1 /* 2 * Copyright (C) 2008 RuggedCom, Inc. 3 * Richard Retanubun <RichardRetanubun@RuggedCom.com> 4 * 5 * SPDX-License-Identifier: GPL-2.0+ 6 */ 7 8 /* 9 * NOTE: 10 * when CONFIG_SYS_64BIT_LBA is not defined, lbaint_t is 32 bits; this 11 * limits the maximum size of addressable storage to < 2 Terra Bytes 12 */ 13 #include <asm/unaligned.h> 14 #include <common.h> 15 #include <command.h> 16 #include <ide.h> 17 #include <malloc.h> 18 #include <part_efi.h> 19 #include <linux/ctype.h> 20 21 DECLARE_GLOBAL_DATA_PTR; 22 23 #ifdef HAVE_BLOCK_DEVICE 24 /** 25 * efi_crc32() - EFI version of crc32 function 26 * @buf: buffer to calculate crc32 of 27 * @len - length of buf 28 * 29 * Description: Returns EFI-style CRC32 value for @buf 30 */ 31 static inline u32 efi_crc32(const void *buf, u32 len) 32 { 33 return crc32(0, buf, len); 34 } 35 36 /* 37 * Private function prototypes 38 */ 39 40 static int pmbr_part_valid(struct partition *part); 41 static int is_pmbr_valid(legacy_mbr * mbr); 42 static int is_gpt_valid(block_dev_desc_t *dev_desc, u64 lba, 43 gpt_header *pgpt_head, gpt_entry **pgpt_pte); 44 static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc, 45 gpt_header * pgpt_head); 46 static int is_pte_valid(gpt_entry * pte); 47 48 static char *print_efiname(gpt_entry *pte) 49 { 50 static char name[PARTNAME_SZ + 1]; 51 int i; 52 for (i = 0; i < PARTNAME_SZ; i++) { 53 u8 c; 54 c = pte->partition_name[i] & 0xff; 55 c = (c && !isprint(c)) ? '.' : c; 56 name[i] = c; 57 } 58 name[PARTNAME_SZ] = 0; 59 return name; 60 } 61 62 static efi_guid_t system_guid = PARTITION_SYSTEM_GUID; 63 64 static inline int is_bootable(gpt_entry *p) 65 { 66 return p->attributes.fields.legacy_bios_bootable || 67 !memcmp(&(p->partition_type_guid), &system_guid, 68 sizeof(efi_guid_t)); 69 } 70 71 #ifdef CONFIG_EFI_PARTITION 72 /* 73 * Public Functions (include/part.h) 74 */ 75 76 void print_part_efi(block_dev_desc_t * dev_desc) 77 { 78 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz); 79 gpt_entry *gpt_pte = NULL; 80 int i = 0; 81 char uuid[37]; 82 unsigned char *uuid_bin; 83 84 if (!dev_desc) { 85 printf("%s: Invalid Argument(s)\n", __func__); 86 return; 87 } 88 /* This function validates AND fills in the GPT header and PTE */ 89 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, 90 gpt_head, &gpt_pte) != 1) { 91 printf("%s: *** ERROR: Invalid GPT ***\n", __func__); 92 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1), 93 gpt_head, &gpt_pte) != 1) { 94 printf("%s: *** ERROR: Invalid Backup GPT ***\n", 95 __func__); 96 return; 97 } else { 98 printf("%s: *** Using Backup GPT ***\n", 99 __func__); 100 } 101 } 102 103 debug("%s: gpt-entry at %p\n", __func__, gpt_pte); 104 105 printf("Part\tStart LBA\tEnd LBA\t\tName\n"); 106 printf("\tAttributes\n"); 107 printf("\tType GUID\n"); 108 printf("\tPartition GUID\n"); 109 110 for (i = 0; i < le32_to_cpu(gpt_head->num_partition_entries); i++) { 111 /* Stop at the first non valid PTE */ 112 if (!is_pte_valid(&gpt_pte[i])) 113 break; 114 115 printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1), 116 le64_to_cpu(gpt_pte[i].starting_lba), 117 le64_to_cpu(gpt_pte[i].ending_lba), 118 print_efiname(&gpt_pte[i])); 119 printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw); 120 uuid_bin = (unsigned char *)gpt_pte[i].partition_type_guid.b; 121 uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID); 