1 /* 2 * Copyright (C) 2008 RuggedCom, Inc. 3 * Richard Retanubun <RichardRetanubun@RuggedCom.com> 4 * 5 * See file CREDITS for list of people who contributed to this 6 * project. 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License as 10 * published by the Free Software Foundation; either version 2 of 11 * the License, or (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, 21 * MA 02111-1307 USA 22 */ 23 24 /* 25 * Problems with CONFIG_SYS_64BIT_LBA: 26 * 27 * struct disk_partition.start in include/part.h is sized as ulong. 28 * When CONFIG_SYS_64BIT_LBA is activated, lbaint_t changes from ulong to uint64_t. 29 * For now, it is cast back to ulong at assignment. 30 * 31 * This limits the maximum size of addressable storage to < 2 Terra Bytes 32 */ 33 #include <common.h> 34 #include <command.h> 35 #include <ide.h> 36 #include <malloc.h> 37 #include <part_efi.h> 38 #include <linux/ctype.h> 39 40 DECLARE_GLOBAL_DATA_PTR; 41 42 #ifdef HAVE_BLOCK_DEVICE 43 /** 44 * efi_crc32() - EFI version of crc32 function 45 * @buf: buffer to calculate crc32 of 46 * @len - length of buf 47 * 48 * Description: Returns EFI-style CRC32 value for @buf 49 */ 50 static inline u32 efi_crc32(const void *buf, u32 len) 51 { 52 return crc32(0, buf, len); 53 } 54 55 /* 56 * Private function prototypes 57 */ 58 59 static int pmbr_part_valid(struct partition *part); 60 static int is_pmbr_valid(legacy_mbr * mbr); 61 static int is_gpt_valid(block_dev_desc_t * dev_desc, unsigned long long lba, 62 gpt_header * pgpt_head, gpt_entry ** pgpt_pte); 63 static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc, 64 gpt_header * pgpt_head); 65 static int is_pte_valid(gpt_entry * pte); 66 67 static char *print_efiname(gpt_entry *pte) 68 { 69 static char name[PARTNAME_SZ + 1]; 70 int i; 71 for (i = 0; i < PARTNAME_SZ; i++) { 72 u8 c; 73 c = pte->partition_name[i] & 0xff; 74 c = (c && !isprint(c)) ? '.' : c; 75 name[i] = c; 76 } 77 name[PARTNAME_SZ] = 0; 78 return name; 79 } 80 81 static void uuid_string(unsigned char *uuid, char *str) 82 { 83 static const u8 le[16] = {3, 2, 1, 0, 5, 4, 7, 6, 8, 9, 10, 11, 84 12, 13, 14, 15}; 85 int i; 86 87 for (i = 0; i < 16; i++) { 88 sprintf(str, "%02x", uuid[le[i]]); 89 str += 2; 90 switch (i) { 91 case 3: 92 case 5: 93 case 7: 94 case 9: 95 *str++ = '-'; 96 break; 97 } 98 } 99 } 100 101 static efi_guid_t system_guid = PARTITION_SYSTEM_GUID; 102 103 static inline int is_bootable(gpt_entry *p) 104 { 105 return p->attributes.fields.legacy_bios_bootable || 106 !memcmp(&(p->partition_type_guid), &system_guid, 107 sizeof(efi_guid_t)); 108 } 109 110 #ifdef CONFIG_EFI_PARTITION 111 /* 112 * Public Functions (include/part.h) 113 */ 114 115 void print_part_efi(block_dev_desc_t * dev_desc) 116 { 117 ALLOC_CACHE_ALIGN_BUFFER(gpt_header, gpt_head, 1); 118 gpt_entry *gpt_pte = NULL; 119 int i = 0; 120 char uuid[37]; 121 122 if (!dev_desc) { 123 printf("%s: Invalid Argument(s)\n", __func__); 