1 /* 2 * Copyright (C) 2008 RuggedCom, Inc. 3 * Richard Retanubun <RichardRetanubun@RuggedCom.com> 4 * 5 * SPDX-License-Identifier: GPL-2.0+ 6 */ 7 8 /* 9 * Problems with CONFIG_SYS_64BIT_LBA: 10 * 11 * struct disk_partition.start in include/part.h is sized as ulong. 12 * When CONFIG_SYS_64BIT_LBA is activated, lbaint_t changes from ulong to uint64_t. 13 * For now, it is cast back to ulong at assignment. 14 * 15 * This limits the maximum size of addressable storage to < 2 Terra Bytes 16 */ 17 #include <asm/unaligned.h> 18 #include <common.h> 19 #include <command.h> 20 #include <ide.h> 21 #include <malloc.h> 22 #include <part_efi.h> 23 #include <linux/ctype.h> 24 25 DECLARE_GLOBAL_DATA_PTR; 26 27 #ifdef HAVE_BLOCK_DEVICE 28 /** 29 * efi_crc32() - EFI version of crc32 function 30 * @buf: buffer to calculate crc32 of 31 * @len - length of buf 32 * 33 * Description: Returns EFI-style CRC32 value for @buf 34 */ 35 static inline u32 efi_crc32(const void *buf, u32 len) 36 { 37 return crc32(0, buf, len); 38 } 39 40 /* 41 * Private function prototypes 42 */ 43 44 static int pmbr_part_valid(struct partition *part); 45 static int is_pmbr_valid(legacy_mbr * mbr); 46 static int is_gpt_valid(block_dev_desc_t * dev_desc, unsigned long long lba, 47 gpt_header * pgpt_head, gpt_entry ** pgpt_pte); 48 static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc, 49 gpt_header * pgpt_head); 50 static int is_pte_valid(gpt_entry * pte); 51 52 static char *print_efiname(gpt_entry *pte) 53 { 54 static char name[PARTNAME_SZ + 1]; 55 int i; 56 for (i = 0; i < PARTNAME_SZ; i++) { 57 u8 c; 58 c = pte->partition_name[i] & 0xff; 59 c = (c && !isprint(c)) ? '.' : c; 60 name[i] = c; 61 } 62 name[PARTNAME_SZ] = 0; 63 return name; 64 } 65 66 static efi_guid_t system_guid = PARTITION_SYSTEM_GUID; 67 68 static inline int is_bootable(gpt_entry *p) 69 { 70 return p->attributes.fields.legacy_bios_bootable || 71 !memcmp(&(p->partition_type_guid), &system_guid, 72 sizeof(efi_guid_t)); 73 } 74 75 #ifdef CONFIG_EFI_PARTITION 76 /* 77 * Public Functions (include/part.h) 78 */ 79 80 void print_part_efi(block_dev_desc_t * dev_desc) 81 { 82 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz); 83 gpt_entry *gpt_pte = NULL; 84 int i = 0; 85 char uuid[37]; 86 unsigned char *uuid_bin; 87 88 if (!dev_desc) { 89 printf("%s: Invalid Argument(s)\n", __func__); 90 return; 91 } 92 /* This function validates AND fills in the GPT header and PTE */ 93 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, 94 gpt_head, &gpt_pte) != 1) { 95 printf("%s: *** ERROR: Invalid GPT ***\n", __func__); 96 return; 97 } 98 99 debug("%s: gpt-entry at %p\n", __func__, gpt_pte); 100 101 printf("Part\tStart LBA\tEnd LBA\t\tName\n"); 102 printf("\tAttributes\n"); 103 printf("\tType GUID\n"); 104 printf("\tPartition GUID\n"); 105 106 for (i = 0; i < le32_to_cpu(gpt_head->num_partition_entries); i++) { 107 /* Stop at the first non valid PTE */ 108 if (!is_pte_valid(&gpt_pte[i])) 109 break; 110 111 printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1), 112 le64_to_cpu(gpt_pte[i].starting_lba), 113 le64_to_cpu(gpt_pte[i].ending_lba), 114 print_efiname(&gpt_pte[i])); 115 printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw); 116 