122 printf("\ttype:\t%s\n", uuid); 123 uuid_bin = (unsigned char *)gpt_pte[i].unique_partition_guid.b; 124 uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID); 125 printf("\tguid:\t%s\n", uuid); 126 } 127 128 /* Remember to free pte */ 129 free(gpt_pte); 130 return; 131 } 132 133 int get_partition_info_efi(block_dev_desc_t * dev_desc, int part, 134 disk_partition_t * info) 135 { 136 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz); 137 gpt_entry *gpt_pte = NULL; 138 139 /* "part" argument must be at least 1 */ 140 if (!dev_desc || !info || part < 1) { 141 printf("%s: Invalid Argument(s)\n", __func__); 142 return -1; 143 } 144 145 /* This function validates AND fills in the GPT header and PTE */ 146 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, 147 gpt_head, &gpt_pte) != 1) { 148 printf("%s: *** ERROR: Invalid GPT ***\n", __func__); 149 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1), 150 gpt_head, &gpt_pte) != 1) { 151 printf("%s: *** ERROR: Invalid Backup GPT ***\n", 152 __func__); 153 return -1; 154 } else { 155 printf("%s: *** Using Backup GPT ***\n", 156 __func__); 157 } 158 } 159 160 if (part > le32_to_cpu(gpt_head->num_partition_entries) || 161 !is_pte_valid(&gpt_pte[part - 1])) { 162 debug("%s: *** ERROR: Invalid partition number %d ***\n", 163 __func__, part); 164 free(gpt_pte); 165 return -1; 166 } 167 168 /* The 'lbaint_t' casting may limit the maximum disk size to 2 TB */ 169 info->start = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].starting_lba); 170 /* The ending LBA is inclusive, to calculate size, add 1 to it */ 171 info->size = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].ending_lba) + 1 172 - info->start; 173 info->blksz = dev_desc->blksz; 174 175 sprintf((char *)info->name, "%s", 176 print_efiname(&gpt_pte[part - 1])); 177 sprintf((char *)info->type, "U-Boot"); 178 info->bootable = is_bootable(&gpt_pte[part - 1]); 179 #ifdef CONFIG_PARTITION_UUIDS 180 uuid_bin_to_str(gpt_pte[part - 1].unique_partition_guid.b, info->uuid, 181 UUID_STR_FORMAT_GUID); 182 #endif 183 184 debug("%s: start 0x" LBAF ", size 0x" LBAF ", name %s\n", __func__, 185 info->start, info->size, info->name); 186 187 /* Remember to free pte */ 188 free(gpt_pte); 189 return 0; 190 } 191 192 int get_partition_info_efi_by_name(block_dev_desc_t *dev_desc, 193 const char *name, disk_partition_t *info) 194 { 195 int ret; 196 int i; 197 for (i = 1; i < GPT_ENTRY_NUMBERS; i++) { 198 ret = get_partition_info_efi(dev_desc, i, info); 199 if (ret != 0) { 200 /* no more entries in table */ 201 return -1; 202 } 203 if (strcmp(name, (const char *)info->name) == 0) { 204 /* matched */ 205 return 0; 206 } 207 } 208 return -2; 209 } 210 211 int test_part_efi(block_dev_desc_t * dev_desc) 212 { 213 ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, legacymbr, 1, dev_desc->blksz); 214 215 /* Read legacy MBR from block 0 and validate it */ 216 if ((dev_desc->block_read(dev_desc->dev, 0, 1, (ulong *)legacymbr) != 1) 217 || (is_pmbr_valid(legacymbr) != 1)) { 218 return -1; 219 } 220 return 0; 221 } 222 223 /** 224 * set_protective_mbr(): Set the EFI protective MBR 225 * @param dev_desc - block device descriptor 226 * 227 * @return - zero on success, otherwise error 228 */ 229 static int set_protective_mbr(block_dev_desc_t *dev_desc) 230 { 231 /* Setup the Protective MBR */ 232 ALLOC_CACHE_ALIGN_BUFFER(legacy_mbr, p_mbr, 1); 233 memset(p_mbr, 0, sizeof(*p_mbr)); 234 235 if (p_mbr == NULL) { 236 printf("%s: calloc failed!