124 return; 125 } 126 /* This function validates AND fills in the GPT header and PTE */ 127 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, 128 gpt_head, &gpt_pte) != 1) { 129 printf("%s: *** ERROR: Invalid GPT ***\n", __func__); 130 return; 131 } 132 133 debug("%s: gpt-entry at %p\n", __func__, gpt_pte); 134 135 printf("Part\tStart LBA\tEnd LBA\t\tName\n"); 136 printf("\tAttributes\n"); 137 printf("\tType UUID\n"); 138 printf("\tPartition UUID\n"); 139 140 for (i = 0; i < le32_to_cpu(gpt_head->num_partition_entries); i++) { 141 /* Stop at the first non valid PTE */ 142 if (!is_pte_valid(&gpt_pte[i])) 143 break; 144 145 printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1), 146 le64_to_cpu(gpt_pte[i].starting_lba), 147 le64_to_cpu(gpt_pte[i].ending_lba), 148 print_efiname(&gpt_pte[i])); 149 printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw); 150 uuid_string(gpt_pte[i].partition_type_guid.b, uuid); 151 printf("\ttype:\t%s\n", uuid); 152 uuid_string(gpt_pte[i].unique_partition_guid.b, uuid); 153 printf("\tuuid:\t%s\n", uuid); 154 } 155 156 /* Remember to free pte */ 157 free(gpt_pte); 158 return; 159 } 160 161 int get_partition_info_efi(block_dev_desc_t * dev_desc, int part, 162 disk_partition_t * info) 163 { 164 ALLOC_CACHE_ALIGN_BUFFER(gpt_header, gpt_head, 1); 165 gpt_entry *gpt_pte = NULL; 166 167 /* "part" argument must be at least 1 */ 168 if (!dev_desc || !info || part < 1) { 169 printf("%s: Invalid Argument(s)\n", __func__); 170 return -1; 171 } 172 173 /* This function validates AND fills in the GPT header and PTE */ 174 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, 175 gpt_head, &gpt_pte) != 1) { 176 printf("%s: *** ERROR: Invalid GPT ***\n", __func__); 177 return -1; 178 } 179 180 if (part > le32_to_cpu(gpt_head->num_partition_entries) || 181 !is_pte_valid(&gpt_pte[part - 1])) { 182 printf("%s: *** ERROR: Invalid partition number %d ***\n", 183 __func__, part); 184 return -1; 185 } 186 187 /* The ulong casting limits the maximum disk size to 2 TB */ 188 info->start = (u64)le64_to_cpu(gpt_pte[part - 1].starting_lba); 189 /* The ending LBA is inclusive, to calculate size, add 1 to it */ 190 info->size = ((u64)le64_to_cpu(gpt_pte[part - 1].ending_lba) + 1) 191 - info->start; 192 info->blksz = GPT_BLOCK_SIZE; 193 194 sprintf((char *)info->name, "%s", 195 print_efiname(&gpt_pte[part - 1])); 196 sprintf((char *)info->type, "U-Boot"); 197 info->bootable = is_bootable(&gpt_pte[part - 1]); 198 #ifdef CONFIG_PARTITION_UUIDS 199 uuid_string(gpt_pte[part - 1].unique_partition_guid.b, info->uuid); 200 #endif 201 202 debug("%s: start 0x%lX, size 0x%lX, name %s", __func__, 203 info->start, info->size, info->name); 204 205 /* Remember to free pte */ 206 free(gpt_pte); 207 return 0; 208 } 209 210 int test_part_efi(block_dev_desc_t * dev_desc) 211 { 212 ALLOC_CACHE_ALIGN_BUFFER(legacy_mbr, legacymbr, 1); 213 214 /* Read legacy MBR from block 0 and validate it */ 