uuid_bin = (unsigned char *)gpt_pte[i].partition_type_guid.b; 117 uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID); 118 printf("\ttype:\t%s\n", uuid); 119 uuid_bin = (unsigned char *)gpt_pte[i].unique_partition_guid.b; 120 uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID); 121 printf("\tguid:\t%s\n", uuid); 122 } 123 124 /* Remember to free pte */ 125 free(gpt_pte); 126 return; 127 } 128 129 int get_partition_info_efi(block_dev_desc_t * dev_desc, int part, 130 disk_partition_t * info) 131 { 132 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz); 133 gpt_entry *gpt_pte = NULL; 134 135 /* "part" argument must be at least 1 */ 136 if (!dev_desc || !info || part < 1) { 137 printf("%s: Invalid Argument(s)\n", __func__); 138 return -1; 139 } 140 141 /* This function validates AND fills in the GPT header and PTE */ 142 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, 143 gpt_head, &gpt_pte) != 1) { 144 printf("%s: *** ERROR: Invalid GPT ***\n", __func__); 145 return -1; 146 } 147 148 if (part > le32_to_cpu(gpt_head->num_partition_entries) || 149 !is_pte_valid(&gpt_pte[part - 1])) { 150 debug("%s: *** ERROR: Invalid partition number %d ***\n", 151 __func__, part); 152 free(gpt_pte); 153 return -1; 154 } 155 156 /* The ulong casting limits the maximum disk size to 2 TB */ 157 info->start = (u64)le64_to_cpu(gpt_pte[part - 1].starting_lba); 158 /* The ending LBA is inclusive, to calculate size, add 1 to it */ 159 info->size = ((u64)le64_to_cpu(gpt_pte[part - 1].ending_lba) + 1) 160 - info->start; 161 info->blksz = dev_desc->blksz; 162 163 sprintf((char *)info->name, "%s", 164 print_efiname(&gpt_pte[part - 1])); 165 sprintf((char *)info->type, "U-Boot"); 166 info->bootable = is_bootable(&gpt_pte[part - 1]); 167 #ifdef CONFIG_PARTITION_UUIDS 168 uuid_bin_to_str(gpt_pte[part - 1].unique_partition_guid.b, info->uuid, 169 UUID_STR_FORMAT_GUID); 170 #endif 171 172 debug("%s: start 0x" LBAF ", size 0x" LBAF ", name %s", __func__, 173 info->start, info->size, info->name); 174 175 /* Remember to free pte */ 176 free(gpt_pte); 177 return 0; 178 } 179 180 int test_part_efi(block_dev_desc_t * dev_desc) 181 { 182 ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, legacymbr, 1, dev_desc->blksz); 183 184 /* Read legacy MBR from block 0 and validate it */ 185 if ((dev_desc->block_read(dev_desc->dev, 0, 1, (ulong *)legacymbr) != 1) 186 || (is_pmbr_valid(legacymbr) != 1)) { 187 return -1; 188 } 189 return 0; 190 } 191 192 /** 193 * set_protective_mbr(): Set the EFI protective MBR 194 * @param dev_desc - block device descriptor 195 * 196 * @return - zero on success, otherwise error 197 */ 198 static int set_protective_mbr(block_dev_desc_t *dev_desc) 199 { 200 /* Setup the Protective MBR */ 201 ALLOC_CACHE_ALIGN_BUFFER(legacy_mbr, p_mbr, 1); 202 memset(p_mbr, 0, sizeof(*p_mbr)); 203 204 if (p_mbr == NULL) { 205 printf("%s: calloc failed!