptr, filled on return. 832 * 833 * Description: returns 1 if valid, 0 on error. 834 * If valid, returns pointers to PTEs. 835 */ 836 static int is_gpt_valid(struct blk_desc *dev_desc, u64 lba, 837 gpt_header *pgpt_head, gpt_entry **pgpt_pte) 838 { 839 if (!dev_desc || !pgpt_head) { 840 printf("%s: Invalid Argument(s)\n", __func__); 841 return 0; 842 } 843 844 /* Read GPT Header from device */ 845 if (blk_dread(dev_desc, (lbaint_t)lba, 1, pgpt_head) != 1) { 846 printf("*** ERROR: Can't read GPT header ***\n"); 847 return 0; 848 } 849 850 if (validate_gpt_header(pgpt_head, (lbaint_t)lba, dev_desc->lba)) 851 return 0; 852 853 /* Read and allocate Partition Table Entries */ 854 *pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head); 855 if (*pgpt_pte == NULL) { 856 printf("GPT: Failed to allocate memory for PTE\n"); 857 return 0; 858 } 859 860 if (validate_gpt_entries(pgpt_head, *pgpt_pte)) { 861 free(*pgpt_pte); 862 return 0; 863 } 864 865 /* We're done, all's well */ 866 return 1; 867 } 868 869 /** 870 * alloc_read_gpt_entries(): reads partition entries from disk 871 * @dev_desc 872 * @gpt - GPT header 873 * 874 * Description: Returns ptes on success, NULL on error. 875 * Allocates space for PTEs based on information found in @gpt. 876 * Notes: remember to free pte when you're done! 877 */ 878 static gpt_entry *alloc_read_gpt_entries(struct blk_desc *dev_desc, 879 gpt_header *pgpt_head) 880 { 881 size_t count = 0, blk_cnt; 882 lbaint_t blk; 883 gpt_entry *pte = NULL; 884 885 if (!dev_desc || !pgpt_head) { 886 printf("%s: Invalid Argument(s)\n", __func__); 887 return NULL; 888 } 889 890 count = le32_to_cpu(pgpt_head->num_partition_entries) * 891 le32_to_cpu(pgpt_head->sizeof_partition_entry); 892 893 debug("%s: count = %u * %u = %zu\n", __func__, 894 (u32) le32_to_cpu(pgpt_head->num_partition_entries), 895 (u32) le32_to_cpu(pgpt_head->sizeof_partition_entry), count); 896 897 /* Allocate memory for PTE, remember to FREE */ 898 if (count != 0) { 899 pte = memalign(ARCH_DMA_MINALIGN, 900 PAD_TO_BLOCKSIZE(count, dev_desc)); 901 } 902 903 if (count == 0 || pte == NULL) { 904 printf("%s: ERROR: Can't allocate 0x%zX " 905 "bytes for GPT Entries\n", 906 __func__, count); 907 return NULL; 908 } 909 910 /* Read GPT Entries from device */ 911 blk = le64_to_cpu(pgpt_head->partition_entry_lba); 912 blk_cnt = BLOCK_CNT(count, dev_desc); 913 if (blk_dread(dev_desc, blk, (lbaint_t)blk_cnt, pte) != blk_cnt) { 914 printf("*** ERROR: Can't read GPT Entries ***\n"); 915 free(pte); 916 return NULL; 917 } 918 return pte; 919 } 920 921 /** 922 * is_pte_valid(): validates a single Partition Table Entry 923 * @gpt_entry - Pointer to a single Partition Table Entry 924 * 925 * Description: returns 1 if valid, 0 on error. 926 */ 927 static int is_pte_valid(gpt_entry * pte) 928 { 929 efi_guid_t unused_guid; 930 931 if (!pte) { 932 printf("%s: Invalid Argument(s)\n", __func__); 933 return 0; 934 } 935 936 /* Only one validation for now: 937 * The GUID Partition Type != Unused Entry (ALL-ZERO) 938 */ 939 memset(unused_guid.b, 0, sizeof(unused_guid.b)); 940 941 if (memcmp(pte->partition_type_guid.b, unused_guid.b, 942 sizeof(unused_guid.b)) == 0) { 943 944 debug("%s: Found an unused PTE GUID at 0x%08X\n", __func__, 945 (unsigned int)(uintptr_t)pte); 946 947 return 0; 948 } else { 949 return 1; 950 } 951 } 952 953 /* 954 * Add an 'a_' prefix so it comes before 'dos' in the linker list. We need to 955 * check EFI first, since a DOS partition is often used as a 'protective MBR' 956 * with EFI. 957 */ 958 U_BOOT_PART_TYPE(a_efi) = { 959 .name = "EFI", 960 .part_type = PART_TYPE_EFI, 961 .get_info = part_get_info_ptr(part_get_info_efi), 962 .print = part_print_ptr(part_print_efi), 963 .test = part_test_efi, 964 }; 965 #endif 966