215 if ((dev_desc->block_read(dev_desc->dev, 0, 1, (ulong *)legacymbr) != 1) 216 || (is_pmbr_valid(legacymbr) != 1)) { 217 return -1; 218 } 219 return 0; 220 } 221 222 /** 223 * set_protective_mbr(): Set the EFI protective MBR 224 * @param dev_desc - block device descriptor 225 * 226 * @return - zero on success, otherwise error 227 */ 228 static int set_protective_mbr(block_dev_desc_t *dev_desc) 229 { 230 legacy_mbr *p_mbr; 231 232 /* Setup the Protective MBR */ 233 p_mbr = calloc(1, sizeof(p_mbr)); 234 if (p_mbr == NULL) { 235 printf("%s: calloc failed!\n", __func__); 236 return -1; 237 } 238 /* Append signature */ 239 p_mbr->signature = MSDOS_MBR_SIGNATURE; 240 p_mbr->partition_record[0].sys_ind = EFI_PMBR_OSTYPE_EFI_GPT; 241 p_mbr->partition_record[0].start_sect = 1; 242 p_mbr->partition_record[0].nr_sects = (u32) dev_desc->lba; 243 244 /* Write MBR sector to the MMC device */ 245 if (dev_desc->block_write(dev_desc->dev, 0, 1, p_mbr) != 1) { 246 printf("** Can't write to device %d **\n", 247 dev_desc->dev); 248 free(p_mbr); 249 return -1; 250 } 251 252 free(p_mbr); 253 return 0; 254 } 255 256 /** 257 * string_uuid(); Convert UUID stored as string to bytes 258 * 259 * @param uuid - UUID represented as string 260 * @param dst - GUID buffer 261 * 262 * @return return 0 on successful conversion 263 */ 264 static int string_uuid(char *uuid, u8 *dst) 265 { 266 efi_guid_t guid; 267 u16 b, c, d; 268 u64 e; 269 u32 a; 270 u8 *p; 271 u8 i; 272 273 const u8 uuid_str_len = 36; 274 275 /* The UUID is written in text: */ 276 /* 1 9 14 19 24 */ 277 /* xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx */ 278 279 debug("%s: uuid: %s\n", __func__, uuid); 280 281 if (strlen(uuid) != uuid_str_len) 282 return -1; 283 284 for (i = 0; i < uuid_str_len; i++) { 285 if ((i == 8) || (i == 13) || (i == 18) || (i == 23)) { 286 if (uuid[i] != '-') 287 return -1; 288 } else { 289 if (!isxdigit(uuid[i])) 290 return -1; 291 } 292 } 293 294 a = (u32)simple_strtoul(uuid, NULL, 16); 295 b = (u16)simple_strtoul(uuid + 9, NULL, 16); 296 c = (u16)simple_strtoul(uuid + 14, NULL, 16); 297 d = (u16)simple_strtoul(uuid + 19, NULL, 16); 298 e = (u64)simple_strtoull(uuid + 24, NULL, 16); 299 300 p = (u8 *) &e; 301 guid = EFI_GUID(a, b, c, d >> 8, d & 0xFF, 302 *(p + 5), *(p + 4), *(p + 3), 303 *(p + 2), *(p + 1) , *p); 304 305 memcpy(dst, guid.b, sizeof(efi_guid_t)); 306 307 return 0; 308 } 309 310 int write_gpt_table(block_dev_desc_t *dev_desc, 311 gpt_header *gpt_h, gpt_entry *gpt_e) 312 { 313 const int pte_blk_num = (gpt_h->num_partition_entries 314 * sizeof(gpt_entry)) / dev_desc->blksz; 315 316 u32 calc_crc32; 317 u64 val; 318 319 debug("max lba: %x\n", (u32) dev_desc->lba); 320 /* Setup the Protective MBR */ 321 if (set_protective_mbr(dev_desc) < 0) 322 goto err; 323 324 /* Generate CRC for the Primary GPT Header */ 325 calc_crc32 = efi_crc32((const unsigned char *)gpt_e, 326 le32_to_cpu(gpt_h->num_partition_entries) * 