\n", __func__); 206 return -1; 207 } 208 /* Append signature */ 209 p_mbr->signature = MSDOS_MBR_SIGNATURE; 210 p_mbr->partition_record[0].sys_ind = EFI_PMBR_OSTYPE_EFI_GPT; 211 p_mbr->partition_record[0].start_sect = 1; 212 p_mbr->partition_record[0].nr_sects = (u32) dev_desc->lba; 213 214 /* Write MBR sector to the MMC device */ 215 if (dev_desc->block_write(dev_desc->dev, 0, 1, p_mbr) != 1) { 216 printf("** Can't write to device %d **\n", 217 dev_desc->dev); 218 return -1; 219 } 220 221 return 0; 222 } 223 224 int write_gpt_table(block_dev_desc_t *dev_desc, 225 gpt_header *gpt_h, gpt_entry *gpt_e) 226 { 227 const int pte_blk_cnt = BLOCK_CNT((gpt_h->num_partition_entries 228 * sizeof(gpt_entry)), dev_desc); 229 u32 calc_crc32; 230 u64 val; 231 232 debug("max lba: %x\n", (u32) dev_desc->lba); 233 /* Setup the Protective MBR */ 234 if (set_protective_mbr(dev_desc) < 0) 235 goto err; 236 237 /* Generate CRC for the Primary GPT Header */ 238 calc_crc32 = efi_crc32((const unsigned char *)gpt_e, 239 le32_to_cpu(gpt_h->num_partition_entries) * 240 le32_to_cpu(gpt_h->sizeof_partition_entry)); 241 gpt_h->partition_entry_array_crc32 = cpu_to_le32(calc_crc32); 242 243 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 244 le32_to_cpu(gpt_h->header_size)); 245 gpt_h->header_crc32 = cpu_to_le32(calc_crc32); 246 247 /* Write the First GPT to the block right after the Legacy MBR */ 248 if (dev_desc->block_write(dev_desc->dev, 1, 1, gpt_h) != 1) 249 goto err; 250 251 if (dev_desc->block_write(dev_desc->dev, 2, pte_blk_cnt, gpt_e) 252 != pte_blk_cnt) 253 goto err; 254 255 /* recalculate the values for the Second GPT Header */ 256 val = le64_to_cpu(gpt_h->my_lba); 257 gpt_h->my_lba = gpt_h->alternate_lba; 258 gpt_h->alternate_lba = cpu_to_le64(val); 259 gpt_h->header_crc32 = 0; 260 261 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 262 le32_to_cpu(gpt_h->header_size)); 263 gpt_h->header_crc32 = cpu_to_le32(calc_crc32); 264 265 if (dev_desc->block_write(dev_desc->dev, 266 le32_to_cpu(gpt_h->last_usable_lba + 1), 267 pte_blk_cnt, gpt_e) != pte_blk_cnt) 268 goto err; 269 270 if (dev_desc->block_write(dev_desc->dev, 271 le32_to_cpu(gpt_h->my_lba), 1, gpt_h) != 1) 272 goto err; 273 274 debug("GPT successfully written to block device!\n"); 275 return 0; 276 277 err: 278 printf("** Can't write to device %d **\n", dev_desc->dev); 279 return -1; 280 } 281 282 int gpt_fill_pte(gpt_header *gpt_h, gpt_entry *gpt_e, 283 disk_partition_t *partitions, int parts) 284 { 285 u32 offset = (u32)le32_to_cpu(gpt_h->first_usable_lba); 286 ulong start; 287 int i, k; 288 size_t efiname_len, dosname_len; 289 #ifdef CONFIG_PARTITION_UUIDS 290 char *str_uuid; 291 unsigned char *bin_uuid; 292 #endif 293 294 for (i = 0; i < parts; i++) { 295 /* partition starting lba */ 296 start = partitions[i].start; 297 if (start && (start < offset)) { 298 printf("Partition overlap\n"); 299 return -1; 300 } 301 if (start) { 302 gpt_e[i].starting_lba = cpu_to_le64(start); 303 offset = start + partitions[i].size; 304 } else { 305 gpt_e[i].starting_lba = cpu_to_le64(offset); 306 offset += partitions[i].size; 307 } 308 if (offset >= gpt_h->last_usable_lba) { 309 printf("Partitions layout exceds disk size\n"); 310 return -1; 311 } 312 /* partition ending lba */ 313 if ((i == parts - 1) && (partitions[i].size == 0)) 314 /* extend the last partition to maximuim */ 315 gpt_e[i].ending_lba = gpt_h->last_usable_lba; 316 else 317 gpt_e[i].ending_lba = cpu_to_le64(offset - 1); 318 319 /* partition type GUID */ 320 memcpy(gpt_e[i].partition_type_guid.b, 321 &PARTITION_BASIC_DATA_GUID, 16); 322 323 #ifdef CONFIG_PARTITION_UUIDS 324 str_uuid = partitions[i].uuid; 325 bin_uuid = gpt_e[i].unique_partition_guid.b; 326 327 if (uuid_str_to_bin(str_uuid, bin_uuid, UUID_STR_FORMAT_STD)) { 328 printf("Partition no. %d: invalid guid: %s\n", 329 i, str_uuid); 330 return -1; 331 } 332 #endif 333 334 /* partition attributes */ 335 memset(&gpt_e[i].attributes, 0, 336 sizeof(gpt_entry_attributes)); 337 338 /* partition name */ 339 efiname_len = sizeof(gpt_e[i].partition_name) 340 / sizeof(efi_char16_t); 341 dosname_len = sizeof(partitions[i].name); 342 343 memset(gpt_e[i].partition_name, 0, 344 sizeof(gpt_e[i].partition_name)); 345 346 for (k = 0; k < min(dosname_len, efiname_len); k++) 347 gpt_e[i].partition_name[k] = 348 (efi_char16_t)(partitions[i].name[k]); 349 350 debug("%s: name: %s offset[%d]: 0x%x size[%d]: 0x" LBAF "\n", 351 __func__, partitions[i].name, i, 352 offset, i, partitions[i].size); 353 } 354 355 return 0; 356 } 357 358 int gpt_fill_header(block_dev_desc_t *dev_desc, gpt_header *gpt_h, 359 char *str_guid, int parts_count) 360 { 361 gpt_h->signature = cpu_to_le64(GPT_HEADER_SIGNATURE); 362 gpt_h->revision = cpu_to_le32(GPT_HEADER_REVISION_V1); 363 gpt_h->header_size = cpu_to_le32(sizeof(gpt_header)); 364 gpt_h->my_lba = cpu_to_le64(1); 365 gpt_h->alternate_lba = cpu_to_le64(dev_desc->lba - 1); 366 gpt_h->first_usable_lba = cpu_to_le64(34); 367 gpt_h->last_usable_lba = cpu_to_le64(dev_desc->lba - 34); 368 gpt_h->partition_entry_lba = cpu_to_le64(2); 369 gpt_h->num_partition_entries = cpu_to_le32(GPT_ENTRY_NUMBERS); 370 gpt_h->sizeof_partition_entry = cpu_to_le32(sizeof(gpt_entry)); 371 gpt_h->header_crc32 = 0; 372 gpt_h->partition_entry_array_crc32 = 0; 373 374 if (uuid_str_to_bin(str_guid, gpt_h->disk_guid.b, UUID_STR_FORMAT_GUID)) 375 return -1; 376 377 return 0; 378 } 379 380 int gpt_restore(block_dev_desc_t *dev_desc, char *str_disk_guid, 381 disk_partition_t *partitions, int parts_count) 382 { 383 int ret; 384 385 gpt_header *gpt_h = calloc(1, PAD_TO_BLOCKSIZE(sizeof(gpt_header), 386 dev_desc)); 387 gpt_entry *gpt_e; 388 389 if (gpt_h == NULL) { 390 printf("%s: calloc failed!\n", __func__); 391 return -1; 392 } 393 394 gpt_e = calloc(1, PAD_TO_BLOCKSIZE(GPT_ENTRY_NUMBERS 395 * sizeof(gpt_entry), 396 dev_desc)); 397 if (gpt_e == NULL) { 398 printf("%s: calloc failed!\n", __func__); 399 free(gpt_h); 400 return -1; 401 } 402 403 /* Generate Primary GPT header (LBA1) */ 404 ret = gpt_fill_header(dev_desc, gpt_h, str_disk_guid, parts_count); 405 if (ret) 406 goto err; 407 408 /* Generate partition entries */ 409 ret = gpt_fill_pte(gpt_h, gpt_e, partitions, parts_count); 410 if (ret) 411 goto err; 412 413 /* Write GPT partition table */ 414 ret = write_gpt_table(dev_desc, gpt_h, gpt_e); 415 416 err: 417 free(gpt_e); 418 free(gpt_h); 419 return ret; 420 } 421 #endif 422 423 /* 424 * Private functions 425 */ 426 /* 427 * pmbr_part_valid(): Check for EFI partition signature 428 * 429 * Returns: 1 if EFI GPT partition type is found. 430 */ 431 static int pmbr_part_valid(struct partition *part) 432 { 433 if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT && 434 get_unaligned_le32(&part->start_sect) == 1UL) { 435 return 1; 436 } 437 438 return 0; 439 } 440 441 /* 442 * is_pmbr_valid(): test Protective MBR for validity 443 * 444 * Returns: 1 if PMBR is valid, 0 otherwise. 