\n", __func__); 237 return -1; 238 } 239 /* Append signature */ 240 p_mbr->signature = MSDOS_MBR_SIGNATURE; 241 p_mbr->partition_record[0].sys_ind = EFI_PMBR_OSTYPE_EFI_GPT; 242 p_mbr->partition_record[0].start_sect = 1; 243 p_mbr->partition_record[0].nr_sects = (u32) dev_desc->lba; 244 245 /* Write MBR sector to the MMC device */ 246 if (dev_desc->block_write(dev_desc->dev, 0, 1, p_mbr) != 1) { 247 printf("** Can't write to device %d **\n", 248 dev_desc->dev); 249 return -1; 250 } 251 252 return 0; 253 } 254 255 int write_gpt_table(block_dev_desc_t *dev_desc, 256 gpt_header *gpt_h, gpt_entry *gpt_e) 257 { 258 const int pte_blk_cnt = BLOCK_CNT((gpt_h->num_partition_entries 259 * sizeof(gpt_entry)), dev_desc); 260 u32 calc_crc32; 261 u64 val; 262 263 debug("max lba: %x\n", (u32) dev_desc->lba); 264 /* Setup the Protective MBR */ 265 if (set_protective_mbr(dev_desc) < 0) 266 goto err; 267 268 /* Generate CRC for the Primary GPT Header */ 269 calc_crc32 = efi_crc32((const unsigned char *)gpt_e, 270 le32_to_cpu(gpt_h->num_partition_entries) * 271 le32_to_cpu(gpt_h->sizeof_partition_entry)); 272 gpt_h->partition_entry_array_crc32 = cpu_to_le32(calc_crc32); 273 274 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 275 le32_to_cpu(gpt_h->header_size)); 276 gpt_h->header_crc32 = cpu_to_le32(calc_crc32); 277 278 /* Write the First GPT to the block right after the Legacy MBR */ 279 if (dev_desc->block_write(dev_desc->dev, 1, 1, gpt_h) != 1) 280 goto err; 281 282 if (dev_desc->block_write(dev_desc->dev, 2, pte_blk_cnt, gpt_e) 283 != pte_blk_cnt) 284 goto err; 285 286 /* recalculate the values for the Backup GPT Header */ 287 val = le64_to_cpu(gpt_h->my_lba); 288 gpt_h->my_lba = gpt_h->alternate_lba; 289 gpt_h->alternate_lba = cpu_to_le64(val); 290 gpt_h->header_crc32 = 0; 291 292 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 293 le32_to_cpu(gpt_h->header_size)); 294 gpt_h->header_crc32 = cpu_to_le32(calc_crc32); 295 296 if (dev_desc->block_write(dev_desc->dev, 297 (lbaint_t)le64_to_cpu(gpt_h->last_usable_lba) 298 + 1, 299 pte_blk_cnt, gpt_e) != pte_blk_cnt) 300 goto err; 301 302 if (dev_desc->block_write(dev_desc->dev, 303 (lbaint_t)le64_to_cpu(gpt_h->my_lba), 1, 304 gpt_h) != 1) 305 goto err; 306 307 debug("GPT successfully written to block device!\n"); 308 return 0; 309 310 err: 311 printf("** Can't write to device %d **\n", dev_desc->dev); 312 return -1; 313 } 314 315 int gpt_fill_pte(gpt_header *gpt_h, gpt_entry *gpt_e, 316 disk_partition_t *partitions, int parts) 317 { 318 lbaint_t offset = (lbaint_t)le64_to_cpu(gpt_h->first_usable_lba); 319 lbaint_t start; 320 lbaint_t last_usable_lba = (lbaint_t) 321 le64_to_cpu(gpt_h->last_usable_lba); 322 int i, k; 323 size_t efiname_len, dosname_len; 324 #ifdef CONFIG_PARTITION_UUIDS 325 char *str_uuid; 326 unsigned char *bin_uuid; 327 #endif 328 329 for (i = 0; i < parts; i++) { 330 /* partition starting lba */ 331 start = partitions[i].start; 332 if (start && (start < offset)) { 333 printf("Partition overlap\n"); 334 return -1; 335 } 336 if (start) { 337 gpt_e[i].starting_lba = cpu_to_le64(start); 338 offset = start + partitions[i].size; 339 } else { 340 gpt_e[i].starting_lba = cpu_to_le64(offset); 341 offset += partitions[i].size; 342 } 343 if (offset >= last_usable_lba) { 344 printf("Partitions layout exceds disk size\n"); 345 return -1; 346 } 347 /* partition ending lba */ 348 if ((i == parts - 1) && (partitions[i].size == 0)) 349 /* extend the last partition to maximuim */ 350 gpt_e[i].ending_lba = gpt_h->last_usable_lba; 351 else 352 gpt_e[i].ending_lba = cpu_to_le64(offset - 1); 353 354 /* partition type GUID */ 355 memcpy(gpt_e[i].partition_type_guid.b, 356 &PARTITION_BASIC_DATA_GUID, 16); 357 358 #ifdef CONFIG_PARTITION_UUIDS 359 str_uuid = partitions[i].uuid; 360 bin_uuid = gpt_e[i].unique_partition_guid.b; 361 362 if (uuid_str_to_bin(str_uuid, bin_uuid, UUID_STR_FORMAT_STD)) { 363 printf("Partition no. %d: invalid guid: %s\n", 364 i, str_uuid); 365 return -1; 366 } 367 #endif 368 369 /* partition attributes */ 370 memset(&gpt_e[i].attributes, 0, 371 sizeof(gpt_entry_attributes)); 372 373 /* partition name */ 374 efiname_len = sizeof(gpt_e[i].partition_name) 375 / sizeof(efi_char16_t); 376 dosname_len = sizeof(partitions[i].name); 377 378 memset(gpt_e[i].partition_name, 0, 379 sizeof(gpt_e[i].partition_name)); 380 381 for (k = 0; k < min(dosname_len, efiname_len); k++) 382 gpt_e[i].partition_name[k] = 383 (efi_char16_t)(partitions[i].name[k]); 384 385 debug("%s: name: %s offset[%d]: 0x" LBAF 386 " size[%d]: 0x" LBAF "\n", 387 __func__, partitions[i].name, i, 388 offset, i, partitions[i].size); 389 } 390 391 return 0; 392 } 393 394 int gpt_fill_header(block_dev_desc_t *dev_desc, gpt_header *gpt_h, 395 char *str_guid, int parts_count) 396 { 397 gpt_h->signature = cpu_to_le64(GPT_HEADER_SIGNATURE); 398 gpt_h->revision = cpu_to_le32(GPT_HEADER_REVISION_V1); 399 gpt_h->header_size = cpu_to_le32(sizeof(gpt_header)); 400 gpt_h->my_lba = cpu_to_le64(1); 401 gpt_h->alternate_lba = cpu_to_le64(dev_desc->lba - 1); 402 gpt_h->first_usable_lba = cpu_to_le64(34); 403 gpt_h->last_usable_lba = cpu_to_le64(dev_desc->lba - 34); 404 gpt_h->partition_entry_lba = cpu_to_le64(2); 405 gpt_h->num_partition_entries = cpu_to_le32(GPT_ENTRY_NUMBERS); 406 gpt_h->sizeof_partition_entry = cpu_to_le32(sizeof(gpt_entry)); 407 gpt_h->header_crc32 = 0; 408 gpt_h->partition_entry_array_crc32 = 0; 409 410 if (uuid_str_to_bin(str_guid, gpt_h->disk_guid.b, UUID_STR_FORMAT_GUID)) 411 return -1; 412 413 return 0; 414 } 415 416 int gpt_restore(block_dev_desc_t *dev_desc, char *str_disk_guid, 417 disk_partition_t *partitions, int parts_count) 418 { 419 int ret; 420 421 gpt_header *gpt_h = calloc(1, PAD_TO_BLOCKSIZE(sizeof(gpt_header), 422 dev_desc)); 423 gpt_entry *gpt_e; 424 425 if (gpt_h == NULL) { 426 printf("%s: calloc failed!\n", __func__); 427 return -1; 428 } 429 430 gpt_e = calloc(1, PAD_TO_BLOCKSIZE(GPT_ENTRY_NUMBERS 431 * sizeof(gpt_entry), 432 dev_desc)); 433 if (gpt_e == NULL) { 434 printf("%s: calloc failed!\n", __func__); 435 free(gpt_h); 436 return -1; 437 } 438 439 /* Generate Primary GPT header (LBA1) */ 440 ret = gpt_fill_header(dev_desc, gpt_h, str_disk_guid, parts_count); 441 if (ret) 442 goto err; 443 444 /* Generate partition entries */ 445 ret = gpt_fill_pte(gpt_h, gpt_e, partitions, parts_count); 446 if (ret) 447 goto err; 448 449 /* Write GPT partition table */ 450 ret = write_gpt_table(dev_desc, gpt_h, gpt_e); 451 452 err: 453 free(gpt_e); 454 free(gpt_h); 455 return ret; 456 } 457 #endif 458 459 /* 460 * Private functions 461 */ 462 /* 463 * pmbr_part_valid(): Check for EFI partition signature 464 * 465 * Returns: 1 if EFI GPT partition type is found. 