327 le32_to_cpu(gpt_h->sizeof_partition_entry)); 328 gpt_h->partition_entry_array_crc32 = cpu_to_le32(calc_crc32); 329 330 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 331 le32_to_cpu(gpt_h->header_size)); 332 gpt_h->header_crc32 = cpu_to_le32(calc_crc32); 333 334 /* Write the First GPT to the block right after the Legacy MBR */ 335 if (dev_desc->block_write(dev_desc->dev, 1, 1, gpt_h) != 1) 336 goto err; 337 338 if (dev_desc->block_write(dev_desc->dev, 2, pte_blk_num, gpt_e) 339 != pte_blk_num) 340 goto err; 341 342 /* recalculate the values for the Second GPT Header */ 343 val = le64_to_cpu(gpt_h->my_lba); 344 gpt_h->my_lba = gpt_h->alternate_lba; 345 gpt_h->alternate_lba = cpu_to_le64(val); 346 gpt_h->header_crc32 = 0; 347 348 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 349 le32_to_cpu(gpt_h->header_size)); 350 gpt_h->header_crc32 = cpu_to_le32(calc_crc32); 351 352 if (dev_desc->block_write(dev_desc->dev, 353 le32_to_cpu(gpt_h->last_usable_lba + 1), 354 pte_blk_num, gpt_e) != pte_blk_num) 355 goto err; 356 357 if (dev_desc->block_write(dev_desc->dev, 358 le32_to_cpu(gpt_h->my_lba), 1, gpt_h) != 1) 359 goto err; 360 361 debug("GPT successfully written to block device!\n"); 362 return 0; 363 364 err: 365 printf("** Can't write to device %d **\n", dev_desc->dev); 366 return -1; 367 } 368 369 int gpt_fill_pte(gpt_header *gpt_h, gpt_entry *gpt_e, 370 disk_partition_t *partitions, int parts) 371 { 372 u32 offset = (u32)le32_to_cpu(gpt_h->first_usable_lba); 373 ulong start; 374 int i, k; 375 size_t name_len; 376 #ifdef CONFIG_PARTITION_UUIDS 377 char *str_uuid; 378 #endif 379 380 for (i = 0; i < parts; i++) { 381 /* partition starting lba */ 382 start = partitions[i].start; 383 if (start && (start < offset)) { 384 printf("Partition overlap\n"); 385 return -1; 386 } 387 if (start) { 388 gpt_e[i].starting_lba = cpu_to_le64(start); 389 offset = start + partitions[i].size; 390 } else { 391 gpt_e[i].starting_lba = cpu_to_le64(offset); 392 offset += partitions[i].size; 393 } 394 if (offset >= gpt_h->last_usable_lba) { 395 printf("Partitions layout exceds disk size\n"); 396 return -1; 397 } 398 /* partition ending lba */ 399 if ((i == parts - 1) && (partitions[i].size == 0)) 400 /* extend the last partition to maximuim */ 401 gpt_e[i].ending_lba = gpt_h->last_usable_lba; 402 else 403 gpt_e[i].ending_lba = cpu_to_le64(offset - 1); 404 405 /* partition type GUID */ 406 memcpy(gpt_e[i].partition_type_guid.b, 407 &PARTITION_BASIC_DATA_GUID, 16); 408 409 #ifdef CONFIG_PARTITION_UUIDS 410 str_uuid = partitions[i].uuid; 411 if (string_uuid(str_uuid, gpt_e[i].unique_partition_guid.b)) { 412 printf("Partition no. %d: invalid guid: %s\n", 413 i, str_uuid); 414 return -1; 415 } 416 #endif 417 418 /* partition attributes */ 419 memset(&gpt_e[i].attributes, 0, 420 sizeof(gpt_entry_attributes)); 421 422 /* partition name */ 423 name_len = sizeof(gpt_e[i].partition_name) 424 / sizeof(efi_char16_t); 425 for (k = 0; k < name_len; k++) 426 gpt_e[i].partition_name[k] = 427 (efi_char16_t)(partitions[i].name[k]); 428 429 debug("%s: name: %s offset[%d]: 0x%x size[%d]: 0x%lx\n", 430 __func__, partitions[i].name, i, 431 offset, i, partitions[i].size); 432 } 433 434 return 0; 435 } 436 437 int gpt_fill_header(block_dev_desc_t *dev_desc, gpt_header *gpt_h, 438 char *str_guid, int parts_count) 439 { 440 gpt_h->signature = cpu_to_le64(GPT_HEADER_SIGNATURE); 441 gpt_h->revision = cpu_to_le32(GPT_HEADER_REVISION_V1); 442 gpt_h->header_size = cpu_to_le32(sizeof(gpt_header)); 443 gpt_h->my_lba = cpu_to_le64(1); 444 gpt_h->alternate_lba = cpu_to_le64(dev_desc->lba - 1); 445 gpt_h->first_usable_lba = cpu_to_le64(34); 446 gpt_h->last_usable_lba = cpu_to_le64(dev_desc->lba - 34); 447 gpt_h->partition_entry_lba = cpu_to_le64(2); 448 gpt_h->num_partition_entries = cpu_to_le32(GPT_ENTRY_NUMBERS); 449 gpt_h->sizeof_partition_entry = cpu_to_le32(sizeof(gpt_entry)); 450 gpt_h->header_crc32 = 0; 451 gpt_h->partition_entry_array_crc32 = 0; 452 453 if (string_uuid(str_guid, gpt_h->disk_guid.b)) 454 return -1; 455 456 return 0; 457 } 458 459 int gpt_restore(block_dev_desc_t *dev_desc, char *str_disk_guid, 460 disk_partition_t *partitions, int parts_count) 461 { 462 int ret; 463 464 gpt_header *gpt_h = calloc(1, sizeof(gpt_header)); 465 if (gpt_h == NULL) { 466 printf("%s: calloc failed!\n", __func__); 467 return -1; 468 } 469 470 gpt_entry *gpt_e = calloc(GPT_ENTRY_NUMBERS, sizeof(gpt_entry)); 471 if (gpt_e == NULL) { 472 printf("%s: calloc failed!\n", __func__); 473 free(gpt_h); 474 return -1; 475 } 476 477 /* Generate Primary GPT header (LBA1) */ 478 ret = gpt_fill_header(dev_desc, gpt_h, str_disk_guid, parts_count); 479 if (ret) 480 goto err; 481 482 /* Generate partition entries */ 483 ret = gpt_fill_pte(gpt_h, gpt_e, partitions, parts_count); 484 if (ret) 485 goto err; 486 487 /* Write GPT partition table */ 488 ret = write_gpt_table(dev_desc, gpt_h, gpt_e); 489 490 err: 491 free(gpt_e); 492 free(gpt_h); 493 return ret; 494 } 495 #endif 496 497 /* 498 * Private functions 499 */ 500 /* 501 * pmbr_part_valid(): Check for EFI partition signature 502 * 503 * Returns: 1 if EFI GPT partition type is found. 504 */ 505 static int pmbr_part_valid(struct partition *part) 506 { 507 if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT && 508 le32_to_cpu(part->start_sect) == 1UL) { 509 return 1; 510 } 511 512 return 0; 513 } 514 515 /* 516 * is_pmbr_valid(): test Protective MBR for validity 517 * 518 * Returns: 1 if PMBR is valid, 0 otherwise. 519 * Validity depends on two things: 520 * 1) MSDOS signature is in the last two bytes of the MBR 521 * 2) One partition of type 0xEE is found, checked by pmbr_part_valid() 522 */ 523 static int is_pmbr_valid(legacy_mbr * mbr) 524 { 525 int i = 0; 526 527 if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE) 528 return 0; 529 530 for (i = 0; i < 4; i++) { 531 if (pmbr_part_valid(&mbr->partition_record[i])) { 532 return 1; 533 } 534 } 535 return 0; 536 } 537 538 /** 539 * is_gpt_valid() - tests one GPT header and PTEs for validity 540 * 541 * lba is the logical block address of the GPT header to test 542 * gpt is a GPT header ptr, filled on return. 