445 * Validity depends on two things: 446 * 1) MSDOS signature is in the last two bytes of the MBR 447 * 2) One partition of type 0xEE is found, checked by pmbr_part_valid() 448 */ 449 static int is_pmbr_valid(legacy_mbr * mbr) 450 { 451 int i = 0; 452 453 if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE) 454 return 0; 455 456 for (i = 0; i < 4; i++) { 457 if (pmbr_part_valid(&mbr->partition_record[i])) { 458 return 1; 459 } 460 } 461 return 0; 462 } 463 464 /** 465 * is_gpt_valid() - tests one GPT header and PTEs for validity 466 * 467 * lba is the logical block address of the GPT header to test 468 * gpt is a GPT header ptr, filled on return. 469 * ptes is a PTEs ptr, filled on return. 470 * 471 * Description: returns 1 if valid, 0 on error. 472 * If valid, returns pointers to PTEs. 473 */ 474 static int is_gpt_valid(block_dev_desc_t * dev_desc, unsigned long long lba, 475 gpt_header * pgpt_head, gpt_entry ** pgpt_pte) 476 { 477 u32 crc32_backup = 0; 478 u32 calc_crc32; 479 unsigned long long lastlba; 480 481 if (!dev_desc || !pgpt_head) { 482 printf("%s: Invalid Argument(s)\n", __func__); 483 return 0; 484 } 485 486 /* Read GPT Header from device */ 487 if (dev_desc->block_read(dev_desc->dev, lba, 1, pgpt_head) != 1) { 488 printf("*** ERROR: Can't read GPT header ***\n"); 489 return 0; 490 } 491 492 /* Check the GPT header signature */ 493 if (le64_to_cpu(pgpt_head->signature) != GPT_HEADER_SIGNATURE) { 494 printf("GUID Partition Table Header signature is wrong:" 495 "0x%llX != 0x%llX\n", 496 le64_to_cpu(pgpt_head->signature), 497 GPT_HEADER_SIGNATURE); 498 return 0; 499 } 500 501 /* Check the GUID Partition Table CRC */ 502 memcpy(&crc32_backup, &pgpt_head->header_crc32, sizeof(crc32_backup)); 503 memset(&pgpt_head->header_crc32, 0, sizeof(pgpt_head->header_crc32)); 504 505 calc_crc32 = efi_crc32((const unsigned char *)pgpt_head, 506 le32_to_cpu(pgpt_head->header_size)); 507 508 memcpy(&pgpt_head->header_crc32, &crc32_backup, sizeof(crc32_backup)); 509 510 if (calc_crc32 != le32_to_cpu(crc32_backup)) { 511 printf("GUID Partition Table Header CRC is wrong:" 512 "0x%x != 0x%x\n", 513 le32_to_cpu(crc32_backup), calc_crc32); 514 return 0; 515 } 516 517 /* Check that the my_lba entry points to the LBA that contains the GPT */ 518 if (le64_to_cpu(pgpt_head->my_lba) != lba) { 519 printf("GPT: my_lba incorrect: %llX != %llX\n", 520 le64_to_cpu(pgpt_head->my_lba), 521 lba); 522 return 0; 523 } 524 525 /* Check the first_usable_lba and last_usable_lba are within the disk. */ 526 lastlba = (unsigned long long)dev_desc->lba; 527 if (le64_to_cpu(pgpt_head->first_usable_lba) > lastlba) { 528 printf("GPT: first_usable_lba incorrect: %llX > %llX\n", 529 le64_to_cpu(pgpt_head->first_usable_lba), lastlba); 530 return 0; 531 } 532 if (le64_to_cpu(pgpt_head->last_usable_lba) > lastlba) { 533 printf("GPT: last_usable_lba incorrect: %llX > %llX\n", 534 (u64) le64_to_cpu(pgpt_head->last_usable_lba), lastlba); 535 return 0; 536 } 537 538 debug("GPT: first_usable_lba: %llX last_usable_lba %llX last lba %llX\n", 539 