466 */ 467 static int pmbr_part_valid(struct partition *part) 468 { 469 if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT && 470 get_unaligned_le32(&part->start_sect) == 1UL) { 471 return 1; 472 } 473 474 return 0; 475 } 476 477 /* 478 * is_pmbr_valid(): test Protective MBR for validity 479 * 480 * Returns: 1 if PMBR is valid, 0 otherwise. 481 * Validity depends on two things: 482 * 1) MSDOS signature is in the last two bytes of the MBR 483 * 2) One partition of type 0xEE is found, checked by pmbr_part_valid() 484 */ 485 static int is_pmbr_valid(legacy_mbr * mbr) 486 { 487 int i = 0; 488 489 if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE) 490 return 0; 491 492 for (i = 0; i < 4; i++) { 493 if (pmbr_part_valid(&mbr->partition_record[i])) { 494 return 1; 495 } 496 } 497 return 0; 498 } 499 500 /** 501 * is_gpt_valid() - tests one GPT header and PTEs for validity 502 * 503 * lba is the logical block address of the GPT header to test 504 * gpt is a GPT header ptr, filled on return. 505 * ptes is a PTEs ptr, filled on return. 506 * 507 * Description: returns 1 if valid, 0 on error. 508 * If valid, returns pointers to PTEs. 509 */ 510 static int is_gpt_valid(block_dev_desc_t *dev_desc, u64 lba, 511 gpt_header *pgpt_head, gpt_entry **pgpt_pte) 512 { 513 u32 crc32_backup = 0; 514 u32 calc_crc32; 515 u64 lastlba; 516 517 if (!dev_desc || !pgpt_head) { 518 printf("%s: Invalid Argument(s)\n", __func__); 519 return 0; 520 } 521 522 /* Read GPT Header from device */ 523 if (dev_desc->block_read(dev_desc->dev, (lbaint_t)lba, 1, pgpt_head) 524 != 1) { 525 printf("*** ERROR: Can't read GPT header ***\n"); 526 return 0; 527 } 528 529 /* Check the GPT header signature */ 530 if (le64_to_cpu(pgpt_head->signature) != GPT_HEADER_SIGNATURE) { 531 printf("GUID Partition Table Header signature is wrong:" 532 "0x%llX != 0x%llX\n", 533 le64_to_cpu(pgpt_head->signature), 534 GPT_HEADER_SIGNATURE); 535 return 0; 536 } 537 538 /* Check the GUID Partition Table CRC */ 539 memcpy(&crc32_backup, &pgpt_head->header_crc32, sizeof(crc32_backup)); 540 memset(&pgpt_head->header_crc32, 0, sizeof(pgpt_head->header_crc32)); 541 542 calc_crc32 = efi_crc32((const unsigned char *)pgpt_head, 543 le32_to_cpu(pgpt_head->header_size)); 544 545 memcpy(&pgpt_head->header_crc32, &crc32_backup, sizeof(crc32_backup)); 546 547 if (calc_crc32 != le32_to_cpu(crc32_backup)) { 548 printf("GUID Partition Table Header CRC is wrong:" 549 "0x%x != 0x%x\n", 550 le32_to_cpu(crc32_backup), calc_crc32); 551 return 0; 552 } 553 554 /* Check that the my_lba entry points to the LBA that contains the GPT */ 555 if (le64_to_cpu(pgpt_head->my_lba) != lba) { 556 printf("GPT: my_lba incorrect: %llX != %llX\n", 557 le64_to_cpu(pgpt_head->my_lba), 558 lba); 559 return 0; 560 } 561 562 /* Check the first_usable_lba and last_usable_lba are within the disk. */ 563 lastlba = (u64)dev_desc->lba; 564 if (le64_to_cpu(pgpt_head->first_usable_lba) > lastlba) { 565 printf("GPT: first_usable_lba incorrect: %llX > %llX\n", 566 le64_to_cpu(pgpt_head->first_usable_lba), lastlba); 567 return 0; 568 } 569 if (le64_to_cpu(pgpt_head->last_usable_lba) > lastlba) { 570 printf("GPT: last_usable_lba incorrect: %llX > %llX\n", 571 le64_to_cpu(pgpt_head->last_usable_lba), lastlba); 