543 * ptes is a PTEs ptr, filled on return. 544 * 545 * Description: returns 1 if valid, 0 on error. 546 * If valid, returns pointers to PTEs. 547 */ 548 static int is_gpt_valid(block_dev_desc_t * dev_desc, unsigned long long lba, 549 gpt_header * pgpt_head, gpt_entry ** pgpt_pte) 550 { 551 u32 crc32_backup = 0; 552 u32 calc_crc32; 553 unsigned long long lastlba; 554 555 if (!dev_desc || !pgpt_head) { 556 printf("%s: Invalid Argument(s)\n", __func__); 557 return 0; 558 } 559 560 /* Read GPT Header from device */ 561 if (dev_desc->block_read(dev_desc->dev, lba, 1, pgpt_head) != 1) { 562 printf("*** ERROR: Can't read GPT header ***\n"); 563 return 0; 564 } 565 566 /* Check the GPT header signature */ 567 if (le64_to_cpu(pgpt_head->signature) != GPT_HEADER_SIGNATURE) { 568 printf("GUID Partition Table Header signature is wrong:" 569 "0x%llX != 0x%llX\n", 570 le64_to_cpu(pgpt_head->signature), 571 GPT_HEADER_SIGNATURE); 572 return 0; 573 } 574 575 /* Check the GUID Partition Table CRC */ 576 memcpy(&crc32_backup, &pgpt_head->header_crc32, sizeof(crc32_backup)); 577 memset(&pgpt_head->header_crc32, 0, sizeof(pgpt_head->header_crc32)); 578 579 calc_crc32 = efi_crc32((const unsigned char *)pgpt_head, 580 le32_to_cpu(pgpt_head->header_size)); 581 582 memcpy(&pgpt_head->header_crc32, &crc32_backup, sizeof(crc32_backup)); 583 584 if (calc_crc32 != le32_to_cpu(crc32_backup)) { 585 printf("GUID Partition Table Header CRC is wrong:" 586 "0x%x != 0x%x\n", 587 le32_to_cpu(crc32_backup), calc_crc32); 588 return 0; 589 } 590 591 /* Check that the my_lba entry points to the LBA that contains the GPT */ 592 if (le64_to_cpu(pgpt_head->my_lba) != lba) { 593 printf("GPT: my_lba incorrect: %llX != %llX\n", 594 le64_to_cpu(pgpt_head->my_lba), 595 lba); 596 return 0; 597 } 598 599 /* Check the first_usable_lba and last_usable_lba are within the disk. */ 600 lastlba = (unsigned long long)dev_desc->lba; 601 if (le64_to_cpu(pgpt_head->first_usable_lba) > lastlba) { 602 printf("GPT: first_usable_lba incorrect: %llX > %llX\n", 603 le64_to_cpu(pgpt_head->first_usable_lba), lastlba); 604 return 0; 605 } 606 if (le64_to_cpu(pgpt_head->last_usable_lba) > lastlba) { 607 printf("GPT: last_usable_lba incorrect: %llX > %llX\n", 608 (u64) le64_to_cpu(pgpt_head->last_usable_lba), lastlba); 609 return 0; 610 } 611 612 debug("GPT: first_usable_lba: %llX last_usable_lba %llX last lba %llX\n", 613 le64_to_cpu(pgpt_head->first_usable_lba), 614 le64_to_cpu(pgpt_head->last_usable_lba), lastlba); 615 616 /* Read and allocate Partition Table Entries */ 617 *pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head); 618 if (*pgpt_pte == NULL) { 