le64_to_cpu(pgpt_head->first_usable_lba), 540 le64_to_cpu(pgpt_head->last_usable_lba), lastlba); 541 542 /* Read and allocate Partition Table Entries */ 543 *pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head); 544 if (*pgpt_pte == NULL) { 545 printf("GPT: Failed to allocate memory for PTE\n"); 546 return 0; 547 } 548 549 /* Check the GUID Partition Table Entry Array CRC */ 550 calc_crc32 = efi_crc32((const unsigned char *)*pgpt_pte, 551 le32_to_cpu(pgpt_head->num_partition_entries) * 552 le32_to_cpu(pgpt_head->sizeof_partition_entry)); 553 554 if (calc_crc32 != le32_to_cpu(pgpt_head->partition_entry_array_crc32)) { 555 printf("GUID Partition Table Entry Array CRC is wrong:" 556 "0x%x != 0x%x\n", 557 le32_to_cpu(pgpt_head->partition_entry_array_crc32), 558 calc_crc32); 559 560 free(*pgpt_pte); 561 return 0; 562 } 563 564 /* We're done, all's well */ 565 return 1; 566 } 567 568 /** 569 * alloc_read_gpt_entries(): reads partition entries from disk 570 * @dev_desc 571 * @gpt - GPT header 572 * 573 * Description: Returns ptes on success, NULL on error. 574 * Allocates space for PTEs based on information found in @gpt. 575 * Notes: remember to free pte when you're done! 576 */ 577 static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc, 578 gpt_header * pgpt_head) 579 { 580 size_t count = 0, blk_cnt; 581 gpt_entry *pte = NULL; 582 583 if (!dev_desc || !pgpt_head) { 584 printf("%s: Invalid Argument(s)\n", __func__); 585 return NULL; 586 } 587 588 count = le32_to_cpu(pgpt_head->num_partition_entries) * 589 le32_to_cpu(pgpt_head->sizeof_partition_entry); 590 591 debug("%s: count = %u * %u = %zu\n", __func__, 592 (u32) le32_to_cpu(pgpt_head->num_partition_entries), 593 (u32) le32_to_cpu(pgpt_head->sizeof_partition_entry), count); 594 595 /* Allocate memory for PTE, remember to FREE */ 596 if (count != 0) { 597 pte = memalign(ARCH_DMA_MINALIGN, 598 PAD_TO_BLOCKSIZE(count, dev_desc)); 599 } 600 601 if (count == 0 || pte == NULL) { 602 printf("%s: ERROR: Can't allocate 0x%zX " 603 "bytes for GPT Entries\n", 604 __func__, count); 605 return NULL; 606 } 607 608 /* Read GPT Entries from device */ 609 blk_cnt = BLOCK_CNT(count, dev_desc); 610 if (dev_desc->block_read (dev_desc->dev, 611 le64_to_cpu(pgpt_head->partition_entry_lba), 612 (lbaint_t) (blk_cnt), pte) 613 != blk_cnt) { 614 615 printf("*** ERROR: Can't read GPT Entries ***\n"); 616 free(pte); 617 return NULL; 618 } 619 return pte; 620 } 621 622 /** 623 * is_pte_valid(): validates a single Partition Table Entry 624 * @gpt_entry - Pointer to a single Partition Table Entry 625 * 626 * Description: returns 1 if valid, 0 on error. 627 */ 628 static int is_pte_valid(gpt_entry * pte) 629 { 630 efi_guid_t unused_guid; 631 632 if (!pte) { 633 printf("%s: Invalid Argument(s)\n", __func__); 634 return 0; 635 } 636 637 /* Only one validation for now: 638 * The GUID Partition Type != Unused Entry (ALL-ZERO) 639 */ 640 memset(unused_guid.b, 0, sizeof(unused_guid.b)); 641 642 if (memcmp(pte->partition_type_guid.b, unused_guid.b, 643 sizeof(unused_guid.b)) == 0) { 644 645 debug("%s: Found an unused PTE GUID at 0x%08X\n", __func__, 646 (unsigned int)(uintptr_t)pte); 647 648 return 0; 649 } else { 650 return 1; 651 } 652 } 653 #endif 654