572 return 0; 573 } 574 575 debug("GPT: first_usable_lba: %llX last_usable_lba %llX last lba %llX\n", 576 le64_to_cpu(pgpt_head->first_usable_lba), 577 le64_to_cpu(pgpt_head->last_usable_lba), lastlba); 578 579 /* Read and allocate Partition Table Entries */ 580 *pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head); 581 if (*pgpt_pte == NULL) { 582 printf("GPT: Failed to allocate memory for PTE\n"); 583 return 0; 584 } 585 586 /* Check the GUID Partition Table Entry Array CRC */ 587 calc_crc32 = efi_crc32((const unsigned char *)*pgpt_pte, 588 le32_to_cpu(pgpt_head->num_partition_entries) * 589 le32_to_cpu(pgpt_head->sizeof_partition_entry)); 590 591 if (calc_crc32 != le32_to_cpu(pgpt_head->partition_entry_array_crc32)) { 592 printf("GUID Partition Table Entry Array CRC is wrong:" 593 "0x%x != 0x%x\n", 594 le32_to_cpu(pgpt_head->partition_entry_array_crc32), 595 calc_crc32); 596 597 free(*pgpt_pte); 598 return 0; 599 } 600 601 /* We're done, all's well */ 602 return 1; 603 } 604 605 /** 606 * alloc_read_gpt_entries(): reads partition entries from disk 607 * @dev_desc 608 * @gpt - GPT header 609 * 610 * Description: Returns ptes on success, NULL on error. 611 * Allocates space for PTEs based on information found in @gpt. 612 * Notes: remember to free pte when you're done! 613 */ 614 static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc, 615 gpt_header * pgpt_head) 616 { 617 size_t count = 0, blk_cnt; 618 gpt_entry *pte = NULL; 619 620 if (!dev_desc || !pgpt_head) { 621 printf("%s: Invalid Argument(s)\n", __func__); 622 return NULL; 623 } 624 625 count = le32_to_cpu(pgpt_head->num_partition_entries) * 626 le32_to_cpu(pgpt_head->sizeof_partition_entry); 627 628 debug("%s: count = %u * %u = %zu\n", __func__, 629 (u32) le32_to_cpu(pgpt_head->num_partition_entries), 630 (u32) le32_to_cpu(pgpt_head->sizeof_partition_entry), count); 631 632 /* Allocate memory for PTE, remember to FREE */ 633 if (count != 0) { 634 pte = memalign(ARCH_DMA_MINALIGN, 635 PAD_TO_BLOCKSIZE(count, dev_desc)); 636 } 637 638 if (count == 0 || pte == NULL) { 639 printf("%s: ERROR: Can't allocate 0x%zX " 640 "bytes for GPT Entries\n", 641 __func__, count); 642 return NULL; 643 } 644 645 /* Read GPT Entries from device */ 646 blk_cnt = BLOCK_CNT(count, dev_desc); 647 if (dev_desc->block_read (dev_desc->dev, 648 (lbaint_t)le64_to_cpu(pgpt_head->partition_entry_lba), 649 (lbaint_t) (blk_cnt), pte) 650 != blk_cnt) { 651 652 printf("*** ERROR: Can't read GPT Entries ***\n"); 653 free(pte); 654 return NULL; 655 } 656 return pte; 657 } 658 659 /** 660 * is_pte_valid(): validates a single Partition Table Entry 661 * @gpt_entry - Pointer to a single Partition Table Entry 662 * 663 * Description: returns 1 if valid, 0 on error. 664 */ 665 static int is_pte_valid(gpt_entry * pte) 666 { 667 efi_guid_t unused_guid; 668 669 if (!pte) { 670 printf("%s: Invalid Argument(s)\n", __func__); 671 return 0; 672 } 673 674 /* Only one validation for now: 675 * The GUID Partition Type != Unused Entry (ALL-ZERO) 676 */ 677 memset(unused_guid.b, 0, sizeof(unused_guid.b)); 678 679 if (memcmp(pte->partition_type_guid.b, unused_guid.b, 680 sizeof(unused_guid.b)) == 0) { 681 682 debug("%s: Found an unused PTE GUID at 0x%08X\n", __func__, 683 (unsigned int)(uintptr_t)pte); 684 685 return 0; 686 } else { 687 return 1; 688 } 689 } 690 #endif 691