619 printf("GPT: Failed to allocate memory for PTE\n"); 620 return 0; 621 } 622 623 /* Check the GUID Partition Table Entry Array CRC */ 624 calc_crc32 = efi_crc32((const unsigned char *)*pgpt_pte, 625 le32_to_cpu(pgpt_head->num_partition_entries) * 626 le32_to_cpu(pgpt_head->sizeof_partition_entry)); 627 628 if (calc_crc32 != le32_to_cpu(pgpt_head->partition_entry_array_crc32)) { 629 printf("GUID Partition Table Entry Array CRC is wrong:" 630 "0x%x != 0x%x\n", 631 le32_to_cpu(pgpt_head->partition_entry_array_crc32), 632 calc_crc32); 633 634 free(*pgpt_pte); 635 return 0; 636 } 637 638 /* We're done, all's well */ 639 return 1; 640 } 641 642 /** 643 * alloc_read_gpt_entries(): reads partition entries from disk 644 * @dev_desc 645 * @gpt - GPT header 646 * 647 * Description: Returns ptes on success, NULL on error. 648 * Allocates space for PTEs based on information found in @gpt. 649 * Notes: remember to free pte when you're done! 650 */ 651 static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc, 652 gpt_header * pgpt_head) 653 { 654 size_t count = 0; 655 gpt_entry *pte = NULL; 656 657 if (!dev_desc || !pgpt_head) { 658 printf("%s: Invalid Argument(s)\n", __func__); 659 return NULL; 660 } 661 662 count = le32_to_cpu(pgpt_head->num_partition_entries) * 663 le32_to_cpu(pgpt_head->sizeof_partition_entry); 664 665 debug("%s: count = %u * %u = %zu\n", __func__, 666 (u32) le32_to_cpu(pgpt_head->num_partition_entries), 667 (u32) le32_to_cpu(pgpt_head->sizeof_partition_entry), count); 668 669 /* Allocate memory for PTE, remember to FREE */ 670 if (count != 0) { 671 pte = memalign(ARCH_DMA_MINALIGN, count); 672 } 673 674 if (count == 0 || pte == NULL) { 675 printf("%s: ERROR: Can't allocate 0x%zX " 676 "bytes for GPT Entries\n", 677 __func__, count); 678 return NULL; 679 } 680 681 /* Read GPT Entries from device */ 682 if (dev_desc->block_read (dev_desc->dev, 683 le64_to_cpu(pgpt_head->partition_entry_lba), 684 (lbaint_t) (count / GPT_BLOCK_SIZE), pte) 685 != (count / GPT_BLOCK_SIZE)) { 686 687 printf("*** ERROR: Can't read GPT Entries ***\n"); 688 free(pte); 689 return NULL; 690 } 691 return pte; 692 } 693 694 /** 695 * is_pte_valid(): validates a single Partition Table Entry 696 * @gpt_entry - Pointer to a single Partition Table Entry 697 * 698 * Description: returns 1 if valid, 0 on error. 699 */ 700 static int is_pte_valid(gpt_entry * pte) 701 { 702 efi_guid_t unused_guid; 703 704 if (!pte) { 705 printf("%s: Invalid Argument(s)\n", __func__); 706 return 0; 707 } 708 709 /* Only one validation for now: 710 * The GUID Partition Type != Unused Entry (ALL-ZERO) 711 */ 712 memset(unused_guid.b, 0, sizeof(unused_guid.b)); 713 714 if (memcmp(pte->partition_type_guid.b, unused_guid.b, 715 sizeof(unused_guid.b)) == 0) { 716 717 debug("%s: Found an unused PTE GUID at 0x%08X\n", __func__, 718 (unsigned int)(uintptr_t)pte); 719 720 return 0; 721 } else { 722 return 1; 723 } 724 } 725 #endif 726